JPH02153803A - 酸化物超電導バルク材料およびその製造方法 - Google Patents
酸化物超電導バルク材料およびその製造方法Info
- Publication number
- JPH02153803A JPH02153803A JP63261607A JP26160788A JPH02153803A JP H02153803 A JPH02153803 A JP H02153803A JP 63261607 A JP63261607 A JP 63261607A JP 26160788 A JP26160788 A JP 26160788A JP H02153803 A JPH02153803 A JP H02153803A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- oxide
- rare earth
- bulk material
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013590 bulk material Substances 0.000 title claims abstract description 15
- 239000002887 superconductor Substances 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 10
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 239000000155 melt Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 238000010791 quenching Methods 0.000 abstract description 3
- 230000000171 quenching effect Effects 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract description 2
- 238000003303 reheating Methods 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 39
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000954177 Bangana ariza Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4504—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
- C04B35/4508—Type 1-2-3
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/653—Processes involving a melting step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/85—Superconducting active materials
- H10N60/855—Ceramic superconductors
- H10N60/857—Ceramic superconductors comprising copper oxide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高磁場において臨界電流密度の低下が僅かな酸
化物超電導バルク材およびこの酸化物超電導バルク材料
の製造法に関し、高温での半溶融状態から超電導相を得
る方法に関するものである。
化物超電導バルク材およびこの酸化物超電導バルク材料
の製造法に関し、高温での半溶融状態から超電導相を得
る方法に関するものである。
[従来の技術]
酸化物超電導バルク材料実用化への取り組みは、現在の
ところ焼結法か中心である。(文献:Jap、 J、
Appl、 Phys、 Vol、26. No、5.
1987. pp。
ところ焼結法か中心である。(文献:Jap、 J、
Appl、 Phys、 Vol、26. No、5.
1987. pp。
L624−L626) これは、始めに原料粉(RE
LYを含む希土類元素、Ha、 (:uの酸化物または
炭酸化物)を組成比に混合し、仮焼し、YBa2Cu3
07−、の構造を持つ仮焼粉を作る。次にこれを成形し
焼結することによってバルク材料を得ようとするもので
ある。この方法の応用例としては、仮焼粉を金属被覆材
等につめることによって線材化する東芝の研究(Jap
、 J、 Appl、 Phys、 Vol、26.
No、5.1987゜pp、 LaB5−LaB5)等
がある。また、板状に成形し焼結しシールド材とする試
み等がある。しかしこれらの試みは焼結体の低い臨界電
流密度のため実用レベルには至っていない。
LYを含む希土類元素、Ha、 (:uの酸化物または
炭酸化物)を組成比に混合し、仮焼し、YBa2Cu3
07−、の構造を持つ仮焼粉を作る。次にこれを成形し
焼結することによってバルク材料を得ようとするもので
ある。この方法の応用例としては、仮焼粉を金属被覆材
等につめることによって線材化する東芝の研究(Jap
、 J、 Appl、 Phys、 Vol、26.
No、5.1987゜pp、 LaB5−LaB5)等
がある。また、板状に成形し焼結しシールド材とする試
み等がある。しかしこれらの試みは焼結体の低い臨界電
流密度のため実用レベルには至っていない。
また、原料を高温に加熱溶融し徐冷する方法は、超電導
バルク材料作成方法としては用いられてはおらず単結晶
育成に用いられている。このとき原料粉は、Cuまたは
CuBaがかなり過剰にフラックスとして加えられてお
り、白金またはアルミナ坩堝で成長させるのが一般的で
ある。−例として、NTTの研究(Jap、 J、 A
ppl、 Phys、 Vol、2B。
バルク材料作成方法としては用いられてはおらず単結晶
育成に用いられている。このとき原料粉は、Cuまたは
CuBaがかなり過剰にフラックスとして加えられてお
り、白金またはアルミナ坩堝で成長させるのが一般的で
ある。−例として、NTTの研究(Jap、 J、 A
ppl、 Phys、 Vol、2B。
No、5.1987. pp、 L851−L853)
等がある。
等がある。
[発明が解決しようとする課題]
焼結体などのバルク超電導材料は、現在のところ、(温
度T−77K、外部磁場)1e−OT)で数千A/cm
2程度の電流密度しか得られておらず実用化には至って
いない。実用化には、(T・77に、 He−数T)で
10’A/cm”程度まで特性の向上が必要である。本
発明は、従来のバルク超電導材料製造方法とは異なる、
メルトプロセスを用いることで特性の向上を図り、RE
[la、Cu30.−、相(以下123相)超電導バル
ク材料の実用化を目指すものである。
度T−77K、外部磁場)1e−OT)で数千A/cm
2程度の電流密度しか得られておらず実用化には至って
いない。実用化には、(T・77に、 He−数T)で
10’A/cm”程度まで特性の向上が必要である。本
発明は、従来のバルク超電導材料製造方法とは異なる、
メルトプロセスを用いることで特性の向上を図り、RE
[la、Cu30.−、相(以下123相)超電導バル
ク材料の実用化を目指すものである。
実用化する際の克服すべき主な課題は、l)零磁場およ
び磁場中での電流密度(Jc)の向上。
び磁場中での電流密度(Jc)の向上。
2)線、コイル、板等への成形性の向上。
3)機械的強度の向上。
などがある。
従来の焼結法でえられる焼結体では、粒径が約数ミクロ
ンから数百ミクロンと細かいため、焼結体の内部には多
数の粒界がある。これらの粒界は超電導的には弱く、粒
内では大きな超電導電流は、粒界で制限され小さくなっ
てしまう。そのため焼結体では、Jeは小さく特に磁場
中では数lO^/cm2と極端に小さくなる。また、焼
結体では、焼結後の加工が非常に困難でありまた焼結体
どうしの接合も非常に困難である。さらに、焼結体は、
本来脆いという欠点がある。
ンから数百ミクロンと細かいため、焼結体の内部には多
数の粒界がある。これらの粒界は超電導的には弱く、粒
内では大きな超電導電流は、粒界で制限され小さくなっ
てしまう。そのため焼結体では、Jeは小さく特に磁場
中では数lO^/cm2と極端に小さくなる。また、焼
結体では、焼結後の加工が非常に困難でありまた焼結体
どうしの接合も非常に困難である。さらに、焼結体は、
本来脆いという欠点がある。
[課題を解決するための手段]
本発明は上記のような課題を解決して高品位の酸化バル
ク物超電導材料およびその製造方法を提供するものであ
る。
ク物超電導材料およびその製造方法を提供するものであ
る。
零磁場および磁場中で臨界電流密度(Jc)の高い酸化
物バルク超電導材料は第1図(a)に示すような組織を
持つ。即ちREBa,Cu、0.−、相中に直径20ミ
クロン以下のRE、BaCuO3相(以下211相)が
分散した組織であり、凝固直後の熱処理前の中間物質の
組織が第1図(C)に示すようにBa(:u酸化物中に
直径50ミクロン以下のRE2O3相が分散した組織を
有する酸化物超電導バルク材料である。本発明の超電導
バルク材の組織は細かい211相を含む数ミリの単結晶
体であり、第1図(b)に示すように双晶パターンを示
す方位のそろった単結晶になっている。Jcを低下させ
る粒界が少ないことが特徴である。また211相が超電
導相中にあることが分かる。この211相は粒界やクラ
ック、CuO相などの211相以外の第二相の少ない材
料を得るためにある程度必要で、微細に分布しているこ
とが望ましい。このような組織は第1図(C)に示した
組織を有する中間体を1000℃〜1350℃に加熱す
ることにより針状の細かい211相が成長し、この21
1相が分断することによって得られる。
物バルク超電導材料は第1図(a)に示すような組織を
持つ。即ちREBa,Cu、0.−、相中に直径20ミ
クロン以下のRE、BaCuO3相(以下211相)が
分散した組織であり、凝固直後の熱処理前の中間物質の
組織が第1図(C)に示すようにBa(:u酸化物中に
直径50ミクロン以下のRE2O3相が分散した組織を
有する酸化物超電導バルク材料である。本発明の超電導
バルク材の組織は細かい211相を含む数ミリの単結晶
体であり、第1図(b)に示すように双晶パターンを示
す方位のそろった単結晶になっている。Jcを低下させ
る粒界が少ないことが特徴である。また211相が超電
導相中にあることが分かる。この211相は粒界やクラ
ック、CuO相などの211相以外の第二相の少ない材
料を得るためにある程度必要で、微細に分布しているこ
とが望ましい。このような組織は第1図(C)に示した
組織を有する中間体を1000℃〜1350℃に加熱す
ることにより針状の細かい211相が成長し、この21
1相が分断することによって得られる。
上記組織を有する酸化物バルク超電導材を製造する方法
としては、溶融状態から急冷して得られた、厚さ数ミリ
の板、コイル、線状のRE、 Ba、 Cu元素を含む
成形体を1000℃以上の半溶融状態に加熱し徐冷する
ことによって、包晶反応によって析出する超電導相中に
211相を多数かつ微細に分散させることにより、上記
課題を克服する高Jcバルク状材料を製造する方法にあ
る。
としては、溶融状態から急冷して得られた、厚さ数ミリ
の板、コイル、線状のRE、 Ba、 Cu元素を含む
成形体を1000℃以上の半溶融状態に加熱し徐冷する
ことによって、包晶反応によって析出する超電導相中に
211相を多数かつ微細に分散させることにより、上記
課題を克服する高Jcバルク状材料を製造する方法にあ
る。
第三発明の最大の特徴はRE、 Ba、 Guを含む溶
融体を急冷凝固させ成形体を得ることにある。急冷凝固
させて得られた成形体は、RE、O,とBaCu酸化物
がきわめて細かく均一に分布しており、これを再熱処理
することによって、第四発明のRHの酸化物とBaCu
酸化物の成形体を熱処理する製造方法よりさらに微細か
つ均一な211相を含む超電導相が得られる。急冷方法
としては、プラズマスプレィ法、レーザ照射、ハンマー
クエンチなどがある。
融体を急冷凝固させ成形体を得ることにある。急冷凝固
させて得られた成形体は、RE、O,とBaCu酸化物
がきわめて細かく均一に分布しており、これを再熱処理
することによって、第四発明のRHの酸化物とBaCu
酸化物の成形体を熱処理する製造方法よりさらに微細か
つ均一な211相を含む超電導相が得られる。急冷方法
としては、プラズマスプレィ法、レーザ照射、ハンマー
クエンチなどがある。
第四発明の要旨は、RE2O3とBaCu酸化物を混合
して得られた、厚さ数ミリの板、コイル、線状の成形体
を1000℃以上の高温に加熱し徐冷することによって
、高温側からの包晶反応を利用し粒界の少ないほぼ単結
晶に近い上記課題を克服する高Jcバルク状材料を製造
する方法にある。
して得られた、厚さ数ミリの板、コイル、線状の成形体
を1000℃以上の高温に加熱し徐冷することによって
、高温側からの包晶反応を利用し粒界の少ないほぼ単結
晶に近い上記課題を克服する高Jcバルク状材料を製造
する方法にある。
第四発明の最大の特徴は、成形体としてRE2O3とB
aCu酸化物を混合して得られたものを用い、これを熱
処理することによって微細な211相を含む割れの少な
い超電導相が得られることにある。すなわち、本発明者
らは熱処理前の成形体の状態として以下の三つのものに
ついて調べた。
aCu酸化物を混合して得られたものを用い、これを熱
処理することによって微細な211相を含む割れの少な
い超電導相が得られることにある。すなわち、本発明者
らは熱処理前の成形体の状態として以下の三つのものに
ついて調べた。
1、 REBa2(:uiOt−y相粉末の成形体2、
RE2BaCuO5相とBaCu酸化物との混合粉3
、 RE2O3と口aCu酸化物との混合粉その結果R
E2O3とBaCu酸化物との混合粉を成形体として用
いた場合に、微細な211相が均一に分布した超電導相
が得られた。また、得られた超電導相は、一つの粒径が
数ミリと大きくかつ割れも少なく超電導的にweak−
1inkの少ない超電導体が得られた。
RE2BaCuO5相とBaCu酸化物との混合粉3
、 RE2O3と口aCu酸化物との混合粉その結果R
E2O3とBaCu酸化物との混合粉を成形体として用
いた場合に、微細な211相が均一に分布した超電導相
が得られた。また、得られた超電導相は、一つの粒径が
数ミリと大きくかつ割れも少なく超電導的にweak−
1inkの少ない超電導体が得られた。
こわらの原因はRE、0.と液相(Haにu酸化物)が
反応して211相が成長する際に、細さ1ミクロン程度
の針状211の繊維か材料中にできるためであることが
分かった。
反応して211相が成長する際に、細さ1ミクロン程度
の針状211の繊維か材料中にできるためであることが
分かった。
[作用]
+23相は約970℃以上の高温では不安定であり21
1相と液相(L:BaCu酸化物)とに分解溶融する。
1相と液相(L:BaCu酸化物)とに分解溶融する。
ざらに約1250℃以上では211相も分解しRE2O
3と液相になる。しかしながら、高温加熱時の成形体は
これら半溶融状態で繊維状211が液相を吸収するため
、成形体の形はほぼ保たれる。この半溶融状態の成形体
を徐冷すると211相とL相との包晶反応により123
相ができる。このときできる組織は細かい211相を含
む数ミリの単結晶の集合体となる。本発明によって製造
した材料は、このためJcの妨げとなる大傾角粒界が極
めて少なく磁場なしで高いJcが得られるのはもちろん
のこと、高磁場中でも、従来の方法と比較して3桁高い
Jcが得られる。また、この製造方法では厚さ5mm以
下の成形体は、−旦1000〜1350℃で半溶融状態
にあるが高温加熱時において、適当な粘性があるため任
意の形状に加工が容易にできる。また、材料どうしの接
合も接触させておくだけで容易に可能となる。
3と液相になる。しかしながら、高温加熱時の成形体は
これら半溶融状態で繊維状211が液相を吸収するため
、成形体の形はほぼ保たれる。この半溶融状態の成形体
を徐冷すると211相とL相との包晶反応により123
相ができる。このときできる組織は細かい211相を含
む数ミリの単結晶の集合体となる。本発明によって製造
した材料は、このためJcの妨げとなる大傾角粒界が極
めて少なく磁場なしで高いJcが得られるのはもちろん
のこと、高磁場中でも、従来の方法と比較して3桁高い
Jcが得られる。また、この製造方法では厚さ5mm以
下の成形体は、−旦1000〜1350℃で半溶融状態
にあるが高温加熱時において、適当な粘性があるため任
意の形状に加工が容易にできる。また、材料どうしの接
合も接触させておくだけで容易に可能となる。
成形体の厚さの限定理由は5mo+以上の厚さがあると
半溶融時各成分の偏在が大きくなり均一な材料ができ難
くなるため上記のように定めた。
半溶融時各成分の偏在が大きくなり均一な材料ができ難
くなるため上記のように定めた。
成形体の加熱温度の限定理由は、1000℃以下では部
分溶融はするが量的に少なく上記の効果が得られない、
また1350℃以上では成形体の原型をとどめないこと
から定めた。また、これらの温度はRE元素の種類や加
熱時の雰囲気に仕込組成によって多少変化しイオン半径
の大きいRE元素はどまた雰囲気の酸素分圧が大きいほ
どまたRE過剰なほど高温側にすわる傾向がある。
分溶融はするが量的に少なく上記の効果が得られない、
また1350℃以上では成形体の原型をとどめないこと
から定めた。また、これらの温度はRE元素の種類や加
熱時の雰囲気に仕込組成によって多少変化しイオン半径
の大きいRE元素はどまた雰囲気の酸素分圧が大きいほ
どまたRE過剰なほど高温側にすわる傾向がある。
徐冷速度の限定理由は、200℃/hr以上であると1
23相の粒が充分成長しないため、粒界が多くなりJc
を低下させてしまうためである。このような熱処理によ
って、超電導相の中には細かな211相か含まれている
ため組織が細かく機械的強度も改善される。
23相の粒が充分成長しないため、粒界が多くなりJc
を低下させてしまうためである。このような熱処理によ
って、超電導相の中には細かな211相か含まれている
ため組織が細かく機械的強度も改善される。
なお、第三発明と第四発明の効果は、下記の実施例によ
る検証とほぼ等価である。
る検証とほぼ等価である。
[実施例]
上述した第三発明の方法により実施した酸化物バルク超
電導材料の製造例を次に述べる。成形体として、YBa
2Cu、O,□の粉末を溶融しハンマークエンチして得
られた、厚さI+++m 、幅10mff1、長さ20
mmの物を用意した。この材料の組織観察を行った結果
を第1図(C)に示す。この組織はBaCu酸化物中に
50μm以下のY2O3が分散した組織であった。これ
を白金の網の上に乗せ、酸素気流中で次のような熱処理
を行った。1200℃で1時間保持した後−30℃/h
rで900℃まで降温し、室温までは、100℃/hr
で降温した。得られた材料を切り出し、超電導特性を測
定したところ以下のような結果が得られた。
電導材料の製造例を次に述べる。成形体として、YBa
2Cu、O,□の粉末を溶融しハンマークエンチして得
られた、厚さI+++m 、幅10mff1、長さ20
mmの物を用意した。この材料の組織観察を行った結果
を第1図(C)に示す。この組織はBaCu酸化物中に
50μm以下のY2O3が分散した組織であった。これ
を白金の網の上に乗せ、酸素気流中で次のような熱処理
を行った。1200℃で1時間保持した後−30℃/h
rで900℃まで降温し、室温までは、100℃/hr
で降温した。得られた材料を切り出し、超電導特性を測
定したところ以下のような結果が得られた。
臨界温度(Tc) :
93にでシャープな超電導遷移を示した。
臨界電流密度(Jc) :
第2図、第3図はそれぞれ4.2に、 77にでの四端
子法による輸送臨界電流密度を示す。(ただし四端子法
には、電流端子の発熱によりJcを過小評価するおそれ
がある)また第4図は別のサンプルについて磁化測定か
ら求めた臨界電流密度で、四端子法による値を上回って
いることが確認できた。
子法による輸送臨界電流密度を示す。(ただし四端子法
には、電流端子の発熱によりJcを過小評価するおそれ
がある)また第4図は別のサンプルについて磁化測定か
ら求めた臨界電流密度で、四端子法による値を上回って
いることが確認できた。
このように、本製造方法は、従来の製造方法と比較して
極めて高品位のM電導材料を製造できることが分かった
。
極めて高品位のM電導材料を製造できることが分かった
。
また、曲げた白金の網の上に成形体を置いて同様に実験
したところ、網の形とほぼ等しい超電導材料ができ形状
付与が容易であることが分かった。さらに、二つの成形
体の一部を重ねて同様に実験したところ、接合部での超
電導特性は殆ど変化せず、極めて接合性がよいことも分
かった。
したところ、網の形とほぼ等しい超電導材料ができ形状
付与が容易であることが分かった。さらに、二つの成形
体の一部を重ねて同様に実験したところ、接合部での超
電導特性は殆ど変化せず、極めて接合性がよいことも分
かった。
機械的特性については、組織観察の結果から材料中には
、1ミクロン程度の211相が多くあり組織が細かいた
め正方晶から斜方晶への相転移による歪を双晶をつくら
ずに緩和していることが分かった。このことから機械的
靭性が改善されているものと思われる。
、1ミクロン程度の211相が多くあり組織が細かいた
め正方晶から斜方晶への相転移による歪を双晶をつくら
ずに緩和していることが分かった。このことから機械的
靭性が改善されているものと思われる。
[発明の効果]
以上詳述したごとく、本発明はこれまで不可能であった
高品位の酸化物バルク超電導材料の製造を可能とするも
ので、しかも成形品として各種分野での応用か可能であ
り、極めて工業的効果が大きい。具体例としては、 l)超電導線材 この製造方法により、線状の成形体から高いJcの線材
ができ、接続も容易であるため長距離の送電線としても
使用可能である。
高品位の酸化物バルク超電導材料の製造を可能とするも
ので、しかも成形品として各種分野での応用か可能であ
り、極めて工業的効果が大きい。具体例としては、 l)超電導線材 この製造方法により、線状の成形体から高いJcの線材
ができ、接続も容易であるため長距離の送電線としても
使用可能である。
2)超電導コイル
渦巻状の成形体を何重かに重ね接合部で接触させて熱処
理するだけで高品位のマグネットかできる。
理するだけで高品位のマグネットかできる。
3)超電導磁気シールド材
板状の成形体を任意の形状の型にのせて熱処理するたけ
で、任意の形の超電導体ができるため磁束漏れの少ない
、高品位の磁気シールド材ができる。
で、任意の形の超電導体ができるため磁束漏れの少ない
、高品位の磁気シールド材ができる。
等か挙げられる。
第1図は本発明に係る超電導材料の組織を示す顕微鏡写
真で、<a)は超電導バルク材の組織、(b)は超電導
バルク材の双晶、(C)は超電導バルク材の中間物質の
組織を夫々示す。 第2図は液体窒素温度77にでの臨界電流密度の磁場依
存性を示すものである。 第3図は液体ヘリウム温度4.2にでのJcの磁場依存
性を示す線図である。 第4図は77にでの磁化特性から求めた臨界電流密度の
磁場依存性を示す。 出願人代理人 弁理士 矢葺知之(はが1名)第1図(
む ミ −・・( 108m 第1図(i)) ・・−一一薯 5メJ7 第 図 (C) ← 〜−−へ−・・ −1 509m 第3図 磁場H[Tコ 第2図 磁場H[Tコ 第 図 0.0 0.5 1.0 磁場H[T]
真で、<a)は超電導バルク材の組織、(b)は超電導
バルク材の双晶、(C)は超電導バルク材の中間物質の
組織を夫々示す。 第2図は液体窒素温度77にでの臨界電流密度の磁場依
存性を示すものである。 第3図は液体ヘリウム温度4.2にでのJcの磁場依存
性を示す線図である。 第4図は77にでの磁化特性から求めた臨界電流密度の
磁場依存性を示す。 出願人代理人 弁理士 矢葺知之(はが1名)第1図(
む ミ −・・( 108m 第1図(i)) ・・−一一薯 5メJ7 第 図 (C) ← 〜−−へ−・・ −1 509m 第3図 磁場H[Tコ 第2図 磁場H[Tコ 第 図 0.0 0.5 1.0 磁場H[T]
Claims (4)
- 1.RE(Yを含む希土類元素),Ba,Cuの酸化物
からなる酸化物超電導体において、前記RE(Yを含む
希土類元素),Ba,Cuの酸化物超電導体の組織RE
Ba_2Cu_3O_7_−_y相中に直径20ミクロ
ン以下のRE_2BaCuO_5相が分散した組織を有
することを特徴とする酸化物超電導バルク材料。 - 2.RE(Yを含む希土類元素),Ba,Cuの酸化物
を溶解し凝固した直後の酸化物であって組織がBaCu
O_2相中に直径50ミクロン以下のRE_2(Yを含
む)O_3相が分散した組織を有することを特徴とする
酸化物超電導バルク材料の中間体。 - 3.RE(Yを含む希土類元素),Ba,Cu元素を含
む溶融体を急冷凝固した厚さ5mm以下の板もしくは線
状成形体を一旦1000℃から1350℃の高温に加熱
せしめ半溶融状態にした後、200℃/hr以下の速度
で徐冷し、高臨界電流密度の超電導体を得ることを特徴
する酸化物超電導バルク材料の製造方法。 - 4.RE_2O_3(RE:Yを含む希土類元素)とB
aCu酸化物とを混合して得られた、厚さ5mm以下の
板状もしくは線状の成形体を1000℃から1350℃
の高温に加熱せしめ半溶融状態にした後、200℃/h
r以下の速度で徐冷することを特徴する酸化物超電導バ
ルク材料の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63261607A JPH02153803A (ja) | 1988-06-06 | 1988-10-19 | 酸化物超電導バルク材料およびその製造方法 |
US07/735,105 US5278137A (en) | 1988-06-06 | 1989-06-06 | YBa2 Cu3 O7-y type oxide superconductive material containing dispersed Y2 BaCuO5 phase and having high critical current density |
PCT/JP1989/000577 WO1989012028A1 (fr) | 1988-06-06 | 1989-06-06 | Oxyde supraconducteur et procede de production |
EP89906475A EP0374263B1 (en) | 1988-06-06 | 1989-06-06 | Oxide superconductive material and process for its production |
DE68925350T DE68925350T2 (de) | 1988-06-06 | 1989-06-06 | Supraleitendes oxidmaterial und verfahren zur herstellung |
US08/425,313 US5508253A (en) | 1988-06-06 | 1995-04-17 | REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-137464 | 1988-06-06 | ||
JP13746488 | 1988-06-06 | ||
JP63261607A JPH02153803A (ja) | 1988-06-06 | 1988-10-19 | 酸化物超電導バルク材料およびその製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5213636A Division JPH0816014B2 (ja) | 1993-08-30 | 1993-08-30 | 酸化物超電導バルク材料の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02153803A true JPH02153803A (ja) | 1990-06-13 |
JPH0440289B2 JPH0440289B2 (ja) | 1992-07-02 |
Family
ID=26470774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63261607A Granted JPH02153803A (ja) | 1988-06-06 | 1988-10-19 | 酸化物超電導バルク材料およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0374263B1 (ja) |
JP (1) | JPH02153803A (ja) |
DE (1) | DE68925350T2 (ja) |
WO (1) | WO1989012028A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03257019A (ja) * | 1989-11-30 | 1991-11-15 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 強磁性と超伝導性とをもつLaBa2Cu3O7―y系強磁性超伝導材料及びLa―Ba―Ca―Cu―O系強磁性超伝導材料、その製造方法並びにLa―Ba―Cu―O系強磁性材料 |
JPH04193714A (ja) * | 1990-11-27 | 1992-07-13 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 酸化物複合材料及びその製造方法 |
EP0495677A1 (en) * | 1991-01-18 | 1992-07-22 | Ngk Insulators, Ltd. | Oxide superconducting material and process for producing the same |
WO1992017407A1 (en) * | 1991-04-01 | 1992-10-15 | International Superconductivity Technology Center | Oxide superconductor and production thereof |
US5434125A (en) * | 1990-12-20 | 1995-07-18 | International Superconductivity Technology Center | Rare earth oxide superconducting material and process for producing the same |
US5849668A (en) * | 1996-06-21 | 1998-12-15 | Dowa Mining Co., Ltd. | Oxide superconductor and method for manufacturing the same |
US6172007B1 (en) | 1996-06-21 | 2001-01-09 | Dowa Mining Co., Ltd. | Oxide superconductor |
JP2006062897A (ja) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | 酸化物超電導材料及びその製造方法 |
JP2006062896A (ja) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | 酸化物超電導材料及びその製造方法 |
JP2006137619A (ja) * | 2004-11-10 | 2006-06-01 | Nippon Steel Corp | 超電導バルク体 |
JP2012031003A (ja) * | 2010-07-29 | 2012-02-16 | Nippon Steel Corp | 酸化物超電導バルク材料の製造方法 |
US10468580B2 (en) | 2014-03-24 | 2019-11-05 | Nippon Steel Corporation | Bulk oxide superconductor and method of production of bulk oxide superconductor |
JP2021039021A (ja) * | 2019-09-04 | 2021-03-11 | 国立大学法人東京農工大学 | 材料解析システム、材料解析方法、および材料解析プログラム |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69032641T2 (de) * | 1989-11-02 | 1999-01-28 | International Superconductivity Technology Center, Tokio/Tokyo | Verfahren zur Herstellung eines oxidischen Supraleiters |
EP0430568B1 (en) * | 1989-11-28 | 1997-09-03 | AT&T Corp. | Method of making high Tc superconductor material, and article produced by the method |
JP2821794B2 (ja) * | 1990-05-08 | 1998-11-05 | 財団法人国際超電導産業技術研究センター | 酸化物超電導体およびその製造方法 |
US5270292A (en) * | 1991-02-25 | 1993-12-14 | The Catholic University Of America | Method for the formation of high temperature semiconductors |
JP2838742B2 (ja) * | 1991-12-20 | 1998-12-16 | 新日本製鐵株式会社 | 酸化物バルク超電導体およびその製造方法 |
ES2111435B1 (es) * | 1994-04-22 | 1999-09-16 | Consejo Superior Investigacion | Procedimiento de obtencion de ceramicas superconductoras texturadas de trba2cu3o, donde tr significa tierra rara o ytrio, mediante solidificacion direccional. |
US5902763A (en) * | 1995-01-19 | 1999-05-11 | Ube Industries, Inc. | Fused ceramic composite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472905A (en) * | 1987-06-12 | 1989-03-17 | American Telephone & Telegraph | Production of superconductor and device and system comprising same |
JPH0440289A (ja) * | 1990-06-06 | 1992-02-10 | Setsuko Tanabe | 飲料水鉄補給器 |
-
1988
- 1988-10-19 JP JP63261607A patent/JPH02153803A/ja active Granted
-
1989
- 1989-06-06 DE DE68925350T patent/DE68925350T2/de not_active Expired - Lifetime
- 1989-06-06 EP EP89906475A patent/EP0374263B1/en not_active Expired - Lifetime
- 1989-06-06 WO PCT/JP1989/000577 patent/WO1989012028A1/ja active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472905A (en) * | 1987-06-12 | 1989-03-17 | American Telephone & Telegraph | Production of superconductor and device and system comprising same |
JPH0440289A (ja) * | 1990-06-06 | 1992-02-10 | Setsuko Tanabe | 飲料水鉄補給器 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03257019A (ja) * | 1989-11-30 | 1991-11-15 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 強磁性と超伝導性とをもつLaBa2Cu3O7―y系強磁性超伝導材料及びLa―Ba―Ca―Cu―O系強磁性超伝導材料、その製造方法並びにLa―Ba―Cu―O系強磁性材料 |
JPH04193714A (ja) * | 1990-11-27 | 1992-07-13 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 酸化物複合材料及びその製造方法 |
US5434125A (en) * | 1990-12-20 | 1995-07-18 | International Superconductivity Technology Center | Rare earth oxide superconducting material and process for producing the same |
EP0495677A1 (en) * | 1991-01-18 | 1992-07-22 | Ngk Insulators, Ltd. | Oxide superconducting material and process for producing the same |
US5292716A (en) * | 1991-01-18 | 1994-03-08 | Ngk Insulators, Ltd. | Oxide superconducting material and process for producing the same |
WO1992017407A1 (en) * | 1991-04-01 | 1992-10-15 | International Superconductivity Technology Center | Oxide superconductor and production thereof |
US5395820A (en) * | 1991-04-01 | 1995-03-07 | International Superconductivity Technology Center | Oxide superconductor and process for producing the same |
US6172007B1 (en) | 1996-06-21 | 2001-01-09 | Dowa Mining Co., Ltd. | Oxide superconductor |
US5849668A (en) * | 1996-06-21 | 1998-12-15 | Dowa Mining Co., Ltd. | Oxide superconductor and method for manufacturing the same |
JP2006062897A (ja) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | 酸化物超電導材料及びその製造方法 |
JP2006062896A (ja) * | 2004-08-25 | 2006-03-09 | Nippon Steel Corp | 酸化物超電導材料及びその製造方法 |
JP4628041B2 (ja) * | 2004-08-25 | 2011-02-09 | 新日本製鐵株式会社 | 酸化物超電導材料及びその製造方法 |
JP2006137619A (ja) * | 2004-11-10 | 2006-06-01 | Nippon Steel Corp | 超電導バルク体 |
JP4589698B2 (ja) * | 2004-11-10 | 2010-12-01 | 新日本製鐵株式会社 | 超電導バルク体 |
JP2012031003A (ja) * | 2010-07-29 | 2012-02-16 | Nippon Steel Corp | 酸化物超電導バルク材料の製造方法 |
US10468580B2 (en) | 2014-03-24 | 2019-11-05 | Nippon Steel Corporation | Bulk oxide superconductor and method of production of bulk oxide superconductor |
JP2021039021A (ja) * | 2019-09-04 | 2021-03-11 | 国立大学法人東京農工大学 | 材料解析システム、材料解析方法、および材料解析プログラム |
Also Published As
Publication number | Publication date |
---|---|
WO1989012028A1 (fr) | 1989-12-14 |
EP0374263A4 (en) | 1992-01-15 |
EP0374263A1 (en) | 1990-06-27 |
EP0374263B1 (en) | 1996-01-03 |
JPH0440289B2 (ja) | 1992-07-02 |
DE68925350D1 (de) | 1996-02-15 |
DE68925350T2 (de) | 1996-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02153803A (ja) | 酸化物超電導バルク材料およびその製造方法 | |
US5278137A (en) | YBa2 Cu3 O7-y type oxide superconductive material containing dispersed Y2 BaCuO5 phase and having high critical current density | |
JP2871258B2 (ja) | 酸化物超電導体及びその製造方法 | |
JP2672926B2 (ja) | イットリウム系超伝導体の製造方法 | |
US5430010A (en) | Process for preparing oxide superconductor | |
JPH013061A (ja) | 超電導材料の製造方法 | |
JP2518043B2 (ja) | 溶融凝固法によるセラミックの製造方法 | |
JP3174847B2 (ja) | 超電導ウィスカーおよびその製造方法 | |
JPH0416511A (ja) | 酸化物超電導体およびその製造方法 | |
JP3159764B2 (ja) | 希土類系超電導体の製造方法 | |
JPH0333051A (ja) | 酸化物超電導バルク材料の製造方法 | |
JPH0446053A (ja) | 酸化物超電導体およびその製造方法 | |
JPH013054A (ja) | 超電導材料の製造方法 | |
JPH06183730A (ja) | 酸化物超電導バルク材料の製造方法 | |
JPH0524825A (ja) | 希土類系酸化物超電導体の製造方法とその原料粉末 | |
JPH07187671A (ja) | 酸化物超電導体及びその製造方法 | |
JPH04160062A (ja) | 超伝導材料の製造方法 | |
JPH013063A (ja) | 超電導材料の製造方法 | |
JPH03290307A (ja) | 酸化物超電導体厚膜テープ材料の製造方法 | |
JPH013056A (ja) | 超電導材料の製造方法 | |
JPH013053A (ja) | 超電導材料の製造方法 | |
JPH0416510A (ja) | 酸化物超電導バルク材料の製造方法 | |
JPH0197324A (ja) | 複合酸化物系超電導体の製造方法 | |
JPH013060A (ja) | 超電導材料の製造方法 | |
JPH0551216A (ja) | Bi系酸化物超電導体製厚板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 17 |