JP7383956B2 - 慣性計測装置 - Google Patents

慣性計測装置 Download PDF

Info

Publication number
JP7383956B2
JP7383956B2 JP2019178184A JP2019178184A JP7383956B2 JP 7383956 B2 JP7383956 B2 JP 7383956B2 JP 2019178184 A JP2019178184 A JP 2019178184A JP 2019178184 A JP2019178184 A JP 2019178184A JP 7383956 B2 JP7383956 B2 JP 7383956B2
Authority
JP
Japan
Prior art keywords
measurement device
inertial measurement
sensor
inertial
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019178184A
Other languages
English (en)
Other versions
JP2021056054A (ja
Inventor
健太 佐藤
泰史 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019178184A priority Critical patent/JP7383956B2/ja
Priority to CN202011034961.6A priority patent/CN112577486A/zh
Priority to US17/034,287 priority patent/US11391570B2/en
Publication of JP2021056054A publication Critical patent/JP2021056054A/ja
Priority to JP2023189934A priority patent/JP2024010180A/ja
Application granted granted Critical
Publication of JP7383956B2 publication Critical patent/JP7383956B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5783Mountings or housings not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/161Indexing scheme relating to constructional details of the monitor
    • G06F2200/1614Image rotation following screen orientation, e.g. switching from landscape to portrait mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Automation & Control Theory (AREA)
  • Gyroscopes (AREA)
  • Indicating Measured Values (AREA)

Description

本発明は、慣性計測装置等に関する。
近年、製造装置や計測装置などの精密化が進み、生産工程の効率化や歩留向上のために振動計測を行う重要性が増しているため、装置の振動計測や環境振動計測の簡素化が望まれている。例えば特許文献1には、振動検出ユニットが、振動センサーを用いて振動を検出し、検出により得られた振動データを無線により送信し、振動モニターが、送信された振動データを受信して、表示部に表示する振動監視装置が開示されている。この振動監視装置によれば、装置の振動や環境振動を振動検出ユニットにより検出し、検出された振動データを、振動検出ユニットとは別体に設けられた振動モニターの表示部に表示できるようになる。
特開2016-205868号公報
加速度センサーや角速度センサーなどの慣性センサーを有する慣性計測装置を用いれば、上述のような装置の状態監視や環境状態の監視などを実現できる。しかしながら、慣性計測装置の計測結果を、特許文献1のように慣性計測装置とは別体に設けられた表示部に表示する手法では、ユーザーは、慣性計測装置とは別体に設けられた表示部を見ることで計測結果を確認する必要があり、ユーザーの確認作業が繁雑になってしまう。また慣性センサーの検出情報に基づき表示部に表示したい情報の内容は、慣性計測装置を使用するユーザーに応じて様々であり、表示情報の表示態様についての多様な要望に応える必要がある。
本開示の一態様は、少なくとも1つの慣性センサーを有するセンサーユニットと、前記慣性センサーの検出情報に基づく表示を行う表示部と、モード切り替えスイッチと、を含み、前記モード切り替えスイッチによって前記表示部の表示モードが切り替わる慣性計測装置に関係する。
本実施形態の慣性計測装置の構成例を示す斜視図。 本実施形態の慣性計測装置の他の構成例を示す斜視図。 慣性計測装置の分解斜視図。 慣性計測装置の側面図。 慣性計測装置の底面図。 保護板の平面図。 保護板の平面図。 表示部の平面図。 モード切り替えスイッチ、リセットスイッチ、計測開始スイッチの説明図。 表示モードの切り替えの説明図。 表示モードの切り替えの説明図。 無線通信部、アンテナ部の説明図。 センサー側のコネクターと基板側のコネクターの接続の説明図。 慣性計測装置の動作を説明する状態遷移図。 センサーユニットの第1構成例の分解斜視図。 センサーユニットの第2構成例の分解斜視図。 第2構成例のセンサー基板の平面図。
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲の記載内容を不当に限定するものではない。また本実施形態で説明される構成の全てが必須構成要件であるとは限らない。
1.慣性計測装置
図1は本実施形態の慣性計測装置10の構成例を示す斜視図である。IMU(Inertial Measurement Unit)である慣性計測装置10は、センサーユニット20を含む。また慣性計測装置10は、固定部材11、12、13、基板40、ベース150、保護板160を含むことができる。図1では慣性計測装置10から慣性計測装置10の取り付け面2に向かう方向を方向DR1とし、DR1に直交する方向を方向DR2としている。方向DR1は取り付け面2に直交する方向であり、例えばセンサーユニット20の主面に直交する方向である。主面はセンサーユニット20の上面又は底面であり、例えば側面に直交する面である。方向DR3は方向DR1及び方向DR2に直交する方向であり、方向DR4、DR5、DR6は、各々、方向DR1、DR2、DR3の反対方向である。方向DR1、DR2、DR3、DR4、DR5、DR6は、各々、第1方向、第2方向、第3方向、第4方向、第5方向、第6方向である。
センサーユニット20は、少なくとも1つの慣性センサーを含む。慣性センサーは、物理量情報を検出する物理量センサーである。具体的には図15、図16、図17で後述するように、センサーユニット20は、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーを含む。或いはセンサーユニット20は、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーと、少なくとも1つの角速度センサーを含む。角速度センサーは例えばジャイロセンサーである。なお慣性センサーは、加速度センサーや角速度センサーには限定されず、何らかの検出手法により慣性に関する情報を検出できるセンサーであればよく、加速度や角速度と等価な物理量を検出できる物理量センサーであってもよい。例えば速度や角加速度などの物理量を検出できる物理量センサーであってもよい。またセンサーユニット20はケース24を含む。例えばセンサーユニット20は、後述の図15~図17に示すように、少なくとも1つの慣性センサーが設けられるセンサー基板210と、センサー基板210を収容するケース24を含む。ケース24は、金属等の導電部材で形成されており、その内部の収容空間にセンサー基板210が設けられる。
基板40には、処理部50及び表示部60の少なくとも一方が設けられる。図1では処理部50及び表示部60の両方が基板40に設けられている。なお例えば処理部50だけを基板40に設けたり、表示部60だけを基板40に設けてもよい。基板40は、回路基板であり、例えば金属配線が形成されるプリント基板である。基板40は例えばリジッド基板である。
処理部50は、センサーユニット20の慣性センサーの検出情報に基づく処理を行う。処理部50は、処理回路であり、例えばMPU、CPUなどのプロセッサーにより実現できる。或いは処理部50は、ゲートアレイなどの自動配置配線によるASIC(Application Specific Integrated Circuit)により実現してもよい。例えば処理部50は、後述するようにコネクター等を介してセンサーユニット20の慣性センサーと電気的に接続されており、コネクター等を介して慣性センサーの検出情報が処理部50に入力される。検出情報は例えば加速度情報、角速度情報又はこれらの情報に基づく情報である。そして処理部50は、慣性センサーの検出情報に基づいて、種々の処理を行う。例えば処理部50は検出情報の加工処理を行う。例えば処理部50は、表示部60や後述の図2の表示部70の表示情報として適切な情報になるように検出情報の加工処理を行う。また処理部50は、検出情報の解析処理を行う。例えば処理部50は、慣性センサーからの検出情報に基づいて、計測対象の振動、傾き又は姿勢等の解析処理を行う。例えば処理部50は、解析処理として、FFT解析(Fast Fourier Transform Analysis)を行い、振動情報等の周波数成分を解析する。
図1の表示部60や図2の表示部70は、センサーユニット20の慣性センサーの検出情報に基づく表示を行う。例えば慣性計測装置10が、処理部50と表示部60、70を有する場合には、処理部50が慣性センサーの検出情報に基づく処理を行い、表示部60、70は、処理部50の処理結果に基づく表示を行う。例えば処理部50による検出情報の処理結果に基づく表示情報が、表示部60、70に表示される。例えば処理部50が検出情報の加工処理を行った場合には、表示部60、70は、加工処理後の検出情報に対応する表示情報を表示する。また処理部50が検出情報の解析処理を行った場合には、表示部60、70は、解析結果に対応する表示情報を表示する。例えば図1では、表示器である表示部60は、発光素子群62、64を有する。発光素子群62、64の発光素子は、電気信号を光信号に変換する素子であり、例えば発光ダイオード(LED)などの半導体素子により実現できる。或いは発光素子は半導体素子以外の素子により実現されるものであってもよい。また図2では、表示モジュールである表示部70は、表示パネル72を有している。表示パネル72は例えば有機ELパネル又は液晶パネルなどである。
また基板40には、モード切り替えスイッチ80、リセットスイッチ82、計測開始スイッチ84が設けられている。また基板40には、無線通信部90やアンテナ部92が設けられている。これらのスイッチや無線通信部90等の詳細については後述する。
また基板40には、インターフェース部100が設けられている。インターフェース部100は、外部との間で有線で通信するものである。例えば、インターフェース部100により、UART(Universal Asynchronous Receiver/Transmitter)、GPIO(General-Purpose Input/Output)、或いはSPI(Serial Peripheral Interface)などの通信インターフェースが実現される。UARTは調歩同期式のシリアル通信インターフェースである。GPIOは、実行時にユーザーによってその動作が制御可能な汎用の通信インターフェースである。SPIはシリアルクロック信号線、シリアルデータ信号線などの3本又は4本の信号線で通信するインターフェースである。また基板40には、J-TAGなどの通信インターフェースを実現するインターフェース部101も設けられている。
また基板40には、メモリー102、103、104が設けられている。メモリー102は、例えば不揮発性メモリーであり、例えばデータの電気的な消去が可能なEEPROM(Electrically Erasable Programmable Read-Only Memory)や、FAMOS(Floating gate Avalanche injection MOS)などを用いたOTP(One Time Programmable)のメモリーなどにより実現される。メモリー103、104は、例えばデータを一時的に記憶するSRAMである。また基板40には、電源インターフェース106が設けられており、電源インターフェース106を介して外部電源が慣性計測装置10に供給される。
また慣性計測装置10は、ベース150を含む。ベース150は、慣性計測装置10を取り付け面2に取り付けるための部材である。例えばセンサーユニット20は、ベース150と基板40との間に設けられ、ベース150は、少なくとも1つの固定部材である固定部材11、12、13によりセンサーユニット20に固定される。例えばベース150は、センサーユニット20と取り付け面2との間に設けられており、取り付け面2は、例えば製造装置や計測装置などの装置の面や、装置が設置される床面などである。ベース150は、取り付け面2側の面である底面に窪み部154を有する。このような窪み部154を設けることで、慣性計測装置10を両面テープにより取り付け面2に取り付けるような使用態様の場合に、当該両面テープを剥がす作業を容易化できる。そしてベース150の上面に接するようにセンサーユニット20が設けられる。
保護板160は、基板40の保護用の部材である。基板40は、センサーユニット20と保護板160との間に設けられており、これにより、基板40に実装される処理部50、表示部60、無線通信部90等の部品を、保護板160を用いて保護できるようになる。第1保護板である保護板160は、例えば透明又は半透明の板状の部材であり、例えばアクリル等の樹脂板により実現できる。なお保護板160は、アクリル以外の材質により実現されるものであってもよく、例えばABSやPETによる樹脂板であってもよく、樹脂以外の材質により実現されるものであってもよい。
また慣性計測装置10は、センサーユニット20と基板40とを着脱可能に固定する少なくとも固定部材を含む。具体的には図1では慣性計測装置10は、少なくとも1つの固定部材として、固定部材11、12、13を含む。なお図1では3つの固定部材11、12、13が設けられているが、固定部材の個数は2個以下であってもよいし、4個以上であってもよい。そして図1では、固定部材11、12、13として柱状部材が設けられている。即ち固定部材11、12、13は方向DR1を長辺方向とする柱状部材であり、後述するように柱状部材は、センサーユニット20、基板40等の穴部を貫通するように設けられる。
図2に慣性計測装置10の他の構成例を示す。図2では図1の構成に加えて、基板48が更に設けられている。そして基板48には、表示パネル72を有する表示部70が設けられる。有機ELパネル又は液晶パネルである表示パネル72は、センサーユニット20の検出情報に基づく表示を行う。例えば第1基板である基板40に設けられた処理部50が、センサーユニット20の慣性センサーの検出情報に基づいて、装置や床面等の計測対象の振動等の解析処理を行う。そして第2基板である基板48に設けられた表示部70が、解析処理の結果情報を表示する。例えば表示部70は、計測対象の振動のFFT等の解析の結果情報を表示する。例えば振動のピーク周波数やピーク値についての情報を表示する。
また図2では、保護板160に加えて、保護板170が更に設けられている。保護板170は例えば基板48用の保護部材である。例えば基板48は保護板160と保護板170との間に設けられており、これにより、基板48に実装される表示部70等を、保護板170を用いて保護できるようになる。第2保護板である保護板170は、例えば透明又は半透明の板状の部材であり、例えばアクリル等の樹脂板により実現できる。なお第2保護板である保護板170は、第1保護板である保護板160と同様に、アクリル以外の材質により実現してもよいし、樹脂以外の材質により実現してもよい。このように図2では基板48は、保護板160と保護板170との間に設けられ、基板40は、センサーユニット20と保護板160との間に設けられる。
また保護板170には窓部174が設けられており、この窓部174の位置に、基板48に実装された表示部70が配置される。これによりユーザーは、表示部70に表示される情報を窓部174を介して見ることが可能になる。
図3は慣性計測装置10の分解斜視図である。図3に示すようにセンサーユニット20には複数の穴部21、22、23が設けられており、基板40にも複数の穴部41、42、43が設けられている。そして柱状部材である固定部材11、12、13が、基板40に設けられる複数の穴部41、42、43、及び、センサーユニット20に設けられる複数の穴部21、22、23に嵌合することで、センサーユニット20と基板40とが着脱可能に固定される。具体的には固定部材11、12、13は、基板40の穴部41、42、43、及び、センサーユニット20の穴部21、22、23を貫通するように設けられる。またベース150にも穴部151、152、153が設けられており、ベース150は、柱状部材である固定部材11、12、13が、ベース150に設けられる穴部151、152、153に嵌合することで、センサーユニット20に固定される。また保護板160にも複数の穴部161、162、163が設けられ、保護板170にも複数の穴部171、172、173が設けられる。そして固定部材11、12、13が穴部161、162、163、穴部171、172、173に嵌合することで、保護板160、170が着脱可能に固定される。
例えば柱状部材である固定部材11、12、13はネジ部材である。即ち固定部材11、12、13は、外周にネジが切られているオネジである。そしてベース150の穴部151、152、153の内周にもネジが切られており、メネジとなっている。これによりネジ部材である固定部材11、12、13の先端部を、ベース150の穴部151、152、153にネジ止めできるようになり、ベース150に対するセンサーユニット20、基板40、保護板160、170等の固定が可能になる。なおセンサーユニット20の穴部21、22、23や、保護板160の穴部161、162、163や、保護板170の穴部171、172、173の内周ではネジは切られていないが、これらの穴部にもネジを切る変形実施も可能である。
また図3に示すように、基板40の穴部41、42、43に対応する位置にはスペーサー14、15、16が設けられる。また保護板160の穴部161、162、163に対応する位置にはスペーサー17、18、19が設けられる。そして固定時において固定部材11、12、13は、これらのスペーサー14、15、16、17、18、19の穴部を貫通する。このようなスペーサー14、15、16、17、18、19を設けることで、基板40と保護板160との間や、保護板160と保護板170との間に隙間を設けることが可能になる。
なおスペーサー14、15、16、17、18、19の穴部の内周にネジを切ってメネジになるようにする変形実施も可能である。また図3に示すように基板48は、支持部44を用いて基板40に支持されて取り付け可能になっている。そして保護板160には、スリット穴164が設けられ、支持部44がスリット穴164を貫通するように取り付けることで、基板40と基板48の間に、保護板160が配置されるようになる。
図4は慣性計測装置10の側面図であり、図5は底面図である。図4に示すように、ベース150と基板40との間にセンサーユニット20が設けられる。またセンサーユニット20と保護板160との間に基板40が設けられ、保護板160と保護板170との間に基板48が設けられる。そして図3で説明したように、これらのベース150、センサーユニット20、基板40、保護板160、基板48、保護板170の各部材に設けられた穴部に嵌合するように柱状部材である固定部材11、12、13が設けられることで、これらの部材を着脱可能に固定できるようになる。
また図4、図5に示すようにベース150は、取り付け面2側である底面に固定部156、157を有する。固定部156、157は磁石である。即ち磁性体である。固定部156、157は、ベース150の底面に例えばネジにより取り付けられている。これにより固定部156、157をベース150に着脱自在に取り付けることができる。この固定部156、157は例えば立方体形状になっており、固定部156、157の底面が取り付け面2に接地する。このような磁石である固定部156、157をベース150の底面に設けることで、例えば装置の金属面等に対して慣性計測装置10を磁石の磁力により容易に取り付けることが可能になる。
図6は保護板160の平面図である。図6に示すように保護板160には、柱状部材である固定部材11、12、13が貫通するための穴部161、162、163が設けられている。また基板48を支持するための支持部44が貫通するためのスリット穴164が設けられている。図6では保護板160は透明な板状部材になっている。
図7は保護板170の平面図である。図7に示すように保護板170には、固定部材11、12、13が貫通するための穴部171、172、173が設けられている。図3に示すように、これらの穴部171、172、173の上方に、ネジ部材である固定部材11、12、13のネジ頭が位置するようになる。また保護板170には、下方の表示部70をユーザーが見ることができるように、窓部174が設けられている。また保護板170には、下方の表示部60の発光素子群62、64をユーザーが見ることができるように、窓部175、176が設けられている。図7では保護板170は、例えば青などの所定色に着色された半透明の板状部材になっている。また保護板170には、後述するスイッチの機能の説明用の文字や、発光素子群62、64の表示情報の内容を知らせるための文字が描かれている。
図8は表示部70の平面図である。表示部70は表示パネル72を有している。そして表示パネル72の駆動信号を伝達するための信号線が、下方の基板40から支持部44及び基板48を介して表示部70の接続端子に電気的に接続される。この接続端子は例えば図8の紙面において表示パネル72の右側に設けられる。
以上のように本実施形態の慣性計測装置10は、少なくとも1つの慣性センサーを有するセンサーユニット20と、慣性センサーの検出情報に基づく処理を行う処理部50及び検出情報に基づく表示を行う表示部60の少なくとも一方が設けられる基板40と、センサーユニット20と基板40とを着脱可能に固定する少なくとも1つの固定部材11、12、13を含む。
このような本実施形態の慣性計測装置10によれば、センサーユニット20の慣性センサーの検出状態に基づく処理を、基板40に設けられた処理部50により実行したり、或いは当該検出情報に基づく表示を、基板40に設けられた表示部60により行うことが可能になる。なお図1では発光素子群62、64を有する表示部60を基板40に設けているが、図2のように表示パネル72を有する表示部70を基板40に設けてもよい。
そして本実施形態では、センサーユニット20と基板40とが、図3に示すように固定部材11、12、13を用いて着脱可能に固定される。例えばセンサーユニット20と基板40とが着脱自在に固定される。これにより、例えば慣性計測装置10に組み込むセンサーユニット20の種類や基板40の種類を自在に変更できるようになる。例えば加速度センサーを有するセンサーユニット20を慣性計測装置10に組み込んだり、加速度センサー及び角速度センサーの両方を有するセンサーユニット20を慣性計測装置10に組み込むことなどが可能になる。或いは、処理部50だけが設けられた基板40を慣性計測装置10に組み込んだり、表示部60だけが設けられた基板40を組み込んだり、処理部50及び表示部60の両方が設けられた基板40を組み込むことなどが可能になる。これにより慣性計測装置10を使用する様々なユーザーの要望に応えることができ、慣性計測装置10の拡張性を向上できる。また慣性計測装置10は、センサーユニット20と基板40とが固定部材11、12、13によりしっかりと固定された状態で取り付け面2に取り付け可能になる。従って、共振等に起因する望ましくない振動等が慣性計測装置10に伝わって、慣性計測装置10の計測に悪影響を及ぼしてしまう事態も抑制できる。この結果、計測精度の劣化を抑制しながら、拡張性を向上できる慣性計測装置10の提供が可能になる。
例えば、これまでは、センサーユニット20自体を慣性計測装置10として用いており、センサーユニット20の慣性センサーの検出情報を、後述する図15~図17のコネクター26から出力していた。例えば慣性センサーが検出した加速度情報や角速度情報を検出情報としてそのまま出力していた。しかしながら、慣性センサーの検出情報は、その扱いが難しく、専門の知識等が必要になるため、ユーザーにとっての利便性が欠けるという課題があった。この場合に、センサーユニット20のコネクター26にPC(パーソナルコンピューター)を接続し、PCを使用して検出情報の解析処理等の各種処理を行ったり、解析結果を表示部に表示する手法も考えられる。しかしながら、この手法では、センサーユニット20にPCを接続して各種の作業を行う必要があるため、作業が煩雑化したり、計測システムが大規模化してしまうという問題がある。
これに対して本実施形態では、センサーユニット20と基板40とが固定部材11、12、13により固定されることで慣性計測装置10が構成されている。従って、基板40に設けられた処理部50を用いて、センサーユニット20の慣性センサーの検出情報の解析処理等の処理を行ったり、基板40に設けられた表示部60を用いて、当該検出情報に基づく表示を行うことが可能になる。例えば慣性計測装置10にPCを接続して検出情報に基づく処理を行ったり、検出情報に基づく表示を行わなくても済むようになるため、ユーザーの利便性を向上できる。即ち、慣性計測装置10を、計測対象に取り付けるだけで、検出情報に基づく処理を行ったり、検出情報に基づく表示を行うことが可能になる。例えば計測対象が、製造装置や計測装置などの装置や、当該装置が設置される床面である場合には、装置の面や床面である取り付け面2に慣性計測装置10を取り付ける。そして装置や床面の振動を解析する処理を処理部50により実行して、処理結果の情報を無線通信部90やインターフェース部100を介して外部に出力したり、解析結果を表示部60に表示することが可能になる。従って、可搬性が良く、低コストで、小規模なシステムで、計測対象の状態監視を行うことが可能になる。
また例えば加速度情報のみを必要とするユーザーに対しては、慣性センサーとして加速度センサーが設けられたセンサーユニット20と、基板40とが、固定部材11、12、13により固定された慣性計測装置10を提供する。また加速度情報及び角速度情報の両方を必要とするユーザーに対しては、慣性センサーとして加速度センサー及び角速度センサーが設けられたセンサーユニット20と、基板40とが、固定部材11、12、13により固定された慣性計測装置10を提供する。また表示パネル72を有する表示部70を望むユーザーに対しては、図2に示すように、センサーユニット20と、基板40と、表示部70が設けられた基板48とが、固定部材11、12、13により固定された慣性計測装置10を提供する。このようにすれば、ユーザーの各種の要望に合わせた慣性計測装置10を提供できるようになり、慣性計測装置10の拡張性を増すことができる。またセンサーユニット20と基板40とが固定部材11、12、13によりしっかりと固定された慣性計測装置10を提供できるため、共振等の望ましくない振動等が原因で、慣性計測装置10の計測結果の精度が劣化してしまう事態も抑制できるという利点がある。
なお図1、図2では、処理部50及び表示部60の両方が基板40に設けられているが、基板40には、処理部50及び表示部60の少なくとも一方が設けられていればよい。例えば基板40に処理部50を設けない場合には、例えばセンサーユニット20に設けられる後述の処理部212を用いて、検出情報に基づく処理を行えばよい。或いは基板40の上方の基板48に処理部50を設けてもよい。また基板40に表示部60を設けずに、基板48に表示部60を設けてもよい。或いは慣性計測装置10の表示部として、発光素子を用いた表示部60を設けないようにしてもよい。また表示パネル72を有する表示部70を、基板40に設けるようにしてもよい。
また本実施形態では図3に示すように、慣性計測装置10が、固定部材11、12、13として、複数の柱状部材を含む。そして複数の柱状部材である固定部材11、12、13が、基板40に設けられる複数の穴部41、42、43、及びセンサーユニット20に設けられる複数の穴部21、22、23に嵌合することで、センサーユニット20と基板40とが着脱可能に固定される。このようにすれば、各種の組み合わせのセンサーユニット20と基板40とを自在に取り付けたり、取り外したりすることが可能になり、センサーユニット20と基板40の着脱可能な固定を実現できる。例えばセンサーユニット20を異なる種類のセンサーユニットに差し替えて、その穴部21、22、23に固定部材11、12、13を挿入することで、センサーユニット20の種類の取り替えが可能になる。また基板40を異なる種類の基板に差し替えて、その穴部41、42、43に固定部材11、12、13を挿入することで、基板40の種類の取り替えが可能になる。従って、様々な種類のセンサーユニット20、基板40をオプション部品としてユーザーに提供できるようになり、慣性計測装置10の拡張性を大幅に向上できる。
また複数の柱状部材である固定部材11、12、13は例えばネジ部材となっている。例えば外周にネジが切られたオネジになっている。このように固定部材11、12、13としてネジ部材を用いれば、ネジ部材を用いたネジによる固定が可能になるため、センサーユニット20、基板40等をしっかりと安定して固定できるようになる。これにより、共振等による望ましくない振動等が原因で、慣性計測装置10の計測結果の精度が劣化してしまう事態を更に抑制できる。またセンサーユニット20、基板40等の取り付け作業も容易になり、作業の効率化等を図れるようになる。
また慣性計測装置10は、慣性計測装置10を取り付け面2に取り付けるためのベース150を含む。そしてセンサーユニット20は、ベース150と基板40との間に設けられ、ベース150は、少なくとも1つの固定部材11、12、13によりセンサーユニット20に固定される。例えばベース150は、取り付け面2に取り付けるための基台となる部材であり、ベース150の底面等が取り付け面2に接地することで、慣性計測装置10が取り付け面2に取り付けられる。取り付け面2は、例えば製造装置、計測装置等の装置の面や、これらの装置が設置される床面などであり、計測対象の面である。そしてセンサーユニット20は、基板40とベース150とに挟まれるように固定部材11、12、13により固定される。このような固定により、共振等による振動等が原因でセンサーユニット20の慣性センサーの検出精度が劣化してしまう事態を抑制できる。また例えばセンサーユニット20の底面が、取り付け面2に取り付けるのに好ましくない形状である場合にも、センサーユニット20の底面の代わりにベース150の底面が取り付け面2に取り付けられることで、慣性計測装置10の安定した取り付けが可能になる。例えばセンサーユニット20の形状や種類に依存しない安定した取り付けが可能になり、取り付けのガタによる誤検出等を防止できる。
また図4、図5に示すように、ベース150は、取り付け面2側の面に、磁石である固定部156、157を有する。即ちベース150の底面に、慣性計測装置10を取り付け面2に固定するための固定部156、157が設けられており、これらの固定部156、157が磁石になっている。例えば固定部156、157は、立方体形状の磁石となっている。このようにすれば、固定部156、157の底面が、取り付け面2である装置の金属面等に、磁石の磁力により吸着するようになる。従って、固定部156、157の底面を取り付け面2に接触させるだけで、慣性計測装置10が取り付け面2に磁石により固定されて設置されるようになり、ユーザーの取り付け作業が容易になり、作業効率を向上できる。
なお図4、図5では固定部156、157の個数が2個である場合の例であるが、固定部の個数はこれに限定されず、例えば3個以上であってもよい。またベース150自体又はベース150の一部を磁石にしてもよい。
また図4、図5に示すようにベース150は、取り付け面2側の面に窪み部154を有する。即ちベース150の取り付け面2側の面である底面には、方向DR1の逆方向である方向DR4側に窪んでいる窪み部154を有する。このような窪み部154を設けることで、慣性計測装置10を両面テープにより取り付け面2に取り付けるような使用態様の場合に、当該両面テープを剥がす作業を容易化できる。即ち本実施形態では、固定部156、157を用いずに、両面テープを用いて慣性計測装置10を取り付け面2に設置できるようになっている。具体的には、ベース150の底面に両面テープの一方の面を接着し、両面テープの他方の面を取り付け面2に接着させる。こうすることで、簡素な作業で慣性計測装置10を取り付け面2に設置することができ、例えば取り付け面2が金属面ではない場合にも設置可能になる。この場合に、計測が終了して、慣性計測装置10を取り付け面2から取り外した後、ベース150の底面から両面テープを剥がす作業が必要になる。この点、ベース150の底面に窪み部154を設ければ、作業者であるユーザーがこの窪み部154に指等を挿入することで、ベース150の底面から両面テープを容易に剥がすことが可能になる。なお慣性計測装置10は、磁石や両面テープのみならず、ネジによっても取り付け可能になっている。
また図1、図2に示すように、基板40には、慣性センサーの検出情報に基づく情報を無線により送信する無線通信部90が設けられている。例えば無線通信部90である無線通信ICが基板40に設けられる。そして、慣性センサーの検出情報に基づく情報が、無線通信部90により外部に送信される。例えば処理部50が、慣性センサーの検出情報に基づく解析処理等の処理を行った場合に、この処理結果の情報が無線通信部90により外部に送信される。或いは慣性センサーの検出情報自体を無線通信部90により外部に送信してもよい。このようにすれば、例えば慣性計測装置10と外部装置とを有線で接続しなくても、慣性センサーの検出情報に基づく情報を外部装置に無線で送信できるようになる。例えば慣性計測装置10を取り付け面2に取り付けたままの状態で、慣性センサーで検出された検出情報に基づく情報を、無線通信部90を用いて外部装置に送信できるようになるため、利便性の向上等を図れる。
また基板40には、外部との間で有線で通信するためのインターフェース部100が設けられている。例えばインターフェース部100は、UART、GPIO又はSPIなどの通信インターフェース形式で、外部との間で通信を行う。例えばインターフェース部100は、慣性センサーの検出情報に基づく情報を外部装置に送信する。このようなインターフェース部100を設ければ、通信インターフェースについてのユーザーの様々な要望に応えることが可能になる。例えばUARTをRS232Cに変換して種々の装置に対して慣性計測装置10を接続したり、UARTをイーサネット(登録商標)に変換したり、SPIを用いてSD(登録商標)のカードスロット装置に接続することなどが可能になり、ユーザーの利便性を向上できる。
また基板40には、慣性計測装置10のモード切り替えを行うためのモード切り替えスイッチ80、慣性計測装置10のリセットを行うためのリセットスイッチ82、及び慣性計測装置10の計測を開始するための計測開始スイッチ84の少なくとも1つが設けられる。図1、図2ではこれらの全てのスイッチが設けられているが、本実施形態ではこれらのスイッチのうちの少なくとも1つのスイッチが設けられていればよい。このような各種のスイッチを設ければ、ユーザーがこれらの各スイッチを操作することで、慣性計測装置10が種々の動作を行うようになり、計測作業の簡素化や効率化を図れるようになる。例えばユーザーがモード切り替えスイッチ80を操作することで、慣性計測装置10の各種のモード切り替えが行われるようになり、具体的には表示部60、70の表示モードの切り替えが行われるようになる。またユーザーがリセットスイッチ82を操作することで、慣性計測装置10のリセット動作が行われるようになる。またユーザーが計測開始スイッチ84を操作することで、慣性計測装置10の計測を開始する。なお計測開始スイッチ84は計測終了スイッチとしても機能し、例えばユーザーが計測開始前に計測開始スイッチ84を押すと、状態監視モードに移行して計測が開始し、計測開始スイッチ84を再度押すと、状態監視モードが終了する。また後述するように計測開始スイッチ84はティーチスイッチとしても機能する。
また慣性計測装置10は保護板160を含み、基板40は、センサーユニット20と保護板160との間に設けられる。例えば保護板160は、スペーサー14、15、16により形成された隙間空間を介して、基板40の方向DR4側である上方に配置される。このようにすれば、保護板160による防塵機能を実現できる。また保護板160が保護部材となって、基板40上の処理部50、表示部60、無線通信部90等の部品に対して、望ましくない衝撃が加わるなどの事態を防止できる。また例えば図1では、ユーザーは、保護板160の上面に手の平が接するように慣性計測装置10を手で持って、慣性計測装置10を取り付け面2に取り付けることが可能になる。このように、保護板160が設けられることで、ユーザーの手による慣性計測装置10の保持が容易になり、取り付け作業の容易化や効率化を実現できる。
また慣性計測装置10は図2に示すように、基板として、第1基板である基板40と、第2基板である基板48を含む。そして第1基板である基板40には処理部50が設けられ、第2基板である基板48には、表示パネル72を有する表示部70が設けられる。このようにすれば、例えばセンサーユニット20の慣性センサーの検出情報に基づく処理を、基板40に設けられた処理部50により実行し、その処理結果の情報を、基板48に設けられた表示部70の表示パネル72に表示できるようになる。即ち検出情報に基づく情報を表示パネル72に表示できるようになる。表示パネル72は、有機ELパネルや液晶パネルにより実現されるため、発光素子を用いる場合に比べて、より詳細で高度な情報表示が可能になる。例えば計測値についての数字や文字を表示したり、表示モードについての、より精細で高度な切り替え処理を実現できるようになり、ユーザーの利便性を向上できる。なお表示パネル72を有する表示部70を基板40に設ける変形実施も可能である。
また慣性計測装置10は、第1保護板である保護板160と、第2保護板である保護板170を含む。そして基板40は、センサーユニット20と保護板160との間に設けられ、基板48は、保護板160と保護板170との間に設けられる。例えば図3に示すように、保護板170は、保護板160の穴部161、162、163に設けられたスペーサー17、18、19により形成された隙間空間を介して、保護板160の方向DR4側である上方に配置され、この隙間空間に基板48が配置される。このようにすれば、保護板160により、基板40に設けられた部品を保護できるようになる。例えば基板40に設けられた処理部50、無線通信部90、表示部60等の部品を保護できるようになる。また保護板170により、基板48に設けられた部品を保護できるようになる。例えば基板48に設けられた表示部70等の部品を保護できるようになる。これにより、例えばユーザーが触れることで、慣性計測装置10の部品が破損等してしまう事態を効果的に防止できるようになる。
また基板40には、発光素子群62、64を有する表示部60が設けられる。即ち、LEDなどの発光素子群62、64により実現される表示部60が設けられる。このようにすれば、発光素子群62、64の発光素子の発光による表示動作により、センサーユニット20の慣性センサーの検出情報に基づく情報の表示を実現できるようになる。例えば計測結果が判定基準を満たしたか否かなどの情報については、発光素子の発光によっても十分に伝達できる。そして発光素子は表示パネル72に比べて低コストであるため、慣性計測装置10の低コスト化等を実現できるようになる。
2.スイッチ
本実施形態では、ユーザーは、その底面が取り付け面2に接触するように慣性計測装置10を把持し、両面テープや磁石やネジなどを使用して取り付けて、慣性計測装置10による計測を行う。この場合に、慣性計測装置10による計測時において、慣性計測装置10のモード設定や計測開始指示などの操作を、ユーザーが簡素に行えることが望ましい。そこで本実施形態では図9に示すように、慣性計測装置10に、モード切り替えスイッチ80、リセットスイッチ82、計測開始スイッチ84などの各種のスイッチを設けている。モード切り替えスイッチ80は、慣性計測装置10のモード切り替えを行うためのスイッチであり、具体的には表示部70の表示モードを切り替えるためのスイッチである。例えば表示情報のモードを切り替えるためのスイッチである。リセットスイッチ82は、慣性計測装置10のリセットを行うためのスイッチである。リセットスイッチ82が押されることで慣性計測装置10の初期化が行われる。計測開始スイッチ84は、慣性計測装置10の計測を開始するためのスイッチである。計測開始スイッチ84は、慣性計測装置10の計測を終了するためのスイッチとしても機能する。また計測開始スイッチ84は、例えば長押しすることにより、慣性計測の計測基準情報をメモリーに記憶させる指示を行うためのティーチスイッチとしても機能する。またモード切り替えスイッチ80も、長押しすることにより、計測のログデータを保存するためのスイッチとして機能する。なおスライドスイッチ86は、無線通信や通信インターフェースの選択用のスイッチである。
そして表示部70は、センサーユニット20の慣性センサーの検出情報に基づく表示を行う。例えば図9では、計測された振動が、環境振動基準であるVC(Vibration Criteria)におけるVC-Bを満たしていることが表示部70に表示されている。また計測された振動変位の情報が表示されている。そして本実施形態では、モード切り替えスイッチ80によって表示部70の表示モードが切り替わる。例えば図10では、表示部70には、VC規格での判定結果が表示されている。例えば計測された振動がVC-Bを満たしているという判定結果が表示されている。即ち図10の第1表示モードでは、第1判定基準での判定結果が表示されている。一方、図11では、表示部70には、ユーザーが設定した判定基準での計測結果が表示されている。例えば計測された振動が、ユーザーが設定したしきい値に対して何%になったかを示す判定結果が表示されている。即ち図11の第2表示モードでは、第2判定基準での判定結果が表示されている。例えばモード切り替えスイッチ80を押すことで、図10の第1表示モードになったり、図11の第2表示モードになる。
またモード切り替えスイッチ80によって、慣性センサーの検出情報に基づき表示される情報の単位が切り替わる。即ち、モード切り替えスイッチ80によって、単位についての表示モードが切り替わる。例えば図10では、振動変位の単位であるμmの単位で表示されている。具体的には、振動変位のピーク周波数と、そのピーク周波数での振動変位が表示されている。そしてモード切り替えスイッチ80を押すことで、振動速度の単位であるmm/sの単位での表示になったり、振動加速度の単位であるGalの単位での表示になる。具体的にはモード切り替えスイッチ80を押すことで、振動速度のピーク周波数と、そのピーク周波数での振動速度が表示されたり、振動加速度のピーク周波数と、そのピーク周波数での振動加速度が表示される。一例としては、例えば初めはVCでの判定結果が表示され、モード切り替えスイッチ80を押す毎に、振動加速度及びそのピーク周波数の表示、振動速度及びそのピーク周波数の表示、振動変位及びそのピーク周波数の表示、ユーザーが設定したしきい値に対する計測値のパーセント表示というように、表示モードが順次に切り替わる。
なお環境振動基準であるVCでは、VC-A、VC-B、VC-C、VC-D、VC-E等が定められており、これらのいずれを満たすかを示すことで、ユーザーは、環境振動等がどのような振動レベルであるかを容易に把握できるようになる。またユーザーが設定したしきい値は、例えばユーザーによる設定により、例えば不揮発性メモリーである図1のメモリー102に記憶される。或いはしきい値を後述するティーチのスイッチにより設定してもよい。
また図9に示すようにモード切り替えスイッチ80は可動部81を有する。この可動部81は例えばプッシュボタンにより実現される。そして慣性計測装置10から取り付け面2に向かう方向をDR1とし、方向DR1に直交する方向をDR2としたとする。方向DR1は第1方向であり、方向DR2は第2方向である。方向DR2は、例えばセンサーユニット20の上面である主面や、基板40の上面である主面に沿った方向であり、センサーユニット20や基板40の例えば短辺の方向である。この場合に可動部81は方向DR2において可動する。即ち可動部81であるプッシュボタンは図9のA1に示す方向に沿って可動し、押すことができる。そしてモード切り替えスイッチ80の可動部81の可動により、表示部70の表示モードの切り替えが指示される。即ち可動部81であるプッシュボタンを押すことで、図10、図11で説明した表示モードの切り替えが行われる。
またモード切り替えスイッチ80の可動部81は、非押下状態においては、方向DR1での平面視においてセンサーユニット20の辺から突出している。例えば図9において、辺SD1は基板40の第1短辺であり、辺SD2は、辺SD1に対向する第2短辺である。また辺SD3は基板40の第1長辺であり、辺SD4は、辺SD3に対向する第2長辺である。そしてモード切り替えスイッチ80は基板40の長辺である辺SD3に配置される。リセットスイッチ82、計測開始スイッチ84も辺SD3に配置される。即ちモード切り替えスイッチ80、リセットスイッチ82、計測開始スイッチ84は辺SD3に沿って並んで配置される。そしてモード切り替えスイッチ80の可動部81は、非押下状態においては、平面視において、基板40の辺SD3から突出しており、基板40の辺SD3に対応するセンサーユニット20の辺からも突出している。即ち可動部81であるプッシュボタンは、押されていない状態において、辺SD3から突出している。このようにすれば、例えばユーザーが、その上面に手の平が接するように慣性計測装置10を把持した場合に、例えば手の指を用いて、可動部81を押す操作が可能になる。従って、ユーザーは、慣性計測装置10を持ちながら、手の指でモード切り替えスイッチ80の可動部81であるプッシュボタンを押すことが可能になり、表示部70の表示モードの切り替え操作を容易に行えるようになる。例えばユーザーは、慣性計測装置10の下面を取り付け面2に取り付けて、手の指でモード切り替えスイッチ80を操作できるようになるため、ユーザーの利便性を向上できる。
なおリセットスイッチ82も可動部83を有しており、図9のA2に示す方向に沿って押すことができるが、この可動部83は、非押下状態において、基板40の辺SD3から突出しておらず、辺SD3に対応するセンサーユニット20の辺や保護板160の辺からも突出していない。即ち、リセットスイッチ82の可動部83が押されると、慣性計測装置10がリセットされて初期化されてしまうため、可動部83については辺SD3から非突出にする。このようにすることで、ユーザーが誤ってリセット操作をしてしまうという誤操作を防止できるようになる。
また計測開始スイッチ84も、方向DR2おいて可動する可動部85を有しており、計測開始スイッチ84の可動部85の可動により、慣性計測装置10の計測開始が指示される。即ち可動部85であるプッシュボタンは図9のA3に示す方向に沿って可動し、押すことができる。そして可動部85であるプッシュボタンを押すことで、慣性計測装置10の計測が開始する。そして計測開始後に、可動部85であるプッシュボタンを、再度、押すと、計測が終了する。即ち計測開始スイッチ84は計測終了スイッチとしても機能する。
また計測開始スイッチ84の可動部85も、非押下状態においては、基板40の辺SD3から突出しており、辺SD3に対応するセンサーユニット20の辺から平面視において突出している。即ち可動部85であるプッシュボタンは、押されていない状態において、辺SD3から突出している。このようにすれば、例えばユーザーが、その上面に手の平が接するように慣性計測装置10を持った場合に、例えば手の指を用いて、可動部85を押す操作が可能になる。従って、ユーザーは、慣性計測装置10を持ちながら、手の指で計測開始スイッチ84の可動部85であるプッシュボタンを押すことが可能になり、計測開始の操作を容易に行えるようになり、ユーザーの利便性を向上できる。
また本実施形態では、計測開始スイッチ84は、慣性計測の計測基準情報をメモリー102に記憶させる指示を行うためのスイッチであるティーチスイッチとしても機能する。即ち、計測開始スイッチ84は、計測基準情報を慣性計測装置10に学習させるティーチスイッチとして機能する。具体的には例えばユーザーが計測開始スイッチ84を長押しすることで、計測開始スイッチ84がティーチスイッチとして機能するようになる。そして計測開始スイッチ84がティーチスイッチとして機能する場合に、このティーチスイッチは方向DR2において可動する可動部85を有し、ティーチスイッチの可動部85の可動により、計測基準情報のメモリー102への記憶が指示される。具体的には、計測開始スイッチ84の長押しが行われると、慣性計測装置10がティーチモードである学習モードに移行する。そして所定の学習期間の間、慣性計測装置10が学習用の計測を行い、この学習期間で計測された計測値の平均値等に基づいて、計測基準情報となるしきい値が求められる。そして、このしきい値が計測基準情報として、不揮発性メモリーであるメモリー102に記憶される。そして慣性計測装置10の実際の計測時においては、このしきい値を計測基準情報とした判定処理が行われて、判定結果が表示部70に表示される。一例としては例えば図11に示すような表示が行われる。
以上のように本実施形態の慣性計測装置10は、少なくとも1つの慣性センサーを有するセンサーユニット20と、慣性センサーの検出情報に基づく表示を行う表示部70と、モード切り替えスイッチ80を含む。そしてモード切り替えスイッチ80によって表示部70の表示モードが切り替わる。例えば図10、図11で説明したような表示モードの切り替えが行われる。例えば表示部70の表示情報のモード切り替えが行われる。
このような構成の慣性計測装置10によれば、センサーユニットの慣性センサーの検出情報に基づく表示を、慣性計測装置10が備える表示部70により行うことができる。例えば慣性計測装置10を、計測対象に取り付けるだけで、検出情報に基づく情報を表示部70により表示できるようになる。従って、例えば慣性計測装置10にPCを接続して、PCの表示部を用いて検出情報に基づく表示を行わなくても済むようになるため、計測結果の確認作業の簡素化を図れ、ユーザーの利便性を向上できる。そして慣性計測装置10に設けられたモード切り替えスイッチ80をユーザーが操作すると、表示部70の表示モードが切り替わる。具体的には図10、図11で説明したように、モード切り替えスイッチ80をユーザーが操作すると、例えば異なる判定基準での計測の判定結果が表示部70に表示されたり、表示部70に表示される情報の単位が切り替わるなどの表示モードの切り替えが行われるようになる。従って、モード切り替えスイッチ80を操作するという簡素な操作で、表示部70の表示モードを様々に切り替えることができ、計測結果の表示態様に対する多様な要望に応えることが可能になり、ユーザーの利便性を更に向上できる。
なお図9で説明した構成の慣性計測装置10においては、モード切り替えスイッチ80が基板40に設けられる必要は必ずしもなく、例えば基板40以外の基板にモード切り替えスイッチ80を設けてもよい。例えば処理部50等が設けられる基板40ではなく、表示部70が設けられる基板48にモード切り替えスイッチ80を設けてもよい。或いは例えばセンサーユニット20の上面にモード切り替えスイッチ80を設置するなどの種々の変形実施が可能である。
また図9に示すように、モード切り替えスイッチ80は、慣性計測装置10から取り付け面2に向かう方向DR1に直交する方向DR2において可動する可動部81を有する。そしてモード切り替えスイッチ80の可動部81の可動により、表示部70の表示モードの切り替えが指示される。このようにすれば、ユーザーは、例えばその上面に手の平が接するように慣性計測装置10を把持し、慣性計測装置10の上面に平行な方向である方向DR2において可動部81を可動させることで、表示部70の表示モードの切り替えを指示できるようになる。従って、ユーザーは、簡素な操作で表示モードの切り替えを指示して、自身が所望する表示モードで、慣性センサーの検出情報に基づく情報を表示部70に表示させることが可能になる。
またモード切り替えスイッチ80の可動部81は、非押下状態においては、方向DR1での平面視においてセンサーユニット20の辺から突出している。このようにすれば、ユーザーが例えばその上面に手の平が接するように慣性計測装置10を把持したときに、モード切り替えスイッチ80の可動部81が、非押下状態において突出した状態になっている。このため、ユーザーが、慣性計測装置10を把持しながら、突出した可動部81を例えば手の指を用いて押すことで、表示部70の表示モードが切り替わるようになる。従って、非押下状態においてセンサーユニット20の上面に平行な方向に突出している可動部81を押すだけという簡素な操作で、表示部70の表示モードが切り替わるようになり、ユーザーの利便性を向上できる。
また慣性計測装置10は、慣性計測装置10の計測を開始するための計測開始スイッチ84を含む。このような計測開始スイッチ84を設ければ、PC等により計測開始のコマンドを発行するといような処理は不要になる。そしてユーザーが計測の開始を所望するときには、計測開始スイッチ84を押すという簡素な操作で、慣性計測装置10の計測を開始できるようになる。
また計測開始スイッチ84は、取り付け面2に向かう方向DR1に直交する方向DR2において可動する可動部85を有する。そして計測開始スイッチ84の可動部85の可動により、慣性計測装置10の計測開始が指示される。このようにすれば、ユーザーは、例えばその上面に手の平が接するように慣性計測装置10を把持し、上面に平行な方向である方向DR2において可動部85を可動させることで、慣性計測装置10の計測開始を指示できるようになる。従って、ユーザーは、自身が所望するタイミングにおいて、簡素な操作で慣性計測装置10の計測の開始を指示できるようになる。
また慣性計測装置10は、メモリー102と、慣性計測の計測基準情報をメモリー102に記憶させる指示を行うためのティーチスイッチを含む。図9では例えば計測開始スイッチ84がティーチスイッチとして兼用され、計測開始スイッチ84が長押しされると、学習モードになり、慣性計測の計測基準情報であるしきい値がメモリー102に記憶される。そして、例えばこのしきい値を判定基準とする計測の判定処理が処理部50により行われたり、或いはこのしきい値を判定基準とする計測の判定結果が表示部70に表示されるようになる。このようにすれば、計測対象となる装置の状況や環境状況に応じた計測基準情報を慣性計測装置10に学習させて、当該計測基準情報を用いた計測を実現できるようになる。
また計測開始スイッチ84と兼用されるティーチスイッチは、方向DR2において可動する可動部85を有する。そしてティーチスイッチの可動部85の可動により、計測基準情報のメモリー102への記憶が指示される。このようにすれば、ユーザーは、例えばその上面に手の平が接するように慣性計測装置10を把持し、上面に平行な方向である方向DR2において可動部85を可動させることで、計測基準情報のメモリー102への記憶を指示できるようになる。従って、ユーザーは、自身が慣性計測装置10に学習させたいと所望する期間において、判断基準情報を慣性計測装置10に学習させることが可能になる。
また慣性計測装置10は、モード切り替えスイッチ80が設けられる基板40を含む。例えば処理部50又は表示部60などが設けられる基板40に対して、モード切り替えスイッチ80が設けられる。そして例えばセンサーユニット20の上面に平行に配置された基板40に対して、モード切り替えスイッチ80が実装される。これによりモード切り替えスイッチ80を慣性計測装置10に対してコンパクトな実装形態で実装することが可能になる。特にモード切り替えスイッチ80の可動部81の可動方向を、基板40の面に平行な方向にすることで、モード切り替えスイッチ80のコンパクトな実装の実現が可能になる。
そして図1、図2等で説明したように、慣性計測装置10は、センサーユニット20と基板40とを着脱可能に固定する少なくとも1つの固定部材11、12、13を含む。即ち、慣性センサーを有するセンサーユニット20と、モード切り替えスイッチ80が設けられた基板40とが、固定部材11、12、13により着脱自在に固定される。このようにすれば、慣性計測装置10に組み込むセンサーユニット20の種類や基板40の種類を自在に変更できるようになり、慣性計測装置10の拡張性を向上できる。また慣性計測装置10は、センサーユニット20と基板40が固定部材11、12、13により固定された状態で取り付け面2に取り付け可能になるため、共振等に起因する望ましくない振動等が慣性計測装置10に伝わって、計測に悪影響を及ぼしてしまう事態も抑制できる。
また慣性計測装置10は、第1基板である基板40と、第2基板である基板48を含み、モード切り替えスイッチ80は基板40に設けられ、表示部70は基板48に設けられる。そして基板40はセンサーユニット20と基板48との間に設けられる。このようにすれば、基板40に設けられたモード切り替えスイッチ80の操作が行われると、基板48に設けられた表示部70の表示モードが切り替わるようになる。そして、モード切り替えスイッチ80は、センサーユニット20と基板48との間に設けられた基板40に設けられるため、例えば慣性計測装置10の高さ方向における中央付近にモード切り替えスイッチ80が配置されるようになり、モード切り替えスイッチ80の操作性を向上できる。一方、表示部70は、基板40の上方向である方向DR4側に配置された基板48に設けられるため、ユーザーが見やすい位置に表示部70を配置できるようになる。
また表示部70は、検出情報に基づく判定処理の判定結果として、第1表示モードでは、第1判定基準における判定結果を表示し、第2表示モードでは、第2判定基準における判定結果を表示する。一例としては、第1表示モードでは、表示部70は図10のような判定結果を表示し、第2表示モードでは、表示部70は図11のような判定結果を表示する。このようにすれば、第1判定基準における判定結果が表示される第1表示モードと、第2判定基準における判定結果が表示される第2表示モードとを、モード切り替えスイッチ80により切り替えることが可能になる。従って、ユーザーがモード切り替えスイッチ80を操作することで、異なる判定基準での計測の判定結果が表示部70に表示されるようになり、様々な判定基準での判定結果をユーザーに提示できるようになる。
この場合に第1判定基準はVC(Vibration Criteria)の判定基準であり、第2判定基準はユーザーが設定した判定基準である。例えば第1表示モードでは、図10に示すように、第1判定基準であるVCの判定基準における判定結果が表示される。例えば慣性計測装置10により計測された振動が、環境振動基準の指標であるVC-A、VC-B、VC-C、VC-D、VC-E等のいずれを満たしているかが表示される。一方、第2表示モードでは、図11に示すように、ユーザーが設定した判定基準における判定結果が表示される。例えばユーザーが設定した判定基準に対して、慣性計測装置10の計測結果がどの程度であるのかが表示される。例えばユーザーが設定した判定基準がしきい値である場合に、計測値が、しきい値に対してどの程度の割合であるのかが表示される。このようにすれば、VCの判定基準における判定結果が表示される第1表示モードと、ユーザーが設定した判定基準における判定結果が表示される第2表示モードとを、モード切り替えスイッチ80により切り替えることが可能になる。なお発光素子群62、64により構成される表示部60を用いる場合には、図7から明らかなように、発光素子群62を用いて、VC-A、VC-B、VC-C、VC-D、VC-E等のいずれを満たしているかが表示される。また発光素子群64を用いて、例えばピーク値が、L(ロー)、M(ミドル)、H(ハイ)のいずれであるかが表示される。即ちL、M、Hの位置に対応する発光素子が発光することで、ピーク値がローレベル、中間レベル、ハイレベルのいずれであるかが表示される。なお図7の「A」はアラーム状態を示し、「A」の位置に対応する発光素子が発光することで、計測値がしきい値を超えるなどのアラーム状態になったことがユーザーに知らされる。
またモード切り替えスイッチ80によって、検出情報に基づき表示される情報の単位が切り替わる。例えば振動の計測の場合には、図10のように、モード切り替えスイッチ80の操作により、振動変位の単位(μm)、振動速度の単位(mm/s)、振動加速度の単位(Gal)というように、表示される計測値の単位が切り替わる。このようにすれば、モード切り替えスイッチ80の操作により、様々な単位での計測値をユーザーに表示できるようになり、ユーザーの利便性を向上できる。
また慣性計測装置10は、検出情報に基づく処理を行う処理部50を含む。そして処理部50は検出対象の振動情報の解析処理を行い、表示部70は解析処理の結果情報を表示する。なお表示部60も同様に解析処理の結果情報を表示する。例えば処理部50は、センサーユニット20の慣性センサーからの検出情報に基づいて、振動情報のFFT解析等の解析処理を行う。そして表示部70は、解析処理の結果情報として、例えば振動のピーク周波数や、ピーク周波数での振動変位、振動速度又は振動加速度などを表示する。このようにすれば、慣性センサーの検出情報がユーザーにとって扱いにくい情報である場合にも、この検出情報の解析処理を処理部50が行って、その解析処理の結果情報を表示部70が表示することで、ユーザーは、検出対象の振動状態がどのような状態であるのかを容易に把握できるようになる。
3.無線通信部、アンテナ部
本実施形態の慣性計測装置10では、センサーユニット20の慣性センサーの検出情報に基づく情報を無線により外部に送信するために無線通信部90と、無線通信部90に接続されるアンテナ部92を設けている。無線通信部90は、例えばブルートゥース(登録商標。以下、適宜、単にBTと記載する)などの近接無線通信を行うデバイスであり、例えば集積回路装置である無線通信ICなどにより実現される。なお無線通信部90が行う無線通信はBTには限定されず、ジグビー、ワイサンなどの近接無線通信であってもよいし、Wi-Fi(登録商標)の無線通信であってもよい。一方、後述の図15~図17で説明するようにセンサーユニット20は、慣性センサーが設けられるセンサー基板210と、センサー基板210を収容する導電体のケース24を含む。ケース24は、例えば容器220と蓋部222を含み、この容器220と蓋部222により形成される収容空間にセンサー基板210が収容される。図15では、センサー基板210には、慣性センサーとして、加速度センサー30X、30Y、30Zが設けられている。加速度センサー30X、30Y、30Zは、各々、X軸、Y軸、Z軸の方向での加速度の情報を検出情報として検出する。図16、図17では、センサー基板210には、慣性センサーとして加速度センサー32と、角速度センサー34X、34Y、34Zが設けられている。加速度センサー32は、X軸、Y軸、Z軸の方向での加速度の情報を検出情報として検出する。角速度センサー34X、34Y、34Zは、各々、X軸回り、Y軸回り、Z軸回りでの角速度の情報を検出情報として検出する。
図15~図17においてケース24は、金属等の導電体の材料で形成される。このように、慣性センサーが実装されるセンサー基板210を、導電体のケース24内に収容することで、外部からの電磁波等が慣性センサーに与える悪影響を低減できる。例えば導電体のケース24が設けられていないと、外部からの電磁波等により、慣性センサーの検出情報にドリフトが発生するなどの問題が生じるが、導電体のケース24の中に慣性センサーを設けることで、このような問題の発生を抑制できる。
しかしながら、このような導電体のケース24が、アンテナ部92の近くにあると、アンテナ部92の感度が低下してしまうという問題が発生することが判明した。例えばアンテナ部92は基板に形成された金属配線によるインダクターにより実現されるが、例えば導電体のケース24の直上に、アンテナ部92の金属配線のインダクターが位置すると、アンテナ部92の感度が大幅に低下してしまう。
そこで本実施形態では図12に示すように、慣性計測装置10から取り付け面2に向かう方向をDR1としたときに、方向DR1での平面視において、センサーユニット20のケース24の辺から突出するようにアンテナ部92を設けている。例えば図12において基板40は、対向する短辺である辺SD1、SD2と、対向する長辺である辺SD3、SD4を有する。辺SD1から辺SD2に向かう方向がDR3であり、DR3の反対方向がDR6である。辺SD3から辺SD4に向かう方向がDR2であり、DR2の反対方向がDR5である。そしてアンテナ部92は、基板40の短辺である辺SD1から突出しており、辺SD1に対応するセンサーユニット20の辺からも突出している。具体的には辺SD1から方向DR6側に突出するようにアンテナ部92が設けられている。
このようにすれば、例えばセンサーユニット20の導電体のケース24の直上には、アンテナ部92が位置しないようになる。具体的には導電体のケース24の直上には、アンテナ部92の金属配線のインダクターが位置しないようになる。従って、導電体のケース24を原因とするアンテナ部92の感度の低下を抑制することが可能になる。即ち図12において辺SD1の方向DR3側にアンテナ部92が設けられていると、アンテナ部92の直下の導電体のケース24の存在が原因となってアンテナ部92の感度が低下してしまう。一方、図12のように辺SD1の方向DR6側にアンテナ部92を設けることで、アンテナ部92の直下には導電体のケース24は存在しないようになり、その分だけアンテナ部92の感度を向上できる。
以上のように本実施形態の慣性計測装置10は、少なくとも1つの慣性センサーを有するセンサーユニット20と、慣性センサーの検出情報に基づく情報を無線により送信する無線通信部90と、無線通信部90に接続されるアンテナ部92を含む。このように無線通信部90とアンテナ部92を設けることで、慣性センサーの検出情報に基づく情報を無線により外部に送信することが可能になる。これにより、例えば慣性計測装置10を有線で外部装置に接続しなくても、検出情報に基づく情報を外部装置に送信できるようになり、ユーザーの利便性を向上できる。
ここでセンサーユニット20は、慣性センサーと、慣性センサーが設けられるセンサー基板210と、センサー基板210を収容する導電体のケース24を含む。即ち図15では、慣性センサーとして加速度センサー30X、30Y、30Zが設けられるセンサー基板210が、ケース24に収容される。図16、図17では、慣性センサーとして加速度センサー32、角速度センサー34X、34Y、34Zが設けられるセンサー基板210が、ケース24に収容される。このようにすれば、導電体のケース24内に慣性センサーが収容されるようになり、外部からの電磁波等により慣性センサーの検出情報の精度が劣化してしまうのを抑制できる。
そして図12に示すように本実施形態の慣性計測装置10では、取り付け面2へと向かう方向DR1の平面視において、アンテナ部92は、ケース24の辺から突出するように設けられる。即ちアンテナ部92は、基板40の辺SD1から突出しており、この辺SD1に対応する下方のケース24の辺からも突出している。このようにすれば、導電体のケース24を原因とするアンテナ部92の感度の低下を抑制できる。従って、慣性センサーを導電体のケース24内に収容することによる慣性センサーの検出精度の劣化の抑制と、アンテナ部92の感度の向上とを両立して実現できるようになる。
なお図12で説明した構成の慣性計測装置10においては、無線通信部90やアンテナ部92が基板40に設けられる必要は必ずしもなく、例えば基板40以外の基板に無線通信部90やアンテナ部92を設けてもよい。例えば処理部50等が設けられる基板40ではなく、表示部70が設けられる基板48に無線通信部90やアンテナ部92を設けてもよい。或いは例えばセンサーユニット20の上面に無線通信部90やアンテナ部92を設置するなどの種々の変形実施が可能である。
また慣性計測装置10は、無線通信部90が設けられる基板40と、保護板160を含む。そして図1、図2で説明したように、基板40は、センサーユニット20と保護板160との間に設けられ、図12に示すように、方向DR1での平面視において、アンテナ部92は、保護板160から非突出になっている。即ちアンテナ部92は、基板40の辺SD1やセンサーユニット20の対応する辺から方向DR6側に突出しているが、保護板160の対応する辺からは方向DR6側に突出していない。例えばアンテナ部92の下方には、センサーユニット20の導電体のケース24が存在しないが、アンテナ部92の上方には、アンテナ部92を覆うように保護板160が設けられる。このように平面視においてアンテナ部92を保護板160から非突出にして、アンテナ部92を覆うように保護板160を設ければ、保護板160が保護部材となって、アンテナ部92に対して望ましくない衝撃が加わるなどの事態を防止できる。例えばユーザーの手の指等がアンテナ部92に誤って触れてしまい、アンテナ部92が破損等してしまう事態の発生を抑制できる。従って、アンテナ部92を、平面視において導電体のケース24から突出させることで通信の感度を向上させながら、平面視において保護板160から非突出にすることで、アンテナ部92を外部の衝撃から保護することが可能になる。
また慣性計測装置10は、無線通信部90が設けられる基板40を含み、この基板40の短辺である辺SD1から突出するように、アンテナ部92が設けられる。具体的には、処理部50等が設けられる基板40には、通信基板94が実装されており、この通信基板94に無線通信部90やアンテナ部92が設けられている。即ち通信基板94に対して、無線通信部90である無線通信ICが実装されると共に、通信基板94のうち基板40の辺SD1から突出する基板部分に対して、金属配線によるインダクターを形成することで、アンテナ部92が実現されている。なお無線通信部90が実装される基板部分とアンテナ部92が形成される基板部分を、一体の基板により実現してもよいし、別体の基板により実現してもよい。このように基板40の辺SD1から突出するようにアンテナ部92を設ければ、望ましくない衝撃がアンテナ部92に加わるリスクを低減できる。例えばユーザーが、その上面に手の平が接するように慣性計測装置10の2つの長辺を把持した場合に、ユーザーの手の指等がアンテナ部92に触れて、望ましくない衝撃がアンテナ部92に加わってしまう事態の発生を抑制できるようになる。
また図12に示すように無線通信部90は、基板40の短辺である辺SD1に設けられる。具体的には辺SD1の方向DR3側において辺SD1に沿って無線通信部90が配置される。そして、この無線通信部90に接続されるアンテナ部92が、辺SD1から方向DR6側に突出するように設けられる。このようにすれば、基板40の辺SD1に配置される無線通信部90に対して、ショートパスでアンテナ部92を電気的に接続すると共に、アンテナ部92を辺SD1から突出させて、アンテナ部92の感度を向上できるようになる。これにより基板40に対して、無線通信部90及びアンテナ部92をコンパクトな実装形態で実装しながら、アンテナ部92の感度の向上も実現できるようになる。
また慣性計測装置10は、無線通信部90が設けられる基板40と、基板40に設けられ、センサーユニット20の慣性センサーの検出情報に基づく処理を行う処理部50を含む。そして無線通信部90は、処理部50によって処理された情報を送信する。例えば処理部50が、慣性センサーの検出情報に対して加工処理を行った場合には、無線通信部90は、例えば加工処理後の検出情報を無線により外部に送信する。また処理部50が、慣性センサーの検出情報の解析処理を行った場合には、無線通信部90は、例えば解析処理の結果情報を外部に送信する。このようにすれば、慣性センサーの検出情報そのものではなく、当該検出情報に対して処理部50が所定の処理を行うことで得られた情報を、無線通信部90により外部に無線で送信できるようになる。従って、慣性計測装置10の外部装置は、慣性計測装置10の処理部50が行う処理を行わなくても済むようになり、慣性計測装置10を含む計測システムの処理負荷の軽減や低コスト化等を図れるようになる。
また慣性センサーの検出情報は、その扱いが難しく、専門の知識等が必要になるため、ユーザーにとっての利便性が欠けるという問題があるが、慣性計測装置10が処理部50の処理後の情報を送信することで、ユーザーにとって扱い易い情報を送信できるようになり、ユーザーの利便性を向上できる。
また図12に示すように本実施形態の慣性計測装置10では、基板の辺SD1から突出するようにアンテナ部92が設けられ、処理部50は、無線通信部90と、辺SD1に対向する辺SD2との間に設けられる。辺SD1は第1短辺であり、辺SD2は第2短辺である。例えば基板40の辺SD1から辺SD2に向かう方向をDR3とし、方向DR3の反対方向をDR6としたときに、アンテナ部92は、基板40の辺SD1から突出するように、無線通信部90の方向DR6側に設けられる。そして無線通信部90は、アンテナ部92の方向DR3側に設けられ、処理部50は、無線通信部90の方向DR3側に設けられる。このようにすれば、アンテナ部92、無線通信部90、処理部50を、基板40の短辺である辺SD1から対向する辺SD2へと向かう方向に沿って、効率的に配置できるようになる。例えば基板40の長辺方向である辺SD3、SD4の方向に沿って、アンテナ部92、無線通信部90、処理部50の順で並べて配置できるようになり、基板40での回路部品の実装効率を向上できる。
また慣性計測装置10は、外部との間で有線でデータを通信するためのインターフェース部100を含む。そしてインターフェース部100は、基板の第2短辺である辺SD2に配置される。具体的には辺SD2の方向DR6側において辺SD2に沿ってインターフェース部100が配置される。インターフェース部100は、例えばUART、GPI、或いはSPIなどの通信インターフェースを実現する回路である。このようなインターフェース部100を設ければ、広く用いられているUART、GPI、SPIなどの有線の通信インターフェースにより、慣性センサーの検出情報に基づく情報を外部装置に送信したり、外部装置からのコマンドを受け付けることなどが可能になる。そしてインターフェース部100を基板40の辺SD2に設けることで、アンテナ部92、無線通信部90、処理部50、インターフェース部100を、基板40の長辺方向に沿って、効率的に配置できるようになり、基板40での回路部品の実装効率を向上できる。
なお図12に示すように、基板40の長辺である辺SD3には、モード切り替えスイッチ80、リセットスイッチ82及び計測開始スイッチ84の少なくとも1つが設けられる。こうすることで、慣性計測装置10の短辺である辺SD1と辺SD2の間の領域を利用して、無線通信部90、処理部50、インターフェース部100を配置すると共に、基板40の長辺である辺SD3に沿った領域を利用して、モード切り替えスイッチ80やリセットスイッチ82や計測開始スイッチ84を配置できるようになり、効率的な実装のレイアウトを実現できる。また慣性計測装置10は、センサーユニット20と、無線通信部90等が設けられる基板40とを着脱可能に固定する少なくとも1つの固定部材11、12、13を含む。このようにすれば、前述したように、慣性計測装置10の拡張性を向上できると共に、共振等に起因する望ましくない振動等が慣性計測装置10に伝わって、計測に悪影響を及ぼしてしまう事態も抑制できるようになる。
また図13に示すように本実施形態の慣性計測装置10では、センサーユニット20は、基板40に対向する面にセンサー側のコネクター26を有する。即ちセンサーユニット20の上面にコネクター26を有する。また基板40は、センサーユニット20に対向する面に、センサー側のコネクター26に接続される基板側のコネクター46を有する。即ち基板40の下面にコネクター46を有し、この基板40のコネクター46が、センサーユニット20のコネクター26に電気的に接続される。具体的には図1、図2に示すように、センサーユニット20と基板40とが固定部材11、12、13により固定された状態において、センサーユニット20のコネクター26と基板40のコネクター46とが電気的に接続される。これにより、センサーユニット20の慣性センサーの検出情報を、これらのコネクター26、46を介して基板40に伝達することが可能になる。そして基板40に設けられた処理部50が、慣性センサーの検出情報に基づく処理を行ったり、基板40に設けられた表示部60が、慣性センサーの検出情報に基づく表示を行えるようになる。なおコネクター26は、例えば複数のピン端子により実現されるオス側のコネクターであり、コネクター46は、例えばオス側のコネクターが接続可能なメス側のコネクターである。
図14は本実施形態の慣性計測装置10の動作を説明する状態遷移図である。慣性計測装置10は、電源が供給されて起動すると、まず初期化処理の状態に移行する。そしてスライドスイッチ86による選択により、BT(ブルートゥース(登録商標))の有効が検知されると、BTの設定を行い、設定が完了すると初期化処理の状態に戻る。BTが有効の場合には有線通信は無効になる。一方、スライドスイッチ86による選択により、ライト表示動作の移行が検知されると、ライト表示モードに移行する。ライト表示モードでは、インターフェース部100がGPIOの出力モードになり、慣性計測装置10を用いたパトライト(登録商標)等によるライト表示が可能になる。
スライドスイッチ86によりBTの有効やライト表示モードへの移行が選択されていなかった場合には、待機動作への移行が検知されたとして、待機モードに移行する。待機モードにおいて、例えば計測開始スイッチ84が長押しされる操作が行われたり、コマンドの発行により、学習要求が行われると、学習モードに移行して、学習処理が行われる。学習モードでは、例えば表示部60の所定の発光素子が点滅したり、表示部70に例えば「LEARING」の文字が表示され、学習中であることがユーザーに知らされる。そして学習モードの学習期間において計測が行われて、学習期間での計測結果に基づいて、慣性計測の計測基準情報である計測のしきい値が求められる。そして、求められたしきい値が、不揮発性メモリーであるメモリー102に記憶される。学習処理が完了すると、待機モードに戻る。また待機モードにおいて、例えば外部装置からのコマンド発行等により、設定要求が行われると、慣性計測装置10についての各種の設定処理が行われ、設定が完了すると、待機モードに戻る。
また待機モードにおいて、計測開始スイッチ84が押されて、状態監視開始要求が行われると、状態監視モードに移行する。状態監視モードでは、表示部60、表示部70において、計測結果についての表示が行われる。また、このときにモード切り替えスイッチ80が押されると、表示モードが切り替わる。また状態監視モードにおいて、例えば計測値がしきい値を超えると、アラーム状態に移行し、例えば表示部60のアラーム用の発光素子が点滅する。またアラーム状態に移行すると、ログデータの保存も行われる。状態監視モードやアラーム状態において、例えば計測開始スイッチ84が再度、押されるなどして、状態監視停止要求が行われると、待機モードに戻る。
以上の本実施形態の慣性計測装置10では、ユーザーは、まず慣性計測装置10を装置又は床面に取り付けて、計測開始スイッチ84を押す。例えば慣性計測装置10の上面が手の平に接触するように慣性計測装置10を把持して、手の指等を用いて計測開始スイッチ84を押す。なお慣性計測装置10にしきい値を学習させる場合には、ユーザーは、計測開始スイッチ84を長押しして、計測のしきい値を学習させてから、計測開始スイッチ84を押す。そして計測開始スイッチ84を押した後、所与の計測時間を待つ。例えば計測時間は5~10秒の長さであり、計測時間の長さは設定可能である。そして計測時間が終了すると、表示部60の発光素子であるLEDによる表示や、表示部70での表示パネル72による表示により、計測結果がユーザーに知らされる。このときユーザーは、モード切り替えスイッチ80を押すことで、種々の表示モードに切り替えることができる。ユーザーは計測開始スイッチ84を再度、押すことで、状態監視モードを停止して、待機モードに移行させることができる。このように本実施形態の慣性計測装置10によれば、ユーザーは、簡素な操作で計測を行うことができる。そして慣性センサーの検出情報に基づく情報が表示部60、70に表示されるため、分かりやすい情報表示により計測結果を確認でき、利便性を向上できる。またモード切り替えスイッチ80を操作することで、種々の表示モードでの計測結果を確認できるようになる。また無線通信部90及びアンテナ部92が設けられているため、慣性センサーの検出情報に基づく情報を、無線による通信により外部装置に送信できる。この場合にアンテナ部92がセンサーユニット20のケース24の主面から突出するように設けられているため、高いアンテナ感度での無線通信が可能になる。
4.センサーユニット
図15にセンサーユニット20の第1構成例を示す。図15はセンサーユニット20の分解斜視図である。図15のセンサーユニット20は、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーが設けられるセンサー基板210と、センサー基板210を収容するケース24を含む。図15では、少なくとも1つの加速度センサーとして、X軸、Y軸、Z軸の方向での加速度を検出する加速度センサー30X、30Y、30Zが、センサー基板210に設けられている。加速度センサー30X、30Y、30Zは、各々、その主面がX軸、Y軸、Z軸に直交するようにセンサー基板210に実装されている。加速度センサー30X、30Y、30Zは例えば水晶振動子を用いた加速度センサーであり、MEMS(Micro Electro Mechanical Systems)の加速度センサーに比べて高精度に加速度を検出できる。これにより装置や床面の振動等を高精度に検出できるようになる。なお図15では、3軸の加速度検出用に3つの加速度センサー30X、30Y、30Zがセンサー基板210に設けられているが、1軸の加速度検出用の1つの加速度センサーをセンサー基板210に設けたり、2軸の加速度検出用の2つの加速度センサーをセンサー基板210に設けるなどの種々の変形実施が可能である。
またセンサー基板210には、ASICやマイクロコンピューターなどにより実現される処理部212が設けられている。例えば慣性計測装置10の処理部50が行う処理の一部又は全部を、このセンサーユニット20の処理部212が実行するようにしてもよい。また加速度センサー30X、30Y、30Zが設けられるセンサー基板210の主面である第1面の裏面である第2面には、複数のコネクター端子により構成されるコネクター26が設けられている。図13で説明したように、このセンサーユニット20のコネクター26が、慣性計測装置10の基板40の裏面のコネクター46に接続される。
ケース24は、金属等の導電材料で形成されており、容器220と蓋部222を有する。そして容器220と蓋部222で形成される収容空間にセンサー基板210が収容され、ネジ等の固定部材で容器220と蓋部222が固定されて密封される。なお蓋部222とセンサー基板210との間には、緩衝材となるシール部材224が設けられる。
図16、図17にセンサーユニット20の第2構成例を示す。図16はセンサーユニット20の分解斜視図であり、図17はセンサー基板210の平面図である。図16、図17のセンサーユニット20は、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーと、少なくとも1つの角速度センサーとが設けられるセンサー基板210と、センサー基板210を収容するケース24を含む。図16、図17では、少なくとも1つの加速度センサーとして、X軸、Y軸、Z軸の方向での加速度を検出する加速度センサー32が、センサー基板210に設けられている。加速度センサー32の内部には、X軸方向及びY軸方向での加速度を検出するセンサー素子と、Z軸方向での加速度を検出するセンサー素子が設けられている。これらのセンサー素子は例えばMEMSのセンサー素子である。なおセンサー基板210に、X軸、Y軸、Z軸の各軸に個別の加速度センサーを設けたり、X軸、Y軸、Z軸の2つの軸用又は1つの軸用の加速度センサーを設けるなどの変形実施が可能である。また図16、図17では、少なくとも1つの角速度センサーとして、X軸回り、Y軸回り、Z軸回りでの角速度を検出する角速度センサー34X、34Y、34Zが設けられている。角速度センサー34X、34Y、34Zは、各々、その主面がX軸、Y軸、Z軸に直交するようにセンサー基板210に実装されている。角速度センサー34X、34Y、34Zは、例えば水晶の振動子を用いて角速度を検出するジャイロセンサーである。このように加速度センサーのみならず角速度センサーをセンサー基板210に設けることで、振動等の検出のみならず、対象物の傾きや姿勢変化などを検出できるようになる。なお図16、図17では、3軸の角速度検出用に3つの角速度センサー34X、34Y、34Zがセンサー基板210に設けられているが、1軸の角速度検出用の1つの角速度センサーをセンサー基板210に設けたり、2軸の角速度検出用の2つの角速度センサーをセンサー基板210に設けるなどの種々の変形実施が可能である。
また図17に示すように、加速度センサー32等が設けられるセンサー基板210の主面である第1面には、複数のコネクター端子により構成されるコネクター26が設けられている。図13で説明したように、このセンサーユニット20のコネクター26が、慣性計測装置10の基板40の裏面のコネクター46に接続される。またセンサー基板210の裏面である第2面には、ASICやマイクロコンピューターなどにより実現される不図示の処理部が設けられている。例えば慣性計測装置10の処理部50が行う処理の一部又は全部を、このセンサーユニット20の処理部が実行するようにしてもよい。
ケース24は、金属等の導電材料で形成されており、容器220と蓋部222を有する。そして容器220と蓋部222で形成される収容空間にセンサー基板210が収容され、ネジ等の固定部材で容器220と蓋部222が固定されて密封される。なお蓋部222とセンサー基板210との間には、緩衝材となるシール部材224が設けられる。
以上のように本実施形態の慣性計測装置は、少なくとも1つの慣性センサーを有するセンサーユニットと、慣性センサーの検出情報に基づく表示を行う表示部と、モード切り替えスイッチとを含む。そしてモード切り替えスイッチによって表示部の表示モードが切り替わる。
本実施形態によれば、センサーユニットの慣性センサーの検出情報に基づく表示を、慣性計測装置が備える表示部により行うことができるため、計測結果の確認作業の簡素化を図れる。またモード切り替えスイッチを操作することで、表示部の表示モードを切り替えることができるため、計測結果の表示態様に対する多様な要望に応えることが可能になる。
また本実施形態では、慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、第1方向に直交する方向を第2方向としたときに、モード切り替えスイッチは、第2方向において可動する可動部を有してもよい。そしてモード切り替えスイッチの可動部の可動により、表示部の表示モードの切り替えが指示されてもよい。
このようにすれば、ユーザーは、慣性計測装置から取り付け面に向かう第1方向に直交する第2方向においてモード切り替えスイッチの可動部を可動させるという簡素な操作で、表示モードの切り替えを指示できるようになる。
また本実施形態では、モード切り替えスイッチの可動部は、非押下状態においては、第1方向での平面視においてセンサーユニットの辺から突出していてもよい。
このようにすれば、非押下状態においてセンサーユニットの辺から突出した状態になっているモード切り替えスイッチの可動部を押すだけという簡素な操作で、表示部の表示モードが切り替わるようになり、ユーザーの利便性を向上できる。
また本実施形態では、慣性計測装置の計測を開始するための計測開始スイッチを含んでもよい。
このようにすれば、計測開始スイッチを操作するだけという簡素な操作で、慣性計測装置の計測を開始できるようになり、ユーザーの利便性を向上できる。
また本実施形態では、慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、第1方向に直交する方向を第2方向としたときに、計測開始スイッチは、第2方向において可動する可動部を有してもよい。そして計測開始スイッチの可動部の可動により、慣性計測装置の計測開始が指示されてもよい。
このようにすれば、ユーザーは、慣性計測装置から取り付け面に向かう第1方向に直交する第2方向において計測開始スイッチの可動部を可動させるという簡素な操作で、慣性計測装置の計測開始を指示できるようになる。
また本実施形態では、メモリーと、慣性計測の計測基準情報をメモリーに記憶させる指示を行うためのティーチスイッチを含んでもよい。
このようにすれば、計測対象に応じた計測基準情報を慣性計測装置に学習させて、当該計測基準情報を用いた計測を実現できるようになる。
また本実施形態では、慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、第1方向に直交する方向を第2方向としたときに、ティーチスイッチは、第2方向において可動する可動部を有してもよい。そしてティーチスイッチの可動部の可動により、計測基準情報のメモリーへの記憶が指示されてもよい。
このようにすれば、ユーザーは、慣性計測装置から取り付け面に向かう第1方向に直交する第2方向においてティーチスイッチの可動部を可動させるという簡素な操作で、計測基準情報のメモリーへの記憶を指示できるようになる。
また本実施形態では、モード切り替えスイッチが設けられる基板を含んでもよい。
このようにすれば、モード切り替えスイッチを慣性計測装置に対してコンパクトな実装形態で実装することが可能になる。
また本実施形態では、センサーユニットと基板とを着脱可能に固定する少なくとも1つの固定部材を含んでもよい。
このようにすれば、慣性計測装置に組み込むセンサーユニットや基板を自在に変更できるようになり、慣性計測装置の拡張性を向上できる。
また本実施形態では、基板として第1基板と第2基板を含み、モード切り替えスイッチは第1基板に設けられ、表示部は第2基板に設けられ、第1基板は、センサーユニットと第2基板との間に設けられてもよい。
このようにすれば、第1基板に設けられたモード切り替えスイッチの操作が行われると、第2基板に設けられた表示部の表示モードが切り替わるようになる。そして、モード切り替えスイッチは、センサーユニットと第2基板との間に設けられた第1基板に設けられるため、モード切り替えスイッチの操作性を向上できる。
また本実施形態では、表示部は、検出情報に基づく判定処理の判定結果として、第1表示モードでは、第1判定基準における判定結果を表示し、第2表示モードでは、第2判定基準における判定結果を表示してもよい。
このようにすれば、ユーザーがモード切り替えスイッチを操作することで、異なる判定基準での計測の判定結果が表示部に表示されるようになり、様々な判定基準での判定結果をユーザーに提示できるようになる。
また本実施形態では、第1判定基準はVC(Vibration Criteria)の判定基準であり、第2判定基準はユーザーが設定した判定基準であってもよい。
このようにすれば、VCの判定基準における判定結果が表示される第1表示モードと、ユーザーが設定した判定基準における判定結果が表示される第2表示モードとを、モード切り替えスイッチにより切り替えることが可能になる。
また本実施形態では、モード切り替えスイッチによって、検出情報に基づき表示される情報の単位が切り替わってもよい。
このようにすれば、モード切り替えスイッチの操作により、様々な単位での計測値をユーザーに表示できるようになり、ユーザーの利便性を向上できる。
また本実施形態では、検出情報に基づく処理を行う処理部を含み、処理部は、検出対象の振動情報の解析処理を行い、表示部は、解析処理の結果情報を表示してもよい。
このようにすれば、慣性センサーの検出情報の解析処理を処理部が行って、その解析処理の結果情報を表示部が表示することで、ユーザーは、検出対象の振動状態がどのような状態であるのかを容易に把握できるようになる。
また本実施形態では、センサーユニットは、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーが設けられるセンサー基板と、センサー基板を収容するケースと、を含んでもよい。
このようにすれば、センサーユニットのセンサー基板に設けられる加速度センサーの検出情報に基づく表示を、慣性計測装置が備える表示部により行うことができるため、計測結果の確認作業の簡素化を図れる。
また本実施形態では、センサーユニットは、少なくとも1つの慣性センサーとして、少なくとも1つの加速度センサーと少なくとも1つの角速度センサーが設けられるセンサー基板と、センサー基板を収容するケースと、を含んでもよい。
このようにすれば、センサーユニットのセンサー基板に設けられる加速度センサーや角速度センサーの検出情報に基づく表示を、慣性計測装置が備える表示部により行うことができるため、計測結果の確認作業の簡素化を図れる。
なお、上記のように本実施形態について詳細に説明したが、本開示の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本開示の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本開示の範囲に含まれる。また慣性計測装置の構成・動作等も本実施形態で説明したものに限定されず、種々の変形実施が可能である。
2…取り付け面、10…慣性計測装置、11、12、13…固定部材、
14、15、16、17、18、19…スペーサー、20…センサーユニット、
21、22、23…穴部、24…ケース、26…コネクター、
30X、30Y、30Z…加速度センサー、32…加速度センサー、
34X、34Y、34Z…角速度センサー、40…基板、
41、42、43…穴部、44…支持部、46…コネクター、48…基板、
50…処理部、60…表示部、62、64…発光素子群、70…表示部、
72…表示パネル、80…モード切り替えスイッチ、82…リセットスイッチ、
84…計測開始スイッチ、81、83、85…可動部、86…スライドスイッチ、
90…無線通信部、92…アンテナ部、94…通信基板、
100、101…インターフェース部、102、103、104…メモリー、
106…電源インターフェース、150…ベース、151、152、153…穴部、
154…窪み部、156、157…固定部、160…保護板、
161、162、163…穴部、164…スリット穴、170…保護板、
171、172、173…穴部、174、175、176…窓部、
210…センサー基板、212…処理部、220…容器、222…蓋部、
224…シール部材、
DR1、DR2、DR3、DR4、DR5、DR6…方向、
SD1、SD2、SD3、SD4…辺

Claims (15)

  1. 少なくとも1つの慣性センサーを有するセンサーユニットと、
    前記慣性センサーの検出情報に基づく表示を行う表示部と、
    モード切り替えスイッチと、
    を含み、
    前記モード切り替えスイッチによって前記表示部の表示モードが切り替わり、
    前記表示部は、
    前記検出情報に基づく判定処理の判定結果として、第1表示モードでは、第1判定基準における判定結果を表示し、第2表示モードでは、第2判定基準における判定結果を表示することを特徴とする慣性計測装置。
  2. 請求項に記載の慣性計測装置において、
    前記第1判定基準はVC(Vibration Criteria)の判定基準であり、前記第2判定基準はユーザーが設定した判定基準であることを特徴とする慣性計測装置。
  3. 少なくとも1つの慣性センサーを有するセンサーユニットと、
    前記慣性センサーの検出情報に基づく表示を行う表示部と、
    前記表示部の表示モードを切り替えるためのモード切り替えスイッチと、
    前記表示部が設けられる基板と、
    前記センサーユニットと前記基板とを着脱可能に固定する固定部材である複数の柱状部材と、
    を含み、
    前記複数の柱状部材が、前記基板に設けられる複数の穴部、及び前記センサーユニットに設けられる複数の穴部に嵌合することで、前記センサーユニットと前記基板とが着脱可能に固定されることを特徴とする慣性計測装置。
  4. 請求項3に記載の慣性計測装置において、
    前記複数の柱状部材はネジ部材であることを特徴とする慣性計測装置。
  5. 請求項3又は4に記載の慣性計測装置において、
    慣性計測装置を取り付け面に取り付けるためのベースを含み、
    前記センサーユニットは、前記ベースと前記基板との間に設けられ、
    前記ベースは、前記複数の柱状部材により前記センサーユニットに固定されることを特徴とする慣性計測装置。
  6. 請求項1乃至5のいずれか一項に記載の慣性計測装置において、
    慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、前記第1方向に直交する方向を第2方向としたときに、
    前記モード切り替えスイッチは、前記第2方向において可動する可動部を有し、
    前記モード切り替えスイッチの前記可動部の可動により、前記表示部の表示モードの切り替えが指示されることを特徴とする慣性計測装置。
  7. 請求項に記載の慣性計測装置において、
    前記モード切り替えスイッチの前記可動部は、非押下状態においては、前記第1方向での平面視において前記センサーユニットの辺から突出していることを特徴とする慣性計測装置。
  8. 請求項1乃至5のいずれか一項に記載の慣性計測装置において、
    慣性計測装置の計測を開始するための計測開始スイッチを含むことを特徴とする慣性計測装置。
  9. 請求項に記載の慣性計測装置において、
    慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、前記第1方向に直交する方向を第2方向としたときに、
    前記計測開始スイッチは、前記第2方向において可動する可動部を有し、
    前記計測開始スイッチの前記可動部の可動により、慣性計測装置の計測開始が指示されることを特徴とする慣性計測装置。
  10. 請求項1乃至5のいずれか一項に記載の慣性計測装置において、
    メモリーと、
    慣性計測の計測基準情報を前記メモリーに記憶させる指示を行うためのティーチスイッチを含むことを特徴とする慣性計測装置。
  11. 請求項10に記載の慣性計測装置において、
    慣性計測装置から慣性計測装置の取り付け面に向かう方向を第1方向とし、前記第1方向に直交する方向を第2方向としたときに、
    前記ティーチスイッチは、前記第2方向において可動する可動部を有し、
    前記ティーチスイッチの前記可動部の可動により、前記計測基準情報の前記メモリーへの記憶が指示されることを特徴とする慣性計測装置。
  12. 請求項1乃至11のいずれか一項に記載の慣性計測装置において、
    前記モード切り替えスイッチによって、前記検出情報に基づき表示される情報の単位が切り替わることを特徴とする慣性計測装置。
  13. 請求項1乃至12のいずれか一項に記載の慣性計測装置において、
    前記検出情報に基づく処理を行う処理部を含み、
    前記処理部は、検出対象の振動情報の解析処理を行い、
    前記表示部は、前記解析処理の結果情報を表示することを特徴とする慣性計測装置。
  14. 請求項1乃至13のいずれか一項に記載の慣性計測装置において、
    前記センサーユニットは、
    少なくとも1つの前記慣性センサーとして、少なくとも1つの加速度センサーが設けられるセンサー基板と、
    前記センサー基板を収容するケースと、
    を含むことを特徴とする慣性計測装置。
  15. 請求項1乃至13のいずれか一項に記載の慣性計測装置において、
    前記センサーユニットは、
    少なくとも1つの前記慣性センサーとして、少なくとも1つの加速度センサーと少なくとも1つの角速度センサーが設けられるセンサー基板と、
    前記センサー基板を収容するケースと、
    を含むことを特徴とする慣性計測装置。
JP2019178184A 2019-09-30 2019-09-30 慣性計測装置 Active JP7383956B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019178184A JP7383956B2 (ja) 2019-09-30 2019-09-30 慣性計測装置
CN202011034961.6A CN112577486A (zh) 2019-09-30 2020-09-27 惯性测量装置
US17/034,287 US11391570B2 (en) 2019-09-30 2020-09-28 Inertial measurement unit
JP2023189934A JP2024010180A (ja) 2019-09-30 2023-11-07 慣性計測装置及び表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178184A JP7383956B2 (ja) 2019-09-30 2019-09-30 慣性計測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023189934A Division JP2024010180A (ja) 2019-09-30 2023-11-07 慣性計測装置及び表示方法

Publications (2)

Publication Number Publication Date
JP2021056054A JP2021056054A (ja) 2021-04-08
JP7383956B2 true JP7383956B2 (ja) 2023-11-21

Family

ID=75119790

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019178184A Active JP7383956B2 (ja) 2019-09-30 2019-09-30 慣性計測装置
JP2023189934A Pending JP2024010180A (ja) 2019-09-30 2023-11-07 慣性計測装置及び表示方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023189934A Pending JP2024010180A (ja) 2019-09-30 2023-11-07 慣性計測装置及び表示方法

Country Status (3)

Country Link
US (1) US11391570B2 (ja)
JP (2) JP7383956B2 (ja)
CN (1) CN112577486A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340254B2 (en) * 2019-09-30 2022-05-24 Seiko Epson Corporation Inertial measurement unit having a sensor unit that is detachable from a substrate
JP2022050915A (ja) * 2020-09-18 2022-03-31 セイコーエプソン株式会社 慣性計測装置
US20230236011A1 (en) * 2022-01-24 2023-07-27 Hiwin Technologies Corp. Identification System and Method for Identifying Installation Positions of Sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198051A (ja) 2007-02-15 2008-08-28 Seiko Instruments Inc 電子式歩数計
JP2009162641A (ja) 2008-01-08 2009-07-23 Hitachi Cable Ltd 同軸上複数ジャイロ及びそのドリフト低減化方法
JP2009223744A (ja) 2008-03-18 2009-10-01 Omron Healthcare Co Ltd 歩数計
US20170316683A1 (en) 2015-02-13 2017-11-02 Ideation Systems Llc Modular Sensor Systems
JP2019128304A (ja) 2018-01-26 2019-08-01 セイコーエプソン株式会社 物理量センサー、慣性計測ユニット、電子機器、携帯型電子機器、および移動体

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561651Y2 (ja) * 1988-10-31 1998-02-04 カシオ計算機株式会社 歩数計
CN2070932U (zh) * 1990-06-21 1991-02-06 浙江省奉化县大桥光亚仪表厂 电子计数器
JP3295005B2 (ja) 1996-11-22 2002-06-24 東光電気株式会社 密閉監視装置
JP2002133540A (ja) 2000-10-20 2002-05-10 Fujitsu General Ltd 防犯監視装置
DE20320622U1 (de) * 2003-12-29 2004-12-23 Kramer, Tobias Messvorrichtung
CN2791609Y (zh) * 2005-04-28 2006-06-28 林东昌 环境测试仪器振动及转速二合一结构
CN2802600Y (zh) * 2005-06-28 2006-08-02 中国海洋大学 一种多功能输运状态监测记录装置
JP5042052B2 (ja) * 2007-09-25 2012-10-03 セイコーインスツル株式会社 電子歩数計
JP2009115538A (ja) 2007-11-05 2009-05-28 Fuji Electric Systems Co Ltd 無線センサによる振動監視装置
JP4991822B2 (ja) * 2009-10-19 2012-08-01 パナソニック株式会社 身体活動測定装置
CN202710601U (zh) * 2012-08-23 2013-01-30 四川农业大学 多功能加速度运动测量仪
JP5981817B2 (ja) 2012-09-20 2016-08-31 リオン株式会社 振動監視システム及び環境監視システム
JP6308738B2 (ja) * 2012-10-25 2018-04-11 セイコーインスツル株式会社 ウォッチ、表示制御方法およびプログラム
CN103983805A (zh) * 2014-05-27 2014-08-13 成都微英威诺环境监控设备有限公司 一种针对贵重货物运输途中振动监测的加速度记录装置
WO2016009635A1 (ja) * 2014-07-16 2016-01-21 セイコーエプソン株式会社 センサーユニット、電子機器、および移動体
JP2016033473A (ja) * 2014-07-31 2016-03-10 セイコーエプソン株式会社 位置算出方法及び位置算出装置
WO2016146817A1 (en) * 2015-03-19 2016-09-22 Meloq Ab Method and device for anatomical angle measurement
JP2016205868A (ja) 2015-04-16 2016-12-08 株式会社荏原製作所 振動監視装置
CN105698814B (zh) * 2016-03-24 2020-01-31 爱国者电子科技有限公司 一种佩戴式电子装置及其判断用户状态的方法
JP6870635B2 (ja) * 2018-03-08 2021-05-12 セイコーエプソン株式会社 慣性計測装置、移動体、携帯型電子機器、及び電子機器
JP7119455B2 (ja) * 2018-03-19 2022-08-17 セイコーエプソン株式会社 センサーモジュール、計測システム、電子機器、及び移動体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008198051A (ja) 2007-02-15 2008-08-28 Seiko Instruments Inc 電子式歩数計
JP2009162641A (ja) 2008-01-08 2009-07-23 Hitachi Cable Ltd 同軸上複数ジャイロ及びそのドリフト低減化方法
JP2009223744A (ja) 2008-03-18 2009-10-01 Omron Healthcare Co Ltd 歩数計
US20170316683A1 (en) 2015-02-13 2017-11-02 Ideation Systems Llc Modular Sensor Systems
JP2019128304A (ja) 2018-01-26 2019-08-01 セイコーエプソン株式会社 物理量センサー、慣性計測ユニット、電子機器、携帯型電子機器、および移動体

Also Published As

Publication number Publication date
US20210095961A1 (en) 2021-04-01
US11391570B2 (en) 2022-07-19
JP2024010180A (ja) 2024-01-23
CN112577486A (zh) 2021-03-30
JP2021056054A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP2024010180A (ja) 慣性計測装置及び表示方法
US8514177B2 (en) Transparent touch surface keyboard
JP2018534534A (ja) ウォッチケースのためのディスプレイ構成
CN110917611B (zh) 游戏控制器
US20160011709A1 (en) Portable electronic device for information display
EP2661057A1 (en) Mounting structure for circuit boards
WO2015056376A1 (ja) 入力装置及びこれを備えた電子機器
EP3642701B1 (en) Electronic device and method for controlling touch sensing signals and storage medium
EP2963527B1 (en) Tactile sense presentation device
US20100177043A1 (en) Flip-operation mouse device
KR20200056722A (ko) 외부 충격을 감지하는 방법 및 그 전자 장치
CN110727210A (zh) 一种电子设备
JP7400409B2 (ja) 慣性計測装置
KR20210054875A (ko) 외부 입력을 감지하는 센서를 포함하는 전자 장치
CN111843988B (zh) 示教装置及机器人系统
JP2021056055A (ja) 慣性計測装置
US11340254B2 (en) Inertial measurement unit having a sensor unit that is detachable from a substrate
US7865329B2 (en) Electronic pedometer
US20230266127A1 (en) Inertial Measurement Device
US20230267092A1 (en) Electronic Device And Method Of Processing Electronic Device
JP6171403B2 (ja) 電子ペン
KR20200134817A (ko) 하우징의 입력에 대응하는 피드백을 제공하는 전자 장치
JPWO2018146952A1 (ja) 入力装置
KR101000435B1 (ko) 차량용 히터 컨트롤러
KR102353510B1 (ko) 센서를 구비한 스마트 컨트롤러

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7383956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150