JPH02229716A - 超伝導物質 - Google Patents

超伝導物質

Info

Publication number
JPH02229716A
JPH02229716A JP1049836A JP4983689A JPH02229716A JP H02229716 A JPH02229716 A JP H02229716A JP 1049836 A JP1049836 A JP 1049836A JP 4983689 A JP4983689 A JP 4983689A JP H02229716 A JPH02229716 A JP H02229716A
Authority
JP
Japan
Prior art keywords
crystal
superconducting material
superconducting
substance
substance according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1049836A
Other languages
English (en)
Other versions
JP2703036B2 (ja
Inventor
Toshiya Doi
俊哉 土井
Takaaki Suzuki
孝明 鈴木
Takashi Yoshida
隆 吉田
Atsuko Soeda
添田 厚子
Yuichi Kamo
友一 加茂
Seiji Takeuchi
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1049836A priority Critical patent/JP2703036B2/ja
Publication of JPH02229716A publication Critical patent/JPH02229716A/ja
Application granted granted Critical
Publication of JP2703036B2 publication Critical patent/JP2703036B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新しい酸化物超伝導体に係り、臨界濃度の高
い,安定な超伝導物質に関する。
〔従来の技術〕
比較的高い温度で超伝導状態を示すペロブス力イト型鋼
酸化物(KzNi F4型のLaz−xBaxcuo4
)がBednorzとMullerにより1986年に
発明された.その後、ペロブスカイトの基本構造,AB
Oaにおいて、大きいイオン半径を有するAサイトイオ
ン(上記の例では、La8+とBa”+)を置換するこ
とにより、各種の超伝導体が合成された.代表的な例を
挙げると、La−Sr−Cu−0 (臨界温度Tc=4
0K),Y−Ba−Cu−0 (Tc=90K)である
。さらに高いTcを有する物質としては,Bサイトイオ
ンのCuの一部をTnあるいはBiで置換した、Ba−
Ca−T1l−Cu−O(Tc=120K),Sr−C
a−Bi−Cu−○(Tc= 1 0 5 K)及びT
Q−Sr−Cr−C u−0(Tc= 1 1 0 K
)超伝導体が発明された.La−Sr−Cu−0あるい
はY−Ba−Cu−0超伝導体は,その合成方法は比較
的容易であるが、Tcが低く、研究の中心はTQ−Ba
一Ca−Cu−0, TQ−S r−Ca−Cu−0及
びBi−Sr−Ca−Cu−0超伝導体に移りつつある
。−ルかしBi−Sr−Ca−Cu−0系超伝導体は、
1つの結晶粒子の中に、TOの低い相が共存し易く、単
一相を得るのが非常に困難で、結果的に、臨界電流密度
が大きく出来ないという欠点があった。TQ−Ba−C
a−Cu一〇系及びTQ−Sr  Ca−Cu−○系超
伝導体は、焼成するときにTnの蒸発が起きて、最終生
成物の組成をコントロールするのが難しいという欠陥が
あった. 〔発明が解決しようとする課題〕 上記の従来の超伝導物質は、合成の比較的容易なものは
Tcが十分に高くなく、Tcの高い物質はその合成が困
難であった. これまでに発見されているペロブスカイト類似構造を有
する超伝導体において、La1−.Ba.CuOxはT
cが30Kと低いという欠陥があった。
Y B a zc u 80xはTcは90Kであるが
.この程度のTcでは、液体窒素温度で使用するには困
難であり、また水分,炭酸ガスと容易に反応して劣化す
るという欠点があった. Bi−Sr−Ca−Cu−0系超伝導体は、その中で最
も高いTc、IIOKを与える結晶相BizSrzCa
zCua○ウのみからなる材料を合成するのが非常に難
しく、臨界電流密度の高い超伝導体材料を作製できない
という欠陥があった。
TQ−Ba−Ca−Cu−0及びT Q − S r 
−C a −C u−0系超伝導体は、焼成するときに
′rQの蒸発が起きて最終生成物の組成コントロールが
難しいという欠陥があった. 本発明の目的は、高い臨界温度を有し、種々の物理的,
化学的性質を持つ超伝導物質を提供することによって、
臨界温度が高く、臨界電流密度の高い、高臨界磁界を有
し、化学的に安定で製造しやすい超伝導物質を提供する
ことにある.〔課題を解決するための手段〕 本発明は、複合酸化物で一般式 (At−xA’  X)2B2B’  n−tcun○
2n+4+δあるいは(At−xA’ X) B 2B
 I n−tcunozn+a+δここで、A:Btあ
るいはTΩ A′ :結晶中でのイオン半径が0.81人以上1.0
5 人以下である元素の 単独あるいは複数 B  :Na,K,Rbt Cs,MgtCa,Sr,
Baのうち少なくと も1つ B’  :Na,Ca,Y,ランタノイト元素のうち少
なくとも1つ。
Cu:銅 ○:酸素 n=2.3あるいは4 −1〈δ<1.0≦X≦1 で表わされる化合物であり、かつその結晶構造に5個の
酸素イオンがCuイオンの回りに、ピラミッド型に配位
した部分を含み、かつその銅の平均原子価が2.0 よ
り大きく、2.5以下であることを特徴とする超伝導物
質にある. これまでに発見された高温超伝導物質の結晶構造を第1
図〜第3図にまとめる。これらの結晶構造の中で,第1
図(2),第2図(2)に示す構造をもつ超伝導体は特
に高いTcを有している.第3図(1)に示す構造を有
する超伝導体Lat−xBaxC u Ox, L a
 t−x S r xC u OxそしてL a i−
xC a * C u O x、第3図(2)に示す構
造を有する超伝導体YBazCuaO7−δ の場合に
は、そのTcと結晶中のCuの平均原子価の間に、第3
図に示す様な関係が存在し、最適なCuの平均原子価が
存在することが知られていた.今回我々は第1図に示し
たものと異った結晶構造を有する超伝導物質においても
同様に,最適なCuの平均原子価が存在するということ
を見い出し、ある条件の範囲内であれば、結晶の各サイ
トを他の元素で置換しても超伝導性が保存されることを
発見し、本発明に到った。これまでに発見されている第
1図もしくは第2図に示す結晶構造を持つ超伝導体の場
合,A,A’サイトは、TQかもしくはBiのみによっ
て占有されていた.しかしこのサイトを他の原子で置換
していっても、結晶構造が変化せず,かつCuの平均原
子価が2.0 以上2.5以下の範囲内に納っていれば
超伝導性を示すことを見い出した.また同様に他のサイ
トを別の原子で置き換えた物質においても超伝導性が発
現する。
また我々は、各サイトを他の原子で置換して合成した種
々の物質の結晶構造解析を実行して、ビラミット型を形
成するCuイオンとOイオンの原子間距離を詳細に調べ
た.従来は、ピラミッド型の平面方向に広がるCu−○
の結合が超伝導性に強くかかわっているといわれていた
が,我々の研究によれば、Cuイオンと頂点方向に存在
する酸素イオンの距離と、超伝導性に強い相関がみられ
た。具体的には,その距離が2.10 人以上2.30
人以下のものが超伝導性に優れた物質であることを見出
した。
本発明の超伝導物質は、粉体,塊,焼結体,厚膜、ある
いは線状などの形状で与えられる。出発原料を何らかの
手段で混合,反応させて本発明の物質を合成すると、粉
体,塊等が得られる。粉体は成形した後、焼結体として
も得られる。またドクターブレード法などで厚膜にする
ことも出来る.粉体を溶融させて、ロールなどで圧延等
すればテープあるいはリボン状の超伝導体が得られる.
金属パイプ等に充填して、線引きあるいは圧延すれば線
状のものが得られる.本発明の超伝導体を薄膜で得るた
めには、スバッタ法,蒸着法,溶射法,レーザー蒸着法
,MBE法(Moleculer BeamEpita
xy) , C V D法(Chemical Vav
ordoposition)などが用いられる.本発明
の超伝導物質の粉体を得るためには、酸化物混合法,共
沈法,ゾルゲル法などの方法も用いることが出来る.原
料を反応させて、超伝導物質を合成する際の温度は、物
質の組成及び製法によって異なるが、600℃〜100
0℃の範囲が適当である。一般的に言って、nの数が大
きい程、低い温度でより長時間の反応を必要とする. 〔作用〕 TcがIOOKを越えない高温超伝導物質Lat−xB
axcuox,Lat−xs rxcuox,YBaz
CuaOr−δにおいては、その超伝導メカニズムに関
する研究も盛んに行われている.Lat−xDxcuo
x (D: Ba,Sr,Ca)の組成式で示される超
伝導物質は,いずれも第3図(1)に示すような結晶構
造をしており,Dで表わした部分の元素はBa,Sr,
Caのいずれであっても超伝導性を示す.またYBaz
CuaOフーδの組成式で示される超伝導物質は第2図
(2)に示す結晶構造を有しており,これもY原子の部
分を他の希土類元素で部分置換,あるいは全置換した物
質でも結晶構造が大幅に変化しない限り超伝4性を示す
ことが知られている.これらのことから、現在超伝導発
現に関しては、その物質の結晶構造、特にC軸に垂直な
方向に広がるCu原子と○原子の平面が重要なカギを握
ると考えられており,新しい超伝導物質の探索に関して
も、この点に留意しながら研究が進められている.また
一方で、L a l−x D x C u O x系に
ついてはDJi子の置換率、YBaxcuso7−δ系
については酸素の欠損量δによって、Tcの値が変化す
ることが知られている.現在これはCuの平均原子価と
関連づけて、TcがCuの平均原子価に強く依存すると
いわれている(第4図参照).第3図に示す結晶構造を
もつIOOKを越えないTcを有する超伝導物質に関し
ては、その結晶構造と,Cuの平均原子価が超伝導性に
強い影響を与えていると考えられている.しかしそれ以
外の結晶構造、第1〜2図に示す構造を有する一群の超
伝導体に関しては、現在までその様な知見は全く得られ
ていなかった.そこで今回我々は,これらの結晶構造を
有する物質を多種類合成し,結晶構造と,ホール濃度に
ついて詳細に検討し、超伝導性を示す物質に共通な特徴
を見出すに到った. 第1〜2図の結晶構造モデルのなかで(A)で示したサ
イトを占めているイオンは,超伝導性発現には特に寄与
しておらず、結晶構造を変化させない限り、どの様な元
素であってもかまわないことがわかった. 次に第1〜2図のモデルのなかで(B)で示したサイト
を占めるイオンの役割であるが,この部分を占める陽イ
オンの最近接の酸素が,超伝導に深くかかわっているこ
とを我々は見出した.第5図に、ピラミッドを形成する
Cuイオンと、そのピラミッドの頂点に位置するこの酸
素イオンの距離を横軸に,そして縦軸にはTcを取った
グラフを示す.超伝導臨界温度とこの距離の間には明確
な相関のあることがわかる.そしてこの部分の原子間距
離を変化させるには,(B)サイトに異ったイオン半径
を持つ元素を導入するのが最も容易である. (B′)サイトを占めるイオンについては,そのイオン
半径が0.90人以上,1.0人以下でなければいけな
いことを我々は見い出した.この部分のイオンの大きさ
が大きいと、酸素が導入されて、Cu原子とOyK子の
ピラミッドが形成されなくなる.また小さすぎると,結
晶構造が違ったものになってしまう. 以上の結果を,種々の超伝導物質,非超伝導物質を合成
し、詳細に検討することにより得たが、これらの条件を
満たすのみでは超伝導性が発現しない.第1図〜第2図
に示した構造を有する超伝導物質においては、Cu原子
とOM子の形成するピラミッド構造の部分に存在するホ
ールの濃度によってもTcが変化することを、我々は見
出した.種々の元素A,A’ ,B,B’及び種々のX
の値に対して組成(Ai−xA’ x)zBzB’ z
CuaOro+δの物質を合成し、ホール濃度と、Tc
の関係を調べた.尚Cuの平均原子価から2.0  を
引いた値は近似的にはホール濃度を与える.結果を第5
図に示す。ホール濃度が0.22付近で、Tcが最も高
くなり、0.08以下, 0.38以上ではTcが60
K以下になっていることがわかる. 以上述べた結晶構造に関する条件、そしてホール濃度に
関する条件を満足する様な物質を合成できれば、本発明
を見出した物質以外にも超伝導物質を手に入れられる可
能性は高いと考えられる。
しかしながら超伝導性の発現メカニズムについて明確な
答えは得られていない現在、必ずしもこの2つの条件さ
え満足すれば超伝導物質となる保障はない.ただ本発明
の原理が新しい超伝導物質発見の重要な指針を与えるこ
ととなるであろう。
〔実施例〕
実施例I TQzOs.Bizoa,S ro,Cab,CuOを
出発原料として用いた.まず最初に、BizOatSr
o,Cab,CuOをそれぞれBi:Sr:Ca:Cu
の原子比が.1:2:1:2になるように混合し,88
0℃で100時間大気中で焼成した。途中,炉から取り
出して冷却し,粉砕する工程を3回入れた。こうして得
ら九た粉末にTnzOsを、TQ:Bi:Sr:Ca:
Cuの原子比が1:1:2:1:2になるように混合し
、金のホイルで密封し、870℃で50時間の焼成を行
なった.出来上がった粉末のXI!回折パターンを解析
して、BizSrxCaCuzOxと同様な結晶構造を
持ち、Biサイトの50%がTQで置き換った新しい物
質であることを確めた.この粉末を800℃で焼結して
,得られた焼結体の電気抵抗を、温度を下げながら測定
したところ、90K付近で急激に抵抗が落ち始め.80
Kで抵抗値は零となった. 実施例−2 (B i t−xA’ xbs r zc a zc 
u IIOXの組成式で示される物質が得られるように
実施例−1に記載した方法に準じて、合成を行ない,そ
の試料のTcを測定した.結果を第1表に示すが,ここ
で示したTcは.抵抗が急激に落ち始める温度、即ちT
cオンセットの温度を絶対温度で示している.第 表 実施例−3 B is(S rt−xBx)zcazcuao+tの
組成式で示される物質が得られるように原料酸化物を混
合し,様々のサンプルを合成してそのTcの測定を行な
った.結果を第2表に示す. 第  2  表 第7図に,作製したサンプルのホール濃度(ホール係数
測定より求めた値であり、結晶中のピラミッド部分のC
u1個当たりの数に直した値)とTcの関係を示す. 第8図に、ホール濃度とTcの関係を示す。
実施例−4 Bizs rz (Cat−xB’ x)zcusox
の組成式で示される物質が得られるように原料酸化物を
混合,焼成し、種々のサンプルを合成してそのTcの測
定を行なった。結果を第3表に示す。
第    3    表 定を行なった。結果を第4表に示す。
第   4    表 実施例−5 (T Q t−xA’ X)2B a zc a zc
 u soxの組成式で示される物質が得られるように
原料酸化物を混合,焼成し、種々のサンプルを合成して
そのTcの測実施例−6 TQ(Bat−xBx)zcazcua○8の組成式で
示される物質が得られるように原料酸化物を混合,焼成
し、種々のサンプルを合成してそのTcの測定を行った
.結果を第5表に示す. 第   5   表 焼成し,そのTcの測定を行った. 結果を第6表に示す. 第  6  表 また、これらサンプルのホール濃度とTcの関係を第9
図に示す。
比較例−1 ホール濃度の低いサンプルを作製する為に、T Q (
B a 1−1−L a x)zc o zc u a
Oxの組成式で示される物質が得られるように原料酸化
物を、混合,また,これらのサンプルのホール濃度とT
cの関係を第9図に示す. 実施例−7 (TQI−XA’ X)S rzcazcusoxの組
成式で示される物質が得られるように原料酸化物を混合
,焼成し、種々のサンプルを合成してそのTcの測定を
行った。結果を第7表に示す.第  7 4× 第  8 表 実施例−8 第1図(3)に示した結晶構造を有する超伝導物質を合
成し、そのTcを測定した。第8表に結果を示す。
実施例−9 第2図(3)に示した結晶構造を有する超伝導物質を合
成し,そのTe を測定した。第9表に結果を示す. 第  9 表 〔発明の効果〕 本発明によれば、臨界温度,臨界磁界,電流密度,化学
的安定性,成形性など超伝導物質に求められる種々の特
性の向上が期待できく。
【図面の簡単な説明】
第1図(1)〜(3)は、組成式AzBzB’ n−t
C n O 2n+4千δ (n=2.3.4)で示さ
れる超伝導物質の結晶構造を示す概略図,第2図(1)
〜(3)は,組成式A B zB ’ n−ICfiO
zn÷3千δ(n=2.3,4)で示される超伝導物質
の結晶構造を示す概略図、第3図(1), (2)はL
 a t−xDxC u OX(D:Ba,Sr,Ca
)及びYBa2CuaOn−δの結晶構造を示す概略図
、第4図はL a l−x D x C u O x及
びYBazCuaO7−δ のCuの平均原子価と、臨
界温度(’re)の関係を示す特性図、第5図は本発明
による超伝導物質のピラミッド部分を構成するCu原子
と頂点部分に位置する酸素原子の距離と、Tcの関係を
示す特性図、第6図は本発明による超伝導物質のホール
濃度とTcの関係を示す特性図、第7図〜第9図は臨界
温度Tc とピラミッド部分のCu原子1個当りのホー
ル数の関係を示す特性図である。

Claims (15)

    【特許請求の範囲】
  1. 1.一般式 (A_1_−_xA′_x)_2B_2B′_n_−_
    1Cu_nO_2_n_+_4+δ(A_1_−_xA
    ′_x)B_2B′_n_−_1Cu_nO_2_n_
    +_3+δここでA:BiあるいはTl A′:結晶中でのイオン半径が0.81 Å以上、1.05Å以下とな る元素で、単独あるいは複数 種、 B:Na,K,Rb,Cs,La, Ca,Sr,Baから選ばれ た1つ以上 B′:Na,Ca,Y,ランタノイ ド元素から選ばれた1つ以上 Cu:銅、O:酸素 n:2,3あるいは4 −1<δ<1,0<x≦1 で表わされる化合物において、結晶中の銅の平均原子価
    が、2.0より大きく、2.5以下であることを特徴と
    する超伝導物質。
  2. 2.請求項1記載の物質において、該物質の結晶構造中
    に5個の酸素がピラミッド型に,Cuの回りに配位した
    部分を含むことを特徴とする超伝導物質。
  3. 3.請求項2記載の物質において、該物質中の正孔の数
    が、5個の酸素がピラミッド型に配位した銅1個当り、
    0.15個以上、0.35個以下であることを特徴とす
    る超伝導物質。
  4. 4.請求項2記載の物質において、該物質の結晶構造が
    、模式的に第1図もしくは第2図に示されたものである
    ことを特徴とする超伝導物質。
  5. 5.請求項2記載の物質において、A′を構成する元素
    が、Bi,Tl,Ca,Pb,Hg,Y、ランタノイド
    元素の単独あるいは複数から成ることを特徴とする超伝
    導物質。
  6. 6.請求項2記載の物質において、Bを構成する元素と
    、B′を構成する元素が、結晶中で規則的に配列してい
    ることを特徴とする超伝導物質。
  7. 7.請求項4記載の物質において、第1図もしくは第2
    図の結晶の模式図中(A)サイトと示された部分をA及
    びA′を構成する原子が占め、(B)サイト及び(B′
    )サイトと示された部分をB及びB′を構成する原子が
    占め、(C)サイトと示される部分をCuが占め、(D
    )サイトと示される部分を酸素が占める結晶構造を持つ
    ことを特徴とした超伝導物質。
  8. 8.請求項7記載の物質において、第1図もしくは第2
    図で(C−1)と示される部分を占めるCuと、(D−
    1)と示される部分を占めるサイトの酸素の間の距離が
    、2.10Å以上、2.70Å以下であることを特徴と
    する超伝導物質。
  9. 9.請求項1〜8のいずれか1つに記載の物質を含んだ
    、超伝導線材。
  10. 10.請求項1〜8のいずれか1つに記載の物質を含ん
    だ要素を使用したマグネット。
  11. 11.請求項1〜8のいずれか1つに記載の物質を含ん
    だ素子。
  12. 12.請求項1〜8のいずれか1つに記載の物質を含ん
    だ要素を使用した測定装置。
  13. 13.請求項1〜8のいずれか1つに記載の物質を含ん
    だ要素を使用した演算装置。
  14. 14.請求項1〜8のいずれか1つに記載の物質を含ん
    だ要素を使用した電力貯蔵装置。
  15. 15.請求項1〜8のいずれか1つに記載の物質を使用
    した磁気シールド装置。
JP1049836A 1989-03-03 1989-03-03 超伝導物質 Expired - Fee Related JP2703036B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049836A JP2703036B2 (ja) 1989-03-03 1989-03-03 超伝導物質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049836A JP2703036B2 (ja) 1989-03-03 1989-03-03 超伝導物質

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP7287014A Division JP2671880B2 (ja) 1995-11-06 1995-11-06 超伝導物質
JP7287015A Division JP2671881B2 (ja) 1995-11-06 1995-11-06 超伝導物質
JP7287013A Division JP2671879B2 (ja) 1995-11-06 1995-11-06 超伝導物質
JP7287016A Division JP2820082B2 (ja) 1995-11-06 1995-11-06 超伝導物質
JP7287017A Division JP2671882B2 (ja) 1995-11-06 1995-11-06 超伝導物質

Publications (2)

Publication Number Publication Date
JPH02229716A true JPH02229716A (ja) 1990-09-12
JP2703036B2 JP2703036B2 (ja) 1998-01-26

Family

ID=12842169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049836A Expired - Fee Related JP2703036B2 (ja) 1989-03-03 1989-03-03 超伝導物質

Country Status (1)

Country Link
JP (1) JP2703036B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365512A (ja) * 1989-08-02 1991-03-20 Sumitomo Electric Ind Ltd 高温超電導材料およびその作製方法
JPH0753212A (ja) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol 高温超伝導体およびその作製法
WO1995032931A1 (en) * 1994-05-31 1995-12-07 Midwest Superconductivity, Inc. Tl-DOPED HgBaCaCu SUPERCONDUCTORS
JPH08183614A (ja) * 1993-12-07 1996-07-16 Agency Of Ind Science & Technol 高温超伝導体およびその製造方法
US5648322A (en) * 1991-03-29 1997-07-15 Hitachi, Ltd. Tl-based superconductive material, a superconductive body, and a method of forming such a superconductive material or body
FR2760290A1 (fr) * 1997-02-28 1998-09-04 Agency Ind Science Techn Supraconducteur a temperature elevee ayant une anisotropie de supraconduction faible, et son procede de fabrication

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365512A (ja) * 1989-08-02 1991-03-20 Sumitomo Electric Ind Ltd 高温超電導材料およびその作製方法
US5648322A (en) * 1991-03-29 1997-07-15 Hitachi, Ltd. Tl-based superconductive material, a superconductive body, and a method of forming such a superconductive material or body
JPH0753212A (ja) * 1993-08-13 1995-02-28 Agency Of Ind Science & Technol 高温超伝導体およびその作製法
JPH08183614A (ja) * 1993-12-07 1996-07-16 Agency Of Ind Science & Technol 高温超伝導体およびその製造方法
WO1995032931A1 (en) * 1994-05-31 1995-12-07 Midwest Superconductivity, Inc. Tl-DOPED HgBaCaCu SUPERCONDUCTORS
US5556830A (en) * 1994-05-31 1996-09-17 Midwest Superconductivity, Inc. Tl-doped HgBaCaCu superconductors
FR2760290A1 (fr) * 1997-02-28 1998-09-04 Agency Ind Science Techn Supraconducteur a temperature elevee ayant une anisotropie de supraconduction faible, et son procede de fabrication

Also Published As

Publication number Publication date
JP2703036B2 (ja) 1998-01-26

Similar Documents

Publication Publication Date Title
JPH02229716A (ja) 超伝導物質
Rao et al. Structural aspects of superconducting cuprates
JP4093592B2 (ja) 126Kまでの温度で超伝導するBa―Ca―Cu―O組成物及びその製造方法
JP2820082B2 (ja) 超伝導物質
JPH02504261A (ja) 高温超伝導体
JP2671880B2 (ja) 超伝導物質
JP2671879B2 (ja) 超伝導物質
JPH03242322A (ja) 酸化物超電導体の製造方法
JP2671881B2 (ja) 超伝導物質
US5208214A (en) Multiphase superconductor and process for its production
JPH03223151A (ja) 酸化物超電導材料および作製方法
JP3121001B2 (ja) Tl系酸化物超伝導体の製造方法
JPH0474712A (ja) 酸化物超電導体
JPH08225322A (ja) 超伝導物質
HU217018B (hu) Szupravezető kompozíció bizmut-, stroncium-, réz- és oxigéntartalommal, eljárás ilyen kompozíció előállítására, valamint eljárás elektromos áram vezetésére maradék-ellenállás nélküli áramvezető anyagban, és Josephson-effektust megvalósító eszköz
JPH04292420A (ja) 超伝導性化合物及びその調製方法
KR100265031B1 (ko) 나트륨이 끼워진 초전도체 및 그 제조방법
Artini et al. Search for new superconducting oxides in M4Pn2O phases (M= Ca, Sr, Ba and Pn= As, Sb, Bi)
JPS63319245A (ja) 超伝導用セラミクス
JP2778100B2 (ja) 酸化物超電導材料およびその製造方法
Kandyel Sol–gel synthesis, structural and superconducting properties of (Hg1− ySey) Sr2 (Y1− xCax) Cu2O6+ δ
Iversen et al. Charge localization in oxidized Pb2Sr2Y0. 5Ca0. 5Cu3O8+ δ studied by electron and neutron powder diffraction
JPH0446015A (ja) 酸化物超電導体およびその製造方法
JPH0818834B2 (ja) 複合酸化物超電導材料及びその製造方法
THOMAS et al. SUPERCONDUCTING Cd AND Ca DOPED 123 PHASE IN Cdo. sBa2 (Yo. 1Ca0. 4) Cu3. 5 0 y

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees