JP7345674B2 - 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 - Google Patents

電力変換装置、モータ駆動装置および冷凍サイクル適用機器 Download PDF

Info

Publication number
JP7345674B2
JP7345674B2 JP2022558618A JP2022558618A JP7345674B2 JP 7345674 B2 JP7345674 B2 JP 7345674B2 JP 2022558618 A JP2022558618 A JP 2022558618A JP 2022558618 A JP2022558618 A JP 2022558618A JP 7345674 B2 JP7345674 B2 JP 7345674B2
Authority
JP
Japan
Prior art keywords
power
capacitor
conversion device
inverter
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022558618A
Other languages
English (en)
Other versions
JPWO2022091185A1 (ja
Inventor
貴昭 ▲高▼原
浩一 有澤
啓介 植村
遥 松尾
公洋 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022091185A1 publication Critical patent/JPWO2022091185A1/ja
Application granted granted Critical
Publication of JP7345674B2 publication Critical patent/JP7345674B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置および冷凍サイクル適用機器に関する。
従来、交流電源から供給される交流電力を所望の交流電力に変換し、空気調和機などの負荷に供給する電力変換装置がある。例えば、特許文献1には、空気調和機の制御装置である電力変換装置が、交流電源から供給される交流電力を整流部であるダイオードスタックで整流し、さらに平滑コンデンサで平滑した電力を、複数のスイッチング素子からなるインバータで所望の交流電力に変換し、負荷である圧縮機モータに出力する技術が開示されている。
特開平7-71805号公報
しかしながら、上記従来の技術によれば、平滑コンデンサに大きな電流が流れるため、平滑コンデンサの経年劣化が加速する、という問題があった。このような問題に対して、平滑コンデンサの容量を大きくすることでコンデンサ電圧のリプル変化を抑制する、またはリプルによる劣化耐量の大きい平滑コンデンサを使用する方法が考えられるが、コンデンサ部品のコストが高くなり、また装置が大型化してしまう。
本開示は、上記に鑑みてなされたものであって、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制可能な電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本開示に係る電力変換装置は、商用電源から供給される第1の交流電力を整流するとともに、第1の交流電力の電圧を昇圧する整流昇圧部と、整流昇圧部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、整流昇圧部およびコンデンサから出力される電力を第2の交流電力に変換し、モータを有する負荷に出力するインバータと、整流昇圧部の動作を制御するとともに、整流昇圧部からコンデンサに流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータから負荷に出力するようにインバータのみの動作を制御し、コンデンサに流れる電流を抑制する制御部と、を備える。
本開示に係る電力変換装置は、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制できる、という効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す図 比較例として、平滑部で昇圧部から出力される電流を平滑化し、インバータに流れる電流を一定にした場合の各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置の制御部がインバータの動作を制御して平滑部に流れる電流を低減したときの各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置が備える制御部の動作を示すフローチャート 実施の形態1に係る電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図 実施の形態2に係る電力変換装置の構成例を示す図 実施の形態3に係る電力変換装置の構成例を示す図 実施の形態4に係る冷凍サイクル適用機器の構成例を示す図
以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置および冷凍サイクル適用機器を図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1に係る電力変換装置1aの構成例を示す図である。電力変換装置1aは、商用電源110および圧縮機315に接続される。電力変換装置1aは、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機315に供給する。電力変換装置1aは、電圧電流検出部501と、整流部130と、リアクトル120と、昇圧部600と、電圧検出部502と、平滑部200と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。なお、電力変換装置1aでは、整流部130、リアクトル120、および昇圧部600によって整流昇圧部700を構成している。また、電力変換装置1a、および圧縮機315が備えるモータ314によって、モータ駆動装置2aを構成している。
電圧電流検出部501は、商用電源110から供給される電源電圧Vsの第1の交流電力の電圧値および電流値を検出し、検出した電圧値および電流値を制御部400に出力する。整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧Vsの第1の交流電力を整流して出力する。整流部130は、全波整流を行うものである。リアクトル120は、整流部130と昇圧部600との間に接続される。昇圧部600は、スイッチング素子611、および整流素子621を有する。昇圧部600は、制御部400の制御によって、スイッチング素子611をオンオフし、整流部130から出力された電力を昇圧し、昇圧した電力を平滑部200に出力する。本実施の形態において、昇圧部600は、制御部400によって、スイッチング素子611が連続的にスイッチング動作を行うフルPAM(Pulse Amplitude Modulation)で制御される。電力変換装置1aは、昇圧部600によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。整流昇圧部700は、整流部130および昇圧部600によって、商用電源110から供給される第1の交流電力を整流するとともに、商用電源110から供給される第1の交流電力の電圧を昇圧する。本実施の形態では、整流昇圧部700において、整流部130および昇圧部600は直列に接続されている。
電圧検出部502は、昇圧部600によって昇圧された電力の電圧値を検出し、検出した電圧値を制御部400に出力する。平滑部200は、電圧検出部502を介して昇圧部600の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、昇圧部600によって昇圧された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130によって整流された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
インバータ310は、平滑部200、すなわちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、および還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流昇圧部700および平滑部200から出力される電力を所望の振幅および位相を有する第2の交流電力に変換して、圧縮機315に出力する。電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のうち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。圧縮機315は、圧縮機駆動用のモータ314を有する負荷である。モータ314は、インバータ310から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは定トルク負荷とみなせる場合が多い。
なお、電力変換装置1aにおいて、図1に示す各構成の配置は一例であり、各構成の配置は図1で示される例に限定されない。整流昇圧部700は、リアクトル120の配置位置によってはリアクトル120が含まれていなくてもよい。以降の説明において、電圧電流検出部501、電圧検出部502、および電流検出部313a,313bをまとめて検出部と称することがある。また、電圧電流検出部501で検出された電圧値および電流値、電圧検出部502で検出された電圧値、および電流検出部313a,313bで検出された電流値を、検出値と称することがある。
制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から昇圧部600によって昇圧された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、整流昇圧部700の昇圧部600の動作、具体的には、昇圧部600が有するスイッチング素子611のオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。本実施の形態において、制御部400は、整流昇圧部700の動作を制御する。制御部400は、整流昇圧部700の動作を制御し、商用電源110から供給される第1の交流電力の力率改善制御、および平滑部200のコンデンサ210の平均電圧制御を行う。また、制御部400は、整流部130から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷である圧縮機315に出力するようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、平滑部200のコンデンサ210に流れる電流を抑制する。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。
つづいて、電力変換装置1aが備える制御部400の動作について説明する。本実施の形態では、電力変換装置1aにおいて、インバータ310および圧縮機315によって発生する負荷が一定の負荷とみなすことができ、平滑部200から出力される電流で見た場合、平滑部200に定電流負荷が接続されているものとして、以降の説明を行う。ここで、図1に示すように、昇圧部600から流れる電流を電流I1とし、インバータ310に流れる電流を電流I2とし、平滑部200から流れる電流を電流I3とする。電流I2は、電流I1と電流I3とを併せた電流となる。電流I3は、電流I2と電流I1との差分、すなわち電流I2-電流I1として表すことができる。電流I3は、平滑部200の放電方向を正方向とし、平滑部200の充電方向を負方向とする。すなわち、平滑部200には、電流が流入することもあり、電流が流出することもある。
図2は、比較例として、平滑部200で昇圧部600から出力される電流を平滑化し、インバータ310に流れる電流I2を一定にした場合の各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。なお、電流I2,I3には、実際にはインバータ310のキャリア成分が重畳されるが、ここでは省略する。以降についても同様とする。図2に示すように、電力変換装置1aにおいて、仮に、昇圧部600から流れる電流I1が平滑部200によって十分に平滑化された場合、インバータ310に流れる電流I2は一定の電流値となる。しかしながら、平滑部200のコンデンサ210には、大きな電流I3が流れ、劣化の要因となる。そのため、本実施の形態では、電力変換装置1aにおいて、制御部400は、平滑部200に流れる電流I3を低減するように、インバータ310に流れる電流I2を制御、すなわちインバータ310の動作を制御する。
図3は、実施の形態1に係る電力変換装置1aの制御部400がインバータ310の動作を制御して平滑部200に流れる電流I3を低減したときの各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。電力変換装置1aの制御部400は、図3に示すような電流I2がインバータ310に流れるようにインバータ310の動作を制御することによって、図2の例と比較して、昇圧部600から平滑部200に流れ込む電流の周波数成分を低減し、平滑部200に流れる電流I3を低減することができる。具体的には、制御部400は、電流I1の周波数成分を主成分とした脈動電流を含む電流I2がインバータ310に流れるようにインバータ310の動作を制御する。
電流I1の周波数成分は、商用電源110から供給される交流電流の周波数、整流部130の構成、および昇圧部600のスイッチング素子611のスイッチング速度によって決定される。そのため、制御部400は、電流I2に重畳する脈動電流の周波数成分を、予め定めた振幅および位相を有する成分とすることができる。電流I2に重畳される脈動電流の周波数成分は、電流I1の周波数成分の相似波形となる。制御部400は、電流I2に重畳する脈動電流の周波数成分を電流I1の周波数成分に近付けていくに連れて、平滑部200に流れる電流I3を低減し、コンデンサ電圧Vdcに発生する脈動電圧を低減することができる。
制御部400が、インバータ310の動作を制御することによってインバータ310に流れる電流の脈動を制御することは、インバータ310から圧縮機315に出力される第2の交流電力の脈動を制御することと同じである。制御部400は、インバータ310から出力される第2の交流電力に含まれる脈動が、整流昇圧部700から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御する。制御部400は、コンデンサ電圧Vdcの電圧リプル、すなわちコンデンサ210に発生する電圧リプルが、インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときのコンデンサ210に発生する電圧リプルよりも小さくなるように、インバータ310から出力される第2の交流電力に含まれる脈動の振幅および位相を制御する。インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときとは、図2に示すような制御のことである。
なお、商用電源110から供給される交流電流については、特に限定されず、単相であってもよいし、3相であってもよい。制御部400は、電流I2に重畳する脈動電流の周波数成分について、商用電源110から供給される第1の交流電力に応じて決定すればよい。具体的には、制御部400は、インバータ310に流れる電流I2の脈動波形を、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分を主成分とする脈動波形に直流分を加算した形状に制御する。脈動波形は、例えば、正弦波の絶対値の形状、または正弦波の形状とする。この場合、制御部400は、正弦波の周波数の整数倍の成分のうち少なくとも1つの周波数成分を予め規定された振幅として脈動波形に加算してもよい。また、脈動波形は、矩形波の形状、または三角波の形状であってもよい。この場合、制御部400は、脈動波形の振幅および位相を予め規定された値としてもよい。
制御部400は、コンデンサ210にかかる電圧またはコンデンサ210に流れる電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよいし、商用電源110から供給される第1の交流電力の電圧または電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよい。
また、制御部400は、商用電源110から供給される第1の交流電力の周波数成分と異なる周波数成分を含む第2の交流電力をインバータ310から圧縮機315に出力させるようにインバータ310を制御する場合、インバータ310から圧縮機315に出力される第2の交流電力に含まれる周波数成分を、昇圧部600のスイッチング素子611をオンオフするための駆動信号に重畳させてもよい。すなわち、制御部400は、インバータ310から圧縮機315に出力する第2の交流電力の電力脈動のうち、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分以外の変動周波数成分を含む電力が整流昇圧部700から出力されるように、整流昇圧部700の動作、具体的には、昇圧部600のスイッチング素子611の動作を制御する。制御部400は、変動周波数成分を、商用電源110に対する指令値を用いて制御してもよいし、変動周波数成分を、商用電源110から供給される第1の交流電力の周波数の40次までの整数倍の成分としない、または規定された値、例えば、所望の規格値以下になるように制御してもよい。
制御部400の動作を、フローチャートを用いて説明する。図4は、実施の形態1に係る電力変換装置1aが備える制御部400の動作を示すフローチャートである。制御部400は、電力変換装置1aの各検出部から検出値を取得する(ステップS1)。制御部400は、取得した検出値に基づいて、平滑部200に流れる電流I3が低減されるように、インバータ310の動作を制御する(ステップS2)。制御部400は、取得した検出値に基づいて、商用電源110の力率改善制御および平滑部200のコンデンサ210のコンデンサ電圧Vdcの平均電圧制御を行うように、昇圧部600の動作を制御する(ステップS3)。
つづいて、電力変換装置1aが備える制御部400のハードウェア構成について説明する。図5は、実施の形態1に係る電力変換装置1aが備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91およびメモリ92により実現される。
プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。
以上説明したように、本実施の形態によれば、電力変換装置1aにおいて、制御部400は、各検出部から取得した検出値に基づいてインバータ310の動作を制御し、インバータ310に流れる電流I2に、整流部130から流れる電流I1の周波数成分に応じた周波数成分の脈動を重畳することで、平滑部200に流れる電流I3を低減することとした。これにより、電力変換装置1aは、平滑部200に流れる電流I3が低減することによって、本実施の形態の制御を行わない場合と比較して、リプル電流耐量の小さなコンデンサの使用が可能となる。また、電力変換装置1aは、コンデンサ電圧Vdcの脈動電圧が低下することによって、本実施の形態の制御を行わない場合と比較して、搭載するコンデンサ210の容量を小さくすることができる。電力変換装置1aは、例えば、複数のコンデンサ210で平滑部200を構成していた場合、平滑部200を構成するコンデンサ210の本数を低減することができる。
また、電力変換装置1は、第2の交流電力に含まれる脈動が、整流部130から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御することによって、インバータ310に流れる電流I2に重畳する脈動成分が過大になるのを抑制できる。脈動成分の重畳は、インバータ310、モータ314などを通流する電流実効値を非重畳状態と比較して増加させることとなるが、重畳する脈動成分が過大になるのを抑制することによって、インバータ310の電流容量、インバータ310の損失増加、モータ314の損失増加などを抑制したシステムを提供することが可能となる。
また、電力変換装置1aは、本実施の形態の制御を行うことによって、電流I2の脈動に起因して発生する圧縮機315の振動を抑制することができる。
また、電力変換装置1aは、昇圧部600が昇圧動作を行うことによって、コンデンサ210のコンデンサ電圧Vdcを上昇させ、インバータ310の出力可能電圧範囲を拡大することができる。電力変換装置1aにおいて、制御部400は、昇圧部600のスイッチング素子611に対する駆動信号に、インバータ310から出力する第2の交流電力に含まれる脈動の周波数成分を重畳することで、当該周波数成分に起因する電流I3およびコンデンサ電圧Vdcの脈動を低減することができる。
実施の形態2.
実施の形態2では、実施の形態1の電力変換装置1aの整流昇圧部700の回路構成と異なる回路構成の整流昇圧部を備える電力変換装置について説明する。
図6は、実施の形態2に係る電力変換装置1bの構成例を示す図である。電力変換装置1bは、図1に示す実施の形態1の電力変換装置1aに対して、整流昇圧部700を整流昇圧部701に置き換えたものである。なお、電力変換装置1b、および圧縮機315が備えるモータ314によって、モータ駆動装置2bを構成している。整流昇圧部701は、スイッチング素子611~614、および各々がスイッチング素子611~614のうちの1つに並列に接続される整流素子621~624を有する。整流昇圧部701は、制御部400の制御によって、スイッチング素子611~614をオンオフし、商用電源110から出力された第1の交流電力を整流するとともに昇圧し、昇圧した電力を平滑部200に出力する。本実施の形態において、整流昇圧部701は、制御部400によって、スイッチング素子611~614が連続的にスイッチング動作を行うフルPAMで制御される。電力変換装置1bは、整流昇圧部701によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。
制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から整流昇圧部701によって昇圧された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、整流昇圧部701の動作、具体的には、整流昇圧部701が有するスイッチング素子611~614のオンオフを制御する。制御部400は、実施の形態1で説明した効果と同様の効果が得られるように、整流昇圧部701およびインバータ310の動作を制御する。
電力変換装置1bにおけるその他の動作は、実施の形態1の電力変換装置1aの動作と同様である。この場合においても、電力変換装置1bは、実施の形態1の電力変換装置1aと同様の効果を得ることができる。
実施の形態3.
実施の形態3では、実施の形態1の電力変換装置1aの整流昇圧部700、および実施の形態2の電力変換装置1bの整流昇圧部701の回路構成と異なる回路構成の整流昇圧部を備える電力変換装置について説明する。
図7は、実施の形態3に係る電力変換装置1cの構成例を示す図である。電力変換装置1cは、図1に示す実施の形態1の電力変換装置1aに対して、整流昇圧部700を整流昇圧部702に置き換えたものである。なお、電力変換装置1c、および圧縮機315が備えるモータ314によって、モータ駆動装置2cを構成している。整流昇圧部702は、リアクトル120、整流部130、および昇圧部601を有する。実施の形態1において、昇圧部600は、整流部130の後段、すなわち電力変換装置1aの内部で整流部130と直列に接続されていたが、実施の形態3において、昇圧部601は、電力変換装置1cの内部で整流部130と並列に接続されている。昇圧部601は、整流素子621~624、およびスイッチング素子611を有する。昇圧部601は、制御部400の制御によって、スイッチング素子611をオンオフし、商用電源110から出力された第1の交流電力を昇圧し、昇圧した電力を整流部130に出力する。本実施の形態において、整流昇圧部702の昇圧部601は、制御部400の制御によって、商用電源110から供給される第1の交流電力の周波数の半周期に1回または複数回、スイッチング素子611のスイッチング動作を行う簡易スイッチングで制御される。電力変換装置1cは、昇圧部601によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。
制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から整流部130によって整流された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、昇圧部601の動作、具体的には、昇圧部601が有するスイッチング素子611のオンオフを制御する。制御部400は、実施の形態1で説明した効果と同様の効果が得られるように、昇圧部601およびインバータ310の動作を制御する。
電力変換装置1cにおけるその他の動作は、実施の形態1の電力変換装置1aの動作と同様である。この場合においても、電力変換装置1cは、実施の形態1の電力変換装置1aと同様の効果を得ることができる。また、電力変換装置1cは、実施の形態1の電力変換装置1aおよび実施の形態2の電力変換装置1bと比較してスイッチング回数が抑制されるため、損失低減および低ノイズ化が可能となる。また、電力変換装置1cは、整流部130および昇圧部601が並列に接続されているため、昇圧部601においてスイッチング素子611のスイッチングが必要ない条件ではスイッチングを行わないことで、通流素子数を低減し、低損失化が可能となる。
実施の形態4.
図8は、実施の形態4に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態4に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1aを備える。なお、冷凍サイクル適用機器900は、電力変換装置1aに代えて、実施の形態2で説明した電力変換装置1bを備えてもよいし、実施の形態3で説明した電力変換装置1cを備えてもよい。実施の形態4に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図8において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。
圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。
冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。
暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。
冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。
暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1a,1b,1c 電力変換装置、2a,2b,2c モータ駆動装置、110 商用電源、120 リアクトル、130 整流部、131~134,621~624 整流素子、200 平滑部、210 コンデンサ、310 インバータ、311a~311f,611~614 スイッチング素子、312a~312f 還流ダイオード、313a,313b 電流検出部、314 モータ、315 圧縮機、400 制御部、501 電圧電流検出部、502 電圧検出部、600,601 昇圧部、700,701,702 整流昇圧部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。

Claims (15)

  1. 商用電源から供給される第1の交流電力を整流するとともに、前記第1の交流電力の電圧を昇圧する整流昇圧部と、
    前記整流昇圧部の出力端に接続されるコンデンサと、
    前記コンデンサの両端に接続され、前記整流昇圧部および前記コンデンサから出力される電力を第2の交流電力に変換し、モータを有する負荷に出力するインバータと、
    前記整流昇圧部の動作を制御するとともに、前記整流昇圧部から前記コンデンサに流入する電力の脈動に応じた脈動を含む前記第2の交流電力を前記インバータから前記負荷に出力するように前記インバータのみの動作を制御し、前記コンデンサに流れる電流を抑制する制御部と、
    を備える電力変換装置。
  2. 前記制御部は、前記整流昇圧部の動作を制御し、前記商用電源から供給される前記第1の交流電力の力率改善制御、および前記コンデンサの平均電圧制御を行う、
    請求項1に記載の電力変換装置。
  3. 前記制御部は、前記インバータから出力される前記第2の交流電力に含まれる脈動が、前記整流昇圧部から出力される電力の脈動よりも小さくなるように前記インバータの動作を制御する、
    請求項1または2に記載の電力変換装置。
  4. 前記制御部は、前記コンデンサに発生する電圧リプルが、前記インバータから出力される前記第2の交流電力に前記コンデンサに流入する電力の脈動に応じた脈動が含まれないときの前記コンデンサに発生する電圧リプルよりも小さくなるように、前記インバータから出力される前記第2の交流電力に含まれる脈動の振幅および位相を制御する、
    請求項1から3のいずれか1つに記載の電力変換装置。
  5. 前記制御部は、前記コンデンサに流出入する電流リプルが、前記インバータから出力される前記第2の交流電力に前記コンデンサに流入する電力の脈動に応じた脈動が含まれないときの前記コンデンサに発生する電流リプルよりも小さくなるように、前記インバータから出力される前記第2の交流電力に含まれる脈動の振幅および位相を制御する、
    請求項1から4のいずれか1つに記載の電力変換装置。
  6. 前記整流昇圧部は、
    複数の整流素子を有する整流部と、
    整流素子、および前記制御部によってオンオフが制御されるスイッチング素子を有する昇圧部と、
    を備え、
    前記整流部および前記昇圧部が直列または並列に接続される、
    請求項1から5のいずれか1つに記載の電力変換装置。
  7. 前記整流昇圧部は、
    前記制御部によってオンオフが制御される複数のスイッチング素子と、
    各々が前記複数のスイッチング素子の1つに並列に接続される複数の整流素子と、
    を備える請求項1から5のいずれか1つに記載の電力変換装置。
  8. 前記制御部は、前記インバータから出力される前記第2の交流電力に含まれる脈動のうち、前記第1の交流電力が単相の場合は前記第1の交流電力の周波数の2倍の周波数成分、または前記第1の交流電力が3相の場合は前記第1の交流電力の周波数の6倍の周波数成分以外の変動周波数成分を含む電力が前記整流昇圧部から出力されるように、さらに前記整流昇圧部の動作を制御する、
    請求項1から7のいずれか1つに記載の電力変換装置。
  9. 前記制御部は、前記変動周波数成分を、前記商用電源に対する指令値を用いて制御する、
    請求項8に記載の電力変換装置。
  10. 前記制御部は、前記変動周波数成分を、前記第1の交流電力の周波数の40次までの整数倍の成分としない、または規定された値以下になるように制御する、
    請求項8に記載の電力変換装置。
  11. 前記コンデンサは、電解コンデンサまたはフィルムコンデンサである、
    請求項1から10のいずれか1つに記載の電力変換装置。
  12. 前記コンデンサに発生する電圧リプルの最大値は最小値の2倍未満となる、
    請求項1から11のいずれか1つに記載の電力変換装置。
  13. 前記整流昇圧部は全波整流を行うものであり、前記コンデンサに発生する電圧は前記商用電源の全波整流波形形状ではない、
    請求項1から12のいずれか1つに記載の電力変換装置。
  14. 請求項1から13のいずれか1つに記載の電力変換装置を備えるモータ駆動装置。
  15. 請求項1から13のいずれか1つに記載の電力変換装置を備える冷凍サイクル適用機器。
JP2022558618A 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 Active JP7345674B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040132 WO2022091185A1 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Publications (2)

Publication Number Publication Date
JPWO2022091185A1 JPWO2022091185A1 (ja) 2022-05-05
JP7345674B2 true JP7345674B2 (ja) 2023-09-15

Family

ID=81383772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022558618A Active JP7345674B2 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Country Status (4)

Country Link
US (1) US20230378867A1 (ja)
JP (1) JP7345674B2 (ja)
CN (1) CN116458049A (ja)
WO (1) WO2022091185A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238229A1 (ja) * 2022-06-07 2023-12-14 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161757A (ja) 2018-03-08 2019-09-19 ナブテスコ株式会社 Ac−ac電力変換装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161757A (ja) 2018-03-08 2019-09-19 ナブテスコ株式会社 Ac−ac電力変換装置

Also Published As

Publication number Publication date
US20230378867A1 (en) 2023-11-23
CN116458049A (zh) 2023-07-18
JPWO2022091185A1 (ja) 2022-05-05
WO2022091185A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6430028B2 (ja) 電力変換装置及びこれを用いた空気調和装置
US20170201186A1 (en) Power conversion device and refrigeration cycle apparatus
JP7345674B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP2017208979A (ja) 電源装置
JP7387038B2 (ja) 電力変換装置、モータ駆動装置および空気調和機
JP6545282B2 (ja) 電力変換装置、及び、この電力変換装置を備えた空気調和装置
JP6469235B2 (ja) 電力変換装置及びこの電力変換装置を備えた空気調和装置
WO2022091186A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7345673B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2022172418A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023238229A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023095264A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP6505264B2 (ja) 電力変換装置およびこれを用いた空気調和装置
WO2023084726A1 (ja) 電力変換装置及び冷凍サイクル適用機器
WO2023105792A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023084604A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023105676A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023105570A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP5013922B2 (ja) 三相整流装置及び冷凍サイクル装置
JP7378651B2 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2022149213A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023100359A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150