WO2022091186A1 - 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 - Google Patents

電力変換装置、モータ駆動装置および冷凍サイクル適用機器 Download PDF

Info

Publication number
WO2022091186A1
WO2022091186A1 PCT/JP2020/040133 JP2020040133W WO2022091186A1 WO 2022091186 A1 WO2022091186 A1 WO 2022091186A1 JP 2020040133 W JP2020040133 W JP 2020040133W WO 2022091186 A1 WO2022091186 A1 WO 2022091186A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
current
conversion device
power
power conversion
Prior art date
Application number
PCT/JP2020/040133
Other languages
English (en)
French (fr)
Inventor
貴昭 ▲高▼原
浩一 有澤
啓介 植村
遥 松尾
公洋 松崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/043,132 priority Critical patent/US20230308025A1/en
Priority to JP2022558619A priority patent/JP7471442B2/ja
Priority to CN202080106184.3A priority patent/CN116670995A/zh
Priority to PCT/JP2020/040133 priority patent/WO2022091186A1/ja
Publication of WO2022091186A1 publication Critical patent/WO2022091186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor

Definitions

  • the present disclosure relates to a power conversion device, a motor drive device, and a refrigeration cycle applicable device for converting AC power into desired power.
  • a power conversion device that converts AC power supplied from an AC power source into desired AC power and supplies it to a load such as an air conditioner.
  • a power conversion device which is a control device for an air conditioner, rectifies AC power supplied from an AC power supply by a diode stack, which is a rectifying unit, and further smoothes a plurality of powers by a smoothing capacitor.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a power conversion device capable of suppressing the increase in size of the device while suppressing the deterioration of the smoothing capacitor.
  • the power conversion device is connected to a rectifying unit that rectifies a first AC power supplied from a commercial power source and an output end of the rectifying unit.
  • a rectifying unit that rectifies a first AC power supplied from a commercial power source and an output end of the rectifying unit.
  • the inverter connected to the capacitor and both ends of the capacitor, converting the power output from the rectifying section and the capacitor to the second AC power and outputting it to the load having the motor, and the pulsation of the power flowing from the rectifying section to the capacitor.
  • It is equipped with a control unit that controls the operation of the inverter so that the second AC power including the corresponding pulsation is output from the inverter to the load and suppresses the current flowing through the capacitor, and a discharge circuit or overvoltage protection circuit is provided in the capacitor.
  • the power conversion device has the effect of suppressing the deterioration of the smoothing capacitor and suppressing the increase in size of the device.
  • a diagram showing an example of each current and the capacitor voltage of the capacitor of the smoothing part when the current output from the rectifying part is smoothed by the smoothing part and the current flowing through the inverter is made constant.
  • the figure which shows the example of each current and the capacitor voltage of the capacitor of the smooth part when the control part of the power conversion apparatus which concerns on Embodiment 1 controls the operation of the inverter and reduces the current which flows in a smooth part.
  • FIG. 1 is a diagram showing a configuration example of the power conversion device 1 according to the first embodiment.
  • the power converter 1 is connected to the commercial power supply 110 and the compressor 315.
  • the power conversion device 1 converts the first AC power of the power supply voltage Vs supplied from the commercial power supply 110 into the second AC power having a desired amplitude and phase, and supplies the first AC power to the compressor 315.
  • the power conversion device 1 includes a voltage / current detection unit 501, a reactor 120, a rectifier unit 130, a voltage detection unit 502, a smoothing unit 200, an inverter 310, current detection units 313a and 313b, a control unit 400, and the like.
  • the motor drive device 2 is composed of the power converter 1 and the motor 314 included in the compressor 315.
  • the voltage / current detection unit 501 detects the voltage value and current value of the first AC power of the power supply voltage Vs supplied from the commercial power supply 110, and outputs the detected voltage value and current value to the control unit 400.
  • the reactor 120 is connected between the voltage / current detection unit 501 and the rectifying unit 130.
  • the rectifying unit 130 has a bridge circuit composed of rectifying elements 131 to 134, and rectifies and outputs the first AC power of the power supply voltage Vs supplied from the commercial power supply 110.
  • the rectifying unit 130 performs full-wave rectification.
  • the voltage detection unit 502 detects the voltage value of the electric power rectified by the rectifier unit 130, and outputs the detected voltage value to the control unit 400.
  • the smoothing unit 200 is connected to the output end of the rectifying unit 130 via the voltage detecting unit 502.
  • the smoothing unit 200 has a capacitor 210 as a smoothing element, and smoothes the electric power rectified by the rectifying unit 130.
  • the capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like.
  • the capacitor 210 has a capacity for smoothing the electric power rectified by the rectifying unit 130, and the voltage generated in the capacitor 210 due to the smoothing is not the full-wave rectified waveform shape of the commercial power supply 110, but the commercial power supply for the DC component. It has a waveform shape in which voltage ripple corresponding to the frequency of 110 is superimposed, and does not pulsate significantly.
  • the frequency of this voltage ripple is twice the frequency of the power supply voltage Vs when the commercial power supply 110 is single-phase, and is mainly composed of six times the frequency when the commercial power supply 110 is three-phase.
  • the amplitude of this voltage ripple is determined by the capacity of the capacitor 210.
  • the voltage ripple generated in the capacitor 210 is pulsating in a range where the maximum value is less than twice the minimum value.
  • the inverter 310 is connected to the smoothing portion 200, that is, both ends of the capacitor 210.
  • the inverter 310 has switching elements 311a to 311f and freewheeling diodes 312a to 312f.
  • the inverter 310 turns on and off the switching elements 311a to 311f under the control of the control unit 400, converts the power output from the rectifying unit 130 and the smoothing unit 200 into a second AC power having a desired amplitude and phase, and compresses the power. Output to machine 315.
  • the current detection units 313a and 313b each detect the current value of one of the three-phase currents output from the inverter 310, and output the detected current value to the control unit 400.
  • the control unit 400 can calculate the current value of the remaining one phase output from the inverter 310 by acquiring the current value of two phases out of the current values of the three phases output from the inverter 310. ..
  • the compressor 315 is a load having a motor 314 for driving the compressor.
  • the motor 314 rotates according to the amplitude and phase of the second AC power supplied from the inverter 310, and performs a compression operation.
  • the compressor 315 is a closed type compressor used in an air conditioner or the like, the load torque of the compressor 315 can often be regarded as a constant torque load.
  • the arrangement of each configuration shown in FIG. 1 is an example, and the arrangement of each configuration is not limited to the example shown in FIG.
  • the reactor 120 may be arranged after the rectifying unit 130.
  • the voltage / current detection unit 501, the voltage detection unit 502, and the current detection units 313a and 313b may be collectively referred to as a detection unit.
  • the voltage value and the current value detected by the voltage / current detection unit 501, the voltage value detected by the voltage detection unit 502, and the current value detected by the current detection units 313a and 313b may be referred to as a detection value. ..
  • the control unit 400 acquires the voltage value and the current value of the first AC power of the power supply voltage Vs from the voltage / current detection unit 501, and acquires the voltage value of the power rectified by the rectifying unit 130 from the voltage detection unit 502.
  • the current value of the second AC power having a desired amplitude and phase converted by the inverter 310 is acquired from the current detection units 313a and 313b.
  • the control unit 400 controls the operation of the inverter 310, specifically, the on / off of the switching elements 311a to 311f of the inverter 310 by using the detection value detected by each detection unit.
  • the control unit 400 outputs a second AC power including a pulsation corresponding to the pulsation of the electric power flowing from the rectifying unit 130 to the capacitor 210 of the smoothing unit 200 from the inverter 310 to the compressor 315 which is a load.
  • the operation of the inverter 310 is controlled so as to be performed.
  • the pulsation according to the pulsation of the electric power flowing into the capacitor 210 of the smoothing portion 200 is, for example, a pulsation that fluctuates depending on the frequency of the pulsation of the electric power flowing into the capacitor 210 of the smoothing portion 200.
  • the control unit 400 suppresses the current flowing through the capacitor 210 of the smoothing unit 200.
  • the control unit 400 does not have to use all the detected values acquired from each detection unit, and may perform control using some of the detected values.
  • the capacitor 210 and the inverter 310 are connected in parallel, and the capacitor 210 is not provided with a discharge circuit or an overvoltage protection circuit.
  • the discharge circuit has an active element such as a switching element, a resistor, and the like, and controls whether or not a resistor is connected to the capacitor 210 by turning the active element on and off. Therefore, it does not include a resistor connected in parallel with the capacitor 210 for the purpose of balancing the voltage of each of the capacitors connected in series, for the purpose of detecting the capacitor voltage, and the like. Since the resistance mounted on the discharge circuit is used for the purpose of discharging the charge of the capacitor 210 within a certain period of time, in one example, the resistance value is not a large resistance value of 1 k ⁇ or more, but a resistance value of several ⁇ to several hundred ⁇ . Will be.
  • An example of a discharge circuit is a circuit in which a switching element connected in series and a resistor are connected in parallel to a capacitor 210.
  • the overvoltage protection circuit protects the device so that the voltage of the capacitor 210 does not rise above a certain level due to the regenerative power of the motor 314, the disturbance on the commercial power supply 110 side, etc., and the surge voltage generated when the switching element is switched. It is not a snubber circuit that protects the switching element from. Examples of the snubber circuit include an RC snubber composed of a resistor and a capacitor, a C snubber composed of only a capacitor, and the like.
  • An example of an overvoltage protection circuit is a circuit in which a diode connected in series, a resistor, and a protection capacitor are connected to the capacitor 210.
  • a capacitor larger than the capacitor capacity for the snubber circuit is required, and a capacitor of 10 uF or more is required. Further, the resistance is not always necessary, and only the diode and the protection capacitor may be connected in series and used.
  • the load generated by the inverter 310 and the compressor 315 can be regarded as a constant load, and when viewed in terms of the current output from the smoothing section 200, it is determined by the smoothing section 200.
  • the following description will be given assuming that the current load is connected.
  • the current flowing from the rectifying unit 130 is the current I1
  • the current flowing through the inverter 310 is the current I2
  • the current flowing from the smoothing unit 200 is the current I3.
  • the current I2 is a combination of the current I1 and the current I3.
  • the current I3 can be expressed as the difference between the current I2 and the current I1, that is, the current I2-current I1.
  • the discharging direction of the smoothing portion 200 is the positive direction, and the charging direction of the smoothing portion 200 is the negative direction. That is, a current may flow into the smoothing portion 200, and a current may flow out.
  • FIG. 2 shows the capacitors of the respective currents I1 to I3 and the capacitor 210 of the smoothing section 200 when the current output from the rectifying section 130 is smoothed by the smoothing section 200 and the current I2 flowing through the inverter 310 is made constant.
  • Vdc the example of the voltage Vdc. From the top, the capacitor voltage Vdc of the capacitor 210 generated according to the current I1, the current I2, the current I3, and the current I3 is shown.
  • the vertical axis of the currents I1, I2, and I3 indicates the current value, and the vertical axis of the capacitor voltage Vdc indicates the voltage value. All horizontal axes indicate time t.
  • the carrier components of the inverter 310 are actually superimposed on the currents I2 and I3, but they are omitted here. The same shall apply thereafter.
  • the control unit 400 controls the current I2 flowing through the inverter 310, that is, controls the operation of the inverter 310 so as to reduce the current I3 flowing through the smoothing unit 200.
  • FIG. 3 shows capacitors of the currents I1 to I3 and the smoothing section 200 when the control section 400 of the power conversion device 1 according to the first embodiment controls the operation of the inverter 310 to reduce the current I3 flowing through the smoothing section 200.
  • the vertical axis of the currents I1, I2, and I3 indicates the current value, and the vertical axis of the capacitor voltage Vdc indicates the voltage value. All horizontal axes indicate time t.
  • the control unit 400 of the power conversion device 1 controls the operation of the inverter 310 so that the current I2 as shown in FIG. 3 flows through the inverter 310, so that the rectifying unit 130 to the smoothing unit 400 is compared with the example of FIG.
  • the frequency component of the current flowing through the 200 can be reduced, and the current I3 flowing through the smoothing portion 200 can be reduced.
  • the control unit 400 controls the operation of the inverter 310 so that the current I2 including the pulsating current whose main component is the frequency component of the current I1 flows through the inverter 310.
  • the frequency component of the current I1 is determined by the frequency of the alternating current supplied from the commercial power supply 110 and the configuration of the rectifying unit 130. Therefore, the control unit 400 can set the frequency component of the pulsating current superimposed on the current I2 as a component having a predetermined amplitude and phase.
  • the frequency component of the pulsating current superimposed on the current I2 has a similar waveform to the frequency component of the current I1.
  • the control unit 400 reduces the current I3 flowing through the smoothing unit 200 and reduces the pulsating voltage generated in the capacitor voltage Vdc as the frequency component of the pulsating current superimposed on the current I2 approaches the frequency component of the current I1. can do.
  • Controlling the pulsation of the current flowing through the inverter 310 by controlling the operation of the inverter 310 by the control unit 400 is the same as controlling the pulsation of the first AC power output from the inverter 310 to the compressor 315. Is.
  • the control unit 400 controls the operation of the inverter 310 so that the pulsation included in the second AC power output from the inverter 310 is smaller than the pulsation of the power output from the rectifying unit 130.
  • the voltage ripple of the capacitor voltage Vdc that is, the voltage ripple generated in the capacitor 210 does not include the pulsation corresponding to the pulsation of the power flowing into the capacitor 210 in the second AC power output from the inverter 310.
  • the amplitude and phase of the pulsation included in the second AC power output from the inverter 310 are controlled so as to be smaller than the voltage ripple generated in the capacitor 210 at that time.
  • the alternating current supplied from the commercial power supply 110 is not particularly limited and may be single-phase or three-phase.
  • the control unit 400 may determine the frequency component of the pulsating current superimposed on the current I2 according to the first AC power supplied from the commercial power supply 110. Specifically, the control unit 400 uses the pulsating waveform of the current I2 flowing through the inverter 310 to be twice the frequency of the first AC power when the first AC power supplied from the commercial power supply 110 is single-phase.
  • the frequency component or the first AC power supplied from the commercial power supply 110 is three-phase, the shape is obtained by adding the DC component to the pulsating waveform whose main component is a frequency component six times the frequency of the first AC power. Control.
  • the pulsation waveform is, for example, the shape of an absolute value of a sine wave or the shape of a sine wave.
  • the control unit 400 may add at least one frequency component out of an integral multiple of the frequency of the sine wave to the pulsation waveform as a predetermined amplitude.
  • the pulsation waveform may be in the shape of a rectangular wave or a triangular wave.
  • the control unit 400 may set the amplitude and phase of the pulsation waveform to predetermined values.
  • the control unit 400 may calculate the pulsation amount included in the second AC power output from the inverter 310 by using the voltage applied to the capacitor 210 or the current flowing through the capacitor 210, or the commercial power supply 110 may calculate the pulsation amount.
  • the voltage or current of the first AC power supplied may be used to calculate the pulsation amount of the pulsation included in the second AC power output from the inverter 310.
  • FIG. 4 is a flowchart showing the operation of the control unit 400 included in the power conversion device 1 according to the first embodiment.
  • the control unit 400 acquires a detection value from each detection unit of the power conversion device 1 (step S1).
  • the control unit 400 controls the operation of the inverter 310 based on the acquired detected value so that the current I3 flowing through the smoothing unit 200 is reduced (step S2).
  • the inductance component in the power conversion device 1 is L [H]
  • the capacitance of the capacitor 210 is C [F]
  • the inductance component for one phase of the motor 314 is Lm [H].
  • the maximum voltage of the capacitor 210 in the steady state is Vcmax [V]
  • the maximum current value of the motor 314 is Im [A”
  • the maximum current value of the commercial power supply 110 is Is [A]
  • the capacitor voltage Vdc is applied to the element.
  • the withstand voltage is Vdclim [V]
  • the capacitance C of the capacitor 210 is determined within the range of the equation (1).
  • the inductance component L in the power conversion device 1 is the inductance component La of the reactor 120 + the system impedance Lk.
  • the system impedance Lk is a leak in the transformer, a parasitic inductance component contained in the wiring, and the like. Since the increase in the capacitor voltage Vdc increases as the L value increases, the maximum value assumed in the actual use environment is used for the system impedance Lk. The same shall apply thereafter. Further, the position of the reactor 120 may be located after the rectifying unit 130, that is, between the rectifying unit 130 and the voltage detecting unit 502 as described above.
  • FIG. 5 is a diagram showing an example of an equivalent circuit when the inverter 310 is stopped in the power conversion device 1 according to the first embodiment.
  • the equivalent circuit shown in FIG. 5 is a simple one, and does not simulate the voltage of the commercial power supply 110, the induced voltage of the motor 314, or the like.
  • FIG. 5 it is assumed that the inverter 310 is stopped at 50 ms, and each current voltage value is a value at 50 ms.
  • FIG. 6 shows various waveforms when the inverter 310 is stopped within and outside the range represented by the equation (1).
  • FIG. 6 is a diagram showing an example of a capacitor voltage Vdc when the inverter 310 is stopped in the power conversion device 1 according to the first embodiment.
  • FIG. 6A in the upper row shows an inverter stop signal from the control unit 400
  • FIG. 6B in the lower row shows a capacitor voltage Vdc.
  • L 2 [mH]
  • Is 15 [A]
  • Lm 9 [mH]
  • Im 15 [A]
  • Vdclim 400 [V]
  • Vcmax 310 [V].
  • the capacitance C of the capacitor 210 is 20 [uF] outside the range of the equation (1), 55 [uF] which is a condition that the right side and the left side are equal in the equation (1), and the right side within the range of the equation (1).
  • Is 100 [uF] which is a large condition.
  • the power conversion device 1 can raise the voltage within the withstand voltage Vdclim of the element by setting the capacitance C of the capacitor 210 within the range of the equation (1), thereby causing element destruction. It can be prevented.
  • an inductance component, a system impedance, and the like included in a filter and the like may be added to L in the equation (1).
  • the equation (1) is a simple equation, and the induced voltage of the motor 314, the voltage increase due to the voltage of the commercial power supply 110, and the like may be added.
  • the control unit 400 pulsates the output power of the inverter 310 based on the frequency of the commercial power supply 110 to reduce the current of the capacitor 210.
  • the ripple voltage of the capacitor 210 can be made smaller than that of the control method in which the output power pulsation is constantly flowed as in the case of the inverter. Since pulsating the electric power means pulsating the current of the inverter 310, in other words, the capacitance C of the capacitor 210 can be reduced according to the pulsation of the output current of the inverter 310. Further, pulsating the output of the inverter 310 is the same as pulsating the input current to the inverter 310.
  • the current of the capacitor 210 is pulsating at a frequency of 2 fs, which is twice the frequency of the commercial power supply 110, and the capacitor.
  • the ripple voltage of 210 is also pulsating according to the frequency of 2 fs. Therefore, the ripple voltage of the capacitor 210 may be determined by determining the allowable ripple voltage based on the frequency 2 fs, and the capacitance C of the capacitor 210 is determined by the value of the allowable ripple voltage.
  • the allowable ripple voltage of the capacitor 210 in the frequency 2fs component is ⁇ V_2fs
  • the current of the capacitor 210 having the frequency 2fs component when there is no pulsation of the frequency 2fs component in the output current of the inverter 310 which is a normal control the current of the capacitor 210 in the frequency 2fs component is Ic_2fs.
  • the pulsation of the input current of the inverter 310 having the frequency 2fs component when the control is applied is Im_2fs
  • the capacitance C of the capacitor 210 when the control of the present embodiment is applied is in the range of the equation (2).
  • the frequency twice the frequency of the commercial power supply 110 is set to the frequency 2 fs, but the frequency is not limited to this, and the portion of the frequency 2 fs may be set to an integral multiple of the frequency 2 fs.
  • the capacitor 210 having a smaller capacity can be used without adding a discharge circuit or an overvoltage protection circuit to the capacitor 210. It can be used.
  • the capacity C of the capacitor 210 is equal to or larger than the capacity of the capacitor 210 set when the overvoltage protection circuit is connected to the capacitor 210.
  • the capacitance C of the capacitor 210 is the impedance of the reactor 120 arranged in the power converter 1, the system impedance Lk, the maximum current value Is of the commercial power supply 110, the inductance component Lm for one phase of the motor 314, and the maximum current value of the motor 314. It is determined by a value calculated using Im, the withstand voltage Vdclim of the element to which the voltage from the capacitor 210 is applied, and the maximum voltage Vcmax of the capacitor 210 in a steady state.
  • the capacity C of the capacitor 210 may be further limited by the system voltage of the commercial power supply 110 when the inverter 310 is stopped, the induced voltage of the motor 314, and the like. Further, the capacitance C of the capacitor 210 operates the inverter 310 so that the control unit 400 outputs the second AC power including the pulsation corresponding to the pulsation of the electric power flowing from the rectifying unit 130 to the capacitor 210 from the inverter 310 to the load. It is less than the capacity C of the capacitor 210 set when the first control is not performed.
  • the capacitance C of the capacitor 210 is the allowable ripple voltage ⁇ V_2fs of the capacitor 210 at a frequency 2 fs twice the frequency of the commercial power supply 110, which is the frequency at which the current of the capacitor 210 pulsates, and a frequency 2 fs twice the frequency, and the control unit 400 is the first.
  • FIG. 7 is a diagram showing a difference in the current flowing through the capacitor 210 when the control for reducing the current flowing through the capacitor 210 is not applied and when the control for reducing the current flowing through the capacitor 210 is applied in the power conversion device 1 according to the first embodiment.
  • FIG. 7 (a) in the upper row shows a case where the control for reducing the current flowing through the capacitor 210 is not applied in the power conversion device 1, and FIG.
  • FIG. 7 (b) in the lower row shows the case where the current flowing through the capacitor 210 in the power conversion device 1 is applied.
  • the case where the reduction control is applied is shown.
  • the control of the present embodiment when the control of the present embodiment is applied, it is commercialized as compared with the first capacitor current Ic_2fcinv at a frequency component twice the switching frequency fcinv of the switching elements 311a to 311f included in the inverter 310.
  • the capacitor current Ic_2fs at a frequency component twice the frequency of the power supply 110 is equal or lower. In this case, the current flowing through the capacitor 210 is limited as in the equation (3).
  • the frequency twice the frequency of the commercial power supply 110 is set to the frequency 2 fs, but the frequency is not limited to this, and the portion of the frequency 2 fs may be set to an integral multiple of the frequency 2 fs.
  • the power conversion device 1 can use the capacitor 210 having a small ripple current withstand capacity if the above conditional expression (3) is satisfied.
  • the capacitor current Ic_2fs having a frequency component twice the frequency of the commercial power supply 110 is the first frequency component having twice the switching frequency of the switching elements 311a to 311f included in the inverter 310.
  • the first capacitor current Ic_2fcinv may contain a current component due to the rotation of the motor 314.
  • FIG. 8 is a diagram showing an example of a hardware configuration that realizes the control unit 400 included in the power conversion device 1 according to the first embodiment.
  • the control unit 400 is realized by the processor 91 and the memory 92.
  • the processor 91 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP (Digital Signal Processor)), or system LSI (Large Scale Integration).
  • the memory 92 is a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (registered trademark) (Electrically Memory), or an EEPROM (registered trademark).
  • a semiconductor memory can be exemplified. Further, the memory 92 is not limited to these, and may be a magnetic disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versaille Disc).
  • the control unit 400 controls the operation of the inverter 310 based on the detection value acquired from each detection unit, and the current I2 flowing through the inverter 310.
  • the power conversion device 1 can use a capacitor having a small ripple current withstand as compared with the case where the control of the present embodiment is not performed by reducing the current I3 flowing through the smoothing portion 200.
  • the power conversion device 1 can reduce the capacity of the mounted capacitor 210 as compared with the case where the control of the present embodiment is not performed because the pulsating voltage of the capacitor voltage Vdc is lowered.
  • the power conversion device 1 can reduce the number of capacitors 210 constituting the smoothing portion 200.
  • the power conversion device 1 can suppress the vibration of the compressor 315 generated due to the pulsation of the current I2 by controlling the present embodiment.
  • Embodiment 2 In the second embodiment, a case where the power conversion device boosts the first AC power supplied from the commercial power source 110 will be described.
  • FIG. 9 is a diagram showing a configuration example of the power conversion device 1a according to the second embodiment.
  • the power converter 1a is connected to the commercial power supply 110 and the compressor 315.
  • the power conversion device 1a converts the first AC power of the power supply voltage Vs supplied from the commercial power supply 110 into the second AC power having a desired amplitude and phase, and supplies the first AC power to the compressor 315.
  • the power conversion device 1a includes a voltage / current detection unit 501, a rectifier unit 130, a reactor 120, a booster unit 600, a voltage detection unit 502, a smoothing unit 200, an inverter 310, and current detection units 313a and 313b.
  • a control unit 400 is provided.
  • the rectifying and boosting unit 700 is composed of the rectifying unit 130, the reactor 120, and the boosting unit 600.
  • the motor drive device 2a is composed of the power conversion device 1a and the motor 314 included in the compressor 315.
  • the voltage / current detection unit 501 detects the voltage value and current value of the first AC power of the power supply voltage Vs supplied from the commercial power supply 110, and outputs the detected voltage value and current value to the control unit 400.
  • the rectifying unit 130 has a bridge circuit composed of rectifying elements 131 to 134, and rectifies and outputs the first AC power of the power supply voltage Vs supplied from the commercial power supply 110.
  • the reactor 120 is connected between the rectifying unit 130 and the boosting unit 600.
  • the booster 600 has a switching element 611 and a rectifying element 621. The booster unit 600 turns on and off the switching element 611 under the control of the control unit 400, boosts the power output from the rectifying unit 130, and outputs the boosted power to the smoothing unit 200.
  • the booster unit 600 is controlled by the control unit 400 with a full PAM (Pulse Amplitude Modulation) in which the switching element 611 continuously performs the switching operation.
  • the power conversion device 1a controls the power factor improvement of the commercial power supply 110 by the booster unit 600, and makes the capacitor voltage Vdc of the capacitor 210 of the smoothing unit 200 higher than the power supply voltage Vs.
  • the rectifying and boosting unit 700 rectifies the first AC power supplied from the commercial power supply 110 by the rectifying unit 130 and the boosting unit 600, and boosts the voltage of the first AC power supplied from the commercial power supply 110.
  • the rectifying section 130 and the boosting section 600 are connected in series.
  • the voltage detection unit 502 detects the voltage value of the power boosted by the booster unit 600, and outputs the detected voltage value to the control unit 400.
  • the smoothing unit 200 is connected to the output end of the boosting unit 600 via the voltage detecting unit 502.
  • the smoothing unit 200 has a capacitor 210 as a smoothing element, and smoothes the electric power boosted by the boosting unit 600.
  • the capacitor 210 is, for example, an electrolytic capacitor, a film capacitor, or the like.
  • the capacitor 210 has a capacity that is rectified by the rectifying unit 130 and smoothes the power boosted by the boosting unit 600, and the voltage generated in the capacitor 210 by the smoothing is in the full-wave rectified waveform shape of the commercial power supply 110.
  • the frequency of this voltage ripple is twice the frequency of the power supply voltage Vs when the commercial power supply 110 is single-phase, and is mainly composed of six times the frequency when the commercial power supply 110 is three-phase.
  • the amplitude of this voltage ripple is determined by the capacity of the capacitor 210. For example, the voltage ripple generated in the capacitor 210 is pulsating in a range where the maximum value is less than twice the minimum value.
  • the inverter 310 is connected to the smoothing portion 200, that is, both ends of the capacitor 210.
  • the inverter 310 has switching elements 311a to 311f and freewheeling diodes 312a to 312f.
  • the inverter 310 turns on and off the switching elements 311a to 311f under the control of the control unit 400, converts the power output from the rectifying booster unit 700 and the smoothing unit 200 into a second AC power having a desired amplitude and phase.
  • the current detection units 313a and 313b each detect the current value of one of the three-phase currents output from the inverter 310, and output the detected current value to the control unit 400.
  • the control unit 400 can calculate the current value of the remaining one phase output from the inverter 310 by acquiring the current value of the two phases after the current value of the three phases output from the inverter 310.
  • the compressor 315 is a load having a motor 314 for driving the compressor.
  • the motor 314 rotates according to the amplitude and phase of the second AC power supplied from the inverter 310, and performs a compression operation.
  • the load torque of the compressor 315 can often be regarded as a constant torque load.
  • the arrangement of each configuration shown in FIG. 9 is an example, and the arrangement of each configuration is not limited to the example shown in FIG.
  • the rectifying booster 700 may not include the reactor 120 depending on the arrangement position of the reactor 120.
  • the voltage / current detection unit 501, the voltage detection unit 502, and the current detection units 313a and 313b may be collectively referred to as a detection unit.
  • the voltage value and the current value detected by the voltage / current detection unit 501, the voltage value detected by the voltage detection unit 502, and the current value detected by the current detection units 313a and 313b may be referred to as a detection value. ..
  • the control unit 400 acquires the voltage value and the current value of the first AC power of the power supply voltage Vs from the voltage / current detection unit 501, and acquires the voltage value of the power boosted by the booster unit 600 from the voltage detection unit 502.
  • the current value of the second AC power having a desired amplitude and phase converted by the inverter 310 is acquired from the current detection units 313a and 313b.
  • the control unit 400 controls the operation of the booster unit 600 of the rectifying booster unit 700, specifically, the on / off of the switching element 611 of the booster unit 600, using the detection value detected by each detection unit.
  • control unit 400 controls the operation of the inverter 310, specifically, the on / off of the switching elements 311a to 311f of the inverter 310 by using the detection value detected by each detection unit.
  • the control unit 400 controls the operation of the rectifying booster unit 700.
  • the control unit 400 controls the operation of the rectifying booster unit 700, controls the power factor of the first AC power supplied from the commercial power supply 110, and controls the average voltage of the capacitor 210 of the smoothing unit 200.
  • the control unit 400 outputs the second AC power including the pulsation corresponding to the pulsation of the electric power flowing from the rectifying unit 130 to the capacitor 210 of the smoothing unit 200 from the inverter 310 to the compressor 315 which is a load.
  • the pulsation according to the pulsation of the electric power flowing into the capacitor 210 of the smoothing portion 200 is, for example, a pulsation that fluctuates depending on the frequency of the pulsation of the electric power flowing into the capacitor 210 of the smoothing portion 200.
  • the control unit 400 suppresses the current flowing through the capacitor 210 of the smoothing unit 200.
  • the control unit 400 does not have to use all the detected values acquired from each detection unit, and may perform control using some of the detected values.
  • control unit 400 included in the power conversion device 1a will be described.
  • the operation of the control unit 400 is the same as the operation of the control unit 400 in the first embodiment.
  • the current flowing from the rectifying unit 130 is read as the current flowing from the boosting unit 600.
  • the frequency component of the current I1 is determined by the frequency of the alternating current supplied from the commercial power supply 110, the configuration of the rectifying unit 130, and the switching speed of the switching element 611 of the booster unit 600. Therefore, the control unit 400 can set the frequency component of the pulsating current superimposed on the current I2 as a component having a predetermined amplitude and phase.
  • the frequency component of the pulsating current superimposed on the current I2 has a similar waveform to the frequency component of the current I1.
  • the control unit 400 reduces the current I3 flowing through the smoothing unit 200 and reduces the pulsating voltage generated in the capacitor voltage Vdc as the frequency component of the pulsating current superimposed on the current I2 approaches the frequency component of the current I1. can do.
  • Controlling the pulsation of the current flowing through the inverter 310 by controlling the operation of the inverter 310 by the control unit 400 is the same as controlling the pulsation of the second AC power output from the inverter 310 to the compressor 315. Is.
  • the control unit 400 controls the operation of the inverter 310 so that the pulsation included in the second AC power output from the inverter 310 is smaller than the pulsation of the power output from the rectifying booster 700.
  • the voltage ripple of the capacitor voltage Vdc that is, the voltage ripple generated in the capacitor 210 does not include the pulsation corresponding to the pulsation of the power flowing into the capacitor 210 in the second AC power output from the inverter 310.
  • the amplitude and phase of the pulsation included in the second AC power output from the inverter 310 are controlled so as to be smaller than the voltage ripple generated in the capacitor 210 at that time.
  • control unit 400 controls the inverter 310 so that the second AC power including a frequency component different from the frequency component of the first AC power supplied from the commercial power supply 110 is output from the inverter 310 to the compressor 315.
  • the frequency component included in the second AC power output from the inverter 310 to the compressor 315 may be superimposed on the drive signal for turning on / off the switching element 611 of the booster unit 600. That is, when the first AC power supplied from the commercial power supply 110 is single-phase among the power pulsations of the second AC power output from the inverter 310 to the compressor 315, the control unit 400 is the first AC power.
  • the power including the variable frequency component other than the frequency component of the frequency of the first AC power is six times the frequency of the first AC power.
  • the operation of the rectifying and boosting unit 700 specifically, the operation of the switching element 611 of the boosting unit 600 is controlled so as to be output from the rectifying and boosting unit 700.
  • the control unit 400 may control the variable frequency component by using the command value for the commercial power supply 110, or control the variable frequency component up to the 40th order of the frequency of the first AC power supplied from the commercial power supply 110.
  • the component may not be an integral multiple, or may be controlled so as to be a specified value, for example, a desired standard value or less.
  • FIG. 10 is a flowchart showing the operation of the control unit 400 included in the power conversion device 1a according to the second embodiment.
  • the control unit 400 acquires the detected value from each detection unit of the power conversion device 1a (step S1).
  • the control unit 400 controls the operation of the inverter 310 based on the acquired detected value so that the current I3 flowing through the smoothing unit 200 is reduced (step S2).
  • the control unit 400 controls the operation of the booster unit 600 so as to perform power factor improvement control of the commercial power supply 110 and average voltage control of the capacitor voltage Vdc of the capacitor 210 of the smoothing unit 200 based on the acquired detection value ( Step S3).
  • the capacity C of the capacitor 210 is defined within the range of the above equations (1) and (2).
  • the inductance component L in the power conversion device 1a is the inductance component Lc + system impedance Lk of the reactor 120 for boosting.
  • the current flowing through the capacitor 210 is limited in the power conversion device 1a of the second embodiment.
  • the inverter 310 when the inverter 310 is actually driven as described above, the current of the frequency component shown in FIG. 7 flows into the capacitor 210.
  • the booster unit 600 when the booster unit 600 is actually driven in the power conversion device 1a shown in FIG. 9, the current of the frequency component shown in FIG. 11 flows into the capacitor 210.
  • FIG. 11 is a diagram showing the difference in the current flowing through the capacitor 210 when the control for reducing the current flowing through the capacitor 210 is not applied and when the control for reducing the current flowing through the capacitor 210 is applied in the power conversion device 1a according to the second embodiment.
  • FIG. 11 is a diagram showing the difference in the current flowing through the capacitor 210 when the control for reducing the current flowing through the capacitor 210 is not applied and when the control for reducing the current flowing through the capacitor 210 is applied in the power conversion device 1a according to the second embodiment.
  • FIG. 11A in the upper row shows a case where the control for reducing the current flowing through the capacitor 210 is not applied in the power conversion device 1a
  • FIG. 11B in the lower row shows the case where the current flowing through the capacitor 210 in the power conversion device 1a is applied.
  • the case where the reduction control is applied is shown.
  • the current pulsation component caused by the inverter 310 shown in FIG. 7 is omitted.
  • the frequency of the commercial power supply 110 is compared with the second capacitor current Ic_fccnv in the frequency component of the switching frequency fccnv of the switching element 611 included in the booster unit 600.
  • the capacitor current Ic_2fs at twice the frequency component of is equal to or lower. In this case, the current flowing through the capacitor 210 is limited as in the equation (4).
  • the frequency twice the frequency of the commercial power supply 110 is set to the frequency 2 fs, but the frequency is not limited to this, and the portion of the frequency 2 fs may be set to an integral multiple of the frequency 2 fs.
  • the power conversion device 1a can use the capacitor 210 having a small ripple current withstand if the above equation (3) and the above conditional equation (4) are satisfied.
  • the capacitor current Ic_2fs of the frequency component twice the frequency of the commercial power supply 110 among the current flowing through the capacitor 210 is ,
  • the second capacitor current Ic_fccnv may contain a current component due to the rotation of the motor 314.
  • the control unit 400 controls the operation of the inverter 310 based on the detection value acquired from each detection unit, and the current I2 flowing through the inverter 310.
  • the power conversion device 1a can use a capacitor having a small ripple current withstand as compared with the case where the control of the present embodiment is not performed by reducing the current I3 flowing through the smoothing portion 200.
  • the power conversion device 1a can reduce the capacity of the mounted capacitor 210 as compared with the case where the control of the present embodiment is not performed because the pulsating voltage of the capacitor voltage Vdc is lowered.
  • the smoothing portion 200 is composed of a plurality of capacitors 210, the number of capacitors 210 constituting the smoothing portion 200 can be reduced.
  • the power conversion device 1a can suppress the vibration of the compressor 315 generated due to the pulsation of the current I2 by controlling the present embodiment.
  • the booster unit 600 performs a boosting operation to increase the capacitor voltage Vdc of the capacitor 210 and expand the output voltage range of the inverter 310.
  • the control unit 400 superimposes the frequency component of the pulsation contained in the second AC power output from the inverter 310 on the drive signal for the switching element 611 of the booster unit 600, thereby superimposing the frequency component on the frequency component. The resulting pulsation of the current I3 and the capacitor voltage Vdc can be reduced.
  • Embodiment 3 a power conversion device including a rectifying and boosting unit having a circuit configuration different from that of the rectifying and boosting unit 700 of the power conversion device 1a of the second embodiment will be described.
  • FIG. 12 is a diagram showing a configuration example of the power conversion device 1b according to the third embodiment.
  • the power conversion device 1b replaces the rectification booster unit 700 with the rectification booster unit 701 with respect to the power conversion device 1a of the second embodiment shown in FIG.
  • the motor drive device 2b is composed of the power conversion device 1b and the motor 314 included in the compressor 315.
  • the rectifying booster unit 701 has switching elements 611 to 614, and rectifying elements 621 to 624, each of which is connected in parallel to one of the switching elements 611 to 614.
  • the rectifying and boosting unit 701 turns on and off the switching elements 611 to 614 under the control of the control unit 400, rectifies and boosts the first AC power output from the commercial power supply 110, and outputs the boosted power to the smoothing unit 200. do.
  • the rectifying booster unit 701 is controlled by the control unit 400 with a full PAM in which the switching elements 611 to 614 continuously perform switching operations.
  • the power conversion device 1b controls the power factor improvement of the commercial power supply 110 by the rectifying booster unit 701, and sets the capacitor voltage Vdc of the capacitor 210 of the smoothing unit 200 to a voltage higher than the power supply voltage Vs.
  • the control unit 400 acquires the voltage value and the current value of the first AC power of the power supply voltage Vs from the voltage / current detection unit 501, and acquires the voltage value of the power boosted by the rectifying booster unit 701 from the voltage detection unit 502. , The current value of the second AC power having a desired amplitude and phase converted by the inverter 310 is acquired from the current detection units 313a and 313b.
  • the control unit 400 controls the operation of the inverter 310, specifically, the on / off of the switching elements 311a to 311f of the inverter 310 by using the detection value detected by each detection unit.
  • control unit 400 controls the operation of the rectifying and boosting unit 701, specifically, the on / off of the switching elements 611 to 614 of the rectifying and boosting unit 701 by using the detection value detected by each detection unit.
  • the control unit 400 controls the operation of the rectifying booster unit 701 and the inverter 310 so that the same effect as that described in the first embodiment can be obtained.
  • the range of the capacity C of the capacitor 210 and the current flowing through the capacitor 210 are limited as in the power conversion device 1a of the second embodiment.
  • the inductance component L in the power conversion device 1b is the inductance component La of the reactor 120 + the system impedance Lk.
  • the power conversion device 1b includes a rectifying booster unit 701 that rectifies the first AC power supplied from the commercial power supply 110 and boosts the voltage of the first AC power, the current flowing through the capacitor 210 Among them, the capacitor current Ic_2fs having a frequency component twice the frequency of the commercial power supply 110 is equal to or less than the second capacitor current Ic_fccnv of the frequency component of the switching frequency of the switching elements 611 to 614 included in the rectifying booster unit 701.
  • the second capacitor current Ic_fccnv may contain a current component due to the rotation of the motor 314.
  • Embodiment 4 the power provided with the rectifying and boosting unit 700 of the power conversion device 1a of the second embodiment and the rectifying and boosting unit having a circuit configuration different from the circuit configuration of the rectifying and boosting unit 701 of the power conversion device 1b of the third embodiment.
  • the conversion device will be described.
  • FIG. 13 is a diagram showing a configuration example of the power conversion device 1c according to the fourth embodiment.
  • the power conversion device 1c replaces the rectifying boosting unit 700 with the rectifying boosting unit 702 with respect to the power conversion device 1a of the second embodiment shown in FIG.
  • the motor drive device 2c is composed of the power conversion device 1c and the motor 314 included in the compressor 315.
  • the rectifying and boosting unit 702 includes a reactor 120, a rectifying unit 130, and a boosting unit 601.
  • the booster unit 600 is connected in series with the rectifier unit 130 in the subsequent stage of the rectifier unit 130, that is, inside the power conversion device 1a, but in the fourth embodiment, the booster unit 601 is used for power conversion.
  • the booster unit 601 includes rectifying elements 621 to 624 and a switching element 611.
  • the booster unit 601 turns on and off the switching element 611 under the control of the control unit 400, boosts the first AC power output from the commercial power supply 110, and outputs the boosted power to the rectifying unit 130.
  • the booster unit 601 of the rectifying booster unit 702 is controlled by the control unit 400 once or a plurality of times in a half cycle of the frequency of the first AC power supplied from the commercial power supply 110, and the switching element 611. It is controlled by simple switching that performs the switching operation of.
  • the power conversion device 1c controls the power factor improvement of the commercial power supply 110 by the booster unit 601 to set the capacitor voltage Vdc of the capacitor 210 of the smoothing unit 200 to a voltage higher than the power supply voltage Vs.
  • the control unit 400 acquires the voltage value and the current value of the first AC power of the power supply voltage Vs from the voltage / current detection unit 501, and acquires the voltage value of the power rectified by the rectifying unit 130 from the voltage detection unit 502.
  • the current value of the second AC power having a desired amplitude and phase converted by the inverter 310 is acquired from the current detection units 313a and 313b.
  • the control unit 400 controls the operation of the inverter 310, specifically, the on / off of the switching elements 311a to 311f of the inverter 310 by using the detection value detected by each detection unit.
  • control unit 400 controls the operation of the booster unit 601, specifically, the on / off of the switching element 611 of the booster unit 601 by using the detection value detected by each detection unit.
  • the control unit 400 controls the operation of the booster unit 601 and the inverter 310 so that the same effect as that described in the second embodiment can be obtained.
  • the power conversion device 1c can obtain the same effect as the power conversion device 1a of the second embodiment. Further, since the power conversion device 1c has a reduced number of switching times as compared with the power conversion device 1a of the second embodiment and the power conversion device 1b of the third embodiment, it is possible to reduce the loss and noise. Further, in the power conversion device 1c, since the rectifying unit 130 and the boosting unit 601 are connected in parallel, switching is not performed in the boosting unit 601 under the condition that the switching element 611 does not need to be switched, so that the number of flow elements can be reduced. It can be reduced and the loss can be reduced.
  • the range of the capacity C of the capacitor 210 and the current flowing through the capacitor 210 are limited as in the power conversion device 1a of the second embodiment.
  • the inductance component L in the power conversion device 1c is the inductance component La of the reactor 120 + the system impedance Lk.
  • FIG. 14 is a diagram showing a configuration example of the refrigeration cycle application device 900 according to the fifth embodiment.
  • the refrigeration cycle application device 900 according to the fifth embodiment includes the power conversion device 1 described in the first embodiment.
  • the refrigeration cycle application device 900 may include the power conversion device 1a described in the second embodiment or the power conversion device 1b described in the third embodiment instead of the power conversion device 1.
  • the power conversion device 1c described in the fourth embodiment may be provided.
  • the refrigerating cycle applicable device 900 according to the fifth embodiment can be applied to products including a refrigerating cycle such as an air conditioner, a refrigerator, a freezer, and a heat pump water heater.
  • the components having the same functions as those of the first embodiment are designated by the same reference numerals as those of the first embodiment.
  • the compressor 315 having a built-in motor 314, the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, and the outdoor heat exchanger 910 form the refrigerant pipe 912 according to the first embodiment. It is attached via.
  • a compression mechanism 904 for compressing the refrigerant and a motor 314 for operating the compression mechanism 904 are provided inside the compressor 315.
  • the refrigeration cycle applicable device 900 can perform heating operation or cooling operation by switching operation of the four-way valve 902.
  • the compression mechanism 904 is driven by a variable speed controlled motor 314.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the indoor heat exchanger 906, the expansion valve 908, the outdoor heat exchanger 910 and the four-way valve 902. Return to the compression mechanism 904.
  • the refrigerant is pressurized by the compression mechanism 904 and sent out, and passes through the four-way valve 902, the outdoor heat exchanger 910, the expansion valve 908, the indoor heat exchanger 906 and the four-way valve 902. Return to the compression mechanism 904.
  • the indoor heat exchanger 906 acts as a condenser to release heat, and the outdoor heat exchanger 910 acts as an evaporator to absorb heat.
  • the outdoor heat exchanger 910 acts as a condenser to release heat, and the indoor heat exchanger 906 acts as an evaporator to absorb heat.
  • the expansion valve 908 depressurizes the refrigerant and expands it.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

電力変換装置(1)は、商用電源(110)から供給される第1の交流電力を整流する整流部(130)と、整流部(130)の出力端に接続されるコンデンサ(210)と、コンデンサ(210)の両端に接続され、整流部(130)およびコンデンサ(210)から出力される電力を第2の交流電力に変換し、モータ(314)を有する負荷に出力するインバータ(310)と、整流部(130)からコンデンサ(210)に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ(310)から負荷に出力するようにインバータ(310)の動作を制御し、コンデンサ(210)に流れる電流を抑制する制御部(400)と、を備え、コンデンサ(210)に放電回路もしくは過電圧保護回路を設けない。

Description

電力変換装置、モータ駆動装置および冷凍サイクル適用機器
 本開示は、交流電力を所望の電力に変換する電力変換装置、モータ駆動装置および冷凍サイクル適用機器に関する。
 従来、交流電源から供給される交流電力を所望の交流電力に変換し、空気調和機などの負荷に供給する電力変換装置がある。例えば、特許文献1には、空気調和機の制御装置である電力変換装置が、交流電源から供給される交流電力を整流部であるダイオードスタックで整流し、さらに平滑コンデンサで平滑した電力を、複数のスイッチング素子からなるインバータで所望の交流電力に変換し、負荷である圧縮機モータに出力する技術が開示されている。
特開平7-71805号公報
 しかしながら、上記従来の技術によれば、平滑コンデンサに大きな電流が流れるため、平滑コンデンサの経年劣化が加速する、という問題があった。このような問題に対して、平滑コンデンサの容量を大きくすることでコンデンサ電圧のリプル変化を抑制する、またはリプルによる劣化耐量の大きい平滑コンデンサを使用する方法が考えられるが、コンデンサ部品のコストが高くなり、また装置が大型化してしまう。
 本開示は、上記に鑑みてなされたものであって、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制可能な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る電力変換装置は、商用電源から供給される第1の交流電力を整流する整流部と、整流部の出力端に接続されるコンデンサと、コンデンサの両端に接続され、整流部およびコンデンサから出力される電力を第2の交流電力に変換し、モータを有する負荷に出力するインバータと、整流部からコンデンサに流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータから負荷に出力するようにインバータの動作を制御し、コンデンサに流れる電流を抑制する制御部と、を備え、コンデンサに放電回路もしくは過電圧保護回路を設けない。
 本開示に係る電力変換装置は、平滑用のコンデンサの劣化を抑制しつつ、装置の大型化を抑制できる、という効果を奏する。
実施の形態1に係る電力変換装置の構成例を示す図 比較例として、平滑部で整流部から出力される電流を平滑化し、インバータに流れる電流を一定にした場合の各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置の制御部がインバータの動作を制御して平滑部に流れる電流を低減したときの各電流および平滑部のコンデンサのコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置が備える制御部の動作を示すフローチャート 実施の形態1に係る電力変換装置においてインバータ停止時の等価回路の例を示す図 実施の形態1に係る電力変換装置においてインバータを停止した場合のコンデンサ電圧の例を示す図 実施の形態1に係る電力変換装置においてコンデンサに流れる電流を低減する制御を適用しなかった場合と適用した場合のコンデンサに流れる電流の差異を示す図 実施の形態1に係る電力変換装置が備える制御部を実現するハードウェア構成の一例を示す図 実施の形態2に係る電力変換装置の構成例を示す図 実施の形態2に係る電力変換装置が備える制御部の動作を示すフローチャート 実施の形態2に係る電力変換装置においてコンデンサに流れる電流を低減する制御を適用しなかった場合と適用した場合のコンデンサに流れる電流の差異を示す図 実施の形態3に係る電力変換装置の構成例を示す図 実施の形態4に係る電力変換装置の構成例を示す図 実施の形態5に係る冷凍サイクル適用機器の構成例を示す図
 以下に、本開示の実施の形態に係る電力変換装置、モータ駆動装置および冷凍サイクル適用機器を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置1の構成例を示す図である。電力変換装置1は、商用電源110および圧縮機315に接続される。電力変換装置1は、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機315に供給する。電力変換装置1は、電圧電流検出部501と、リアクトル120と、整流部130と、電圧検出部502と、平滑部200と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。なお、電力変換装置1、および圧縮機315が備えるモータ314によって、モータ駆動装置2を構成している。
 電圧電流検出部501は、商用電源110から供給される電源電圧Vsの第1の交流電力の電圧値および電流値を検出し、検出した電圧値および電流値を制御部400に出力する。リアクトル120は、電圧電流検出部501と整流部130との間に接続される。整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧Vsの第1の交流電力を整流して出力する。整流部130は、全波整流を行うものである。電圧検出部502は、整流部130によって整流された電力の電圧値を検出し、検出した電圧値を制御部400に出力する。平滑部200は、電圧検出部502を介して整流部130の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、整流部130によって整流された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130によって整流された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
 インバータ310は、平滑部200、すなわちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、および還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流部130および平滑部200から出力される電力を所望の振幅および位相を有する第2の交流電力に変換して、圧縮機315に出力する。電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のうち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。圧縮機315は、圧縮機駆動用のモータ314を有する負荷である。モータ314は、インバータ310から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは定トルク負荷とみなせる場合が多い。
 なお、電力変換装置1において、図1に示す各構成の配置は一例であり、各構成の配置は図1で示される例に限定されない。例えば、リアクトル120は、整流部130の後段に配置されてもよい。以降の説明において、電圧電流検出部501、電圧検出部502、および電流検出部313a,313bをまとめて検出部と称することがある。また、電圧電流検出部501で検出された電圧値および電流値、電圧検出部502で検出された電圧値、および電流検出部313a,313bで検出された電流値を、検出値と称することがある。
 制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から整流部130によって整流された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。本実施の形態において、制御部400は、整流部130から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷である圧縮機315に出力するようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、平滑部200のコンデンサ210に流れる電流を抑制する。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。本実施の形態において、電力変換装置1は、コンデンサ210とインバータ310とが並列接続され、コンデンサ210に放電回路もしくは過電圧保護回路を設けない。
 ここで、放電回路とは、スイッチング素子等の能動素子、抵抗などを有したもので、能動素子のオンオフでコンデンサ210に抵抗の接続有無を制御するものである。そのため、直列接続されたコンデンサのそれぞれの電圧を平衡化する目的、コンデンサ電圧を検出する目的などでコンデンサ210と並列に接続される抵抗を含まない。放電回路に搭載される抵抗は、一定期間内にコンデンサ210の電荷を放電する目的で使用されるため、一例では、例えば、1kΩ以上の大きな抵抗値ではなく、数Ωから数百Ωの抵抗値となる。放電回路の一例としては、直列接続されたスイッチング素子と抵抗がコンデンサ210に並列接続された回路が挙げられる。
 一方、過電圧保護回路は、モータ314の回生電力、商用電源110側の擾乱などによって、コンデンサ210の電圧が一定以上上昇しないようにデバイスの保護を行うものであり、スイッチング素子のスイッチング時に生じるサージ電圧からスイッチング素子を保護するスナバ回路ではない。スナバ回路とは、抵抗とコンデンサで構成されるRCスナバ、コンデンサのみで構成されるCスナバ等が上げられる。過電圧保護回路の一例としては、直列接続されたダイオードと抵抗と保護コンデンサとがコンデンサ210に接続された回路が挙げられる。なお、コンデンサ電圧の上昇を抑制するため、スナバ回路用のコンデンサ容量より大きな容量が必要であり、10uF以上のコンデンサが必要となる。さらに、抵抗は必ずしも必要ではなく、ダイオードと保護コンデンサのみを直列接続して用いてもよい。
 つづいて、電力変換装置1が備える制御部400の動作について説明する。本実施の形態では、電力変換装置1において、インバータ310および圧縮機315によって発生する負荷が一定の負荷とみなすことができ、平滑部200から出力される電流で見た場合、平滑部200に定電流負荷が接続されているものとして、以降の説明を行う。ここで、図1に示すように、整流部130から流れる電流を電流I1とし、インバータ310に流れる電流を電流I2とし、平滑部200から流れる電流を電流I3とする。電流I2は、電流I1と電流I3とを併せた電流となる。電流I3は、電流I2と電流I1との差分、すなわち電流I2-電流I1として表すことができる。電流I3は、平滑部200の放電方向を正方向とし、平滑部200の充電方向を負方向とする。すなわち、平滑部200には、電流が流入することもあり、電流が流出することもある。
 図2は、比較例として、平滑部200で整流部130から出力される電流を平滑化し、インバータ310に流れる電流I2を一定にした場合の各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。なお、電流I2,I3には、実際にはインバータ310のキャリア成分が重畳されるが、ここでは省略する。以降についても同様とする。図2に示すように、電力変換装置1において、仮に、整流部130から流れる電流I1が平滑部200によって十分に平滑化された場合、インバータ310に流れる電流I2は一定の電流値となる。しかしながら、平滑部200のコンデンサ210には、大きな電流I3が流れ、劣化の要因となる。そのため、本実施の形態では、電力変換装置1において、制御部400は、平滑部200に流れる電流I3を低減するように、インバータ310に流れる電流I2を制御、すなわちインバータ310の動作を制御する。
 図3は、実施の形態1に係る電力変換装置1の制御部400がインバータ310の動作を制御して平滑部200に流れる電流I3を低減したときの各電流I1~I3および平滑部200のコンデンサ210のコンデンサ電圧Vdcの例を示す図である。上から順に、電流I1、電流I2、電流I3、および電流I3に応じて発生するコンデンサ210のコンデンサ電圧Vdcを示している。電流I1,I2,I3の縦軸は電流値を示し、コンデンサ電圧Vdcの縦軸は電圧値を示している。横軸は全て時間tを示している。電力変換装置1の制御部400は、図3に示すような電流I2がインバータ310に流れるようにインバータ310の動作を制御することによって、図2の例と比較して、整流部130から平滑部200に流れ込む電流の周波数成分を低減し、平滑部200に流れる電流I3を低減することができる。具体的には、制御部400は、電流I1の周波数成分を主成分とした脈動電流を含む電流I2がインバータ310に流れるようにインバータ310の動作を制御する。
 電流I1の周波数成分は、商用電源110から供給される交流電流の周波数、および整流部130の構成によって決定される。そのため、制御部400は、電流I2に重畳する脈動電流の周波数成分を、予め定めた振幅および位相を有する成分とすることができる。電流I2に重畳される脈動電流の周波数成分は、電流I1の周波数成分の相似波形となる。制御部400は、電流I2に重畳する脈動電流の周波数成分を電流I1の周波数成分に近付けていくに連れて、平滑部200に流れる電流I3を低減し、コンデンサ電圧Vdcに発生する脈動電圧を低減することができる。
 制御部400が、インバータ310の動作を制御することによってインバータ310に流れる電流の脈動を制御することは、インバータ310から圧縮機315に出力される第1の交流電力の脈動を制御することと同じである。制御部400は、インバータ310から出力される第2の交流電力に含まれる脈動が、整流部130から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御する。制御部400は、コンデンサ電圧Vdcの電圧リプル、すなわちコンデンサ210に発生する電圧リプルが、インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときのコンデンサ210に発生する電圧リプルよりも小さくなるように、インバータ310から出力される第2の交流電力に含まれる脈動の振幅および位相を制御する。インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときとは、図2に示すような制御のことである。
 なお、商用電源110から供給される交流電流については、特に限定されず、単相であってもよいし、3相であってもよい。制御部400は、電流I2に重畳する脈動電流の周波数成分について、商用電源110から供給される第1の交流電力に応じて決定すればよい。具体的には、制御部400は、インバータ310に流れる電流I2の脈動波形を、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分を主成分とする脈動波形に直流分を加算した形状に制御する。脈動波形は、例えば、正弦波の絶対値の形状、または正弦波の形状とする。この場合、制御部400は、正弦波の周波数の整数倍の成分のうち少なくとも1つの周波数成分を予め規定された振幅として脈動波形に加算してもよい。また、脈動波形は、矩形波の形状、または三角波の形状であってもよい。この場合、制御部400は、脈動波形の振幅および位相を予め規定された値としてもよい。
 制御部400は、コンデンサ210にかかる電圧またはコンデンサ210に流れる電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよいし、商用電源110から供給される第1の交流電力の電圧または電流を用いて、インバータ310から出力される第2の交流電力に含まれる脈動の脈動量を演算してもよい。
 制御部400の動作を、フローチャートを用いて説明する。図4は、実施の形態1に係る電力変換装置1が備える制御部400の動作を示すフローチャートである。制御部400は、電力変換装置1の各検出部から検出値を取得する(ステップS1)。制御部400は、取得した検出値に基づいて、平滑部200に流れる電流I3が低減されるように、インバータ310の動作を制御する(ステップS2)。
 ここで、図1に示す電力変換装置1において、電力変換装置1内のインダクタンス成分をL[H]、コンデンサ210の容量をC[F]、モータ314の1相分のインダクタンス成分をLm[H]、定常状態におけるコンデンサ210の最大電圧をVcmax[V]、モータ314の電流最大値をIm[A]、商用電源110の電流最大値をIs[A]、コンデンサ電圧Vdcが印加される素子の耐電圧をVdclim[V]とすると、コンデンサ210の容量Cは式(1)の範囲で定められる。
Figure JPOXMLDOC01-appb-M000001
 なお、電力変換装置1内のインダクタンス成分Lは、リアクトル120のインダクタンス成分La+系統インピーダンスLkである。系統インピーダンスLkは、変圧器の漏れ、配線に含まれる寄生インダクタンス成分などである。L値が大きいほどコンデンサ電圧Vdcの上昇が大きくなるため、系統インピーダンスLkについては、実使用の環境で想定される最大値を用いることとする。以降についても同様とする。また、リアクトル120の位置については、前述のように整流部130の後段、すなわち整流部130と電圧検出部502との間であってもよい。
 図5は、実施の形態1に係る電力変換装置1においてインバータ310停止時の等価回路の例を示す図である。図5に示す等価回路は簡易的なものであり、商用電源110の電圧、モータ314の誘起電圧などは模擬していない。図5では、50ms時にインバータ310を停止するものとし、各電流電圧値は50ms時の値としている。式(1)で示される範囲内および範囲外でインバータ310を停止した場合の各種波形を図6に示す。図6は、実施の形態1に係る電力変換装置1においてインバータ310を停止した場合のコンデンサ電圧Vdcの例を示す図である。上段の図6(a)は制御部400からのインバータ停止信号を示し、下段の図6(b)はコンデンサ電圧Vdcを示している。一例として、各パラメータについて、L=2[mH]、Is=15[A]、Lm=9[mH]、Im=15[A]、Vdclim=400[V]、Vcmax=310[V]とする。コンデンサ210の容量Cは、式(1)の範囲外の20[uF]、式(1)で右辺と左辺とが等しくなる条件である55[uF]、および式(1)の範囲内で右辺が大きい条件である100[uF]としている。
 電力変換装置1は、図6からも分かるように、コンデンサ210の容量Cを式(1)の範囲内とすることで、素子の耐電圧Vdclim以内の電圧上昇にすることができ、素子破壊を防ぐことができている。なお、式(1)のLには図1において図示しないフィルタなどに含まれるインダクタンス成分、系統インピーダンスなども加えてよい。また、式(1)は簡易的な式であり、さらにモータ314の誘起電圧、商用電源110の電圧による電圧上昇分などを加味してよい。
 本実施の形態では、前述のように、電力変換装置1において、制御部400がインバータ310の出力電力を商用電源110の周波数に基づいて脈動させることで、コンデンサ210の電流を低減させるため、通常のインバータのように出力電力脈動を一定に流す制御方式よりもコンデンサ210のリプル電圧を小さくすることができる。電力を脈動させるということはインバータ310の電流を脈動させるということなので、言い換えればインバータ310の出力電流の脈動に応じてコンデンサ210の容量Cを小さくすることができる。さらに、インバータ310の出力を脈動させるということは、インバータ310への入力電流を脈動させると同じことである。
 ここで、図3などからも分かるように、電力変換装置1が図1に示すような構成の場合、コンデンサ210の電流は商用電源110の周波数の2倍の周波数2fsで脈動しており、コンデンサ210のリプル電圧も周波数2fsに応じて脈動している。したがって、コンデンサ210のリプル電圧は周波数2fsに基づいて許容リプル電圧を決めればよく、許容リプル電圧の値でコンデンサ210の容量Cが決定する。仮に、周波数2fs成分におけるコンデンサ210の許容リプル電圧をΔV_2fs、通常制御であるインバータ310の出力電流に周波数2fs成分の脈動がない場合の周波数2fs成分のコンデンサ210の電流をIc_2fs、本実施の形態の制御を適用した場合の周波数2fs成分のインバータ310の入力電流の脈動をIm_2fsとすると、本実施の形態の制御を適用した場合のコンデンサ210の容量Cは式(2)の範囲となる。
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)において、商用電源110の周波数の2倍の周波数を周波数2fsとしていたが、これに限定されず、周波数2fsの部分を周波数2fsの整数倍の周波数としてもよい。これにより、電力変換装置1は、上記の条件式である式(1)および式(2)を満たせば、コンデンサ210に放電回路もしくは過電圧保護回路を追加することなく、より容量の小さなコンデンサ210の使用が可能となる。
 このように、電力変換装置1において、コンデンサ210の容量Cは、コンデンサ210に過電圧保護回路が接続される場合に設定されるコンデンサ210の容量以上である。コンデンサ210の容量Cは、電力変換装置1に配置されるリアクトル120のインピーダンス、系統インピーダンスLk、商用電源110の電流最大値Is、モータ314の1相分のインダクタンス成分Lm、モータ314の電流最大値Im、コンデンサ210からの電圧が印加される素子の耐電圧Vdclim、および定常状態におけるコンデンサ210の最大電圧Vcmaxを用いて算出される値によって定められる。コンデンサ210の容量Cは、さらに、インバータ310が停止時の商用電源110の系統電圧、モータ314の誘起電圧などによって限定されてもよい。また、コンデンサ210の容量Cは、制御部400が整流部130からコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷に出力するようにインバータ310の動作を制御する第1の制御をしないときに設定されるコンデンサ210の容量C未満である。コンデンサ210の容量Cは、コンデンサ210の電流が脈動する周波数である商用電源110の周波数の2倍の周波数2fs、2倍の周波数2fsにおけるコンデンサ210の許容リプル電圧ΔV_2fs、制御部400が第1の制御をしないときの2倍の周波数におけるコンデンサ210のコンデンサ電流Ic_2fs、および制御部400が第1の制御をしたときの2倍の周波数2fsにおけるインバータ310の入力電流脈動Im_2fsを用いて算出される値によって定められる。
 また、図1に示す電力変換装置1において、前述の説明では、インバータ310が備えるスイッチング素子311a~311fのスイッチングによるリプル電流脈動を模擬していなかったが、実際にインバータ310を駆動させた場合、図7に示す周波数成分の電流がコンデンサ210に流入する。図7は、実施の形態1に係る電力変換装置1においてコンデンサ210に流れる電流を低減する制御を適用しなかった場合と適用した場合のコンデンサ210に流れる電流の差異を示す図である。上段の図7(a)は電力変換装置1においてコンデンサ210に流れる電流を低減する制御を適用しなかった場合を示し、下段の図7(b)は電力変換装置1においてコンデンサ210に流れる電流を低減する制御を適用した場合を示している。図7から分かるように、本実施の形態の制御を適用した場合、インバータ310が備えるスイッチング素子311a~311fのスイッチング周波数fcinvの2倍の周波数成分における第1のコンデンサ電流Ic_2fcinvと比較して、商用電源110の周波数の2倍の周波数成分におけるコンデンサ電流Ic_2fsは、同等または低くなる。この場合、コンデンサ210に流れる電流は式(3)のように限定される。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、商用電源110の周波数の2倍の周波数を周波数2fsとしていたが、これに限定されず、周波数2fsの部分を周波数2fsの整数倍の周波数としてもよい。これにより、電力変換装置1は、上記の条件式である式(3)を満たせば、リプル電流耐量の小さなコンデンサ210の使用が可能となる。このように、コンデンサ210に流れる電流のうち、商用電源110の周波数の2倍の周波数成分のコンデンサ電流Ic_2fsは、インバータ310が備えるスイッチング素子311a~311fのスイッチング周波数の2倍の周波数成分の第1のコンデンサ電流Ic_2fcinv以下である。第1のコンデンサ電流Ic_2fcinvには、モータ314の回転に起因する電流成分が含まれていてもよい。
 つづいて、電力変換装置1が備える制御部400のハードウェア構成について説明する。図8は、実施の形態1に係る電力変換装置1が備える制御部400を実現するハードウェア構成の一例を示す図である。制御部400は、プロセッサ91およびメモリ92により実現される。
 プロセッサ91は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)、またはシステムLSI(Large Scale Integration)である。メモリ92は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった不揮発性または揮発性の半導体メモリを例示できる。またメモリ92は、これらに限定されず、磁気ディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)でもよい。
 以上説明したように、本実施の形態によれば、電力変換装置1において、制御部400は、各検出部から取得した検出値に基づいてインバータ310の動作を制御し、インバータ310に流れる電流I2に、整流部130から流れる電流I1の周波数成分に応じた周波数成分の脈動を重畳することで、平滑部200に流れる電流I3を低減することとした。これにより、電力変換装置1は、平滑部200に流れる電流I3が低減することによって、本実施の形態の制御を行わない場合と比較して、リプル電流耐量の小さなコンデンサの使用が可能となる。また、電力変換装置1は、コンデンサ電圧Vdcの脈動電圧が低下することによって、本実施の形態の制御を行わない場合と比較して、搭載するコンデンサ210の容量を小さくすることができる。電力変換装置1は、例えば、複数のコンデンサ210で平滑部200を構成していた場合、平滑部200を構成するコンデンサ210の本数を低減することができる。
 また、電力変換装置1は、本実施の形態の制御を行うことによって、電流I2の脈動に起因して発生する圧縮機315の振動を抑制することができる。
実施の形態2.
 実施の形態2では、電力変換装置が商用電源110から供給される第1の交流電力を昇圧する場合について説明する。
 図9は、実施の形態2に係る電力変換装置1aの構成例を示す図である。電力変換装置1aは、商用電源110および圧縮機315に接続される。電力変換装置1aは、商用電源110から供給される電源電圧Vsの第1の交流電力を所望の振幅および位相を有する第2の交流電力に変換し、圧縮機315に供給する。電力変換装置1aは、電圧電流検出部501と、整流部130と、リアクトル120と、昇圧部600と、電圧検出部502と、平滑部200と、インバータ310と、電流検出部313a,313bと、制御部400と、を備える。なお、電力変換装置1aでは、整流部130、リアクトル120、および昇圧部600によって整流昇圧部700を構成している。また、電力変換装置1a、および圧縮機315が備えるモータ314によって、モータ駆動装置2aを構成している。
 電圧電流検出部501は、商用電源110から供給される電源電圧Vsの第1の交流電力の電圧値および電流値を検出し、検出した電圧値および電流値を制御部400に出力する。整流部130は、整流素子131~134によって構成されるブリッジ回路を有し、商用電源110から供給される電源電圧Vsの第1の交流電力を整流して出力する。リアクトル120は、整流部130と昇圧部600との間に接続される。昇圧部600は、スイッチング素子611、および整流素子621を有する。昇圧部600は、制御部400の制御によって、スイッチング素子611をオンオフし、整流部130から出力された電力を昇圧し、昇圧した電力を平滑部200に出力する。本実施の形態において、昇圧部600は、制御部400によって、スイッチング素子611が連続的にスイッチング動作を行うフルPAM(Pulse Amplitude Modulation)で制御される。電力変換装置1aは、昇圧部600によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。整流昇圧部700は、整流部130および昇圧部600によって、商用電源110から供給される第1の交流電力を整流するとともに、商用電源110から供給される第1の交流電力の電圧を昇圧する。本実施の形態では、整流昇圧部700において、整流部130および昇圧部600は直列に接続されている。
 電圧検出部502は、昇圧部600によって昇圧された電力の電圧値を検出し、検出した電圧値を制御部400に出力する。平滑部200は、電圧検出部502を介して昇圧部600の出力端に接続される。平滑部200は、平滑素子としてコンデンサ210を有し、昇圧部600によって昇圧された電力を平滑化する。コンデンサ210は、例えば、電解コンデンサ、フィルムコンデンサなどである。コンデンサ210は、整流部130によって整流され、昇圧部600によって昇圧された電力を平滑化するような容量を有し、平滑化によりコンデンサ210に発生する電圧は商用電源110の全波整流波形形状ではなく、直流成分に商用電源110の周波数に応じた電圧リプルが重畳した波形形状となり、大きく脈動しない。この電圧リプルの周波数は、商用電源110が単相の場合は電源電圧Vsの周波数の2倍成分となり、商用電源110が三相の場合は6倍成分が主成分となる。商用電源110から入力される電力とインバータ310から出力される電力が変化しない場合、この電圧リプルの振幅はコンデンサ210の容量によって決まる。例えば、コンデンサ210に発生する電圧リプルの最大値が最小値の2倍未満となるような範囲で脈動している。
 インバータ310は、平滑部200、すなわちコンデンサ210の両端に接続される。インバータ310は、スイッチング素子311a~311f、および還流ダイオード312a~312fを有する。インバータ310は、制御部400の制御によってスイッチング素子311a~311fをオンオフし、整流昇圧部700および平滑部200から出力される電力を所望の振幅および位相を有する第2の交流電力に変換して、圧縮機315に出力する。電流検出部313a,313bは、各々、インバータ310から出力される3相の電流のうち1相の電流値を検出し、検出した電流値を制御部400に出力する。なお、制御部400は、インバータ310から出力される3相の電流値のち2相の電流値を取得することで、インバータ310から出力される残りの1相の電流値を算出することができる。圧縮機315は、圧縮機駆動用のモータ314を有する負荷である。モータ314は、インバータ310から供給される第2の交流電力の振幅および位相に応じて回転し、圧縮動作を行う。例えば、圧縮機315が空気調和機などで使用される密閉型圧縮機の場合、圧縮機315の負荷トルクは定トルク負荷とみなせる場合が多い。
 なお、電力変換装置1aにおいて、図9に示す各構成の配置は一例であり、各構成の配置は図9で示される例に限定されない。整流昇圧部700は、リアクトル120の配置位置によってはリアクトル120が含まれていなくてもよい。以降の説明において、電圧電流検出部501、電圧検出部502、および電流検出部313a,313bをまとめて検出部と称することがある。また、電圧電流検出部501で検出された電圧値および電流値、電圧検出部502で検出された電圧値、および電流検出部313a,313bで検出された電流値を、検出値と称することがある。
 制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から昇圧部600によって昇圧された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、整流昇圧部700の昇圧部600の動作、具体的には、昇圧部600が有するスイッチング素子611のオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。本実施の形態において、制御部400は、整流昇圧部700の動作を制御する。制御部400は、整流昇圧部700の動作を制御し、商用電源110から供給される第1の交流電力の力率改善制御、および平滑部200のコンデンサ210の平均電圧制御を行う。また、制御部400は、整流部130から平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動を含む第2の交流電力をインバータ310から負荷である圧縮機315に出力するようにインバータ310の動作を制御する。平滑部200のコンデンサ210に流入する電力の脈動に応じた脈動とは、例えば、平滑部200のコンデンサ210に流入する電力の脈動の周波数などによって変動する脈動である。これにより、制御部400は、平滑部200のコンデンサ210に流れる電流を抑制する。なお、制御部400は、各検出部から取得した全ての検出値を用いなくてもよく、一部の検出値を用いて制御を行ってもよい。
 つづいて、電力変換装置1aが備える制御部400の動作について説明する。制御部400の動作は、実施の形態1のときの制御部400の動作と同様である。実施の形態2では、整流部130から流れる電流を、昇圧部600から流れる電流と読み替える。
 電流I1の周波数成分は、商用電源110から供給される交流電流の周波数、整流部130の構成、および昇圧部600のスイッチング素子611のスイッチング速度によって決定される。そのため、制御部400は、電流I2に重畳する脈動電流の周波数成分を、予め定めた振幅および位相を有する成分とすることができる。電流I2に重畳される脈動電流の周波数成分は、電流I1の周波数成分の相似波形となる。制御部400は、電流I2に重畳する脈動電流の周波数成分を電流I1の周波数成分に近付けていくに連れて、平滑部200に流れる電流I3を低減し、コンデンサ電圧Vdcに発生する脈動電圧を低減することができる。
 制御部400が、インバータ310の動作を制御することによってインバータ310に流れる電流の脈動を制御することは、インバータ310から圧縮機315に出力される第2の交流電力の脈動を制御することと同じである。制御部400は、インバータ310から出力される第2の交流電力に含まれる脈動が、整流昇圧部700から出力される電力の脈動よりも小さくなるようにインバータ310の動作を制御する。制御部400は、コンデンサ電圧Vdcの電圧リプル、すなわちコンデンサ210に発生する電圧リプルが、インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときのコンデンサ210に発生する電圧リプルよりも小さくなるように、インバータ310から出力される第2の交流電力に含まれる脈動の振幅および位相を制御する。インバータ310から出力される第2の交流電力にコンデンサ210に流入する電力の脈動に応じた脈動が含まれないときとは、図2に示すような制御のことである。
 また、制御部400は、商用電源110から供給される第1の交流電力の周波数成分と異なる周波数成分を含む第2の交流電力をインバータ310から圧縮機315に出力させるようにインバータ310を制御する場合、インバータ310から圧縮機315に出力される第2の交流電力に含まれる周波数成分を、昇圧部600のスイッチング素子611にオンオフするための駆動信号に重畳させてもよい。すなわち、制御部400は、インバータ310から圧縮機315に出力する第2の交流電力の電力脈動のうち、商用電源110から供給される第1の交流電力が単相の場合は第1の交流電力の周波数の2倍の周波数成分、または商用電源110から供給される第1の交流電力が3相の場合は第1の交流電力の周波数の6倍の周波数成分以外の変動周波数成分を含む電力が整流昇圧部700から出力されるように、整流昇圧部700の動作、具体的には、昇圧部600のスイッチング素子611の動作を制御する。制御部400は、変動周波数成分を、商用電源110に対する指令値を用いて制御してもよいし、変動周波数成分を、商用電源110から供給される第1の交流電力の周波数の40次までの整数倍の成分としない、または規定された値、例えば、所望の規格値以下になるように制御してもよい。
 制御部400の動作を、フローチャートを用いて説明する。図10は、実施の形態2に係る電力変換装置1aが備える制御部400の動作を示すフローチャートである。制御部400は、電力変換装置1aの各検出部から検出値を取得する(ステップS1)。制御部400は、取得した検出値に基づいて、平滑部200に流れる電流I3が低減されるように、インバータ310の動作を制御する(ステップS2)。制御部400は、取得した検出値に基づいて、商用電源110の力率改善制御および平滑部200のコンデンサ210のコンデンサ電圧Vdcの平均電圧制御を行うように、昇圧部600の動作を制御する(ステップS3)。
 なお、実施の形態1の電力変換装置1と同様、実施の形態2の電力変換装置1aについても、コンデンサ210の容量Cを前述の式(1)および式(2)の範囲で定められる。電力変換装置1aが図9のような構成の場合、電力変換装置1a内のインダクタンス成分Lは、昇圧用のリアクトル120のインダクタンス成分Lc+系統インピーダンスLkである。
 また、実施の形態1の電力変換装置1と同様、実施の形態2の電力変換装置1aについても、コンデンサ210に流れる電流が限定される。図9に示す電力変換装置1aにおいて、前述のように、実際にインバータ310を駆動させた場合、図7に示す周波数成分の電流がコンデンサ210に流入する。また、図9に示す電力変換装置1aにおいて、実際に昇圧部600を駆動させた場合、図11に示す周波数成分の電流がコンデンサ210に流入する。図11は、実施の形態2に係る電力変換装置1aにおいてコンデンサ210に流れる電流を低減する制御を適用しなかった場合と適用した場合のコンデンサ210に流れる電流の差異を示す図である。上段の図11(a)は電力変換装置1aにおいてコンデンサ210に流れる電流を低減する制御を適用しなかった場合を示し、下段の図11(b)は電力変換装置1aにおいてコンデンサ210に流れる電流を低減する制御を適用した場合を示している。なお、図11では、図7に示すインバータ310に起因する電流脈動成分は省略している。図11から分かるように、本実施の形態の制御を適用した場合、昇圧部600が備えるスイッチング素子611のスイッチング周波数fccnvの周波数成分における第2のコンデンサ電流Ic_fccnvと比較して、商用電源110の周波数の2倍の周波数成分におけるコンデンサ電流Ic_2fsは、同等または低くなる。この場合、コンデンサ210に流れる電流は式(4)のように限定される。
Figure JPOXMLDOC01-appb-M000004
 なお、式(4)において、商用電源110の周波数の2倍の周波数を周波数2fsとしていたが、これに限定されず、周波数2fsの部分を周波数2fsの整数倍の周波数としてもよい。これにより、電力変換装置1aは、前述の式(3)、さらに上記の条件式である式(4)を満たせば、リプル電流耐量の小さなコンデンサ210の使用が可能となる。このように、電力変換装置1aが第1の交流電力の電圧を昇圧する昇圧部600を備える場合、コンデンサ210に流れる電流のうち、商用電源110の周波数の2倍の周波数成分のコンデンサ電流Ic_2fsは、昇圧部600が備えるスイッチング素子611のスイッチング周波数の2倍の周波数成分の第2のコンデンサ電流Ic_fccnv以下である。第2のコンデンサ電流Ic_fccnvには、モータ314の回転に起因する電流成分が含まれていてもよい。
 以上説明したように、本実施の形態によれば、電力変換装置1aにおいて、制御部400は、各検出部から取得した検出値に基づいてインバータ310の動作を制御し、インバータ310に流れる電流I2に、整流部130から流れる電流I1の周波数成分に応じた周波数成分の脈動を重畳することで、平滑部200に流れる電流I3を低減することとした。これにより、電力変換装置1aは、平滑部200に流れる電流I3が低減することによって、本実施の形態の制御を行わない場合と比較して、リプル電流耐量の小さなコンデンサの使用が可能となる。また、電力変換装置1aは、コンデンサ電圧Vdcの脈動電圧が低下することによって、本実施の形態の制御を行わない場合と比較して、搭載するコンデンサ210の容量を小さくすることができる。電力変換装置1aは、例えば、複数のコンデンサ210で平滑部200を構成していた場合、平滑部200を構成するコンデンサ210の本数を低減することができる。
 また、電力変換装置1aは、本実施の形態の制御を行うことによって、電流I2の脈動に起因して発生する圧縮機315の振動を抑制することができる。
 また、電力変換装置1aは、昇圧部600が昇圧動作を行うことによって、コンデンサ210のコンデンサ電圧Vdcを上昇させ、インバータ310の出力可能電圧範囲を拡大することができる。電力変換装置1aにおいて、制御部400は、昇圧部600のスイッチング素子611に対する駆動信号に、インバータ310から出力する第2の交流電力に含まれる脈動の周波数成分を重畳することで、当該周波数成分に起因する電流I3およびコンデンサ電圧Vdcの脈動を低減することができる。
実施の形態3.
 実施の形態3では、実施の形態2の電力変換装置1aの整流昇圧部700の回路構成と異なる回路構成の整流昇圧部を備える電力変換装置について説明する。
 図12は、実施の形態3に係る電力変換装置1bの構成例を示す図である。電力変換装置1bは、図9に示す実施の形態2の電力変換装置1aに対して、整流昇圧部700を整流昇圧部701に置き換えたものである。なお、電力変換装置1b、および圧縮機315が備えるモータ314によって、モータ駆動装置2bを構成している。整流昇圧部701は、スイッチング素子611~614、および各々がスイッチング素子611~614のうちの1つに並列に接続される整流素子621~624を有する。整流昇圧部701は、制御部400の制御によって、スイッチング素子611~614をオンオフし、商用電源110から出力された第1の交流電力を整流するとともに昇圧し、昇圧した電力を平滑部200に出力する。本実施の形態において、整流昇圧部701は、制御部400によって、スイッチング素子611~614が連続的にスイッチング動作を行うフルPAMで制御される。電力変換装置1bは、整流昇圧部701によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。
 制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から整流昇圧部701によって昇圧された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、整流昇圧部701の動作、具体的には、整流昇圧部701が有するスイッチング素子611~614のオンオフを制御する。制御部400は、実施の形態1で説明した効果と同様の効果が得られるように、整流昇圧部701およびインバータ310の動作を制御する。
 電力変換装置1bにおけるその他の動作は、実施の形態2の電力変換装置1aの動作と同様である。この場合においても、電力変換装置1bは、実施の形態2の電力変換装置1aと同様の効果を得ることができる。
 なお、実施の形態3の電力変換装置1bにおいて、コンデンサ210の容量Cの範囲、およびコンデンサ210に流れる電流は、実施の形態2の電力変換装置1aと同様に限定される。電力変換装置1bが図12のような構成の場合、電力変換装置1b内のインダクタンス成分Lは、リアクトル120のインダクタンス成分La+系統インピーダンスLkである。このように、電力変換装置1bが商用電源110から供給される第1の交流電力を整流するとともに、第1の交流電力の電圧を昇圧する整流昇圧部701を備える場合、コンデンサ210に流れる電流のうち、商用電源110の周波数の2倍の周波数成分のコンデンサ電流Ic_2fsは、整流昇圧部701が備えるスイッチング素子611~614のスイッチング周波数の周波数成分の第2のコンデンサ電流Ic_fccnv以下である。第2のコンデンサ電流Ic_fccnvには、モータ314の回転に起因する電流成分が含まれていてもよい。
実施の形態4.
 実施の形態4では、実施の形態2の電力変換装置1aの整流昇圧部700、および実施の形態3の電力変換装置1bの整流昇圧部701の回路構成と異なる回路構成の整流昇圧部を備える電力変換装置について説明する。
 図13は、実施の形態4に係る電力変換装置1cの構成例を示す図である。電力変換装置1cは、図9に示す実施の形態2の電力変換装置1aに対して、整流昇圧部700を整流昇圧部702に置き換えたものである。なお、電力変換装置1c、および圧縮機315が備えるモータ314によって、モータ駆動装置2cを構成している。整流昇圧部702は、リアクトル120、整流部130、および昇圧部601を有する。実施の形態2において、昇圧部600は、整流部130の後段、すなわち電力変換装置1aの内部で整流部130と直列に接続されていたが、実施の形態4において、昇圧部601は、電力変換装置1cの内部で整流部130と並列に接続されている。昇圧部601は、整流素子621~624、およびスイッチング素子611を有する。昇圧部601は、制御部400の制御によって、スイッチング素子611をオンオフし、商用電源110から出力された第1の交流電力を昇圧し、昇圧した電力を整流部130に出力する。本実施の形態において、整流昇圧部702の昇圧部601は、制御部400の制御によって、商用電源110から供給される第1の交流電力の周波数の半周期に1回または複数回、スイッチング素子611のスイッチング動作を行う簡易スイッチングで制御される。電力変換装置1cは、昇圧部601によって商用電源110の力率改善制御を行い、平滑部200のコンデンサ210のコンデンサ電圧Vdcを電源電圧Vsよりも高い電圧にする。
 制御部400は、電圧電流検出部501から電源電圧Vsの第1の交流電力の電圧値および電流値を取得し、電圧検出部502から整流部130によって整流された電力の電圧値を取得し、電流検出部313a,313bからインバータ310によって変換された所望の振幅および位相を有する第2の交流電力の電流値を取得する。制御部400は、各検出部によって検出された検出値を用いて、インバータ310の動作、具体的には、インバータ310が有するスイッチング素子311a~311fのオンオフを制御する。また、制御部400は、各検出部によって検出された検出値を用いて、昇圧部601の動作、具体的には、昇圧部601が有するスイッチング素子611のオンオフを制御する。制御部400は、実施の形態2で説明した効果と同様の効果が得られるように、昇圧部601およびインバータ310の動作を制御する。
 電力変換装置1cにおけるその他の動作は、実施の形態2の電力変換装置1aの動作と同様である。この場合においても、電力変換装置1cは、実施の形態2の電力変換装置1aと同様の効果を得ることができる。また、電力変換装置1cは、実施の形態2の電力変換装置1aおよび実施の形態3の電力変換装置1bと比較してスイッチング回数が抑制されるため、損失低減および低ノイズ化が可能となる。また、電力変換装置1cは、整流部130および昇圧部601が並列に接続されているため、昇圧部601においてスイッチング素子611のスイッチングが必要ない条件ではスイッチングを行わないことで、通流素子数を低減し、低損失化が可能となる。
 なお、実施の形態4の電力変換装置1cにおいて、コンデンサ210の容量Cの範囲、およびコンデンサ210に流れる電流は、実施の形態2の電力変換装置1aと同様に限定される。電力変換装置1cが図13のような構成の場合、電力変換装置1c内のインダクタンス成分Lは、リアクトル120のインダクタンス成分La+系統インピーダンスLkである。
実施の形態5.
 図14は、実施の形態5に係る冷凍サイクル適用機器900の構成例を示す図である。実施の形態5に係る冷凍サイクル適用機器900は、実施の形態1で説明した電力変換装置1を備える。なお、冷凍サイクル適用機器900は、電力変換装置1に代えて、実施の形態2で説明した電力変換装置1aを備えてもよいし、実施の形態3で説明した電力変換装置1bを備えてもよいし、実施の形態4で説明した電力変換装置1cを備えてもよい。実施の形態5に係る冷凍サイクル適用機器900は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図14において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
 冷凍サイクル適用機器900は、実施の形態1におけるモータ314を内蔵した圧縮機315と、四方弁902と、室内熱交換器906と、膨張弁908と、室外熱交換器910とが冷媒配管912を介して取り付けられている。
 圧縮機315の内部には、冷媒を圧縮する圧縮機構904と、圧縮機構904を動作させるモータ314とが設けられている。
 冷凍サイクル適用機器900は、四方弁902の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構904は、可変速制御されるモータ314によって駆動される。
 暖房運転時には、実線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室内熱交換器906、膨張弁908、室外熱交換器910及び四方弁902を通って圧縮機構904に戻る。
 冷房運転時には、破線矢印で示すように、冷媒が圧縮機構904で加圧されて送り出され、四方弁902、室外熱交換器910、膨張弁908、室内熱交換器906及び四方弁902を通って圧縮機構904に戻る。
 暖房運転時には、室内熱交換器906が凝縮器として作用して熱放出を行い、室外熱交換器910が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器910が凝縮器として作用して熱放出を行い、室内熱交換器906が蒸発器として作用し、熱吸収を行う。膨張弁908は、冷媒を減圧して膨張させる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1a,1b,1c 電力変換装置、2,2a,2b,2c モータ駆動装置、110 商用電源、120 リアクトル、130 整流部、131~134,621~624 整流素子、200 平滑部、210 コンデンサ、310 インバータ、311a~311f,611~614 スイッチング素子、312a~312f 還流ダイオード、313a,313b 電流検出部、314 モータ、315 圧縮機、400 制御部、501 電圧電流検出部、502 電圧検出部、600,601 昇圧部、700,701,702 整流昇圧部、900 冷凍サイクル適用機器、902 四方弁、904 圧縮機構、906 室内熱交換器、908 膨張弁、910 室外熱交換器、912 冷媒配管。

Claims (17)

  1.  商用電源から供給される第1の交流電力を整流する整流部と、
     前記整流部の出力端に接続されるコンデンサと、
     前記コンデンサの両端に接続され、前記整流部および前記コンデンサから出力される電力を第2の交流電力に変換し、モータを有する負荷に出力するインバータと、
     前記整流部から前記コンデンサに流入する電力の脈動に応じた脈動を含む前記第2の交流電力を前記インバータから前記負荷に出力するように前記インバータの動作を制御し、前記コンデンサに流れる電流を抑制する制御部と、
     を備え、
     前記コンデンサに放電回路もしくは過電圧保護回路を設けない電力変換装置。
  2.  前記コンデンサの容量は、前記コンデンサに過電圧保護回路が接続される場合に設定される前記コンデンサの容量以上である、
     請求項1に記載の電力変換装置。
  3.  前記コンデンサの容量は、前記電力変換装置に配置されるリアクトルのインピーダンス、系統インピーダンス、前記商用電源の電流最大値、前記モータの1相分のインダクタンス成分、前記モータの電流最大値、前記コンデンサからの電圧が印加される素子の耐電圧、および定常状態における前記コンデンサの最大電圧を用いて算出される値によって定められる、
     請求項2に記載の電力変換装置。
  4.  前記コンデンサの容量は、さらに、前記インバータが停止時の前記商用電源の系統電圧、および前記モータの誘起電圧によって限定される、
     請求項3に記載の電力変換装置。
  5.  前記コンデンサの容量は、前記制御部が前記整流部から前記コンデンサに流入する電力の脈動に応じた脈動を含む前記第2の交流電力を前記インバータから前記負荷に出力するように前記インバータの動作を制御する第1の制御をしないときに設定される前記コンデンサの容量未満である、
     請求項1から4のいずれか1つに記載の電力変換装置。
  6.  前記コンデンサの容量は、前記コンデンサの電流が脈動する周波数である前記商用電源の周波数の2倍の周波数、前記2倍の周波数における前記コンデンサの許容リプル電圧、前記制御部が前記第1の制御をしないときの前記2倍の周波数における前記コンデンサのコンデンサ電流、および前記制御部が前記第1の制御をしたときの前記2倍の周波数における前記インバータの入力電流脈動を用いて算出される値によって定められる、
     請求項5に記載の電力変換装置。
  7.  前記コンデンサに流れる電流のうち、前記商用電源の周波数の2倍の周波数成分のコンデンサ電流は、前記インバータが備えるスイッチング素子のスイッチング周波数の2倍の周波数成分の第1のコンデンサ電流以下である、
     請求項1から6のいずれか1つに記載の電力変換装置。
  8.  前記第1のコンデンサ電流には、前記モータの回転に起因する電流成分が含まれる、
     請求項7に記載の電力変換装置。
  9.  前記第1の交流電力の電圧を昇圧する昇圧部を備え、または、前記整流部に換えて、商用電源から供給される第1の交流電力を整流するとともに、前記第1の交流電力の電圧を昇圧する整流昇圧部を備え、
     前記コンデンサに流れる電流のうち、前記商用電源の周波数の2倍の周波数成分のコンデンサ電流は、前記昇圧部または前記整流昇圧部が備えるスイッチング素子のスイッチング周波数の2倍の周波数成分の第2のコンデンサ電流以下である、
     請求項7または8に記載の電力変換装置。
  10.  前記第2のコンデンサ電流には、前記モータの回転に起因する電流成分が含まれる、
     請求項9に記載の電力変換装置。
  11.  前記コンデンサは、電解コンデンサまたはフィルムコンデンサである、
     請求項1から10のいずれか1つに記載の電力変換装置。
  12.  前記コンデンサに発生する電圧リプルの最大値は最小値の2倍未満となる、
     請求項1から11のいずれか1つに記載の電力変換装置。
  13.  前記整流部は全波整流を行うものであり、前記コンデンサに発生する電圧は前記商用電源の全波整流波形形状ではない、
     請求項1から8のいずれか1つに記載の電力変換装置。
  14.  前記放電回路は、能動素子および抵抗を有し、前記能動素子のオンオフで前記コンデンサに抵抗の接続有無を切り替える、
     請求項1から13のいずれか1つに記載の電力変換装置。
  15.  前記過電圧保護回路は、前記コンデンサの電圧が一定以上上昇しないようにデバイスの保護を行うものであり、スイッチング素子のスイッチング時に生じるサージ電圧から前記スイッチング素子を保護するスナバ回路ではない、
     請求項1から14のいずれか1つに記載の電力変換装置。
  16.  請求項1から15のいずれか1つに記載の電力変換装置を備えるモータ駆動装置。
  17.  請求項1から15のいずれか1つに記載の電力変換装置を備える冷凍サイクル適用機器。
PCT/JP2020/040133 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器 WO2022091186A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/043,132 US20230308025A1 (en) 2020-10-26 2020-10-26 Power conversion device, motor drive unit, and refrigeration cycle apparatus
JP2022558619A JP7471442B2 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
CN202080106184.3A CN116670995A (zh) 2020-10-26 2020-10-26 电力转换装置、马达驱动装置以及制冷循环应用设备
PCT/JP2020/040133 WO2022091186A1 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040133 WO2022091186A1 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Publications (1)

Publication Number Publication Date
WO2022091186A1 true WO2022091186A1 (ja) 2022-05-05

Family

ID=81383775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040133 WO2022091186A1 (ja) 2020-10-26 2020-10-26 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Country Status (4)

Country Link
US (1) US20230308025A1 (ja)
JP (1) JP7471442B2 (ja)
CN (1) CN116670995A (ja)
WO (1) WO2022091186A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238229A1 (ja) * 2022-06-07 2023-12-14 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051589A (ja) * 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2011205729A (ja) * 2010-03-24 2011-10-13 Daikin Industries Ltd 電力変換装置
JP2019161757A (ja) * 2018-03-08 2019-09-19 ナブテスコ株式会社 Ac−ac電力変換装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051589A (ja) * 2000-07-31 2002-02-15 Isao Takahashi モータ駆動用インバータの制御装置
JP2011205729A (ja) * 2010-03-24 2011-10-13 Daikin Industries Ltd 電力変換装置
JP2019161757A (ja) * 2018-03-08 2019-09-19 ナブテスコ株式会社 Ac−ac電力変換装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238229A1 (ja) * 2022-06-07 2023-12-14 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器

Also Published As

Publication number Publication date
CN116670995A (zh) 2023-08-29
US20230308025A1 (en) 2023-09-28
JP7471442B2 (ja) 2024-04-19
JPWO2022091186A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP5558530B2 (ja) モーター駆動制御装置、圧縮機、送風機、空気調和機及び冷蔵庫又は冷凍庫
EP2779406B1 (en) Power converter and air conditioner having the same
WO2016035209A1 (ja) 電力変換装置及び冷凍サイクル装置
KR20140112297A (ko) 전력변환장치, 및 이를 구비하는 공기조화기
WO2022091186A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7387038B2 (ja) 電力変換装置、モータ駆動装置および空気調和機
WO2022091185A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
US11211890B2 (en) Power conversion apparatus and air-conditioning apparatus
KR101416932B1 (ko) 공기조화기의 전동기 제어장치
WO2020184378A1 (ja) 電力変換装置およびこれを用いた空気調和装置
KR20140112298A (ko) 전력변환장치, 및 이를 구비하는 공기조화기
WO2022091184A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2022172418A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023238229A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
WO2023084726A1 (ja) 電力変換装置及び冷凍サイクル適用機器
WO2023095264A1 (ja) 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
KR20100133636A (ko) 공기조화기의 전동기 구동장치
KR101905480B1 (ko) 모터 구동장치 및 이를 구비하는 공기조화기
KR20160058436A (ko) 전력변환장치, 및 이를 구비하는 공기조화기
CN116964917A (zh) 电力转换装置和空调机
CN116783811A (zh) 电力转换装置、马达驱动装置以及制冷循环应用设备
CN111295828A (zh) 电力变换装置和空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558619

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202327013851

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202080106184.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959704

Country of ref document: EP

Kind code of ref document: A1