JPH01305847A - 超電導体の製造方法 - Google Patents

超電導体の製造方法

Info

Publication number
JPH01305847A
JPH01305847A JP63136491A JP13649188A JPH01305847A JP H01305847 A JPH01305847 A JP H01305847A JP 63136491 A JP63136491 A JP 63136491A JP 13649188 A JP13649188 A JP 13649188A JP H01305847 A JPH01305847 A JP H01305847A
Authority
JP
Japan
Prior art keywords
sintered body
superconductor
powder
composition ratio
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63136491A
Other languages
English (en)
Other versions
JP2727565B2 (ja
Inventor
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63136491A priority Critical patent/JP2727565B2/ja
Publication of JPH01305847A publication Critical patent/JPH01305847A/ja
Application granted granted Critical
Publication of JP2727565B2 publication Critical patent/JP2727565B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超電導体の製造方法に関し、特にセラミッ
クス系超電導材料からなる超電導体の製造方法に関する
ものである。
[従来の技術] 従来から超電導体として、金属系のもの、およびセラミ
ックス系のものが知られており、種々の用途への適用が
研究されている。すなわち、超電導体は、臨界温度以下
の温度に保持されることにより電気抵抗が零の状態にな
るのであるが、この特性を利用して高磁界の発生、大容
量の電流の高密度伝送等が試みられている。
最近、超電導材料として、セラミックス系のものが、超
電導現象を示す臨界温度を高くできる点で脚光を浴びつ
つある。このような超電導材料は、たとえば、長尺の線
状体とすることによって、送配電、各種機器または素子
間の電気的接続、交流用巻線、等の用途に用いることが
できる。このセラミックス系超電導材料のうち、たとえ
ば、Y−Ba−Cu−0系のものに代表されるペロブス
カイト構造または擬似ペロブスカイト構造を呈するセラ
ミックス系超電導材料にあっては、高い臨界温度を示す
ことが実証されている。
これらの超電導材料を高磁界の発生に適用する場合には
、超電導体をかなり細い線材にすることが必要であり、
また、高密度伝送に適用する場合にも超電導体をかなり
細い線材にすることが必要である。さらに、上記の用途
以外の用途においても、超電導体を細い線材にすること
が必要な場合がかなり存在している。
したがって、上記各種の超電導体のうち、特性を劣化さ
せることなく線材化することができるもののみが上記の
用途に対して適用可能になるのである。しかしながら、
線材化することが容易な金属系のものは臨界温度がかな
り低く(たとえば、23に程度よりも低く)、使用可能
な冷媒の制約が大きいので、非常に限られた用途にしか
使用されていない。
逆に、セラミックス系のものには、かなり高い臨界温度
を有するものがあるが、線材化することが非常に困難で
あるのみならず、線材化した場合において全長にわたっ
て安定な電気的特性を持たせることが非常に困難である
という問題がある。
さらに詳細に説明すると、セラミックス系超電導体から
なる線材を製造する場合には、 ■ 常温で冷間加工する方法、および ■ 塑性加工が容易な温度に昇温させて加工する方法 が採用されている。
[発明が解決しようとする課題] しかし、上記■の方法により線材化した場合には、セラ
ミックス系超電導体の原料を伸線化するに従って原料粉
末が局在化し、断線が発生してしまうので、成る程度以
上に細線化することができないという問題があるのみな
らず、より太い線材として形成した場合においても、電
気的特性が成る程度劣化してしまうという問題がある。
また、上記■の方法により線材化する場合には、通常、
金属パイプ中にセラミックス系超電導体の原料を充填し
ておき、加熱して高温状態にした後、押出して線材化し
、必要に応じてダイス等によりさらに伸線加工を施すよ
うにしている。したがって、セラミックス系超電導体の
原料は金属バイブにより外部雰囲気から遮断された状態
のままで熱処理が施されることになり、酸素等、超電導
体として必要な元素との反応が充分には行なわれず、こ
の結果、所期の臨界温度、臨界電流を有する超電導体の
生成が行なわれなくなってしまうという問題がある。さ
らに、成る程度以上に細線化することができないという
問題もある。
そこで、この発明の目的は、臨界温度および臨界電流密
度を高くすることができるとともに、電気的特性を劣化
させることなく線材化することができ、かつ緻密な超電
導相を有する超電導体を効率良く製造し得る方法を提供
することにある。
[課題を解決するための手段] この発明に従った超電導体の製造方法によれば、まず、
セラミックス系超電導材料の原材料として、イツトリウ
ム、バリウムおよび銅の組成比がY:Ba : Cum
2 : 1 : 1である酸化物を含む多孔質の焼結体
と、バリウムおよび銅を含む複合酸化物の溶融体とが準
備される。多孔質の焼結体には複合酸化物の溶融体が含
浸させられる。含浸させられた焼結体に熱処理が施され
ることにより超電導体が得られる。
この発明に従った超電導体の製造方法のもう1つの局面
によれば、まず、セラミックス系超電導材料の原材料と
して、イツトリウム、バリウムおよび銅の組成比がY:
Ba:Cu−2:1:1である酸化物を含む粉末と、バ
リウムおよび銅を含む複合酸化物の溶融体とが準備され
る。この粉末は金属シース管に充填された後、その金属
シース管は縮径加工される。金属シース管内の粉末は焼
結されることにより、多孔質の焼結体が得られる。
金属シース管を除去した後、この多孔質の焼結体には上
記複合酸化物の溶融体が含浸させられる。
含浸させられた焼結体に熱処理を施すことにより超電導
体が得られる。この超電導体の製造方法においては、金
属シース管を縮径加工するとき、金属シース管をコイル
状に成形加工してもよい。
さらに、この発明に従った超電導体の製造方法において
、セラミックス系超電導材料の原材料として用いられる
複合酸化物は、バリウムおよび銅の組成比がBa/ (
Cu+Ba)−10〜50モル%の範囲内であることが
好ましい。
[作用] この発明に従った超電導体の製造方法では、セラミック
ス系超電導材料の原材料として、イツトリウム、バリウ
ムおよび銅の組成比がY: Ba :Cu−2:1:1
である酸化物を含む多孔質の焼結体が準備される。この
多孔質の焼結体は温度1400℃程度の高融点を有する
絶縁体である。−方、もう1つの原材料として準備され
るバリウムおよび銅を含む複合酸化物は上記焼結体より
も融点が低く、その粘度も低い。したがって、この溶融
体を多孔質の焼結体に含浸させると、イツトリウム、バ
リウムおよび銅の組成比がY: Ba : Cum1:
2:3である超電導相が、含浸後に起こる界面反応によ
って形成される。したがって、含浸によって形成される
焼結体と溶融体との界面領域が単位体積に対して多けれ
ば多いほど、その界面に起こる反応によって、全体が上
記組成比を有する超電導相に変化する。このように、多
孔質の焼結体中の孔に複合酸化物の溶融体が毛細管現象
により容易に含浸され得る。含浸後、熱処理が施される
ことにより、緻密な超電導相が形成されるため、液体窒
素温度下で高い臨界電流密度(Jc)を有する超電導体
を得ることが可能になる。
また、この発明に従った超電導体の製造方法のもう1つ
の局面においては、イツトリウム、バリウムおよび銅の
組成比がY:Ba:Cum2:1:1である酸化物を含
む粉末が金属シース管に充填される。その後、スェージ
ング、伸線などの既知の塑性加工方法によって縮径加工
されることにより、長尺化された上記組成比を有する粉
末成形体が得られる。この場合、好ましくは、用いられ
る金属シース管の材料は、粉末と反応し難い銀または銀
合金であればよい。次に、この成形体は、金属シース管
に覆われた状態で加熱されることにより、金属シース管
内の粉末成形体が多孔質の焼結体に焼結される。焼結後
、金属シース管は酸洗などの方法により除去され、上述
と同様に含浸、熱処理が施されることによって、イツト
リウム、バリウムおよび銅の組成比がY:Ba:Cu−
1:2:3である超電導相を有する長尺体が得られる。
この長尺体は緻密な超電導相から構成され、高い臨界電
流密度(J C)を有する。
さらに、金属シース管に覆われた状態で行なわれる縮径
加工において金属シース管をコイル状に成形加工するこ
とによって、最終的に、高い臨界電流密度(J c)を
有するコイル状の超電導体を得ることができる。このコ
イル状の超電導体は液体窒素温度下で運転可能なマグネ
ットに利用され得る。
本発明に従った超電導体の製造方法において原材料とし
て準備される複合酸化物は、バリウムおよび銅の組成比
がBa/ (Cu+Ba)=10〜50モル%の範囲内
であれば、温度1000℃以下の融点を有する。特にこ
の組成比が20〜40モル%の範囲内であれば、さらに
融点が低い複合酸化物を得ることができる。この組成比
を有する複合酸化物の溶融体を多孔質の焼結体に含浸さ
せると、液相状態の複合酸化物と固相状態の焼結体との
界面において反応が行なわれることにより、イツトリウ
ム、バリウムおよび銅の組成比がY:Ba : Cu−
1: 2 : 3である超電導相が容易に生成され得る
。すなわち、上記組成比を有する超電導相は温度105
0℃以上では生成し難いからである。また、複合酸化物
の上記組成比が10モル%以下ではその融点が高くなり
、焼結体との界面において、拡散反応によって容易に上
記組成比を有する超電導相が多量に生成され得ないから
である。さらに、複合酸化物の上記組成比が50モル%
以上では上記組成比を有する超電導相が拡散反応によっ
ては生成され得ないからである。
なお、この発明に従った超電導体の製造方法によって超
電導相が生成されるための、多孔質の焼結体と複合酸化
物の溶融体との間の界面において行なわれる反応は、固
相一液相間または固相−固相間のいずれの反応でもよい
[実施例] 実施例I Y20.、BaC0a、CuOからなる各粉末を原材料
として、Y:Ba;Cu−2:1;1の組成比を有する
ように秤量し、混合した後、温度950℃で12時間、
仮焼結を行なった。得られた仮焼結体を粉砕し、粒径1
μmのY2Ba+Cut05からなる粉末を作製した。
この粉末を圧力2トン/cm2でプレス成形することに
より、口2mm×30mmの形状を有する成形体が得ら
れた。その後、この成形体を温度1000℃において1
2時間、焼結した。このようにして得られた焼結体は、
気孔率40%である多孔質の焼結体であった。
一方、BaC0a、CuOからなる各粉末を原材料とし
て、Ba : Cu=35 : 65の組成比を有する
ように秤量し、混合した。この粉末を温度800℃で1
2時間、仮焼結した後、粉砕した。
この仮焼詰粉を白金るつぼ中で温度970’Cにおいて
溶融し、溶融体を得た。この溶融体に、上記方法によっ
て得られた多孔質の焼結体を1分間、浸漬したところ、
すべての気孔部分に完全に溶融体が含浸された。その後
、この焼結体を温度960℃で6時間、酸素雰囲気中で
熱処理した後、冷却速度2℃/分で室温まで冷却した。
このようにして得られた超電導体は、相対密度が98%
、超電導相の体積率が98%であった。
この超電導体はY、Ba2 Cua oXの単相からな
る緻密な超電導体であり、その臨界温度(Tc)は93
に1液体窒素温度下での臨界電流密度(JC)は10’
A/cm2であった。
実施例2 実施例1によって得られたY:Ba:Cu−2:1:l
の組成比を有する仮焼詰粉を内径8mmφ、外径12m
mφのAg−20重量%Pd合金からなるパイプに充填
した。この合金パイプを伸線加工によって外径2rnm
φまで縮径した。その後、この仮焼詰粉が充填された合
金パイプに温度1100℃で3時間、熱処理(焼結)を
施した。熱処理後、合金パイプを王水によって酸洗除去
した。
このようにして得られた多孔質の焼結体を、Ba:Cu
−30: 70の組成比を有する酸化物からなる溶融体
に含浸させた。含浸後、この焼結体を温度950℃で4
時間、酸素雰囲気中で熱処理した後、冷却速度2℃/分
で室温まで冷却した。このようにして、外径1rnmφ
の長尺状の超電導体が得られ、液体窒素温度下で臨界電
流密度(J c)を測定したところ、2 X 10’ 
A/ c m2であった。
実施例3 実施例2において仮焼詰粉が充填された合金パイプを外
径2mmφまで伸線加工した後、冷間圧延により、厚み
0.5mm、幅3mmのテープ状体に加工した。このテ
ープ状体を外径50mmφのマグネシアパイプに50タ
一ン巻いた。その後の処理は実施例2と同様に行なわれ
た。このようにして得られた超電導コイルは、液体窒素
中で5にガウスの磁場を発生させることができ、永久電
流モードで運転すると、1力月経過後においても発生磁
場の減衰は認められなかった。
実施例4 実施例1で作製された多孔質の焼結体に、第1表に示さ
れる組成を有する複合酸化物の融液を含浸させた。含浸
後、この焼結体を温度960℃で4時間、酸素雰囲気中
で熱処理した後、冷却速度2℃/分で冷却した。このよ
うにして得られた超電導体における超電導相(Y: B
a : Cu−1:2:3の組成比を有するもの)の体
積率、相対密度および液体窒素温度下の臨界電流密度(
J c)を測定した。測定結果は第1表に示される。
第1表によれば、本発明に従った好ましい組成比を有す
る!J!合酸合物化物液を原材料として用いると、緻密
で、かつ高い臨界電流密度(J c)を有する超電導相
が得られることが理解される。
(以下余白) 第1表 [発明の効果] 以上のように、この発明によれば臨界電流密度の高い、
緻密なY−Ba−Cu−0系の超電導体を得ることがで
き、超電導マグネット等に適用可能な長尺体も容易に得
られる。また、この発明の製造方法において用いられる
複合酸化物の組成比を制御することにより、低温反応に
よって容易に超電導相を生成することができ、その生成
量も多くすることが可能である。そのため、体積比の高
い緻密な超電導相が容易に得られる。

Claims (5)

    【特許請求の範囲】
  1. (1)セラミックス系超電導材料からなる超電導体の製
    造方法であって、 前記セラミックス系超電導材料の原材料として、イット
    リウム、バリウムおよび銅の組成比がY:Ba:Cu=
    2:1:1である酸化物を含む多孔質の焼結体と、バリ
    ウムおよび銅を含む複合酸化物の溶融体とを準備するス
    テップと、 前記焼結体に前記溶融体を含浸させるステップと、 前記含浸させられた前記焼結体に熱処理を施すステップ
    とを備える、超電導体の製造方法。
  2. (2)セラミックス系超電導材料からなる超電導体の製
    造方法であって、 前記セラミックス系超電導材料の原材料として、イット
    リウム、バリウムおよび銅の組成比がY:Ba:Cu=
    2:1:1である酸化物を含む粉末と、バリウムおよび
    銅を含む複合酸化物の溶融体とを準備するステップと、 前記粉末を金属シース管に充填し、その金属シース管を
    縮径加工するステップと、 前記金属シース管内の前記粉末を焼結し、多孔質の焼結
    体を得るステップと、 前記金属シース管を除去し、前記焼結体に前記溶融体を
    含浸させるステップと、 前記含浸させられた前記焼結体に熱処理を施すステップ
    とを備える、超電導体の製造方法。
  3. (3)前記金属シース管を縮径加工するステップは、前
    記金属シース管をコイル状に成形加工するステップを含
    む、請求項2記載の超電導体の製造方法。
  4. (4)前記複合酸化物は、バリウムおよび銅の組成比が
    Ba/(Cu+Ba)=10〜50モル%の範囲内であ
    る、請求項1記載の超電導体の製造方法。
  5. (5)前記複合酸化物は、バリウムおよび銅の組成比が
    Ba/(Cu+Ba)=10〜50モル%の範囲内であ
    る、請求項2記載の超電導体の製造方法。
JP63136491A 1988-06-02 1988-06-02 超電導体の製造方法 Expired - Lifetime JP2727565B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63136491A JP2727565B2 (ja) 1988-06-02 1988-06-02 超電導体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63136491A JP2727565B2 (ja) 1988-06-02 1988-06-02 超電導体の製造方法

Publications (2)

Publication Number Publication Date
JPH01305847A true JPH01305847A (ja) 1989-12-11
JP2727565B2 JP2727565B2 (ja) 1998-03-11

Family

ID=15176396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63136491A Expired - Lifetime JP2727565B2 (ja) 1988-06-02 1988-06-02 超電導体の製造方法

Country Status (1)

Country Link
JP (1) JP2727565B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104469A1 (en) * 2007-11-15 2011-05-05 Riman Richard E Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219018A (ja) * 1988-02-29 1989-09-01 Fujikura Ltd 酸化物超電導材の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219018A (ja) * 1988-02-29 1989-09-01 Fujikura Ltd 酸化物超電導材の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104469A1 (en) * 2007-11-15 2011-05-05 Riman Richard E Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
US8709960B2 (en) * 2007-11-15 2014-04-29 Rutgers, The State University Of New Jersey Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom
AU2008350276B2 (en) * 2007-11-15 2014-05-08 Rutgers, The State University Of New Jersey Method of hydrothermal liquid phase sintering of ceramic materials and products derived therefrom

Also Published As

Publication number Publication date
JP2727565B2 (ja) 1998-03-11

Similar Documents

Publication Publication Date Title
US4975416A (en) Method of producing superconducting ceramic wire
JP2727565B2 (ja) 超電導体の製造方法
JP2514690B2 (ja) 超電導線材の製造方法
JPH01167289A (ja) 酸化物系超電導体の製造方法
JPH01241713A (ja) 酸化物系超電導線の製造方法
JPH02192401A (ja) 酸化物超電導体および酸化物超電導線材の製造方法
JPH01241708A (ja) 酸化物系超電導線の製造方法
JPH04259203A (ja) セラミックス超電導体コイルの製造方法
JP3590567B2 (ja) 酸化物超電導線材の製造方法及び酸化物超電導線材
JPS63313416A (ja) 超伝導線材およびその作製方法
JP2595309B2 (ja) 酸化物超電導線の製造方法
JP3450488B2 (ja) ホウ素を含有する金属酸化物超伝導線材
JPH01251519A (ja) 酸化物超電導線の絶縁処理方法
AU656665B2 (en) Method of producing superconducting ceramic wire
JPH04296408A (ja) 酸化物超電導線材及びその製造方法
JPH02129812A (ja) セラミックス超電導体製品の製造法
JPH01241711A (ja) 酸化物系超電導線の製造方法
JPH01241714A (ja) 酸化物系超電導線の製造方法
JPH02189817A (ja) 酸化物超伝導テープ状線材の製造法
JPH07105765A (ja) 酸化物超電導線素材の製造方法及び酸化物超電導線
JPH01241717A (ja) 酸化物系超電導線の製造方法
JPH01122520A (ja) 酸化物系超電導線の製造方法
JPH01241716A (ja) 酸化物系超電導線の製造方法
JPH01241707A (ja) 酸化物系超電導線の製造方法
JPH01279507A (ja) セラミックス系超電導体の製造方法