JP7400337B2 - 炭化ケイ素多結晶基板の製造方法 - Google Patents

炭化ケイ素多結晶基板の製造方法 Download PDF

Info

Publication number
JP7400337B2
JP7400337B2 JP2019192013A JP2019192013A JP7400337B2 JP 7400337 B2 JP7400337 B2 JP 7400337B2 JP 2019192013 A JP2019192013 A JP 2019192013A JP 2019192013 A JP2019192013 A JP 2019192013A JP 7400337 B2 JP7400337 B2 JP 7400337B2
Authority
JP
Japan
Prior art keywords
silicon carbide
film
substrate
carbide polycrystalline
polycrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192013A
Other languages
English (en)
Other versions
JP2021066624A (ja
Inventor
泰三 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019192013A priority Critical patent/JP7400337B2/ja
Publication of JP2021066624A publication Critical patent/JP2021066624A/ja
Application granted granted Critical
Publication of JP7400337B2 publication Critical patent/JP7400337B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、炭化ケイ素多結晶基板の製造方法に関する。
炭化ケイ素は、ケイ素と炭素で構成される、化合物半導体材料である。炭化ケイ素は、絶縁破壊電界強度がケイ素の10倍で、バンドギャップがケイ素の3倍であり、半導体材料として優れている。さらに、デバイスの作製に必要なp型、n型の制御が広い範囲で可能であることなどから、ケイ素の限界を超えるパワーデバイス用材料として期待されている。
しかしながら、炭化ケイ素半導体は、従来広く普及しているケイ素半導体と比較して、大面積の炭化ケイ素単結晶基板を得ることが難しく、製造工程も複雑である。これらの理由から、炭化ケイ素半導体は、ケイ素半導体と比較して大量生産が難しく、高価であった。
これまでにも、炭化ケイ素半導体のコストを下げるために、様々な工夫が行われてきた。例えば、特許文献1には、炭化ケイ素基板の製造方法であって、少なくとも、マイクロパイプの密度が30個/cm以下の炭化ケイ素単結晶基板と炭化ケイ素多結晶基板を準備し、前記炭化ケイ素単結晶基板と前記炭化ケイ素多結晶基板とを貼り合わせる工程を行い、その後、単結晶基板を薄膜化する工程を行い、多結晶基板上に単結晶層を形成した基板を製造することが記載されている。
更に、特許文献1には、単結晶基板と多結晶基板とを貼り合わせる工程の前に、単結晶基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、単結晶基板と多結晶基板とを貼り合わせる工程の後、単結晶基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、単結晶基板を薄膜化する工程を、水素イオン注入層にて機械的に剥離する工程とする炭化ケイ素基板の製造方法が記載されている。
このような方法により、1つの炭化ケイ素単結晶インゴットからより多くの炭化ケイ素貼り合わせ基板が得られるようになった。
特開2009-117533号公報 特開平10-251062号公報
特許文献1の方法で製造された炭化ケイ素貼り合わせ基板の大部分が、多結晶基板である。よって、多結晶基板と単結晶基板を貼り合わせた、炭化ケイ素貼り合わせ基板の反りの大きさは、多結晶基板の反りの大きさによる影響が支配的となる。炭化ケイ素貼り合わせ基板を用いたデバイス製造工程において、炭化ケイ素貼り合わせ基板の反り量が大きいと、フォトリソグラフィ工程におけるパターン形成不良や、イオン注入工程におけるイオン侵入深さが不均一となるなどの問題が生じるため、炭化ケイ素貼り合わせ基板に用いる多結晶基板の反りは小さいことが求められる。
以上のような、炭化ケイ素多結晶基板の反りについての課題に対して、特許文献2においては、化学的気相成長法による炭化ケイ素多結晶膜の成膜に用いるカーボン支持基板の熱膨張係数を3.0×10-6/K~5.0×10-6/Kの範囲とすることが記載されている。炭化ケイ素多結晶膜の熱膨張係数(およそ4.3×10-6/K~4.5×10-6/K)と近い熱膨張係数のカーボン支持基板を用いることで、カーボン支持基板と炭化ケイ素多結晶膜との熱膨張係数の差異による、炭化ケイ素多結晶膜を成膜した後に冷却する時の体積収縮差を低減し、炭化ケイ素多結晶膜に生じる応力を低減することで、反りを低減させた炭化ケイ素多結晶膜を得る方法が示されている。
しかしながら、炭化ケイ素多結晶膜の反りを発生させる要因は、上記の要因だけではない。炭化ケイ素多結晶膜とは異なる材質のカーボン支持基板上へ炭化ケイ素多結晶膜を成膜することにより、炭化ケイ素多結晶膜が成膜する初期には炭化ケイ素多結晶の粒径が小さく、その後、炭化ケイ素多結晶膜の成膜が進むと形成される炭化ケイ素多結晶の粒径が大きくなる。これにより、成膜した炭化ケイ素多結晶膜内の炭化ケイ素多結晶の粒径に差が生じることに起因して、炭化ケイ素多結晶膜内の内部応力に差が生じることも、炭化ケイ素多結晶膜の反りを大きくする一因となっている。支持基板を除去して炭化ケイ素多結晶膜を炭化ケイ素多結晶基板へ加工する工程において、炭化ケイ素達結晶膜において粒径が変化する箇所を削り取っても、炭化ケイ素多結晶基板の反りが十分に小さくならないという課題があった。
また、炭化ケイ素多結晶膜を炭化ケイ素多結晶基板へ加工する工程においては、炭化ケイ素多結晶膜を所定の厚さおよび平坦度へ整えるために、面研削や面研磨の加工などを行うことがある。これらの加工において、炭化ケイ素多結晶膜の反りが大きいことに起因して、厚さや平坦度あるいは反りの不良が発生することがあり、炭化ケイ素多結晶基板への加工工程での歩留まりを悪化させる要因となっていた。加えて、これらの加工不良を改善することを目的として、例えば炭化ケイ素を成膜するときに炭化ケイ素多結晶膜の厚さを大きくすることがある。炭化ケイ素多結晶膜の厚さを大きくするために、ガス使用量が増加することや成膜時間が長くなることにより、製造コストや生産性が悪化するという問題があった。
よって、本発明は、炭化ケイ素多結晶基板に大きな反りが発生することを抑制して、反りの小さい炭化ケイ素多結晶基板を製造する、炭化ケイ素多結晶基板の製造方法を提供することを目的とする。
本発明の炭化ケイ素多結晶基板の製造方法は、化学的気相成長法によって支持基板上に第1炭化ケイ素多結晶膜を、1400℃~1500℃の温度で成膜する、第1炭化ケイ素多結晶膜成膜工程と、前記第1炭化ケイ素多結晶膜の上に、第2炭化ケイ素多結晶膜を、1200℃~1300℃、かつ、前記第1炭化ケイ素多結晶膜の成膜温度よりも100℃~200℃低い温度で成膜する、第2炭化ケイ素多結晶膜成膜工程と、を含む。
本発明の炭化ケイ素多結晶基板の製造方法であれば、炭化ケイ素多結晶基板に大きな反りが発生することを抑制して、反りの小さい炭化ケイ素多結晶基板を製造することができる。
本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法において、化学的気相成長法(CVD法)により炭化ケイ素多結晶膜を成膜する成膜装置の一例を模式的に示す断面図である。 本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法において、各工程における支持基板、炭化ケイ素多結晶膜、および、炭化ケイ素多結晶基板の側面を模式的に示す断面図である。 従来の炭化ケイ素多結晶基板の製造方法において、各工程における支持基板、炭化ケイ素多結晶膜、および、炭化ケイ素多結晶基板の側面を模式的に示す断面図である。 従来の炭化ケイ素多結晶基板の製造方法により得られた、支持基板と炭化ケイ素多結晶膜との積層体における、炭化ケイ素多結晶の粒径の分布を模式的に示す断面図である。 本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法により得られた、支持基板と炭化ケイ素多結晶膜との積層体における、炭化ケイ素多結晶の粒径の分布を模式的に示す断面図である。
本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法について、図面を参照して説明する。なお、本発明は、以下の実施形態に限定されるものではない。
図1は、本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法において、化学的気相成長法により炭化ケイ素多結晶膜を成膜する成膜装置の一例である成膜装置1000を模式的に示す断面図である。図2は、本発明の一実施形態にかかる炭化ケイ素多結晶基板の製造方法において、各工程におけるカーボン支持基板、炭化ケイ素多結晶膜、積層体、および、炭化ケイ素多結晶基板の断面を模式的に示す図である。図2(A)は支持基板100を示す図であり、図2(B)は第1炭化ケイ素多結晶膜成膜工程により得られた積層体400Aを示す図であり、図2(C)は第2炭化ケイ素多結晶膜成膜工程により得られた積層体400Bを示す図であり、図2(D)は積層体400Bを支持基板100の除去工程に供して得られた炭化ケイ素多結晶基板500を示す図である。
本実施形態の炭化ケイ素多結晶基板の製造方法は、化学的気相成長法によって支持基板100上に第1炭化ケイ素多結晶膜200を、1400℃~1500℃の温度で成膜する、第1炭化ケイ素多結晶膜成膜工程と、第1炭化ケイ素多結晶膜200の上に、第2炭化ケイ素多結晶膜300を、1200℃~1300℃、かつ、第1炭化ケイ素多結晶膜200の成膜温度よりも100℃~200℃低い温度で成膜する、第2炭化ケイ素多結晶膜成膜工程と、を含む。本発明者は、このような本実施形態の炭化ケイ素多結晶基板の製造方法により、製造された炭化ケイ素多結晶基板500の反りを低減することができることを見出すに至った。
次に、各工程について、第1炭化ケイ素多結晶膜成膜工程、第2炭化ケイ素多結晶膜成膜工程、支持基板100の除去工程の順に説明する。以下の説明は本実施形態の炭化ケイ素多結晶基板500の製造方法の一例であり、問題のない範囲で温度、圧力、ガス雰囲気等の各条件や、手順等を変更してもよい。また、以下においては、支持基板100の両面を成膜対象として第1炭化ケイ素多結晶膜200を成膜して炭化ケイ素多結晶基板500を製造する場合について説明する。なお、カーボン支持基板の片面を成膜対象として炭化ケイ素多結晶膜を成膜して炭化ケイ素多結晶基板を製造してもよい。成膜対象をカーボン支持基板の片面とするか、両面とするかは、炭化ケイ素多結晶基板の製造計画や蒸着炉の構造等の条件により適宜決定すればよい。
(第1炭化ケイ素多結晶膜成膜工程)
第1炭化ケイ素多結晶膜成膜工程は、化学的気相成長法によって支持基板100上に第1炭化ケイ素多結晶膜200を、1400℃~1500℃の温度で成膜する工程である。第1炭化ケイ素多結晶膜成膜工程は、例えば、図1に示した成膜装置1000を用いて行うことができる。
成膜装置1000は、化学的気相成長法によって、支持基板100に第1炭化ケイ素多結晶膜200を成膜するために用いることができる。成膜装置1000は、成膜装置1000の外装となる筐体1100と、支持基板100に第1炭化ケイ素多結晶膜200を成膜させる成膜室1010と、成膜室1010より排出された原料ガスやキャリアガスを後述のガス排出口1030へ導入する排出ガス導入室1040と、排出ガス導入室1040を覆うボックス1050と、ボックス1050の外部より成膜室1010内を加温する、カーボン製のヒーター1060と、成膜室1010の下部に設けられ、成膜室1010に原料ガスやキャリアガスを導入するガス導入口1020と、ガス排出口1030と、支持基板100を保持する基板ホルダー1070を有する。また、基板ホルダー1070は、2つの柱1071と、支持基板100を水平に載置する、柱1071に設けられた載置部1072を有する。
第1炭化ケイ素多結晶膜200の成膜時において、原料ガスやキャリアガス等は、成膜室1010に設けられたガス導入口1020から導入され、成膜室1010の下部から排出ガス導入室1040に排出され、さらに、ガス排出口1030から成膜装置1000の外部に排出される。
また、支持基板100の厚さや成膜対象面の大きさ等の形状は特に限定されず、所望の炭化ケイ素多結晶基板500に合わせたものを用いることができる。支持基板100としては、例えば、カーボン製の支持基板を用いることができる。
次に、成膜装置1000を用いて、化学的気相成長法により、支持基板100上に第1炭化ケイ素多結晶膜200を成膜させる手順を説明する。
支持基板100(図2(A))を載置部1072に載置し、減圧状態で、Ar等の不活性ガス雰囲気下で、成膜の反応温度まで、ヒーター1060により支持基板100を加熱する。成膜の反応温度まで達したら、不活性ガスの供給を止めて、温度を維持して、成膜室1010内に第1炭化ケイ素多結晶膜200の成分を含む原料ガスやキャリアガスを供給する。支持基板100の成膜対象面や気相での化学反応により、加熱した支持基板100の両面に第1炭化ケイ素多結晶膜200を成膜させることができる。その後、室温まで冷却することで、図2(B)に示すように、支持基板100に第1炭化ケイ素多結晶膜200が成膜された、積層体400Aが得られる。
原料ガスとしては、第1炭化ケイ素多結晶膜200を成膜させることができれば、特に限定されず、一般的に炭化ケイ素多結晶膜の成膜に使用されるSi系原料ガス、C系原料ガスを用いることができる。例えば、Si系原料ガスとしては、シラン(SiH)を用いることができるほか、モノクロロシラン(SiHCl)、ジクロロシラン(SiHCl)、トリクロロシラン(SiHCl)、テトラクロロシラン(SiCl)などのエッチング作用があるClを含む塩素系Si原料含有ガス(クロライド系原料)を用いることができる。C系原料ガスとしては、例えば、メタン(CH)、プロパン(C)、アセチレン(C)等の炭化水素を用いることができる。上記のほか、トリクロロメチルシラン(CHClSi)、トリクロロフェニルシラン(CClSi)、ジクロロメチルシラン(CHClSi)、ジクロロジメチルシラン((CHSiCl)、クロロトリメチルシラン((CHSiCl)等のSiとCとを両方含むガスも、原料ガスとして用いることができる。
また、キャリアガスとしては、炭化ケイ素多結晶膜の成膜を阻害することなく、原料ガスを支持基板100へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、熱伝導率に優れ、炭化ケイ素に対してエッチング作用があるHガスをキャリアガスとして用いることができる。また、これら原料ガスおよびキャリアガスと同時に、第3のガスとして、目標とする導電率に見合う量の、不純物ドーピングガスを同時に供給することもできる。例えば、炭化ケイ素多結晶基板500の導電型をn型とする場合には窒素(N)、p型とする場合にはトリメチルアルミニウム(TMA)を用いることができる。
第1炭化ケイ素多結晶膜200を成膜させる際には、上記のガスを適宜混合して供給することができる。また、上記のガスを混合せずに、個別に供給してもよい。また、所望の炭化ケイ素多結晶膜の性状に応じて、第1炭化ケイ素多結晶膜成膜工程の途中でガスの混合割合を変更してもよい。
また、本実施形態における、第1炭化ケイ素多結晶膜200の成膜温度は、1400℃~1500℃とする。また、第1炭化ケイ素多結晶膜200の厚さは、例えば、50μm~150μm程度とすることができる。
以上の第1炭化ケイ素多結晶膜成膜工程により、支持基板100と第1炭化ケイ素多結晶膜200の積層体400Aが得られる。積層体400Aは、第2炭化ケイ素多結晶膜成膜工程に供される。
(第2炭化ケイ素多結晶膜成膜工程)
次に、第2炭化ケイ素多結晶膜成膜工程を行う。第2炭化ケイ素多結晶膜成膜工程は、第1炭化ケイ素多結晶膜200の上に、第2炭化ケイ素多結晶膜300を、1200℃~1300℃、かつ、第1炭化ケイ素多結晶膜200の成膜温度よりも100℃~200℃低い温度で成膜する工程である。第2炭化ケイ素多結晶膜成膜工程は、例えば、図1に示した成膜装置1000を用いて、後述する降温工程を介して、第1炭化ケイ素多結晶膜成膜工程に連続して行うこともできるし、積層体400Aを室温程度まで冷却したのちに第2炭化ケイ素多結晶膜成膜工程に供してもよい。
第2炭化ケイ素多結晶膜成膜工程を第1炭化ケイ素多結晶膜成膜工程に連続して行う場合には、原料ガス、ドーピングガス、キャリアガスの供給を停止して、成膜室1010内の温度を第2炭化ケイ素多結晶膜300の成膜温度、すなわち、1200℃~1300℃、かつ、第1炭化ケイ素多結晶膜200の成膜温度よりも100℃~200℃低い温度まで降温させる(降温工程)。所定の温度になったら、温度を維持して、原料ガス、ドーピングガス、キャリアガスの供給を再開して、所定の厚さの第2炭化ケイ素多結晶膜300を形成させる。第2炭化ケイ素多結膜成膜工程の成膜条件は、温度条件以外は第1炭化ケイ素多結晶膜成膜工程と同様にしてもよいし、ガスの混合割合等の条件を変更してもよい。なお、降温工程において原料ガス等の供給を停止した際に、成膜室1010内のガス体積が収縮しない程度に、H等のキャリアガスやAr等の不活性ガスを供給することが好ましい。
第2炭化ケイ素多結晶膜成膜工程における成膜温度は、第1炭化ケイ素多結晶膜200と第2炭化ケイ素多結晶膜300における内部応力差を小さくするために、第1炭化ケイ素多結晶膜200の炭化ケイ素多結晶の結晶粒の大きさと第2炭化ケイ素多結晶膜300の炭化ケイ素多結晶の結晶粒の大きさの差が小さくなるように設定する。例えば、第1炭化ケイ素多結晶膜200の結晶粒の大きさと、第2炭化ケイ素多結晶膜300の成膜初期の結晶粒の大きさが同程度であり、第2炭化ケイ素多結晶膜300内において、厚さ方向に結晶粒の大きさの差が小さいことが好ましい。各工程の成膜温度の設定方法としては、例えば、予備試験を行って種々の温度条件で炭化ケイ素多結晶基板を製造して、得られた炭化ケイ素多結晶基板の断面を走査型電子顕微鏡(SEM)を用いて観察し、各膜の炭化ケイ素多結晶の結晶粒の大きさの分布を確認して、大きさの差が小さい温度条件を採用することができる。また、第2炭化ケイ素多結晶膜の厚さは、製造する炭化ケイ素多結晶基板500の厚さや第1炭化ケイ素多結晶膜200の厚さを考慮して適宜設定すればよく、例えば、300μm~800μm程度とすることができる。所定の厚さの第2炭化ケイ素多結晶膜300が形成されたのち、原料ガス等の供給を停止する。以上の第2炭化ケイ素多結晶膜成膜工程により、図2(C)の積層体400Bが得られる。積層体400Bは、室温程度まで冷却されたのちに、支持基板100の除去工程に供される。
(除去工程)
次に、第2炭化ケイ素多結晶膜成膜工程により得られた積層体400Bを、積層体400Bから支持基板100を除去する除去工程に供する。
支持基板100の除去工程は、積層体400Bから、支持基板100の除去を行い、炭化ケイ素多結晶基板500を得る工程である。まず、積層体400Bにおいて、支持基板100が露出していない場合には、支持基板100の外周端部に積層した炭化ケイ素多結晶膜(第1炭化ケイ素多結晶膜200および第2炭化ケイ素多結晶膜300)を、ダイヤ砥石等を用いて研削して、支持基板100の少なくとも一部を露出させる。支持基板100としてカーボン製の支持基板を用いた場合には、例えば、積層体400Bを数百度(例えば800℃~1000℃程度)に加熱して、支持基板100を燃焼させることにより除去することができる。燃焼による支持基板100の除去工程は、例えば、二珪化モリブデン製のヒーターを備える燃焼炉等を用いることができる。積層体400Bを燃焼炉内に保持して、燃焼炉内にOや空気等の酸化性ガスを供給しながら、常圧または減圧状態で、ヒーターにより燃焼炉内を加熱する。加熱により、支持基板100のみが燃焼して、図2(D)に示すように、炭化ケイ素多結晶基板500が得られる。なお、得られた炭化ケイ素多結晶基板500の反りをなくしたり、所望の厚さにしたりするために、必要に応じて、支持基板100を除去したのちに、さらに研削加工や研磨加工を行ってもよい。
以上の炭化ケイ素多結晶基板の製造方法により得られた炭化ケイ素多結晶基板500は、例えば、反り量が100μm以下である。よって、本実施形態の炭化ケイ素多結晶基板の製造方法により、反りの小さい炭化ケイ素多結晶基板500を得ることができる。
(結晶粒の大きさの分布)
次に、従来の炭化ケイ素多結晶基板の製造方法と本実施形態の炭化ケイ素多結晶基板の製造方法において、炭化ケイ素多結晶膜における炭化ケイ素多結晶の結晶粒の大きさの分布を比較して説明する。
従来の炭化ケイ素多結晶基板の製造方法は、図3(A)に示す支持基板100に所望の厚さの炭化ケイ素多結晶膜700を成膜して、積層体800(図3(B))を得たのち、支持基板100を除去して、炭化ケイ素多結晶基板700A(図3(C))を得て、例えば図3(C)の線Aの部分まで研削することにより、反りを低減した炭化ケイ素多結晶基板900(図3(D))を得るというものである。従来の炭化ケイ素多結晶基板の製造方法では、1400℃よりも低い温度で炭化ケイ素多結晶膜700を成膜することが多い。
ここで、従来の炭化ケイ素多結晶基板の製造方法で得られた積層体800(図3(B))においては、炭化ケイ素多結晶の結晶粒の分布は図4のようになる。すなわち、支持基板100に近いほど結晶粒が小さく(例えば平均粒径が10μm程度)、炭化ケイ素多結晶膜700の厚さが増すにしたがって炭化ケイ素多結晶の結晶粒が大きくなる(例えば平均粒径が50μm程度)。反りを低減した炭化ケイ素多結晶基板900を得るために必要な厚さの炭化ケイ素多結晶膜700を成膜すると、炭化ケイ素多結晶膜700内で厚さ方向における炭化ケイ素多結晶のサイズの差が大きくなって内部応力差が大きくなり、このような積層体800から支持基板100を除去して得られた炭化ケイ素多結晶基板700A(図3(C))は、支持基板100に接していた面から炭化ケイ素多結晶基板700Aの厚さ方向外方に向かって凸状に大きく反りが発生し得る。よって、例えば、炭化ケイ素単結晶基板との貼り合わせ基板を製造する用途に用いる際に、炭化ケイ素多結晶基板700Aに発生した反りの部分を研削、研磨して所定の平坦度、所定の厚さとして反りを低減した炭化ケイ素多結晶基板900(図3(D))に加工する手間が大きく、歩留まり、コスト、生産性が悪化するという課題があった。
一方、本実施形態の炭化ケイ素多結晶基板の製造方法は、化学的気相成長法によって支持基板100上に第1炭化ケイ素多結晶膜200を、1400℃~1500℃の温度で成膜する、第1炭化ケイ素多結晶膜成膜工程と、第1炭化ケイ素多結晶膜200の上に、第2炭化ケイ素多結晶膜300を、1200℃~1300℃、かつ、第1炭化ケイ素多結晶膜200の成膜温度よりも100℃~200℃低い温度で成膜する、第2炭化ケイ素多結晶膜成膜工程と、を含む。
第1炭化ケイ素多結晶膜200においては、図5に示すように、従来の炭化ケイ素多結晶基板の製造方法における炭化ケイ素多結晶膜の一般的な成膜温度より高いため、炭化ケイ素多結晶の結晶粒の大きさが大きくなりやすい(例えば平均粒径50μm程度)。従来の炭化ケイ素多結晶基板の製造方法のように、同じ温度で成膜を続けると、厚さが増すに従って形成される炭化ケイ素多結晶の結晶粒のサイズが大きくなる。そこで、本実施形態の炭化ケイ素多結晶基板の製造方法では、第2炭化ケイ素多結晶膜製造工程として、1200℃~1300℃、かつ、第1炭化ケイ素多結晶膜200の成膜温度よりも100℃~200℃低い温度で第2炭化ケイ素多結晶膜300を成膜する。これにより、第2炭化ケイ素多結晶膜300の成膜初期における炭化ケイ素多結晶の結晶粒の大きさは、成膜温度が低いものの、第1炭化ケイ素多結晶膜200の炭化ケイ素多結晶の結晶粒の大きさの影響を受けて大きくなる傾向にある(例えば平均粒径50μm程度)。また、図5に示すように、第2炭化ケイ素多結晶膜300の成膜温度が低いことから、第2炭化ケイ素多結晶膜300の厚さが増しても炭化ケイ素多結晶の結晶粒の大きさが大きくなりにくく、第1炭化ケイ素多結晶膜200の炭化ケイ素多結晶の結晶粒の大きさと、第2炭化ケイ素多結晶膜300成膜過程後期に形成された炭化ケイ素多結晶の結晶粒の大きさとの差が小さくなる。すなわち、本実施形態の炭化ケイ素多結晶基板の製造方法により得られた炭化ケイ素多結晶基板500においては、厚さ方向において炭化ケイ素多結晶の結晶粒の大きさの差が小さくなる。
以上のことから、本実施形態の炭化ケイ素多結晶基板の製造方法では、厚さ方向における炭化ケイ素多結晶の結晶粒のサイズの差が小さく、内部応力差が小さくなるため、支持基板100を除去した際に、炭化ケイ素多結晶基板500に大きな反りが発生することを抑制して、従来の製造方法よりも反りが小さい炭化ケイ素多結晶基板500を得ることができる。これにより、炭化ケイ素多結晶基板の加工製造における、所定の厚みおよび平坦度へ整えるための面研削や面研磨の加工などにおいて、炭化ケイ素多結晶基板の反りが大きいことに起因する厚さ、平坦度あるいは反りが悪化することなく、反りの小さな炭化ケイ素多結晶基板へ加工製造することが可能となる。また、製造された炭化ケイ素多結晶基板500の反りが小さいことで、炭化ケイ素多結晶基板として用いる厚さよりも大幅に厚い炭化ケイ素多結晶膜を成膜する必要がなくなり、炭化ケイ素多結晶基板としての反りをなくすための研削加工、研磨加工の負担や、材料の無駄を減らして、コストの削減、歩留まりや生産性を向上させることができる。
また、特に、本実施形態の炭化ケイ素多結晶基板の製造方法であれば、高導電率(例えば、0.1Ω・cm程度以上の)の炭化ケイ素多結晶基板を製造する場合であっても、炭化ケイ素中の窒素原子が表面より脱離し難い温度域(例えば2200℃より高い温度等の高温域)で加熱処理等せずに、高い導電率を損なうことなく炭化ケイ素多結晶基板の反りを低減できる。よって、本実施形態の製造方法で製造された炭化ケイ素多結晶基板を、横型に加えて、縦型のダイオード用炭化ケイ素基板として、デバイス製造工程に供することが可能となり、炭化ケイ素多結晶基板の反り量が小さいことで、フォトリソグラフィ工程におけるパターン形成不良や、イオン注入工程におけるイオン侵入深さの不均一などが少なくなり、歩留まりの向上が期待できる。
その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に説明されているが、本発明の技術的思想及び目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。
以下、本発明の実施例及び比較例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されることはない。
[炭化ケイ素多結晶基板の製造、および、炭化ケイ素多結晶基板の評価]
(実施例1)
前述した実施形態の成膜装置1000を用いて、炭化ケイ素多結晶膜の成膜を行った。まず、成膜装置1000の基板ホルダー1070に、直径6インチ、厚み500μmのカーボン支持基板を固定した。成膜室1010内へArガスを流入させながら排気ポンプにより炉内を減圧化した後、1400℃まで加熱し、1400℃に達した後Arガスの供給を停止した。原料ガスとして、SiCl、CHを用い、ドーピングガスとしてN、キャリアガスとしてHを用いた。第1炭化ケイ素多結晶膜成膜工程においては、これらのガスの混合比をSiCl:CH:H:N=1:1:10:20として、総流入量を22slm(standard L/min)として、1400℃で2時間の成膜を実施した。厚さが100μmの第1炭化ケイ素多結晶膜をカーボン支持基板の両面に成膜させて、カーボン支持基板と前記炭化ケイ素多結晶膜の積層体を得た。
次に、第2炭化ケイ素多結晶膜成膜工程を行った。第1炭化ケイ素多結晶膜を成膜したあと、原料ガス、ドーピングガスの供給を停止して、キャリアガスのみを供給しながら成膜室内を1200℃まで降温させたのち、温度を維持して、第1炭化ケイ素多結晶膜成膜工程と同じ条件でガスを供給して、厚さ400μmの第2炭化ケイ素多結晶膜の成膜を行った。以上により、カーボン支持基板と炭化ケイ素多結晶膜との積層体を得て、積層体を室温まで冷却したのちに支持基板の除去工程を行った。積層体の外周端部に積層した炭化ケイ素多結晶膜を、ダイヤ砥石を用いて研削して、カーボン支持基板の側面を全周に亘って露出させた。次に、二珪化モリブデン製のヒーターを備える燃焼炉を用いて、大気雰囲気下で温度1000℃、100時間加熱してカーボン支持基板を燃焼除去した。これにより、炭化ケイ素多結晶基板を得た。
次に、得られた炭化ケイ素多結晶基板の反り量を測定した。炭化ケイ素多結晶基板の成膜された面の中心線上を斜入射型光学測定器により測定し、得られた測定値の最大値と最小値との差を反り量とした。測定は5点とし、中心、円周端部、および中心と円周端部との間にあり、中心からの距離と円周端部からの距離が同じ地点について、測定した。反り量が、100μmより大きいとき、製造した炭化ケイ素多結晶基板について、デバイス等の製造工程で問題の生じ得る反りが有ると判定した。反り量の測定結果を、表1に示した。
(実施例2、実施例3、比較例1~比較例4)
第1炭化ケイ素多結晶膜成膜工程、第2炭化ケイ素達結晶膜成膜工程の温度を種々変更したこと以外は、実施例1と同様にして炭化ケイ素多結晶基板を製造した。第1炭化ケイ素多結晶膜工程の成膜温度は、実施例2、比較例1、比較例2は1400℃、実施例3、比較例3、比較例4は1500℃とした。第2炭化ケイ素多結晶膜工程の成膜温度は、実施例2、実施例3は1300℃、比較例1は1350℃、比較例2、比較例4は1100℃、比較例3は1400℃とした。得られた炭化ケイ素多結晶基板について、実施例1と同様に反り量の測定を行い、測定結果を表1に示した。
Figure 0007400337000001
[評価結果の考察]
以上の評価結果により、本発明の例示的態様である実施例1~実施例3において、比較例1~比較例4と比べて、製造された炭化ケイ素多結晶基板の反り量が小さく、反り量は60μm~80μmであった。比較例1、比較例2のように、第1炭化ケイ素多結晶膜成膜工程と第2炭化ケイ素多結晶膜成膜工程との温度差が小さいと、第1炭化ケイ素多結晶膜と第2炭化ケイ素多結晶膜における粒径の差が実施例ほど小さくならずに、反り量が大きくなると考えられた。また、比較例2、比較例4のように、第2炭化ケイ素多結晶膜成膜工程の温度を大きく下げると、第2炭化ケイ素多結晶膜内の炭化ケイ素多結晶の粒径が第1炭化ケイ素多結晶膜内の炭化ケイ素多結晶の粒径よりも小さくなり、粒径の差が生じて、反り量が大きくなると考えられた。以上の実施例、比較例の結果より、本発明の炭化ケイ素多結晶膜の製造方法により、大きな反りが発生することを抑制して、反りの小さい炭化ケイ素多結晶基板を製造することができることが示された。
100 支持基板
200 第1炭化ケイ素多結晶膜
300 第2炭化ケイ素多結晶膜
400A、400B 積層体
500 炭化ケイ素多結晶基板

Claims (1)

  1. 化学的気相成長法によって支持基板上に第1炭化ケイ素多結晶膜を、1400℃~1500℃の温度で成膜する、第1炭化ケイ素多結晶膜成膜工程と、
    前記第1炭化ケイ素多結晶膜の上に、第2炭化ケイ素多結晶膜を、1200℃~1300℃、かつ、前記第1炭化ケイ素多結晶膜の成膜温度よりも100℃~200℃低い温度で成膜する、第2炭化ケイ素多結晶膜成膜工程と、を含
    前記成膜温度は、成膜装置によって前記第1炭化ケイ素多結晶膜および前記第2炭化ケイ素多結晶膜の成膜を行う際の前記成膜装置の成膜室内の温度である、炭化ケイ素多結晶基板の製造方法。
JP2019192013A 2019-10-21 2019-10-21 炭化ケイ素多結晶基板の製造方法 Active JP7400337B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192013A JP7400337B2 (ja) 2019-10-21 2019-10-21 炭化ケイ素多結晶基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192013A JP7400337B2 (ja) 2019-10-21 2019-10-21 炭化ケイ素多結晶基板の製造方法

Publications (2)

Publication Number Publication Date
JP2021066624A JP2021066624A (ja) 2021-04-30
JP7400337B2 true JP7400337B2 (ja) 2023-12-19

Family

ID=75636629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192013A Active JP7400337B2 (ja) 2019-10-21 2019-10-21 炭化ケイ素多結晶基板の製造方法

Country Status (1)

Country Link
JP (1) JP7400337B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075699B (zh) * 2021-11-21 2024-04-12 苏州晶瓴半导体有限公司 一种双层复合碳化硅衬底及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034867A (ja) 2001-07-27 2003-02-07 Tokai Carbon Co Ltd 管状SiC成形体およびその製造方法
JP2012136376A (ja) 2010-12-24 2012-07-19 Toyo Tanso Kk 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
WO2017047509A1 (ja) 2015-09-15 2017-03-23 信越化学工業株式会社 SiC複合基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295546A (ja) * 1992-04-20 1993-11-09 Sumitomo Metal Ind Ltd セラミック膜複合材の製造方法
JPH10167861A (ja) * 1996-12-16 1998-06-23 Tokai Carbon Co Ltd 炭素繊維強化炭素材の耐酸化処理方法
JP3844273B2 (ja) * 1998-04-16 2006-11-08 東海カーボン株式会社 耐酸化性c/c複合材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034867A (ja) 2001-07-27 2003-02-07 Tokai Carbon Co Ltd 管状SiC成形体およびその製造方法
JP2012136376A (ja) 2010-12-24 2012-07-19 Toyo Tanso Kk 単結晶炭化ケイ素液相エピタキシャル成長用ユニット及び単結晶炭化ケイ素の液相エピタキシャル成長方法
WO2017047509A1 (ja) 2015-09-15 2017-03-23 信越化学工業株式会社 SiC複合基板の製造方法

Also Published As

Publication number Publication date
JP2021066624A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
TWI725910B (zh) 晶圓、磊晶晶圓以及其製造方法
JP7400337B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7163756B2 (ja) 積層体、積層体の製造方法および炭化珪素多結晶基板の製造方法
JP7255473B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7273267B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7294021B2 (ja) 黒鉛製支持基板の表面処理方法、炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP7322408B2 (ja) 炭化珪素多結晶基板、炭化珪素多結晶膜の製造方法および炭化珪素多結晶基板の製造方法
JP7220844B2 (ja) SiC多結晶基板の製造方法
JP7220845B2 (ja) サセプタ、サセプタの再生方法、及び、成膜方法
JP2017017084A (ja) 炭化珪素エピタキシャル基板の製造方法およびエピタキシャル成長装置
JP2022067844A (ja) 炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP7247819B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7413768B2 (ja) 多結晶基板の製造方法
WO2020158657A1 (ja) 成膜装置及び成膜方法
JP7338193B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7367541B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP7367497B2 (ja) 炭化ケイ素多結晶膜の成膜方法、および、炭化ケイ素多結晶基板の製造方法
JP7247749B2 (ja) 炭化ケイ素多結晶膜の成膜方法、サセプタ、及び、成膜装置
JP7371510B2 (ja) 成膜方法および基板の製造方法
JP2022067842A (ja) 炭化珪素多結晶膜の成膜方法および炭化珪素多結晶基板の製造方法
JP7392526B2 (ja) 炭化ケイ素単結晶基板の製造方法
JP7375580B2 (ja) 成膜用支持基板、および、多結晶基板の製造方法
JP7279465B2 (ja) 支持基板、支持基板の保持方法、及び、成膜方法
JP2021070609A (ja) 炭化ケイ素多結晶基板の製造方法
JP2018160516A (ja) 半導体装置の製造方法、基板処理装置およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150