JP7374320B2 - 分離膜複合体、分離膜複合体の製造方法および分離方法 - Google Patents

分離膜複合体、分離膜複合体の製造方法および分離方法 Download PDF

Info

Publication number
JP7374320B2
JP7374320B2 JP2022527516A JP2022527516A JP7374320B2 JP 7374320 B2 JP7374320 B2 JP 7374320B2 JP 2022527516 A JP2022527516 A JP 2022527516A JP 2022527516 A JP2022527516 A JP 2022527516A JP 7374320 B2 JP7374320 B2 JP 7374320B2
Authority
JP
Japan
Prior art keywords
separation membrane
support
separation
zeolite
zeolite membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022527516A
Other languages
English (en)
Other versions
JPWO2021240917A1 (ja
JPWO2021240917A5 (ja
Inventor
克哉 清水
航 小林
憲一 野田
真紀子 市川
直人 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2021240917A1 publication Critical patent/JPWO2021240917A1/ja
Publication of JPWO2021240917A5 publication Critical patent/JPWO2021240917A5/ja
Application granted granted Critical
Publication of JP7374320B2 publication Critical patent/JP7374320B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/106Membranes in the pores of a support, e.g. polymerized in the pores or voids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • B01D2256/245Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、分離膜複合体、分離膜複合体の製造方法、および、当該分離膜複合体を利用した分離方法に関する。
[関連出願の参照]
本願は、2020年5月25日に出願された日本国特許出願JP2020-090315からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
現在、多孔質支持体上にゼオライト膜を形成してゼオライト膜複合体とすることにより、ゼオライトの分子篩作用を利用した特定の分子の分離や分子の吸着等の用途について、様々な研究や開発が行われている。
例えば、ゼオライト膜複合体に混合ガス(例えば、COとCHとの混合ガス)を供給し、高透過性物質(例えば、CO)を透過させて混合ガスから分離させる分離処理が知られている。このとき、ゼオライト膜に存在する欠陥から低透過性物質(例えば、CH)が高透過性物質と共に漏出することにより、分離比(すなわち、高透過性物質の透過速度を低透過性物質の透過速度で除算した値)が低下することがある。そこで、国際公開第2014/157701号公報(文献1)および国際公開第2011/105511号公報(文献2)では、欠陥の少ないゼオライト膜を製造する方法が提案されている。
ところが、ゼオライト膜において単純に欠陥を少なくした場合、供給側圧力と透過側圧力との差が小さい低差圧条件下における混合ガスの分離においては高い分離比が得られても、供給側圧力と透過側圧力との差が大きい高差圧条件下において、分離比低下の抑制が困難な場合がある。また、ゼオライト膜の欠陥を少なくして分離比を増大させようとすると、ゼオライト膜を厚くせざるを得ず、ゼオライト膜における高透過性物質の透過速度が低下するおそれがある。
本発明は、分離膜複合体に向けられており、低差圧条件下だけでなく、高差圧条件下においても高い分離比を実現することを目的としている。
本発明の好ましい一の形態に係る分離膜複合体は、多孔質の支持体と、前記支持体上に形成された分離膜と、を備える。前記分離膜は、小空隙を含む。前記分離膜の表面積をS、小空隙の1つ当たりの面積をS、大空隙の1つ当たりの面積をSと表すとき、前記小空隙の存在率を表す小空隙指数I=(Σ(S 1.5))/(S 1.5)が、10x10-15以上であり、前記大空隙の存在率を表す大空隙指数I=(Σ(S ))/(S )が、200x10-22未満である。
これにより、高い分離比を実現することができる。
好ましくは、前記大空隙指数Iが、100x10-22未満である。
好ましくは、前記小空隙指数Iが、20x10-15以上である。
好ましくは、50体積%のCOおよび50体積%のCHを含む25℃の混合ガスを供給した場合のCHの透過速度について、供給側圧力が8.0MPaG、透過側圧力が0.0MPaGである場合の前記透過速度は、前記供給側圧力が0.3MPaG、前記透過側圧力が0.0MPaGである場合の前記透過速度の1.9倍未満である。
好ましくは、前記分離膜はゼオライト膜である。
好ましくは、前記ゼオライト膜を構成するゼオライトの最大員環数は8以下である。
本発明は、分離膜複合体の製造方法にも向けられている。本発明の好ましい一の形態に係る分離膜複合体の製造方法は、a)焼成により形成された多孔質の支持体を準備する工程と、b)前記支持体を前処理温度にて加熱する工程と、c)前記b)工程よりも後に、前記支持体を流体で洗浄する工程と、d)前記c)工程よりも後に、前記支持体上に種結晶を付着させる工程と、e)前記種結晶が付着した前記支持体を原料溶液に浸漬し、水熱合成により前記種結晶からゼオライトを成長させて前記支持体上に分離膜を形成する工程と、を備える。前記前処理温度は、400℃以上、かつ、前記a)工程における前記支持体の焼成温度の80%未満である。これにより、高い分離比を実現することができる。
本発明は、分離方法にも向けられている。本発明の好ましい一の形態に係る分離方法は、a)上述の分離膜複合体を準備する工程と、b)複数種類のガスまたは液体を含む混合物質を前記分離膜複合体に供給し、前記混合物質中の透過性が高い物質を、前記分離膜複合体を透過させることにより他の物質から分離する工程と、を備える。これにより、高い分離比を実現することができる。
好ましくは、前記混合物質は、水素、ヘリウム、窒素、酸素、水、水蒸気、一酸化炭素、二酸化炭素、窒素酸化物、アンモニア、硫黄酸化物、硫化水素、フッ化硫黄、水銀、アルシン、シアン化水素、硫化カルボニル、C1~C8の炭化水素、有機酸、アルコール、メルカプタン類、エステル、エーテル、ケトンおよびアルデヒドのうち、1種類以上の物質を含む。
上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
一の実施の形態に係る分離膜複合体の断面図である。 分離膜複合体の一部を拡大して示す断面図である。 分離装置を示す図である。 混合物質の分離の流れを示す図である。 ゼオライト膜の表面の一部を示す概念図である。 分離膜複合体の製造の流れを示す図である。 供給側圧力と透過側圧力との合計圧力と透過速度との関係を示す図である。
図1は、本発明の一の実施の形態に係る分離膜複合体1の断面図である。図2は、分離膜複合体1の一部を拡大して示す断面図である。分離膜複合体1は、多孔質の支持体11と、支持体11上に形成された分離膜であるゼオライト膜12とを備える。ゼオライト膜12とは、少なくとも、支持体11の表面にゼオライトが膜状に形成されたものであって、有機膜中にゼオライト粒子を分散させただけのものは含まない。また、ゼオライト膜12は、構造や組成が異なる2種類以上のゼオライトを含んでいてもよい。図1では、ゼオライト膜12を太線にて描いている。図2では、ゼオライト膜12に平行斜線を付す。また、図2では、ゼオライト膜12の厚さを実際よりも厚く描いている。なお、分離膜複合体1では、ゼオライト膜12以外の分離膜が設けられてもよい。
支持体11はガスおよび液体を透過可能な多孔質部材である。図1に示す例では、支持体11は、一体成形された一繋がりの柱状の本体に、長手方向(すなわち、図1中の左右方向)にそれぞれ延びる複数の貫通孔111が設けられたモノリス型支持体である。図1に示す例では、支持体11は略円柱状である。各貫通孔111(すなわち、セル)の長手方向に垂直な断面は、例えば略円形である。図1では、貫通孔111の径を実際よりも大きく、貫通孔111の数を実際よりも少なく描いている。ゼオライト膜12は、貫通孔111の内側面上に形成され、貫通孔111の内側面を略全面に亘って被覆する。
支持体11の長さ(すなわち、図1中の左右方向の長さ)は、例えば10cm~200cmである。支持体11の外径は、例えば0.5cm~30cmである。隣接する貫通孔111の中心軸間の距離は、例えば0.3mm~10mmである。支持体11の表面粗さ(Ra)は、例えば0.1μm~5.0μmであり、好ましくは0.2μm~2.0μmである。なお、支持体11の形状は、例えば、ハニカム状、平板状、管状、円筒状、円柱状または多角柱状等であってもよい。支持体11の形状が管状または円筒状である場合、支持体11の厚さは、例えば0.1mm~10mmである。
支持体11の材料は、表面にゼオライト膜12を形成する工程において化学的安定性を有するのであれば、様々な物質(例えば、セラミックまたは金属)が採用可能である。本実施の形態では、支持体11はセラミック焼結体により形成される。支持体11の材料として選択されるセラミック焼結体としては、例えば、アルミナ、シリカ、ムライト、ジルコニア、チタニア、イットリア、窒化ケイ素、炭化ケイ素等が挙げられる。本実施の形態では、支持体11は、アルミナ、シリカおよびムライトのうち、少なくとも1種類を含む。
支持体11は、無機結合材を含んでいてもよい。無機結合材としては、チタニア、ムライト、易焼結性アルミナ、シリカ、ガラスフリット、粘土鉱物、易焼結性コージェライトのうち少なくとも1つを用いることができる。
支持体11の平均細孔径は、例えば0.01μm~70μmであり、好ましくは0.05μm~25μmである。ゼオライト膜12が形成される表面近傍における支持体11の平均細孔径は0.01μm~1μmであり、好ましくは0.05μm~0.5μmである。平均細孔径は、例えば、水銀ポロシメータ、パームポロシメータまたはナノパームポロシメータにより測定することができる。支持体11の表面および内部を含めた全体における細孔径の分布について、D5は例えば0.01μm~50μmであり、D50は例えば0.05μm~70μmであり、D95は例えば0.1μm~2000μmである。ゼオライト膜12が形成される表面近傍における支持体11の気孔率は、例えば20%~60%である。
支持体11は、例えば、平均細孔径が異なる複数の層が厚さ方向に積層された多層構造を有する。ゼオライト膜12が形成される表面を含む表面層における平均細孔径および焼結粒径は、表面層以外の層における平均細孔径および焼結粒径よりも小さい。支持体11の表面層の平均細孔径は、例えば0.01μm~1μmであり、好ましくは0.05μm~0.5μmである。支持体11が多層構造を有する場合、各層の材料は上記のものを用いることができる。多層構造を形成する複数の層の材料は、同じであってもよく、異なっていてもよい。
ゼオライト膜12は、微細孔を有する多孔膜である。ゼオライト膜12は、複数種類の物質が混合した混合物質から、分子篩作用を利用して特定の物質を分離する分離膜として利用可能である。ゼオライト膜12では、当該特定の物質に比べて他の物質が透過しにくい。換言すれば、ゼオライト膜12の当該他の物質の透過量は、上記特定の物質の透過量に比べて小さい。
ゼオライト膜12の厚さは、例えば0.05μm~30μmであり、好ましくは0.1μm~20μmであり、さらに好ましくは0.5μm~10μmである。ゼオライト膜12を厚くすると分離性能が向上する。ゼオライト膜12を薄くすると透過速度が増大する。ゼオライト膜12の表面粗さ(Ra)は、例えば5μm以下であり、好ましくは2μm以下であり、より好ましくは1μm以下であり、さらに好ましくは0.5μm以下である。
ゼオライト膜12に含まれるゼオライト結晶の細孔径(以下、単に「ゼオライト膜12の細孔径」とも呼ぶ。)は、0.2nm以上かつ0.8nm以下であり、より好ましくは、0.3nm以上かつ0.7nm以下であり、さらに好ましくは、0.3nm以上かつ0.45nm以下である。ゼオライト膜12の細孔径が0.2nm未満の場合、ゼオライト膜を透過する物質の量が少なくなる場合があり、ゼオライト膜12の細孔径が0.8nmよりも大きい場合、ゼオライト膜による物質の選択性が不十分となる場合がある。ゼオライト膜12の細孔径とは、ゼオライト膜12を構成するゼオライト結晶の細孔の最大直径(すなわち、酸素原子間距離の最大値である長径)と略垂直な方向における細孔の直径(すなわち、短径)である。ゼオライト膜12の細孔径は、ゼオライト膜12が配設される支持体11の表面における平均細孔径よりも小さい。
ゼオライト膜12を構成するゼオライトの最大員環数がnの場合、n員環細孔の短径をゼオライト膜12の細孔径とする。また、ゼオライトが、nが等しい複数種のn員環細孔を有する場合には、最も大きい短径を有するn員環細孔の短径をゼオライト膜12の細孔径とする。なお、n員環とは、細孔を形成する骨格を構成する酸素原子の数がn個であって、各酸素原子が後述のT原子と結合して環状構造をなす部分のことである。また、n員環とは、貫通孔(チャンネル)を形成しているものをいい、貫通孔を形成していないものは含まない。n員環細孔とは、n員環により形成される細孔である。選択性能向上の観点から、上述のゼオライト膜12に含まれるゼオライトの最大員環数は、8以下(例えば、6または8)であることが好ましい。
ゼオライト膜の細孔径は当該ゼオライトの骨格構造によって一義的に決定され、国際ゼオライト学会の“Database of Zeolite Structures”[online]、インターネット<URL:http://www.iza-structure.org/databases/>に開示されている値から求めることができる。
ゼオライト膜12を構成するゼオライトの種類は特に限定されないが、例えば、AEI型、AEN型、AFN型、AFV型、AFX型、BEA型、CHA型、DDR型、ERI型、ETL型、FAU型(X型、Y型)、GIS型、IHW型、LEV型、LTA型、LTJ型、MEL型、MFI型、MOR型、PAU型、RHO型、SOD型、SAT型等のゼオライトであってもよい。当該ゼオライトが8員環ゼオライトである場合、例えば、AEI型、AFN型、AFV型、AFX型、CHA型、DDR型、ERI型、ETL型、GIS型、IHW型、LEV型、LTA型、LTJ型、RHO型、SAT型等のゼオライトであってもよい。本実施の形態では、ゼオライト膜12を構成するゼオライトの種類は、DDR型のゼオライトである。
ゼオライト膜12を構成するゼオライトは、T原子(すなわち、ゼオライトを構成する酸素四面体(TO)の中心に位置する原子)として、例えばアルミニウム(Al)を含む。ゼオライト膜12を構成するゼオライトとしては、T原子がケイ素(Si)のみ、もしくは、SiとAlとからなるゼオライト、T原子がAlとリン(P)とからなるAlPO型のゼオライト、T原子がSiとAlとPとからなるSAPO型のゼオライト、T原子がマグネシウム(Mg)とSiとAlとPとからなるMAPSO型のゼオライト、T原子が亜鉛(Zn)とSiとAlとPとからなるZnAPSO型のゼオライト等を用いることができる。T原子の一部は、他の元素に置換されていてもよい。
ゼオライト膜12は、例えば、Siを含む。ゼオライト膜12は、例えば、Si、AlおよびPのうちいずれか2つ以上を含んでいてもよい。ゼオライト膜12は、アルカリ金属を含んでいてもよい。当該アルカリ金属は、例えば、ナトリウム(Na)またはカリウム(K)である。ゼオライト膜12がSi原子およびAl原子を含む場合、ゼオライト膜12におけるSi/Al比は、例えば1以上かつ10万以下である。Si/Al比は、ゼオライト膜12に含有されるAl元素に対するSi元素のモル比率である。当該Si/Al比は、好ましくは5以上、より好ましくは20以上、さらに好ましくは100以上であり、高ければ高いほど好ましい。後述する原料溶液中のSi源とAl源との配合割合等を調整することにより、ゼオライト膜12におけるSi/Al比を調整することができる。
次に、図3および図4を参照しつつ、分離膜複合体1を利用した混合物質の分離について説明する。図3は、分離装置2を示す図である。図4は、分離装置2による混合物質の分離の流れを示す図である。
分離装置2では、複数種類の流体(すなわち、ガスまたは液体)を含む混合物質を分離膜複合体1に供給し、混合物質中の透過性が高い物質を、分離膜複合体1を透過させることにより混合物質から分離させる。分離装置2における分離は、例えば、透過性が高い物質(以下、「高透過性物質」とも呼ぶ。)を混合物質から抽出する目的で行われてもよく、透過性が低い物質(以下、「低透過性物質」とも呼ぶ。)を濃縮する目的で行われてもよい。
当該混合物質(すなわち、混合流体)は、複数種類のガスを含む混合ガスであってもよく、複数種類の液体を含む混合液であってもよく、ガスおよび液体の双方を含む気液二相流体であってもよい。
混合物質は、例えば、水素(H)、ヘリウム(He)、窒素(N)、酸素(O)、水(HO)、水蒸気(HO)、一酸化炭素(CO)、二酸化炭素(CO)、窒素酸化物、アンモニア(NH)、硫黄酸化物、硫化水素(HS)、フッ化硫黄、水銀(Hg)、アルシン(AsH)、シアン化水素(HCN)、硫化カルボニル(COS)、C1~C8の炭化水素、有機酸、アルコール、メルカプタン類、エステル、エーテル、ケトンおよびアルデヒドのうち、1種類以上の物質を含む。上述の高透過性物質は、例えば、H、N、O、HO、COおよびHSのうち1種類以上の物質である。
窒素酸化物とは、窒素と酸素の化合物である。上述の窒素酸化物は、例えば、一酸化窒素(NO)、二酸化窒素(NO)、亜酸化窒素(一酸化二窒素ともいう。)(NO)、三酸化二窒素(N)、四酸化二窒素(N)、五酸化二窒素(N)等のNO(ノックス)と呼ばれるガスである。
硫黄酸化物とは、硫黄と酸素の化合物である。上述の硫黄酸化物は、例えば、二酸化硫黄(SO)、三酸化硫黄(SO)等のSO(ソックス)と呼ばれるガスである。
フッ化硫黄とは、フッ素と硫黄の化合物である。上述のフッ化硫黄は、例えば、二フッ化二硫黄(F-S-S-F,S=SF)、二フッ化硫黄(SF)、四フッ化硫黄(SF)、六フッ化硫黄(SF)または十フッ化二硫黄(S10)等である。
C1~C8の炭化水素とは、炭素が1個以上かつ8個以下の炭化水素である。C3~C8の炭化水素は、直鎖化合物、側鎖化合物および環式化合物のうちいずれであってもよい。また、C2~C8の炭化水素は、飽和炭化水素(すなわち、2重結合および3重結合が分子中に存在しないもの)、不飽和炭化水素(すなわち、2重結合および/または3重結合が分子中に存在するもの)のどちらであってもよい。C1~C4の炭化水素は、例えば、メタン(CH)、エタン(C)、エチレン(C)、プロパン(C)、プロピレン(C)、ノルマルブタン(CH(CHCH)、イソブタン(CH(CH)、1-ブテン(CH=CHCHCH)、2-ブテン(CHCH=CHCH)またはイソブテン(CH=C(CH)である。
上述の有機酸は、カルボン酸またはスルホン酸等である。カルボン酸は、例えば、ギ酸(CH)、酢酸(C)、シュウ酸(C)、アクリル酸(C)または安息香酸(CCOOH)等である。スルホン酸は、例えばエタンスルホン酸(CS)等である。当該有機酸は、鎖式化合物であってもよく、環式化合物であってもよい。
上述のアルコールは、例えば、メタノール(CHOH)、エタノール(COH)、イソプロパノール(2-プロパノール)(CHCH(OH)CH)、エチレングリコール(CH(OH)CH(OH))またはブタノール(COH)等である。
メルカプタン類とは、水素化された硫黄(SH)を末端に持つ有機化合物であり、チオール、または、チオアルコールとも呼ばれる物質である。上述のメルカプタン類は、例えば、メチルメルカプタン(CHSH)、エチルメルカプタン(CSH)または1-プロパンチオール(CSH)等である。
上述のエステルは、例えば、ギ酸エステルまたは酢酸エステル等である。
上述のエーテルは、例えば、ジメチルエーテル((CHO)、メチルエチルエーテル(COCH)またはジエチルエーテル((CO)等である。
上述のケトンは、例えば、アセトン((CHCO)、メチルエチルケトン(CCOCH)またはジエチルケトン((CCO)等である。
上述のアルデヒドは、例えば、アセトアルデヒド(CHCHO)、プロピオンアルデヒド(CCHO)またはブタナール(ブチルアルデヒド)(CCHO)等である。
以下の説明では、分離装置2により分離される混合物質は、複数種類のガスを含む混合ガスであるものとして説明する。
分離装置2は、分離膜複合体1と、封止部21と、外筒22と、2つのシール部材23と、供給部26と、第1回収部27と、第2回収部28とを備える。分離膜複合体1、封止部21およびシール部材23は、外筒22内に収容される。供給部26、第1回収部27および第2回収部28は、外筒22の外部に配置されて外筒22に接続される。
封止部21は、支持体11の長手方向(すなわち、図3中の左右方向)の両端部に取り付けられ、支持体11の長手方向両端面、および、当該両端面近傍の外側面を被覆して封止する部材である。封止部21は、支持体11の当該両端面からのガスおよび液体の流入および流出を防止する。封止部21は、例えば、ガラスまたは樹脂により形成された板状または膜状の部材である。封止部21の材料および形状は、適宜変更されてよい。なお、封止部21には、支持体11の複数の貫通孔111と重なる複数の開口が設けられているため、支持体11の各貫通孔111の長手方向両端は、封止部21により被覆されていない。したがって、当該両端から貫通孔111へのガスおよび液体の流入および流出は可能である。
外筒22の形状は特に限定されないが、例えば、略円筒状の筒状部材である。外筒22は、例えばステンレス鋼または炭素鋼により形成される。外筒22の長手方向は、分離膜複合体1の長手方向に略平行である。外筒22の長手方向の一方の端部(すなわち、図3中の左側の端部)には供給ポート221が設けられ、他方の端部には第1排出ポート222が設けられる。外筒22の側面には、第2排出ポート223が設けられる。供給ポート221には、供給部26が接続される。第1排出ポート222には、第1回収部27が接続される。第2排出ポート223には、第2回収部28が接続される。外筒22の内部空間は、外筒22の周囲の空間から隔離された密閉空間である。
2つのシール部材23は、分離膜複合体1の長手方向両端部近傍において、分離膜複合体1の外側面と外筒22の内側面との間に、全周に亘って配置される。各シール部材23は、ガスおよび液体が透過不能な材料により形成された略円環状の部材である。シール部材23は、例えば、可撓性を有する樹脂により形成されたOリングである。シール部材23は、分離膜複合体1の外側面および外筒22の内側面に全周に亘って密着する。図3に示す例では、シール部材23は、封止部21の外側面に密着し、封止部21を介して分離膜複合体1の外側面に間接的に密着する。シール部材23と分離膜複合体1の外側面との間、および、シール部材23と外筒22の内側面との間は、シールされており、ガスおよび液体の通過はほとんど、または、全く不能である。
供給部26は、混合ガスを、供給ポート221を介して外筒22の内部空間に供給する。供給部26は、例えば、外筒22に向けて混合ガスを圧送するブロワまたはポンプ等の圧送機構を備える。当該圧送機構は、例えば、外筒22に供給する混合ガスの温度および圧力をそれぞれ調節する温度調節部および圧力調節部を備える。第1回収部27および第2回収部28は、例えば、外筒22から導出されたガスを貯留する貯留容器、または、当該ガスを移送するブロワまたはポンプを備える。
混合ガスの分離が行われる際には、まず、分離膜複合体1が準備される(図4:ステップS11)。具体的には、分離膜複合体1が外筒22の内部に取り付けられる。続いて、供給部26により、ゼオライト膜12に対する透過性が異なる複数種類のガスを含む混合ガスが、矢印251にて示すように、外筒22の内部に供給される。例えば、混合ガスの主成分は、COおよびCHである。混合ガスには、COおよびCH以外のガスが含まれていてもよい。供給部26から外筒22の内部に供給される混合ガスの圧力(すなわち、供給側圧力)は、例えば、0.1MPaG~20.0MPaGである。供給部26から供給される混合ガスの温度は、例えば、10℃~250℃である。
供給部26から外筒22に供給された混合ガスは、分離膜複合体1の図中の左端から、支持体11の各貫通孔111内に導入される。混合ガス中の透過性が高いガスである高透過性物質は、各貫通孔111の内側面上に設けられたゼオライト膜12、および、支持体11を透過して支持体11の外側面から導出される。これにより、高透過性物質(例えば、CO)が、混合ガス中の透過性が低いガスである低透過性物質(例えば、CH)から分離される(ステップS12)。
支持体11の外側面から導出されたガス(以下、「透過物質」と呼ぶ。)は、矢印253にて示すように、第2排出ポート223を介して第2回収部28へと導かれ、第2回収部28により回収される。第2回収部28により回収されるガスの圧力(すなわち、透過側圧力)は、例えば、0.0MPaGである。透過物質には、上述の高透過性物質以外に、ゼオライト膜12を透過した低透過性物質が含まれていてもよい。
また、混合ガスのうち、ゼオライト膜12および支持体11を透過した物質を除くガス(以下、「不透過物質」と呼ぶ。)は、支持体11の各貫通孔111を図中の左側から右側へと通過し、矢印252にて示すように、第1排出ポート222を介して第1回収部27により回収される。第1回収部27により回収されるガスの圧力は、例えば、導入圧と略同じ圧力である。不透過物質には、上述の低透過性物質以外に、ゼオライト膜12を透過しなかった高透過性物質が含まれていてもよい。第1回収部27により回収された不透過物質は、例えば、供給部26に循環されて、外筒22内へと再度供給されてもよい。
上述のように、従来、ゼオライト膜12には、ゼオライトの細孔を透過しにくい低透過性物質が透過可能な空隙(欠陥とも呼ばれる。)が存在する。このため、混合ガスの分離において、ゼオライト膜12を透過した透過物質に、当該空隙を透過した低透過性物質が混入する。換言すれば、当該空隙により、ゼオライト膜12の分離比(すなわち、高透過性物質の透過速度を低透過性物質の透過速度で除算した値)が低下する。このような分離比の低下は、供給側圧力と透過側圧力との差が比較的大きい高差圧条件下において顕著である。
本願発明者は、鋭意検討の結果、上述のゼオライト膜12の空隙は、分離比の低下に対する影響度が異なる2種類の空隙に分類し得る、という知見を得た。具体的には、ゼオライト膜12の空隙は、供給側圧力と透過側圧力との差が比較的小さい低差圧条件下(例えば、差圧0.3MPa)においても、上述の高差圧条件下(例えば、差圧8.0MPa)においても、低透過性物質の透過速度が略同じである第1の空隙と、高差圧条件下における透過速度が低差圧条件下における透過速度よりも有意に大きい第2の空隙と、に分類可能である。以下、第1の空隙を「小空隙」と呼び、第2の空隙を「大空隙」と呼ぶ。また、本願では、低差圧条件下とは、上記差圧(すなわち、供給側圧力から透過側圧力を減算した値)が1MPa未満である場合を意味し、高差圧条件下とは、当該差圧が1MPa以上である場合を意味する。
図5は、ゼオライト膜12の表面の一部を概念的に示す図である。図5では、ゼオライト膜12の表面に平行斜線を付す。図5に示す例では、ゼオライト膜12には、複数の小空隙121と、複数の大空隙122とが存在する。小空隙121では、ガス拡散機構がクヌッセン(Knudsen)流れとなり、ガスの透過速度F(mol/(m・Pa・sec))は以下の数1にて表される。一方、大空隙122では、ガス拡散機構がポワズイユ(Poiseuille)流れとなり、ガスの透過速度F(mol/(m・Pa・sec))は以下の数2にて表される。ガスの透過速度F,Fは、単位面積および単位差圧当たりのガスの透過流量である。
Figure 0007374320000001
Figure 0007374320000002
数1中では、rは1つの小空隙121の半径(m)、Lは小空隙121の代表長さ(すなわち、ゼオライト膜12の膜厚)(m)、Mはガスのモル質量(kg/mol)、Rは気体定数(J/(K・mol))、Tは絶対温度(K)である。小空隙121の半径rは、ゼオライト膜12の表面を、当該表面に垂直な方向から見た状態において、小空隙121を円に近似した場合の半径である。数2中では、rは1つの大空隙122の半径(m)、Lは大空隙122の代表長さ(すなわち、ゼオライト膜12の膜厚)(m)、μはガスの粘度(Pa・sec)、Rは気体定数(J/(K・mol))、Tは絶対温度(K)、Pは供給側圧力(PaA)、Pは透過側圧力(PaA)である。大空隙122の半径rは、ゼオライト膜12の表面を、当該表面に垂直な方向から見た状態において、大空隙122を円に近似した場合の半径である。なお、数1および数2では、小空隙121の代表長さLおよび大空隙122の代表長さLをゼオライト膜12の膜厚としているが、小空隙121および大空隙122の実際の長さがゼオライト膜12の膜厚に等しいというわけでは必ずしもない。
1つの小空隙121を透過するガスの単位差圧当たりの透過流量の絶対値j(mol/(Pa・sec))は、以下の数3に示すように、透過速度Fに当該小空隙121の面積S(=π・r )を乗算して求められる。1つの大空隙122を透過するガスの単位差圧当たりの透過流量の絶対値j(mol/(Pa・sec))は、以下の数4に示すように、透過速度Fに当該小空隙121の面積S(=π・r )を乗算して求められる。以下、単位差圧当たりの透過流量の絶対値j,jは、単に「透過流量j,j」とも呼ぶ。
Figure 0007374320000003
Figure 0007374320000004
数1および数3に示すように、小空隙121の透過速度Fおよび透過流量jは、供給側圧力および透過側圧力による影響は受けない。一方、数2および数4に示すように、大空隙122の透過速度Fおよび透過流量jは、供給側圧力および透過側圧力の増大に伴って大きくなる。
本願発明者は、また、ゼオライト膜12における大空隙122および小空隙121のそれぞれの面積が、分離膜複合体1における分離比、および、高透過性物質の透過速度に影響を及ぼす、という知見を得た。具体的には、ゼオライト膜12において大空隙122の合計面積が増大すると、分離膜複合体1における高透過性物質と低透過性物質との分離比が低下する。また、ゼオライト膜12において小空隙121の面積を減少させようとすると、ゼオライト膜12が厚くなり、分離膜複合体1における高透過性物質の透過速度が減少する。
そこで、本願発明者は、ゼオライト膜12における大空隙122の存在率を示す大空隙指数I、および、ゼオライト膜12における小空隙121の存在率を示す小空隙指数Iに着目した。小空隙指数Iは、ゼオライト膜12の表面積をS(m)とし、各小空隙121の面積(すなわち、小空隙121の1つ当たりの面積)をS(m)として、以下の数5にて示される。また、大空隙指数Iは、ゼオライト膜12の表面積をS(m)とし、各大空隙122の面積(すなわち、大空隙122の1つ当たりの面積)をS(m)として、以下の数6にて示される。
Figure 0007374320000005
Figure 0007374320000006
ゼオライト膜12の表面積Sは、図2において貫通孔111に露出するゼオライト膜12の露出面全体の面積である。換言すれば、ゼオライト膜12の表面積Sは、ゼオライト膜12が形成されている領域全体の面積である。図5に示す例では、ゼオライト膜12の表面積は、図中の矩形領域全体の面積であり、複数の大空隙122および複数の小空隙121の面積も含む値である。
分離膜複合体1では、大空隙指数Iが200x10-22未満とされる。このように、ゼオライト膜12の大空隙122を減少させることにより、分離膜複合体1の高い分離比が実現される。好ましくは、大空隙指数Iは、100x10-22未満とされる。これにより、分離比が向上される。また、分離膜複合体1では、小空隙指数Iが10x10-15以上とされる。このように、ゼオライト膜12の小空隙121をある程度以上多くすることにより、分離膜複合体1において、高透過性物質の透過速度の低下が抑制される。好ましくは、小空隙指数Iは、20x10-15以上とされる。これにより、高透過性物質の透過速度の低下がさらに抑制される。小空隙指数Iの上限は特に限定されないが、小空隙指数Iが過剰に大きいと上記分離比の低下につながる可能性がある。当該分離比の低下を抑制するという観点からは、小空隙指数Iは、5000x10-15以下であることが好ましい。
次に、図6を参照しつつ、分離膜複合体1の製造の流れの一例について説明する。分離膜複合体1が製造される際には、まず、多孔質の支持体11が形成されて準備される(ステップS21)。ステップS21では、例えば、支持体11の骨材の材料、造孔剤およびバインダ等を含む原料が調製および混合される。続いて、当該原料に水が投入され、ニーダーにより混練されて坏土が調製される。次に、押出成形機等により坏土が成形され、複数の貫通孔111(図1参照)を有する成形体が得られる。なお、押出成形以外の成形方法により成形体が成形されてもよい。当該成形体は、乾燥および脱脂後、焼成される。これにより、上述の支持体11が形成される。成形体最表層の焼成処理時の温度(すなわち、焼成温度)は、例えば1200℃~1300℃であり、本実施の形態では1250℃である。焼成時間は、例えば、6時間~10時間である。成形体の焼成処理の条件は、適宜変更されてよい。
ステップS21が終了すると、支持体11が前処理温度にて加熱される(ステップS22)。これにより、支持体11に付着している有機物等の不純物を燃焼および/または分解して除去することができる。ステップS22の加熱処理は、例えば、大気中で行われる。前処理温度は、好ましくは、400℃以上であり、ステップS21における支持体11の上記焼成温度の80%未満である。なお、当該焼成温度に対する前処理温度の割合(%)は、摂氏における割合である。前処理温度が400℃未満であると、有機物等の燃焼、分解が不足するおそれがある。また、前処理温度が支持体11の焼成温度の80%以上であると、支持体11の焼成が進行し、ステップS26におけるゼオライト膜12の生成の際に悪影響が生じる可能性がある。ステップS22における加熱時間は、例えば2時間~36時間である。
ステップS22が終了すると、支持体11が流体により洗浄される(ステップS23)。これにより、ステップS22において燃焼、分解された有機物等の残渣等が、支持体11から洗い流される。当該流体は、例えば、水やアルコール等の液体であってもよく、あるいは、空気等の気体であってもよい。また、液体および気体の双方により支持体11の洗浄が行われてもよい。例えば、支持体11の表面にエタノールを100mL(ミリリットル)流して第1の洗浄処理を行い、続いて、ドライヤー等で支持体11の表面に空気を1分間流して第2の洗浄処理が行われる。
ステップS23が終了すると、ゼオライト膜12の形成に利用される種結晶が生成されて準備される(ステップS24)。種結晶の生成では、Si源等の原料および構造規定剤(Structure-Directing Agent、以下「SDA」とも呼ぶ。)等を、溶媒に溶解または分散させることにより、種結晶の原料溶液が作製される。続いて、当該原料溶液の水熱合成が行われ、得られた結晶を洗浄および乾燥させることにより、ゼオライト(例えば、DDR型ゼオライト)の粉末が得られる。当該ゼオライトの粉末はそのまま種結晶として用いられてもよく、当該粉末を粉砕等によって加工することにより種結晶が得られてもよい。なお、ステップS24は、ステップS21~S23と並行して行われてもよく、ステップS21~S23よりも前に行われてもよい。
続いて、種結晶を支持体11の貫通孔111の内側面上に付着させる(ステップS25)。支持体11への種結晶の付着は、例えば、種結晶を溶媒(例えば、水、または、エタノール等のアルコール)に分散させた分散液に、多孔質の支持体11を浸漬することにより行われる。支持体11の分散液への浸漬は、複数回繰り返されてもよい。また、種結晶は、上記とは異なる他の手法により支持体11に付着されてもよい。
種結晶が付着された支持体11は、原料溶液に浸漬される。原料溶液は、例えば、Si源およびSDA等を、溶媒に溶解させることにより作製する。原料溶液の組成は、例えば、1.0SiO:0.015SDA:0.12(CH(NHである。原料溶液の溶媒には、水やエタノール等のアルコールを用いてもよい。原料溶液の溶媒に水が用いられる場合、原料溶液に含まれる水に対するSDAのモル比率は、好ましくは0.01以下である。また、原料溶液に含まれる水に対するSDAのモル比率は、好ましくは0.00001以上である。原料溶液に含まれるSDAは、例えば有機物である。SDAとして、例えば、1-アダマンタンアミンを用いることができる。
そして、水熱合成により上述の種結晶を核としてDDR型のゼオライトを成長させることにより、支持体11上にDDR型のゼオライト膜12が形成される(ステップS26)。水熱合成時の温度は、好ましくは120~200℃であり、例えば160℃である。水熱合成時間は、好ましくは5~100時間であり、例えば30時間である。
水熱合成が終了すると、支持体11およびゼオライト膜12を純水で洗浄する。洗浄後の支持体11およびゼオライト膜12は、例えば80℃にて乾燥される。支持体11およびゼオライト膜12を乾燥した後に、ゼオライト膜12を加熱処理することによって、ゼオライト膜12中のSDAをおよそ完全に燃焼除去して、ゼオライト膜12内の微細孔を貫通させる(ステップS27)。これにより、上述の分離膜複合体1が得られる。
上述のように、分離膜複合体1の製造では、ステップS22~S23により、支持体11の表面から有機物や残渣等が除去されているため、ステップS25では、種結晶を支持体11の表面に均一かつ緻密に付着させることができる。したがって、ステップS26のゼオライト膜12の形成時に、有機物や残渣等により種結晶の付着が阻害されることに起因する大空隙122の形成が抑制される。一方、小空隙121の形成は、ステップS26における水熱合成時間や水熱合成時の温度等に依存するため、ステップS22~S23が行われても行われなくても、小空隙121の合計面積は大きく変化しない。
次に、表1を参照しつつ、実施例1~5の分離膜複合体1における大空隙指数Iおよび小空隙指数Iと透過性能との関係について説明する。比較例1~2についても同様である。
Figure 0007374320000007
分離膜複合体1の大空隙指数Iおよび小空隙指数Iは、以下の方法により求めた。まず、上述の分離装置2を用いて分離膜複合体1にCFを供給し、ゼオライト膜12および支持体11を透過するCFの単位差圧当たりの透過流量(mol/(Pa・sec))を測定する。そして、分離装置2の供給側圧力を所定回数変更し、CFの単位差圧当たりの透過流量の測定を繰り返す。具体的には、供給側圧力が0.2MPaA、0.4MPaA、0.6MPaAおよび0.8MPaAの状態においてCFの単位差圧当たりの透過流量を測定した。供給されるCFの温度は25℃であり、透過側圧力は0.1MPaAとした。
その後、図7に示すように、横軸を供給側圧力と透過側圧力との合計圧力(P+P)(PaA)とし、縦軸を上述のCFの単位差圧当たりの透過流量(mol/(Pa・sec))として、測定結果をプロットし、最小二乗法による近似直線91の傾きと切片とを求めた。
CFは、ゼオライト膜12を構成するDDR型ゼオライトの細孔は透過しにくいため、ゼオライト膜12の大空隙122および小空隙121を透過していると考えられる。このため、上述のCFの単位差圧当たりの透過流量Jは、数7にて示すものとなる。
Figure 0007374320000008
上述の近似直線91の傾きは、数7の右辺第1項の係数であり、近似直線91の切片は、数7の右辺第2項である。したがって、近似直線91の切片および傾きから、上記数5および数6に示す小空隙指数Iおよび大空隙指数Iが求められる。数7中の代表長さLとして、上述のようにゼオライト膜12の膜厚を用いた。ゼオライト膜12の膜厚は、分離膜複合体1の断面の3箇所のSEM(走査型電子顕微鏡)画像を観察して求めた膜厚の算術平均とした。CFの粘度μは、Chapman-Enskogの式により求めた。粘度μの算出に使用したパラメータは、改訂7版 化学工学便覧p69~p71に記載のものである。
なお、大空隙指数Iおよび小空隙指数Iを求める際には、CFに代えて、ゼオライト膜12の空隙の無い部分は透過せず、大空隙122および小空隙121を透過可能なガスが用いられてもよい。また、供給側圧力の変更に代えて、透過側圧力が変更されてもよく、供給側圧力および透過側圧力が変更されてもよい。
表1中のCH透過速度比は、50体積%のCOおよび50体積%のCHを含む25℃の混合ガスを、分離装置2において供給側圧力を変更して分離膜複合体1に供給し、測定されたCHの透過流量(mol/sec)を用いて求めた。具体的には、まず、測定されたCHの透過流量(mol/sec)を、供給側のCHの分圧から透過側のCHの分圧を減算した値(すなわち、CHの分圧の差圧)(Pa)により除算することによって、CHの単位差圧当たりの透過流量(mol/(Pa・sec))を求めた。そして、供給側圧力が8.0MPaGである場合のCHの単位差圧当たりの透過流量を、供給側圧力が0.3MPaGである場合のCHの単位差圧当たりの透過流量で除算した値を、CH透過速度比とした。透過側圧力は0.0MPaGとした。なお、CHの透過速度(すなわち、単位面積および単位差圧当たりのガスの透過流量)(mol/(m・Pa・sec))は、上述のCHの単位差圧当たりの透過流量を、ゼオライト膜12の表面積で除算することにより求められる。換言すれば、CH透過速度比は、高差圧条件下(差圧8.0MPa)におけるCHの透過速度を、低差圧条件下(差圧0.3MPa)におけるCHの透過速度で除算したものである。
表1中のCO相対透過速度は、供給側圧力を0.3MPaG、透過側圧力を0.0MPaGとして、50体積%のCOおよび50体積%のCHを含む25℃の混合ガスを分離膜複合体1に供給した場合に測定されたCOの単位差圧当たりの透過流量を、実施例1の当該透過流量で除算して求めた。
実施例1~5の分離膜複合体1は、上述のステップS21~S27に示す製造方法により製造した。実施例1では、ステップS22における前処理温度は500℃であり、加熱時間は24時間であった。実施例2では、ステップS22における前処理温度は450℃であり、加熱時間は18時間であった。実施例3では、ステップS22における前処理温度は420℃であり、加熱時間は12時間であった。実施例4では、ステップS22における前処理温度は400℃であり、加熱時間は4時間であった。実施例5では、ステップS22における前処理温度および加熱時間を実施例2と同じにして、大空隙指数Iが実施例1と同程度となるように、ステップS26におけるゼオライト膜12の水熱合成時間を長くした。比較例1~2では、ステップS22の加熱処理、および、ステップS23の洗浄処理を省略した点を除き、実施例1~5と略同様の製造方法により分離膜複合体1を製造した。比較例2では、ステップS26におけるゼオライト膜12の水熱合成時間を長くし、大空隙指数Iが実施例1と同程度になるようにした。
実施例1~5では、大空隙指数Iは3.74x10-22~169x10-22(すなわち、200x10-22未満)であり、小空隙指数Iは14.7x10-15~59.7x10-15(すなわち、10x10-15以上)である。CH透過速度比は、0.80~1.2(すなわち、1.9未満)と低く、高差圧条件下であってもCHの漏出が抑制されている。したがって、分離膜複合体1において高い分離比が実現されている。また、CO相対透過速度は、0.6~1.0と高かった。したがって、分離膜複合体1において、高い分離処理能力が実現されている。
実施例1~3,5では、大空隙指数Iは3.74x10-22~62.8x10-22(すなわち、100x10-22未満)であり、実施例4の大空隙指数I=169x10-22よりも小さい。実施例1~3,5のCH透過速度比は0.80~1.1であり、実施例4のCH透過速度比=1.2よりも低い。すなわち、実施例1~3,5では、高差圧条件下におけるCHの漏出がさらに抑制されている。
実施例1~4では、小空隙指数Iは28.0x10-15~59.7x10-15(すなわち、20x10-15以上)であり、実施例5の小空隙指数I=14.7x10-15よりも大きい。実施例1~4のCO相対透過速度は0.7~1.0であり、実施例5のCO相対透過速度=0.6よりも高い。すなわち、実施例1~4では、分離膜複合体1において、さらに高い分離処理能力が実現されている。
一方、比較例1では、ステップS22~S23を省略したことにより、大空隙指数Iは404x10-22(すなわち、200x10-22以上)と大きくなった。その結果、CH透過速度比は、2.6(すなわち、1.9以上)と高くなり、高差圧条件下においてCHの漏出が増大した。すなわち、分離膜複合体の分離比が低下した。
また、比較例2では、ステップS22~S23を省略した上で、大空隙指数Iを実施例1と同程度(6.73x10-22)としたため、ゼオライト膜12が厚くなり、小空隙指数Iは3.60x10-15(すなわち、10x10-15未満)と小さくなった。その結果、CO相対透過速度は、0.3と低くなった。すなわち、分離膜複合体の分離処理能力が低下した。
以上に説明したように、分離膜複合体1は、多孔質の支持体11と、支持体11上に形成された分離膜(上記例では、ゼオライト膜12)と、を備える。当該分離膜は、小空隙121を含む。分離膜の表面積をS、小空隙121の1つ当たりの面積をS、大空隙122の1つ当たりの面積をSと表すとき、当該小空隙121の存在率を表す小空隙指数I=(Σ(S 1.5))/(S 1.5)が、10x10-15以上であり、当該大空隙121の存在率を表す大空隙指数I=(Σ(S ))/(S )は、200x10-22未満である。
このように、分離膜における大空隙122の合計面積を小さくすることにより、分離膜複合体1において高い分離比を実現することができる。特に、分離膜複合体1では、実施例1~5のCH透過速度比から分かるように、高差圧条件下においても高い分離比を実現することができる。また、分離膜における小空隙121の合計面積をある程度以上大きく維持することにより、実施例1~5のCO相対透過速度から分かるように、分離膜複合体1において高い分離処理能力を実現することができる。
上述のように、大空隙指数Iは100x10-22未満であることが好ましい。これにより、実施例1~3,5のCH透過速度比から分かるように、高差圧条件下において、さらに高い分離比を実現することができる。
上述のように、小空隙指数Iは20x10-15以上であることが好ましい。これにより、実施例1~4のCO相対透過速度から分かるように、分離膜複合体1において、さらに高い分離処理能力を実現することができる。
上述のように、50体積%のCOおよび50体積%のCHを含む25℃の混合ガスを供給した場合のCHの透過速度について、供給側圧力が8.0MPaG、透過側圧力が0.0MPaGである場合の当該透過速度は、供給側圧力が0.3MPaG、透過側圧力が0.0MPaGである場合の当該透過速度の1.9倍未満であることが好ましい。換言すれば、上述のCH透過速度比は、1.9未満であることが好ましい。これにより、高差圧条件下におけるCH(すなわち、低透過性物質)の漏出が抑制される分離膜複合体1を提供することができる。
上述のように、分離膜の厚さは、支持体11の表層部(上記例では、表面層33)の平均細孔径の2.5倍以上かつ7.5倍以下であることが好ましい。これにより、分離膜が過剰に厚く、または、過剰に薄くなることを抑制し、小空隙121の合計面積をある程度以上の大きさに維持しつつ、大空隙122の合計面積を低減することができる。その結果、好適な範囲の分離比および高透過性物質の透過速度を実現することができる。
なお、支持体11では、表面層33および中間層32が省略されてもよい。
上記分離膜は、ゼオライト膜12であることが好ましい。このように、細孔径が比較的小さいゼオライト結晶により分離膜を構成することにより、分子径が小さい透過対象物質の選択的透過を好適に実現することができ、当該透過対象物質を混合物質から効率良く分離することができる。
より好ましくは、ゼオライト膜12を構成するゼオライトの最大員環数は8以下である。これにより、分子径が小さいH、CO等の透過対象物質の選択的透過を好適に実現し、当該透過対象物質を混合物質から効率良く分離することができる。
上述の分離膜複合体1の製造方法は、焼成により形成された多孔質の支持体11を準備する工程(ステップS21)と、支持体11を前処理温度にて加熱する工程(ステップS22)と、ステップS22よりも後に、支持体11を流体で洗浄する工程(ステップS23)と、ステップS23よりも後に、支持体11上に種結晶を付着させる工程(ステップS25)と、種結晶が付着した支持体11を原料溶液に浸漬し、水熱合成により当該種結晶からゼオライトを成長させて支持体11上に分離膜(すなわち、ゼオライト膜12)を形成する工程(ステップS26)と、を備える。そして、前処理温度は、400℃以上、かつ、ステップS21における支持体11の焼成温度の80%未満である。これにより、ゼオライト膜12における大空隙122の合計面積が低減された分離膜複合体1を提供することができる。当該分離膜複合体1では、上述のように、高い分離比を実現することができる。
上述の分離方法は、分離膜複合体1を準備する工程(ステップS11)と、複数種類のガスまたは液体を含む混合物質を分離膜複合体1に供給し、当該混合物質中の透過性が高い物質(すなわち、高透過性物質)を、分離膜複合体1を透過させることにより他の物質から分離する工程(ステップS12)と、を備える。これにより、上述のように、混合物質の分離において高い分離比を実現することができる。
当該分離方法は、混合物質が、水素、ヘリウム、窒素、酸素、水、水蒸気、一酸化炭素、二酸化炭素、窒素酸化物、アンモニア、硫黄酸化物、硫化水素、フッ化硫黄、水銀、アルシン、シアン化水素、硫化カルボニル、C1~C8の炭化水素、有機酸、アルコール、メルカプタン類、エステル、エーテル、ケトンおよびアルデヒドのうち、1種類以上の物質を含む場合に特に適している。
上述の分離膜複合体1、分離膜複合体1の製造方法、および、分離方法では、様々な変更が可能である。
例えば、ゼオライト膜12の小空隙121は、ゼオライト膜12の形成過程で自然に生じるものには限定されず、分離膜複合体1の製造において意図的に形成されてもよい。
ゼオライト膜12では、必ずしも大空隙122は存在する必要はなく、大空隙指数Iは0であってもよい。また、ゼオライト膜12の小空隙指数Iは、10x10-15未満であってもよい。
ゼオライト膜12の厚さは、支持体11の表層部の平均細孔径の2.5倍未満であってもよく、7.5倍よりも厚くてもよい。
支持体11の基材31、中間層32および表面層33の材料、平均細孔径および骨材粒子の平均粒径等は、上記には限定されず、様々に変更されてよい。支持体11では、平均細孔径等が互いに異なる複数の中間層32が、基材31と表面層33との間にて積層されてもよい。また、支持体11では、表面層33または中間層32が省略されてもよい。あるいは、上述のように、表面層33および中間層32が省略されもよい。
ゼオライト膜12を形成するゼオライトの最大員環数は8よりも大きくてもよい。分離膜複合体1では、上述のように、様々な種類のゼオライトによりゼオライト膜12が形成されてよい。
分離膜複合体1におけるCH透過速度比は、1.9以上であってもよい。
分離膜複合体1の製造方法は、上記例には限定されず、様々に変更されてよい。
分離膜複合体1は、支持体11およびゼオライト膜12に加えて、ゼオライト膜12上に積層された機能膜や保護膜をさらに備えていてもよい。このような機能膜や保護膜は、ゼオライト膜、シリカ膜または炭素膜等の無機膜であってもよく、ポリイミド膜またはシリコーン膜等の有機膜であってもよい。
分離膜複合体1では、ゼオライト膜12に代えて、ゼオライト膜12以外の分離膜(例えば、上述の無機膜または有機膜)が支持体11上に形成されてもよい。
上述の分離装置2および分離方法では、上記説明にて例示した物質以外の物質が、混合物質から分離されてもよい。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
本発明の分離膜複合体は、例えば、ガス分離膜として利用可能であり、さらには、ガス以外の分離膜や様々な物質の吸着膜等として様々な分野で利用可能である。
1 分離膜複合体
11 支持体
12 ゼオライト膜
33 表面層
121 小空隙
122 大空隙
S11~S12,S21~S27 ステップ

Claims (9)

  1. 分離膜複合体であって、
    多孔質の支持体と、
    前記支持体上に形成された分離膜と、
    を備え、
    前記分離膜は、小空隙を含み、
    前記分離膜の表面積をS、小空隙の1つ当たりの面積をS、大空隙の1つ当たりの面積をSと表すとき、
    前記小空隙の存在率を表す小空隙指数I=(Σ(S 1.5))/(S 1.5)が、10x10-15以上であり、
    前記大空隙の存在率を表す大空隙指数I=(Σ(S ))/(S )が、200x10-22未満である。
  2. 請求項1に記載の分離膜複合体であって、
    前記大空隙指数Iが、100x10-22未満である。
  3. 請求項1または2に記載の分離膜複合体であって、
    前記小空隙指数Iが、20x10-15以上である。
  4. 請求項1ないし3のいずれか1つに記載の分離膜複合体であって、
    50体積%のCOおよび50体積%のCHを含む25℃の混合ガスを供給した場合のCHの透過速度について、供給側圧力が8.0MPaG、透過側圧力が0.0MPaGである場合の前記透過速度は、前記供給側圧力が0.3MPaG、前記透過側圧力が0.0MPaGである場合の前記透過速度の1.9倍未満である。
  5. 請求項1ないし4のいずれか1つに記載の分離膜複合体であって、
    前記分離膜はゼオライト膜である。
  6. 請求項5に記載の分離膜複合体であって、
    前記ゼオライト膜を構成するゼオライトの最大員環数は8以下である。
  7. 分離膜複合体の製造方法であって、
    a)焼成により形成された多孔質の支持体を準備する工程と、
    b)前記支持体を前処理温度にて加熱する工程と、
    c)前記b)工程よりも後に、前記支持体を流体で洗浄する工程と、
    d)前記c)工程よりも後に、前記支持体上に種結晶を付着させる工程と、
    e)前記種結晶が付着した前記支持体を原料溶液に浸漬し、水熱合成により前記種結晶からゼオライトを成長させて前記支持体上に分離膜を形成する工程と、
    を備え、
    前記前処理温度は、400℃以上、かつ、前記a)工程における前記支持体の焼成温度の80%未満である。
  8. 分離方法であって、
    a)請求項1ないし6のいずれか1つに記載の分離膜複合体を準備する工程と、
    b)複数種類のガスまたは液体を含む混合物質を前記分離膜複合体に供給し、前記混合物質中の透過性が高い物質を、前記分離膜複合体を透過させることにより他の物質から分離する工程と、
    を備える。
  9. 請求項8に記載の分離方法であって、
    前記混合物質は、水素、ヘリウム、窒素、酸素、水、水蒸気、一酸化炭素、二酸化炭素、窒素酸化物、アンモニア、硫黄酸化物、硫化水素、フッ化硫黄、水銀、アルシン、シアン化水素、硫化カルボニル、C1~C8の炭化水素、有機酸、アルコール、メルカプタン類、エステル、エーテル、ケトンおよびアルデヒドのうち、1種類以上の物質を含む。
JP2022527516A 2020-05-25 2021-02-19 分離膜複合体、分離膜複合体の製造方法および分離方法 Active JP7374320B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020090315 2020-05-25
JP2020090315 2020-05-25
PCT/JP2021/006394 WO2021240917A1 (ja) 2020-05-25 2021-02-19 分離膜複合体、分離膜複合体の製造方法および分離方法

Publications (3)

Publication Number Publication Date
JPWO2021240917A1 JPWO2021240917A1 (ja) 2021-12-02
JPWO2021240917A5 JPWO2021240917A5 (ja) 2023-01-25
JP7374320B2 true JP7374320B2 (ja) 2023-11-06

Family

ID=78744255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022527516A Active JP7374320B2 (ja) 2020-05-25 2021-02-19 分離膜複合体、分離膜複合体の製造方法および分離方法

Country Status (6)

Country Link
US (1) US20230084665A1 (ja)
JP (1) JP7374320B2 (ja)
CN (1) CN115666768A (ja)
BR (1) BR112022022775A2 (ja)
DE (1) DE112021001759T5 (ja)
WO (1) WO2021240917A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238557A1 (ja) * 2022-06-08 2023-12-14 日本碍子株式会社 分離装置の運転方法および分離装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158665A (ja) 2008-12-10 2010-07-22 Ngk Insulators Ltd Ddr型ゼオライト膜配設体の製造方法
WO2014157701A1 (ja) 2013-03-29 2014-10-02 日本碍子株式会社 酸素8員環ゼオライト膜、ゼオライト膜の製造方法、及び酸素8員環ゼオライト膜の評価方法
WO2016006564A1 (ja) 2014-07-10 2016-01-14 日立造船株式会社 ゼオライト膜、その製造方法およびこれを用いた分離方法
JP2019181456A (ja) 2018-03-30 2019-10-24 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158665A (ja) 2008-12-10 2010-07-22 Ngk Insulators Ltd Ddr型ゼオライト膜配設体の製造方法
WO2014157701A1 (ja) 2013-03-29 2014-10-02 日本碍子株式会社 酸素8員環ゼオライト膜、ゼオライト膜の製造方法、及び酸素8員環ゼオライト膜の評価方法
WO2016006564A1 (ja) 2014-07-10 2016-01-14 日立造船株式会社 ゼオライト膜、その製造方法およびこれを用いた分離方法
JP2019181456A (ja) 2018-03-30 2019-10-24 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法

Also Published As

Publication number Publication date
DE112021001759T5 (de) 2023-01-05
WO2021240917A1 (ja) 2021-12-02
CN115666768A (zh) 2023-01-31
BR112022022775A2 (pt) 2022-12-13
JPWO2021240917A1 (ja) 2021-12-02
US20230084665A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
JP7398578B2 (ja) ガス分離方法およびガス分離装置
JP7220087B2 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
JP7174146B2 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法、ゼオライト膜複合体の処理方法、および、分離方法
JP2019150823A (ja) ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
JP7376689B2 (ja) ガス分離方法
JP7374320B2 (ja) 分離膜複合体、分離膜複合体の製造方法および分離方法
WO2022018910A1 (ja) 分離膜複合体および分離方法
JP7230176B2 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
WO2019142531A1 (ja) ゼオライト膜複合体、および、ゼオライト膜複合体の製造方法
CN111902202A (zh) 陶瓷支撑体、沸石膜复合体、沸石膜复合体的制造方法以及分离方法
CN111902203B (zh) 沸石膜复合体、沸石膜复合体的制造方法以及分离方法
US20200197879A1 (en) Zeolite membrane complex and method of producing zeolite membrane complex
JP7297475B2 (ja) ゼオライト合成用ゾル、ゼオライト膜の製造方法、および、ゼオライト粉末の製造方法
WO2021186974A1 (ja) ガス分離方法およびゼオライト膜
JP2023153913A (ja) 支持体、ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
WO2023162525A1 (ja) ゼオライト膜複合体および分離方法
WO2023162854A1 (ja) ゼオライト膜複合体、ゼオライト膜複合体の製造方法および分離方法
WO2022172893A1 (ja) ゼオライト膜複合体およびゼオライト膜複合体の製造方法
WO2022255055A1 (ja) 混合ガス分離方法および混合ガス分離装置
WO2023153172A1 (ja) 分離膜複合体、混合ガス分離装置および分離膜複合体の製造方法
WO2023238557A1 (ja) 分離装置の運転方法および分離装置
WO2023085372A1 (ja) ゼオライト膜複合体および膜反応装置
CN113508092A (zh) 结晶性物质及膜复合体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231024

R150 Certificate of patent or registration of utility model

Ref document number: 7374320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150