JPH0317207A - 強磁性粉末の製造方法 - Google Patents

強磁性粉末の製造方法

Info

Publication number
JPH0317207A
JPH0317207A JP1148498A JP14849889A JPH0317207A JP H0317207 A JPH0317207 A JP H0317207A JP 1148498 A JP1148498 A JP 1148498A JP 14849889 A JP14849889 A JP 14849889A JP H0317207 A JPH0317207 A JP H0317207A
Authority
JP
Japan
Prior art keywords
powder
gas
iron
oxide
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1148498A
Other languages
English (en)
Inventor
Noriyuki Kitaori
典之 北折
Hideo Ogawara
大河原 英生
Masayoshi Shinoda
篠田 正義
Hideyo Iida
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP1148498A priority Critical patent/JPH0317207A/ja
Publication of JPH0317207A publication Critical patent/JPH0317207A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に磁気記録媒体用の金属系非酸化物磁性粉
末の製造方法及びこれに対する耐酸化性膜形戒方法に関
する。
〔従来の技術〕
磁気テープ、磁気ディスク等の磁気記録媒体はビデオ分
野、オーディオ分野、コンプユータ分野等で広く使用さ
れている。このような磁気記録媒体には、強磁性金属を
基材に蒸着法等により戒膜した薄膜型の磁気記録媒体と
、磁性粉末、樹脂、溶剤、分散剤その他の添加剤からな
る磁性塗料を基材に塗布・乾燥し、磁性塗膜を形成した
塗布型の磁気記録媒体とが使用されている. この塗布型の磁気記録媒体には、特に高密度記録媒体用
磁性粉として、r−Fe205に比べ保磁力(Ha)が
高く、残留磁束密度(Bs)が大きい金属磁性粉(例え
ばFe1Fe−Co , Fe−Ni−Co等の磁性粉
)、金属窒化物磁性粉(Fe , Fe−Nt−Co等
の窒化物)及び金属炭化物磁性粉(Fe, Fe−Ni
−Co等の炭化物)が用いられている. 金属磁性粉を製造するには、特開昭58−87207号
公報に記載されているように種々の方法があるが、例え
ばオキシ水酸化鉄あるいは酸化鉄の処理用粉末を還元性
気体で還元する方法がある。具体的ニは、ベルトコンベ
ヤー等により処理用粉末を搬送して熱水素中に導く方法
(実公昭60−40564号公報)あるいはロータリー
キルンを用いて同様に熱水素中で処理用粉末を処理する
方法(特開昭59−197506号公報)等が挙げられ
る。
これらの場合熱水素の温度、すなわち還元温度は、35
0〜500℃が良く採用されている(特開昭58−87
207号公報)。また、他の条件としては、R=阿バT
 − L) (M:処理用粉末の重{t(g) 、L:
水素流i!( 17分)、T:還元時間(分〉の式にお
いて、R値が小さいほど還元率が高いとされ、良い品質
となるとされている(特開昭58−87207号公報)
.したがって、同しR値でよりよい品質の製品ができれ
ば、それだけ還元装置(還元炉)の効率が高いことにな
る。
また、窒化鉄を製造するには、上記方法により金属磁性
粉末を製造後、400℃程度の温度でN}!5とH2の
混合ガスを導いて処理する。炭化鉄粉末を得るには同様
に金属磁性粉末を300℃程度の温度で今度はCOガス
中で処理する。
これらの金属磁性粉末、窒化鉄粉末及び炭化鉄粉末はそ
のまま空気等と接すると、急激な酸化が起こり、発熱し
、甚だしい場合には発火燃焼する。
また、これらの金属系非酸化物磁性粉を用いた磁気塗料
を有機フィルム上に塗布して、磁気テープを作威したも
のでも、その使用時に磁気ヘッドに接触させて走行させ
ると、磁気テープ表面が摩耗し、磁性粉が露出し、空気
酸化される,このように急激に金属系非酸化物磁性粉が
酸化されると、その酸化膜は粗になり、上記の磁気特性
が悪くなり、特に例えば飽和磁束密度の経時劣化を起こ
す。
そこで、■ 金属磁性粉末等をこれと反応しない有機溶
剤(例えばトルエン)に浸漬しながら放置して有機溶剤
中を徐々に蒸発させながら薄い酸化膜を形成した後、さ
らに空気中で熱処理する方法(特開昭60−8605号
公報)、■ 金属磁性粉末等を、円筒体に焼結金属板の
ガス分散板を有する反応容器に仕込み、これに入口ガス
温度30℃、圧力1.5Xgノdの条件下で窒素及び酸
素の混合ガスを通気して金属磁性粉末を流動させながら
酸化膜を形成し安定化処理を行う方法(特開昭60−1
49701号公If!)が知られている. 〔発明が解決しようとする課題〕 しかしながら、上記において、金M磁性粉末を製造する
方法のうち、ベルトコンベヤーで処理用粉末を搬送する
方法では、処理用粉末の攪拌が行われず、ガスとの接触
が不十分となって均一な還元鉄粉が得られず、磁性特性
にハラッキが生し易いという問題点がある。
また、ロータリーキルンを用いる方法では、処理用粉末
、例えば酸化鉄の形状、これに含まれる元素の種類、粒
径によっても異なるが、一般に高品位の還元鉄粉と言わ
れるものはR値が0.03以下で得られ、これを実現す
るためには処理用粉末の量を減らすか、反応時間を長く
するかあるいは還元ガス量を壜やす必要があっていずれ
も生産性を低下させ、工業的には好ましくない。
また、窒化鉄、炭化鉄を製造する場合も、金属磁性粉末
を処理用粉末として用いるので、上記のような問題点が
あるのみならす、窒化及び炭化の場合、NH3やCOの
毒性ガスを用いるため、製造上危険であるという問題点
がある。
また、安定化処理のため、金属磁性粉末等に酸化膜を形
成する場合にも、上記■の方法では処理用粉末を攪拌し
ないので均一な酸化膜ができないのみか、有tA>g刑
を茎発し空気と触れるようになったとき発熱が過度にな
った場合には再度有機溶剤を添加するため、反応終了ま
でに長時間を要するという問題点がある。また、■の方
法におけるガスのみによる流動層では10μ−以下の粉
体粒子は円滑に疏動化せず、層内に局所的に流路が形成
される、いわゆるチャンネリング現象が生じ、10μm
以下の粒子は均一に酸化され難く、このため粒子によっ
て酸化の程度にバラツキが生し、不均一な酸化処理とな
って十分な耐酸化性が得られない。それのみならず、チ
ャンネリングすると、部分的に発熱して危険性も高いと
いう問題もある.この■の方法では、さらに粉末分散層
内を気泡がそのまま上昇する、いわゆるパブリング現象
や、粉末分散層内に粉末の密度差が交互に生しる、いわ
ゆるスラフキング現象が生して処理用粉末の処理が均一
には行われないという問題がある。
本発明の目的は、処理用粉末のガスによる処理が均一に
行われる金属系非酸化物磁性粉末の製造方法を提供する
ことにある。
〔課題を解決するための手段〕
本発明は、上記課題を解決するために、処理用粉末に通
気処理を行うことによって得られる金属系非酸化物強磁
性粉の製造方法において、処理用粉末に振動を加えなが
ら通気することを特徴とする強磁性粉末の製造方法を提
供するものである.次に本発明を詳細に説明する。
本発明において処理用粉末とは、金属磁性粉末を得る場
合には、水酸化鉄あるいは酸化鉄が例示されJ窒化鉄、
炭化鉄を得る場合にはこの金属磁性粉末が挙げられ、さ
らに酸化膜を形戒する場合にはこれらの金属磁性粉末、
窒化鉄粉末及び炭化鉄粉末が挙げられる。
また、本発明において処理用粉末に振動を加えながらガ
スを導入するには、気体併用振動流動装置を用いるが、
その一例は第l図に示す如き構造を有する。
すなわち、架台1の上に振動発生装置2を設け、その上
に筒状の反応容器3を設けてこれに振動を伝える。この
反応容器3を囲むように保温材4を設け、保温材と反応
容器との間に反応容器加熱用のヒータ5を設け、さらに
反応容器下方及び上方にそれぞれにガス導入管6及びガ
ス排出管7を設ける。そして反応容器の内部下方に微細
な貫通孔を複数有する金属メノシュ状の分散板8を上記
ガス導入管に近接して設ける。
このような装置を用い、上記した金属磁性粉末、窒化鉄
粉末及び炭化鉄粉末をそれぞれの処理用粉末を用いて製
造するが、金属磁性粉末を製造する場合には350〜5
00℃の範囲で水素ガスを通気し、窒化鉄粉末を製造す
る場合には、400〜500℃でNJ:H2=4; 1
の混合ガスを通気することが好ましく、また、炭化鉄粉
末を製造する場合には300〜400゜CでCOガスを
通気することが好ましい。また、酸化膜を形成するには
、上記金属磁性粉末、窒化鉄粉末又は炭化鉄粉末を製造
後、室温に冷却し、不后性ガス中に微量の酸化性ガスを
混合した混合ガスを通気することが好ましい。
上記のようにして酸化膜を形成した還元鉄粉末、窒化鉄
粉又は炭化鉄粉を空気中で加熱処理することによりそれ
ぞれの再酸化処理金属系非酸化物強磁性粉末を得ること
も好ましい。
上記金属磁性粉末としては、強磁性合金粉末があげられ
、これには例えば金属分が75重量%以上であり、金属
分の80重量%以上がFe, Co, Ni, FeC
o , Fe−Ni , Go−Ni 又はCo−Ni
−Feの内の少なくともl種であり、金属分の20重量
%以下、好ましくは0.5 〜5重量%がA2、Si,
 S , ScSTt, V ,Cr, Mn, Cu
, Zn..Y Sl’lo、RhSPd, Ag, 
Sn, Sb,Te, Ha, TaSW 、Re, 
Au, HySPb..Bi, La, Ce,Pr,
 Nd, B , Pなどの組戒を有するものが挙げら
れ、少量の水、水酸化物を含む場合もある。この強磁性
合金粉末は長径が約0.5μm以下の粒子が好ましい。
また金属窒化物としては、窒化鉄磁性粉が挙げられ、こ
れには、Ni..Co, Zn,  Aj2, St,
 Zr, Mn,Cr, Mo, Ba, Ca,  
Mg, Ti, Na, CuSSr等の一種以上を含
む鉄を主或分とするものが挙げられる。
その粒径は、好ましくは平均長軸0.05〜1.0μm
、平均短軸o.oos〜0.3μ醜である。
〔作用〕
処理用粉末に振動を加えることにより、粉末自体が流動
化され、あるいは流動化が促進される。
したがって、ガスの導入による流動化に加えて粉末の振
動による流動化が加わることになるので、ガスの導入量
を少なくしても粉末は所定の流動を起こし、それだけ粉
末の飛散を少なくできる.また、振動による粉末の流動
化等によりチャンネリング現象、パブリング現象、スラ
フギング現象が起こり難<、10μ階以下のような微細
な粉末も良く流動し、ガスと粉末との反応が均一に起こ
り、その効率も向上する. 〔実施例〕 次に本発明の実施例を図面に基づいて説明する。
実施例1 第1図に示す装置において、直径15cm、長さ120
0のステンレス製筒状反応容器3内に設けた分散板4の
上に、針状ヘマタイト(Fez03)粒子(長袖0.3
μm、短軸0.05μm)を1 . 3Kg入れ、振動
発生装置 によって振幅3問、振動数50Hzの振動を
上記反応容器に与え、反応容器3の下方から窒素ガス(
N2)を導入し、反応容器中の空気を窒素ガスで置換す
る。
その後、N2ガス中で450g ’Cまで昇温させ、そ
の温度に保ったまま、N2ガスに代えて、水素ガス(}
12)を毎分5i導入し、反応容器中をH2で置換した
.このままH2ガスを流し続けた状態で、反応容器中に
導入するガス圧と、反応容器から排出するガス圧との差
圧は一定であった。差圧が一定であることから、反応容
器内は粉末が流動化していると判断し、このままの状態
で還元反応を10時間続行した。その後、温度を下げ、
ガスの供給と反応容器の振動を停止し、処理済み粉末を
反応容器から直接、トルエンを満たした別の容器中に投
入した。
この処理済み粉末について試料振動型磁束針によって磁
気特性を測定し、飽和磁化、残留磁化、角型比(飽和磁
化/残留磁化)、保持力、S.F.DCS&4rtch
ing Field Distributionの略で
磁気特性のハラツキを示すパラメータ)、半値幅を求め
、その結果を表lに示す。
また、上記処理済み粉末をX線回折装置を用いて組成分
析を行った結果を第2図に示す。
第2図からα一Fe単相の(11.0)面の回折ピーク
がシャープに観測され、還元が良く行われたことがわか
る。
なお、R値は1300/(54X10X60)=0.0
4であった。
比較例l 実施例lにおいて、振動発生装置を動作させず、反応容
器に振動を与えなかったこと以外は同様にして処理済み
粉末を製造し、これについても実施例Iと同様に測定し
た結果を表1に示す。
また、X線回折装置を用いて測定した結果を第5図に示
す. 第5図からは還元が不十分なため、酸化鉄のピークが残
っていることがわかる。
実施例2 実施例lと同様にして還元反応を終了させた後、その還
元処理済み粉末を400℃に加熱し、H2ガスの代わり
にNFI3ガス16 1!/分、H2ガス4 //分の
流量で混合させた混合ガスを通気し、2時間反応させた
.以下実施例1と同様にして窒化処理粉末を得た.これ
についても実施例lと同様に測定した結果を表1に示す
また、X線回折装置を用いて測定した結果を第3図に示
す。
第3図から窒化されてFe4Nになったことが確かめら
れる。窒化が完全なためα一Fe相が認められない。
実施例3 実施例2において、400℃の代わりに350℃とし、
NH3とH2の混合ガスの代わりにCOガスを18l/
分で通気した以外は同様にして炭化処理粉末を得た.こ
れについても実施例lと同様に測定した結果を表lに示
す。
X線回折装置を用いて測定した結果を第6図に示す. 第4図から炭化されてFe5C2になったことが確かめ
られる。炭化が完全なためα−Fe相が認められない。
実施例4 実施例lと同様にして還元反応を終了させた処理済み粉
末を室温まで冷やし、反応容器中に溜めたまま、室温で
N2ガスを毎分l5l、空気を毎分1lの割合で混合し
、この混合ガスを10時間通気した。この後、この混合
ガスの通気を止め、ついでN2ガスを毎分15l,空気
を毎分5lの割合で混合したガスを上記粉末に通気し、
反応容器の温度を40℃に上げ、この温度で4時間保持
した.その後温度を60℃に上げ、この温度で3時間保
持した後、温度をさらに80℃に上げ、この温度で2時
間保持した。この後、反応容器の温度を室温に下げ、ガ
スの供給を止めた。粉末を空気中に取り出し、以下実施
例lと同様にして磁気特性を測定した結果を表2に示す
さらに、上記で得られた処理粉末を60℃、相対湿度9
0%の高湿度環境下に75時間放置した後、飽和磁化を
測定し、その放置前に求めた飽和磁化に対する変化率を
求め、その結果を表2に示した。
これを耐蝕性の目安とした。
比較例2 実施例1において得られた還元さた粉末を用い、振動発
生装置を動作させず反応容器に振動を与えなかった以外
は実施例4と同様にして酸化処理を行った粉末を得た。
これについても実施例4と同様に測定した結果を表2に
示す。
表2の結果から、実施例のものが比較例のものに比べ顕
著に耐蝕性に優れることが分かる。
表2 なお、実施例1と同じへマタイト粒子1 . 3Kgを
直径15cmのロータリーキルン式還元炉に入れ、5r
pmで回転させながら450℃でN2ガスを流しながら
、昇温させた.温度が一定になった後、H2ガスを54
l/分流し、反応時間を10時間として実施例1と同じ
R値にした。粉末を取り出し、実施例lと同様に測定し
た結果は比較例1より還元は進んでいたが、未だ不十分
であった.なお、反応時間を13時間にしたとき、X線
回折装置による測定結果からほぼ還元されたことがわか
った.この場合のR値は0.03であり、最低0.03
は鉢必要でることがわかった。
(発明の効果) 本発明によれば、処理用粉末に振動を与えながらガスに
よる処理を行ったので、処理用粉末の流動化が増加し、
チャンネリング現象等が起こらず、その結果ガスと処理
用粉末との反応が粉末の全粒子について均一かつ効率良
く行われ、これにより磁気特性が均一な磁性粉末を効率
良く得ることができる。これは例えば酸化膜形戒処理を
行った場合、その処理時間を従来のものの40%程度ま
でにすることができる。
また、ロータリーキルン方式に比べ、反応効率が30%
も良くでき、上記式のR値が0.04でもよいという効
果もある。
また、窒化、炭化処理等において毒性ガスを用いても危
険性が少なく、安全性が高い。
【図面の簡単な説明】
第1図は本発明の方法を実施するときに使用する装置の
一例を示す断面説明図、第2図は実施例1の処理済み粉
末のX線回折図、第3図は実施例2の処理済粉末のX線
回折図、第4図は実施例3の処理済み粉末のX線回折図
、第5図は比較例1の処理済み粉末のX線回折図である
。 平或l年6月15日 第 I 図 7 冫 { 第2図 36 訂 測 お 42  43  44  45  6 47  48 
 4950 ブラソグ角 (2e)

Claims (6)

    【特許請求の範囲】
  1. (1)処理用粉末に通気処理を行うことによって得られ
    る金属系非酸化物強磁性粉末の製造方法において、処理
    用粉末に振動を加えながら通気することを特徴とする強
    磁性粉末の製造方法。
  2. (2)処理用粉末がオキシ酸化鉄粉又は酸化鉄粉であり
    、通気するガスが水素ガスであり、金属系非酸化物強磁
    性粉末が還元鉄粉末であることを特徴とする請求項1記
    載の強磁性粉末の製造方法。
  3. (3)処理用粉末が還元鉄粉であり、通気ガスがアンモ
    ニアと水素の混合ガスであり、金属系非酸化物強磁性粉
    末が窒化鉄粉であることを特徴とする請求項1記載の強
    磁性粉末の製造方法。
  4. (4)処理用粉末が還元鉄粉であり、通気ガスが一酸化
    炭素ガスであり、金属系非酸化物強磁性粉末が炭化鉄粉
    であることを特徴とする請求項1記載の強磁性粉末の製
    造方法。
  5. (5)処理用粉末が還元鉄粉、窒化鉄粉又は炭化鉄粉で
    あり、通気ガスが微量の酸化性ガスを含む混合ガスであ
    り、金属系非酸化物強磁性粉末が酸化膜を形成した還元
    鉄粉末、窒化鉄粉又は炭化鉄粉であることを特徴とする
    請求項1記載の強磁性粉末の製造方法。
  6. (6)請求項5記載の酸化膜を形成した還元鉄粉末、窒
    化鉄粉又は炭化鉄粉を空気中で加熱処理することにより
    それぞれの再酸化処理金属系非酸化物強磁性粉末を得る
    ことを特徴とする強磁性粉末の製造方法。
JP1148498A 1989-06-13 1989-06-13 強磁性粉末の製造方法 Pending JPH0317207A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1148498A JPH0317207A (ja) 1989-06-13 1989-06-13 強磁性粉末の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148498A JPH0317207A (ja) 1989-06-13 1989-06-13 強磁性粉末の製造方法

Publications (1)

Publication Number Publication Date
JPH0317207A true JPH0317207A (ja) 1991-01-25

Family

ID=15454100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148498A Pending JPH0317207A (ja) 1989-06-13 1989-06-13 強磁性粉末の製造方法

Country Status (1)

Country Link
JP (1) JPH0317207A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265090A (ja) * 2005-02-22 2006-10-05 Nissan Motor Co Ltd 遷移金属窒化物、燃料電池用セパレータ、燃料電池スタック、燃料電池車両、遷移金属窒化物の製造方法及び燃料電池用セパレータの製造方法
JP2008157118A (ja) * 2006-12-25 2008-07-10 Toyota Motor Corp 内燃機関の可変動弁装置、並びに可変動弁装置を備える内燃機関の制御装置
CN105149608A (zh) * 2015-09-30 2015-12-16 江西耀升钨业股份有限公司 一种超粗钨粉的制造工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161702A (ja) * 1982-03-18 1983-09-26 Hitachi Maxell Ltd 磁性金属粉の製造法
JPH01272703A (ja) * 1988-04-22 1989-10-31 Nippon Steel Corp 回収鉄粉処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161702A (ja) * 1982-03-18 1983-09-26 Hitachi Maxell Ltd 磁性金属粉の製造法
JPH01272703A (ja) * 1988-04-22 1989-10-31 Nippon Steel Corp 回収鉄粉処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265090A (ja) * 2005-02-22 2006-10-05 Nissan Motor Co Ltd 遷移金属窒化物、燃料電池用セパレータ、燃料電池スタック、燃料電池車両、遷移金属窒化物の製造方法及び燃料電池用セパレータの製造方法
JP2008157118A (ja) * 2006-12-25 2008-07-10 Toyota Motor Corp 内燃機関の可変動弁装置、並びに可変動弁装置を備える内燃機関の制御装置
CN105149608A (zh) * 2015-09-30 2015-12-16 江西耀升钨业股份有限公司 一种超粗钨粉的制造工艺

Similar Documents

Publication Publication Date Title
JPH0317207A (ja) 強磁性粉末の製造方法
JPH0123402B2 (ja)
JP2731603B2 (ja) 金属磁性粉末の安定化方法
JPS61196502A (ja) 磁性素材及びその製造方法
JPS60128202A (ja) 金属磁性粉末の製造方法
JPS6021307A (ja) 強磁性金属粉末の製造方法
JPS58161705A (ja) 磁性金属粉の製造法
JPS6258604A (ja) 磁気記録用磁性鉄粉の製造方法
JPH0143683B2 (ja)
JPS5852522B2 (ja) 金属鉄又は鉄を主成分とする合金磁性粉末の製造法
JPH08153613A (ja) 金属磁性粉末の安定化方法
WO1988010002A1 (en) Process for producing ultrafine magnetic metal powder
JPH03253505A (ja) 強磁性金属粉末の製造方法
JPS59197506A (ja) 磁気記録用金属粉の製造方法
JPH03194905A (ja) 磁気記録用金属磁性粉末の製造方法
JPH0387304A (ja) 強磁性粉末の通気処理装置
JPH0629112A (ja) 強磁性金属粉末とその製造方法
JPH02197501A (ja) 強磁性金属粉末の製造方法
JPS6369714A (ja) 強磁性酸化鉄粉の製造方法
JPS61124502A (ja) 安定性金属磁性粉末及びその製造方法
JPH0834145B2 (ja) 磁気記録用金属磁性粉末の製造方法
JPH0313511A (ja) 金属磁性粉の製造法
JPH03100108A (ja) 強磁性粉末の通気処理装置
JPH1121129A (ja) 磁性酸化物粉末の製造方法
JPH02156001A (ja) 強磁性鉄粉の製造法