JPH029169A - オーミック電極の形成方法 - Google Patents

オーミック電極の形成方法

Info

Publication number
JPH029169A
JPH029169A JP16026288A JP16026288A JPH029169A JP H029169 A JPH029169 A JP H029169A JP 16026288 A JP16026288 A JP 16026288A JP 16026288 A JP16026288 A JP 16026288A JP H029169 A JPH029169 A JP H029169A
Authority
JP
Japan
Prior art keywords
thin film
heating
forming
auge
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16026288A
Other languages
English (en)
Other versions
JP2599433B2 (ja
Inventor
Junichi Tsuchimoto
淳一 土本
Naoya Miyano
尚哉 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63160262A priority Critical patent/JP2599433B2/ja
Publication of JPH029169A publication Critical patent/JPH029169A/ja
Application granted granted Critical
Publication of JP2599433B2 publication Critical patent/JP2599433B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、n型GaAs基板上にオーミック電極を形
成する方法に関するものである。
〔従来の技術〕
化合物半導体素子に電極を形成する方法として、オーミ
ック電極形成技術がある。金属と半導体とを接触させた
とき、■界面でのキャリアの再結合速度か非常に速い場
合、■ショットキー障壁か十分低い場合、■キャリアが
トンネルできるほど障壁か十分薄い場合はオーミック接
触になる(LSIハンドブック、電子通信学会編、p。
710)。このオーミック接触の最も一般的な方法とし
て、合金化法(alloyed ohmic cont
act )かある。これは、規程かの合金を被着し、熱
処理により半導体と合金化させオーミックにするもので
、ベース金属としてAu、Ag、Inなどを用い、ドー
パントとしてn形には、511Ge1S n −、S 
e ST eを、p形には、Zn、Cd。
Be、Mgを添加したものが多く使用されている。
この中でも特に、n型GaAs基板にAu、Ge。
Niを形成するオーミック電極は最もよく使用される。
この種のオーミック電極は、基板上に形成される薄膜の
種類により、■ GaAs基板上にAuGe薄膜、その
上にNi薄膜を形成した2層構造(以下、rN i/A
uGe/GaAs系」という。)電極、■ GaAs基
板上にAuGeNi薄膜、その上にNi薄膜を形成した
2層構造(以下、r N i / A u G e N
 i系」という。)電極、■ GaAs基板上にNi薄
膜、その上にGe薄膜、さらにAu薄膜を形成した3層
構造(以下、r A u / G e / N i系」
という。)電極、■GaAs基板上にGe薄膜、その上
にAu薄膜、さらにNi薄膜を形成した3層構造(以下
、r N i / A u / G e系」という。)
電極、の4種類に大別できる。
以下、この中でよく使用されているN i / A u
G e / G a A s系電極について説明する。
AuGeの共晶温度は356℃、AuGaの共晶温度は
341℃なので、この温度で液層が形成される。
GaAs表面には自然酸化膜が存在するため、分解が起
こるのは自然酸化膜が除去された部分に限られ、この濡
れた部分にAuGe溶液が凝集し、いわゆるポールアッ
プと呼ばれる不規則な合金化が進行する。Niは、この
不規則な合金化を防ぐために添加されている。Niは、
GaAsと強い固相反応を持つため、NiがGaAs界
而に拡面し、GaAsを固相で分解してNiAs、β−
AuGaを形成する。この固相反応で自然酸化膜が除去
されるため、ポールアップを生じない。高濃度層形成は
、GaAs表面へのGeの拡散によってなされる(LS
Iハンドブック、電子通信学会編、p、710)。
第3図は、従来の電極形成方法を示すものである。まず
、化合物半導体としてG a A s u 仮1上にA
uGe薄膜2を真空蒸着で形成する(ステップ101)
。さらに、このAuGe薄膜2上にNi薄膜3を真空蒸
着で形成する(ステップ102)。次に、以上の工程で
形成されたAuGe薄膜2およびNi薄膜3を、350
℃以上で加熱することにより(ステップ103)、オー
ミック接合を形成しくステップ104)、Ni/AuG
eから成るオーミック電極4が形成される。
〔発明か解決しようとする課題〕
しかしなから、従来の電極形成方法はn型GaAs基板
にGeを十分かつ均一に拡散することができず、オーミ
ック接触抵抗が増大しやすいという欠点があった。例え
ば、N i / A u G e / G aAs系電
極では、Geの濃度が低いので、接触抵抗が大きくなる
。N i / A u G e N i系電極は、Ni
が量的に多すぎるので、Geの拡散がNiによって妨げ
られる。A u / G e / N i系電極及びN
 i / A u / G e系電極は、合金化温度で
ある450℃以上で、それぞれ高融点である3種の金属
を溶かさなければならないので、半導体M[に悪影響を
与える。
そこで、この発明はn型GaAs基板へのGe拡散を均
一かつ十分に行える電極形成方法を提供することにより
、オーミック電極の接触抵抗を減少することを目的とす
る。
〔課題を解決するための手段〕
上記課題を達成するため、この発明はn型GaAs基板
上に金ゲルマニウム(AuGe)とゲルマニウム(Ge
)薄膜の混合薄膜を形成する第1薄膜形成工程と、混合
薄膜上にニッケル(Ni)薄膜を形成する第2薄膜形成
工程と、薄膜を加熱する加熱工程を含んで構成される。
この場合、第1薄膜形成工程においてAuとGeの重量
比がほぼ88対12であるAuGeとGeとを融合させ
、500〜2000オングストロームの膜厚を有する混
合薄膜を形成し、第2薄膜形成工程において100〜5
00オングストロームのNi薄膜を形成し、加熱工程に
おいて薄膜を445°C〜455°Cで30秒〜2分間
加熱すると効果的である。
〔作用〕
この発明は、以上のように構成されているので、基板側
の第1薄膜に十分なGeか含まれており、Geの基板へ
の拡散を十分に行うことができる。
なお、混合薄膜を形成する際、膜厚を500オングスト
ロ一ム未満にすると、薄膜が薄くなり過ぎ配線抵抗が増
大し断線しやすくなる。また、2000オングストロー
ムを越えると、合金化を十分に行うことができず、集積
度が悪くなる。
さらに、Ni薄膜を形成する際、膜厚を100オングス
トローム未満にすると電極の平坦性が悪くなる。また、
500オングストロームを越えると、集積度が悪くなり
、Niの酸化により電極が劣化しやすくなる。
さらに、上記薄膜を加熱する際、加熱温度が445±5
℃の範囲を逸脱すると、接触抵抗が増加し、実用性が乏
しくなる。この場合、加熱時間か30秒未満になると、
加熱不十分により電極を形成することができなくなる。
また、2分を越えると、Geが界面を越えて中に入り込
んでしまうのて、かえって接触抵抗が増加してしまう。
〔実施例〕
以下、この発明に係るオーミック電極の形成方法の一実
施例を添付図面に基づき説明する。なお、説明において
同一要素には同一符号を用い、重複する説明は省略する
第1図は、この発明に係るオーミック電極の形成方法の
一実施例を示すものである。この発明はバ本的に、第1
薄膜形成工程、第2薄膜形成工程及び加熱工程を含んで
構成される。
第1薄膜形成工程では、GaAs基板1上にAuGeと
Geの混合薄膜5を真空蒸着法で形成する(ステップ2
01)。具体的には、蒸青炉の抵抗加熱用タングステン
ボート上に、重量比がほぼ88対12のAuGeと、G
e結品をのせ、通電加熱によりAuGeとG’eとを融
合させる。この溶融金属化したものを蒸着源とし、抵抗
加熱法によりGaAs基板1上に蒸着する。この方法に
よれば、AuGeとGeとの重量比を変更することによ
り、任意の組成のAu−Ge蒸着源を形成することがで
きる。また、AuとGeとを融合する場合に比べて、比
較的低温で容易にAu−Ge蒸着源を形成することがで
きる。この場合、低温で行うので、輻射熱か少なく、基
板上のフォトレジストに対する悪影響を防止することか
できる。
この場合、混合薄膜5の膜厚か500オングストロ一ム
未満になると基板内にAuGeが入り込み配線抵抗が増
加する。また、2000オングストロームを越えると、
集積度を向上させることができなくなる。従って、この
膜厚は500〜2000オングストロームの範囲で設定
することか望ましい。
また、AuとGeとの重量比は、88対12に限定され
るものではなく、例えば、80対20あるいは90対1
0でも、実用上は問題ないと考えられる。
さらに、AuGeとGeを融合させた蒸着源の加熱法は
、抵抗加熱法に限定されるものではなく、例えば、電子
衝撃加熱法でも使用することができる。
第2薄膜形成工程では、混合薄膜5上にNi薄膜6を電
子衝撃加熱法で形成する(ステップ202)。この場合
、Ni薄膜6の膜厚か100オングストローム未満にな
ると電極の平坦性が悪くなり、500オングストローム
を越えると、集積度が悪くなり、接触抵抗を下げること
ができなくなる。従って、この膜厚は100〜500オ
ングストロームの範囲で設定することが望ましい。
加熱工程では、混合薄膜5、Ni薄膜6が形成された後
、合金化温度で加熱する(ステップ203)。この場合
、加熱温度は450±5℃の範囲で設定することが望ま
しい。これは、この範囲外で加熱すると、いずれも接触
抵抗の増加につながるからである。
また、加熱時間は30秒〜2分の間で設定することが望
ましい。これは、短すぎると加熱不十分になり電極形成
か不可能になり、長すぎるとGeが拡散しすぎ接触抵抗
の増加にっなかるからである。
この加熱工程により、GaAs基板1上に2層構造のオ
ーミック電極か形成される(ステップ204)。
すた、加熱工程をN2ガスあるいはArガス等の不活性
ガス雰囲気中で行うことにより、加熱用%hの酸化を防
止することができる。
次に、この実施例に係る実験結果を示す。この実験は、
Si+イオンを注入しアニールしたn型GaAs基板上
に、フォトリソグラフィ技術によりオーミック電極のパ
ターンを形成した。次に、AuGeとGeの混合薄膜を
1000オングストローム、Ni薄膜を300オングス
トロームで真空蒸着法によりオーミック金属を付着させ
、リフトオフ技術により所定形状の電極に形成した。
なお、混合薄膜は0.50gのAuGeと0.11gの
Geを融合したものを蒸着源としている。この後、ホッ
トプレート上で、N2雰囲気の中で1分間加熱した。こ
の場合、温度は400℃か500°Cの範囲で変化させ
た。
第2図は、上記実験結果を示すものであり、オーミック
接触抵抗(Re )の合金化温度依存性を示すものであ
る。この実験では、450℃付近で最小値になっている
〔発明の効果〕
この発明は、以上説明したように構成されているので、
n型GaAs基板へのGe拡散を均一かつ十分にするこ
とができる。その為、オーミック電極における接触抵抗
を最小にすることができる。
また、低温で容易に任意の組成比を有するAu−Ge蒸
着源を形成することができる。特に、この蒸着形成を抵
抗加熱法で行えば、蒸着時のGaAs基板の損傷を少な
くすることかできる。
【図面の簡単な説明】
第1図は、この発明の一実施例に係るオーミック電極の
形成方法を示す図、第2図は、この発明における加熱工
程のオーミック接触抵抗の合金化温度依存性を示す図、
第3図は、従来技術に係るオーミック電極の形成方法を
示す図である。 1・・・GaAs基板 2・・・AuGe薄膜 3.6・・・Ni薄膜 4・・オーミック電極 5・・混合薄膜 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹間      
    山    1)   行(a) (b) 電極形成方法 第 1図 カロ秀矢温崖 (°C) オーミック接馴付盲抗の合金化5品席依存・准(a) 従未技祈 第3図 (b)

Claims (1)

  1. 【特許請求の範囲】 1、n型GaAs基板上に金ゲルマニウム (AuGe)とゲルマニウム(Ge)薄膜の混合薄膜を
    形成する第1薄膜形成工程と、 前記混合薄膜上にニッケル(Ni)薄膜を形成する第2
    薄膜形成工程と、 前記薄膜を加熱する加熱工程を含んで構成されるオーミ
    ック電極の形成方法。 2、前記第1薄膜形成工程において、AuとGeの重量
    比がほぼ88対12であるAuGeとGeとを融合させ
    、500乃至2000オングストロームの膜厚を有する
    混合薄膜を形成し、前記第2薄膜形成工程において、1
    00乃至500オングストロームのNi薄膜を形成し、
    前記加熱工程において、前記薄膜を445℃乃至455
    ℃で30秒乃至2分間加熱する請求項1記載のオーミッ
    ク電極の形成方法。
JP63160262A 1988-06-27 1988-06-27 オーミック電極の形成方法 Expired - Fee Related JP2599433B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160262A JP2599433B2 (ja) 1988-06-27 1988-06-27 オーミック電極の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160262A JP2599433B2 (ja) 1988-06-27 1988-06-27 オーミック電極の形成方法

Publications (2)

Publication Number Publication Date
JPH029169A true JPH029169A (ja) 1990-01-12
JP2599433B2 JP2599433B2 (ja) 1997-04-09

Family

ID=15711203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160262A Expired - Fee Related JP2599433B2 (ja) 1988-06-27 1988-06-27 オーミック電極の形成方法

Country Status (1)

Country Link
JP (1) JP2599433B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090286A (ja) * 1973-12-11 1975-07-19
JPS58207627A (ja) * 1982-05-28 1983-12-03 Fujitsu Ltd 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090286A (ja) * 1973-12-11 1975-07-19
JPS58207627A (ja) * 1982-05-28 1983-12-03 Fujitsu Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
JP2599433B2 (ja) 1997-04-09

Similar Documents

Publication Publication Date Title
US4011583A (en) Ohmics contacts of germanium and palladium alloy from group III-V n-type semiconductors
US4593307A (en) High temperature stable ohmic contact to gallium arsenide
JPS61142739A (ja) 半導体装置の製造方法
JP3583451B2 (ja) 半導体デバイスの作製方法
KR930004711B1 (ko) 화합물 반도체소자의 저항전극 및 그 형성방법
KR100351195B1 (ko) 화합물반도체의오믹콘택트제조방법
US3965279A (en) Ohmic contacts for group III-V n-type semiconductors
US6392262B1 (en) Compound semiconductor device having low-resistive ohmic contact electrode and process for producing ohmic electrode
JPH029169A (ja) オーミック電極の形成方法
JP2599432B2 (ja) オーミック電極の形成方法
JP3654037B2 (ja) オーミック電極とその製造方法、および半導体装置
JPH01120818A (ja) 低伝達抵抗オーム接触の形成方法
JPH029170A (ja) オーミック電極
JPH029171A (ja) オーミック電極
JP3267480B2 (ja) 化合物半導体の製造方法及び化合物半導体のオーム性電極の形成方法
JPH10150004A (ja) 半導体装置及びその製造方法
EP0443296B1 (en) Process for obtaining multilayer metallization of the back of a semiconductor substrate
JP2719678B2 (ja) オーミック電極及びその形成方法
JP3096133B2 (ja) 化合物半導体装置
JPS5938730B2 (ja) 半導体装置の製造方法
JPS60242619A (ja) 半導体オ−ム性電極の形成方法
JPS6029217B2 (ja) 半導体装置の製造方法
JP2639959B2 (ja) 半導体装置の製造方法
JPS6150363A (ja) オ−ミツク電極
JPS63239941A (ja) 化合物半導体装置の電極の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees