JP7345497B2 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
JP7345497B2
JP7345497B2 JP2020557012A JP2020557012A JP7345497B2 JP 7345497 B2 JP7345497 B2 JP 7345497B2 JP 2020557012 A JP2020557012 A JP 2020557012A JP 2020557012 A JP2020557012 A JP 2020557012A JP 7345497 B2 JP7345497 B2 JP 7345497B2
Authority
JP
Japan
Prior art keywords
transistor
oxide
insulator
terminal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020557012A
Other languages
English (en)
Other versions
JPWO2020104890A1 (ja
JPWO2020104890A5 (ja
Inventor
圭 高橋
佑樹 岡本
港 伊藤
貴彦 石津
広樹 井上
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPWO2020104890A1 publication Critical patent/JPWO2020104890A1/ja
Publication of JPWO2020104890A5 publication Critical patent/JPWO2020104890A5/ja
Priority to JP2023143577A priority Critical patent/JP2024008933A/ja
Application granted granted Critical
Publication of JP7345497B2 publication Critical patent/JP7345497B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Protection Of Static Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明の一態様は、半導体装置、および半導体装置の動作方法に関する。また、本発明の一態様は、電池制御回路、電池保護回路、蓄電装置、および電子機器に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、表示装置、発光装置、蓄電装置、撮像装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうるもの全般を指す。よって、トランジスタやダイオードなどの半導体素子や半導体回路は半導体装置である。また、表示装置、発光装置、照明装置、電気光学装置、および電子機器などは、半導体素子や半導体回路を含む場合がある。よって、表示装置、発光装置、照明装置、電気光学装置、撮像装置、および電子機器なども、半導体装置と呼ばれる場合がある。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、タブレット、もしくはノート型コンピュータ等の携帯情報端末、ゲーム装置、携帯音楽プレーヤ、デジタルカメラ、医療機器、または、ハイブリッド車(HEV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車、電動バイクなど、半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
特許文献1には、過電流を検出して二次電池の充放電を制御する半導体装置が示されている。
特開2014-166071号公報
特許文献1に示されている構成では、過電流の検出に定電流源を用いるため消費電力が増加しやすい。また、特許文献1に示されている構成では、過電流の検出において、放電用トランジスタおよび充電用トランジスタそれぞれの抵抗値ばらつきの影響を受けるため、検出精度の向上が難しい。
本発明の一態様は、消費電力が低減された半導体装置などを提供することを課題の一つとする。または、過電流の検出精度の良好な半導体装置などを提供することを課題の一つとする。または、動作の安定した半導体装置などを提供することを課題の一つとする。または、信頼性の良好な半導体装置などを提供することを課題の一つとする。または、生産性が良好な半導体装置などを提供することを課題の一つとする。または、新規な半導体装置などを提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、ノードND1と、ノードND2と、抵抗と、容量と、比較回路と、を有する半導体装置であって、抵抗は、二次電池の正極または負極の一方と、第1端子の間に、直列かつ電気的に接続される。抵抗は、二次電池の正極または負極の一方と第1端子の間に流れる電流を第1電圧に変換する機能を有する。第1電圧は、容量を介してノードND2の電圧に加算される。比較回路は、ノードND1の電圧とノードND2の電圧を比較する機能を有する。比較回路は、ノードND2の電圧がノードND1の電圧よりも大きい場合、過電流を検知したことを知らせる信号を出力する。
本発明の別の一態様は、第1乃至第4トランジスタと、コンパレータと、を有し、第1トランジスタのソースまたはドレインの一方は、コンパレータの非反転入力端子と電気的に接続され、第2トランジスタのソースまたはドレインの一方は、コンパレータの反転入力端子と電気的に接続され、第3トランジスタのソースまたはドレインの一方は、第4トランジスタのソースまたはドレインの一方と電気的に接続され、第3トランジスタのソースまたはドレインの他方と、第4トランジスタのソースまたはドレインの他方の間に抵抗を有する半導体装置である。
抵抗の抵抗値は、1mΩ以上10Ω以下とすればよい。また、第1トランジスタのソースまたはドレインの一方に第1容量を有してもよい。第1容量の容量値は0.01fF以上100pF以下とすればよい。また、第2トランジスタのソースまたはドレインの一方と第3トランジスタのソースまたはドレインの一方の間に第2容量を有してもよい。第2容量の容量値は0.01fF以上100pF以下とすればよい。
第1および第2トランジスタは、半導体層に酸化物半導体を含むことが好ましい。第3および第4トランジスタは、半導体層に酸化物半導体を含むことが好ましい。
第1乃至第4トランジスタの少なくとも一つは、マルチゲート型のトランジスタであってもよい。
第1トランジスタのソースまたはドレインの他方に供給される電位は、第2トランジスタのソースまたはドレインの他方に供給される電位よりも低いことが好ましい。
本発明の別の一態様は、第1トランジスタと、第2トランジスタと、コンパレータと、を有し、第1トランジスタのソースまたはドレインの一方は、コンパレータの非反転入力端子と電気的に接続され、第1トランジスタのソースまたはドレインの一方に第1容量を有し、第2トランジスタのソースまたはドレインの一方は、コンパレータの反転入力端子と電気的に接続され、第2トランジスタのソースまたはドレインの一方と抵抗の間に第2容量を備える半導体装置である。
また、本発明の別の一態様は、可撓性基板に設けられた半導体装置と、絶縁シートと、二次電池と、を含む電池パックである。
上記電池パックに、第1ダイオードと、第2ダイオードと、第2抵抗と、第3容量と、を設けてもよい。第1ダイオードのカソードは二次電池の正極と電気的に接続し、第1ダイオードのアノードは第2ダイオードのカソードと電気的に接続し、第2ダイオードのアノードは二次電池の負極と電気的に接続する。また、第2抵抗は、第1ダイオードのアノードとコンパレータの出力端子の間に設け、第3容量は、第2ダイオードと並列に接続する。
第1ダイオードおよび第2ダイオードの一方または双方を、トランジスタで構成することもできる。
本発明の一態様によれば、消費電力が低減された半導体装置などを提供することができる。または、過電流の検出精度の良好な半導体装置などを提供することができる。または、動作の安定した半導体装置などを提供することができる。または、信頼性の良好な半導体装置などを提供することができる。または、生産性が良好な半導体装置などを提供することができる。または、新規な半導体装置などを提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1は、半導体装置の構成例を示す図である。
図2Aおよび図2Bは、半導体装置の動作例を示す図である。
図3Aおよび図3Bは、半導体装置の動作例を示す図である。
図4Aおよび図4Bは、半導体装置の構成例を示す図である。
図5A乃至図5Dは、トランジスタの回路記号を示す図である。
図6は、半導体装置の構成例を示す図である。
図7Aおよび図7Bは、半導体装置の動作例を示す図である。
図8Aおよび図8Bは、半導体装置の動作例を示す図である。
図9は、半導体装置の構成例を示す図である。
図10Aおよび図10Bは、半導体装置の動作例を示す図である。
図11Aおよび図11Bは、半導体装置の動作例を示す図である。
図12は、半導体装置の構成例を示す図である。
図13Aおよび図13Bは、半導体装置の動作例を示す図である。
図14Aおよび図14Bは、半導体装置の動作例を示す図である。
図15は、半導体装置の構成例を示す図である。
図16は、半導体装置の構成例を示す図である。
図17は、半導体装置の構成例を示す図である。
図18A乃至図18Dは、保護装置の等価回路を示す図である。
図19Aおよび図19Bは、保護装置の等価回路を示す図である。
図20Aおよび図20Bは、保護装置の等価回路を示す図である。
図21A乃至図21Cは、保護装置の等価回路を示す図である。
図22は、半導体装置の構成例を示す図である。
図23A乃至図23Cは、保護装置の等価回路を示す図である。
図24は、半導体装置の構成例を示す図である。
図25は、保護装置の等価回路を示す図である。
図26は、半導体装置の構成例を示す図である。
図27は、半導体装置の構成例を示す図である。
図28は、保護装置の等価回路を示す図である。
図29は、半導体装置の構成例を示す図である。
図30は、半導体装置の構成例を示す図である。
図31A乃至図31Cは、トランジスタの構造例を示す図である。
図32A乃至図32Cは、トランジスタの構造例を示す図である。
図33A乃至図33Cは、トランジスタの構造例を示す図である。
図34A乃至図34Cは、二次電池の構造例を示す図である。
図35A乃至図35Cは、二次電池の構造例を示す図である。
図36Aおよび図36Bは、捲回体および二次電池の構造例を示す図である。
図37は、電子機器の一例を示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
また、図面等において示す各構成の、位置、大きさ、範囲などは、発明の理解を容易とするため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。例えば、実際の製造工程において、エッチングなどの処理によりレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために図に反映しないことがある。
また、上面図(「平面図」ともいう)や斜視図などにおいて、図面をわかりやすくするために、一部の構成要素の記載を省略する場合がある。
また、本明細書等において「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。
また、本明細書等において、電気回路における「端子」とは、電流の入力または出力、電圧の入力または出力、もしくは、信号の受信または送信が行なわれる部位を言う。よって、配線または電極の一部が端子として機能する場合がある。
なお、本明細書等において「上」や「下」の用語は、構成要素の位置関係が直上または直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、ソースおよびドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合など、動作条件などによって互いに入れ替わるため、いずれがソースまたはドレインであるかを限定することが困難である。このため、本明細書においては、ソースおよびドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、「電気的に接続」には、直接接続している場合と、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。よって、「電気的に接続する」と表現される場合であっても、現実の回路においては、物理的な接続部分がなく、配線が延在しているだけの場合もある。
また、本明細書等において、「平行」とは、例えば、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。従って、-5°以上5°以下の場合も含まれる。また、「垂直」および「直交」とは、例えば、二つの直線が80°以上100°以下の角度で配置されている状態をいう。従って、85°以上95°以下の場合も含まれる。
なお、本明細書等において、計数値および計量値に関して「同一」、「同じ」、「等しい」または「均一」などと言う場合は、明示されている場合を除き、プラスマイナス20%の誤差を含むものとする。
また、本明細書において、レジストマスクを形成した後にエッチング処理を行う場合は、特段の説明がない限り、レジストマスクは、エッチング処理終了後に除去するものとする。
また、電圧は、ある電位と、基準の電位(例えば接地電位またはソース電位)との電位差のことを示す場合が多い。よって、電圧と電位は互いに言い換えることが可能な場合が多い。本明細書等では、特段の明示が無いかぎり、電圧と電位を言い換えることができるものとする。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する。よって、「半導体」を「絶縁体」に置き換えて用いることも可能である。この場合、「半導体」と「絶縁体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「絶縁体」は、互いに読み換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する。よって、「半導体」を「導電体」に置き換えて用いることも可能である。この場合、「半導体」と「導電体」の境界は曖昧であり、両者の厳密な区別は難しい。したがって、本明細書に記載の「半導体」と「導電体」は、互いに読み換えることができる場合がある。
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、工程順または積層順など、なんらかの順番や順位を示すものではない。また、本明細書等において序数詞が付されていない用語であっても、構成要素の混同を避けるため、特許請求の範囲において序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲において異なる序数詞が付される場合がある。また、本明細書等において序数詞が付されている用語であっても、特許請求の範囲などにおいて序数詞を省略する場合がある。
なお、本明細書等において、トランジスタの「オン状態」とは、トランジスタのソースとドレインが電気的に短絡しているとみなせる状態(「導通状態」ともいう。)をいう。また、トランジスタの「オフ状態」とは、トランジスタのソースとドレインが電気的に遮断しているとみなせる状態(「非導通状態」ともいう。)をいう。
また、本明細書等において、「オン電流」とは、トランジスタがオン状態の時にソースとドレイン間に流れる電流をいう場合がある。また、「オフ電流」とは、トランジスタがオフ状態である時にソースとドレイン間に流れる電流をいう場合がある。
また、本明細書等において、高電源電位VDD(以下、単に「VDD」または「H電位」ともいう)とは、低電源電位VSSよりも高い電位の電源電位を示す。また、低電源電位VSS(以下、単に「VSS」または「L電位」ともいう)とは、高電源電位VDDよりも低い電位の電源電位を示す。また、接地電位をVDDまたはVSSとして用いることもできる。例えばVDDが接地電位の場合には、VSSは接地電位より低い電位であり、VSSが接地電位の場合には、VDDは接地電位より高い電位である。
また、本明細書等において、ゲートとは、ゲート電極およびゲート配線の一部または全部のことをいう。ゲート配線とは、少なくとも一つのトランジスタのゲート電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
また、本明細書等において、ソースとは、ソース領域、ソース電極、およびソース配線の一部または全部のことをいう。ソース領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ソース電極とは、ソース領域に接続される部分の導電層のことをいう。ソース配線とは、少なくとも一つのトランジスタのソース電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
また、本明細書等において、ドレインとは、ドレイン領域、ドレイン電極、及びドレイン配線の一部または全部のことをいう。ドレイン領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ドレイン電極とは、ドレイン領域に接続される部分の導電層のことをいう。ドレイン配線とは、少なくとも一つのトランジスタのドレイン電極と、別の電極や別の配線とを電気的に接続させるための配線のことをいう。
(実施の形態1)
本発明の一態様の半導体装置について、図面を用いて説明する。
<半導体装置200Aの構成例>
図1に半導体装置200Aの構成例を示す。半導体装置200Aは、端子201乃至端子204、半導体装置100C、制御回路210、電位生成回路220、抵抗211、容量212、トランジスタ213、トランジスタ214、ダイオード215、およびダイオード216を有する。
半導体装置100Cは、端子R、端子RFN、端子SH、端子SHB、および端子OUTを有する。また、半導体装置100Cは、コンパレータ101、トランジスタ111乃至トランジスタ114、容量102、容量103、および抵抗121を有する。
制御回路210は、端子221乃至端子225を有する。抵抗211の一方の端子は端子201および端子203と電気的に接続され、他方の端子は端子221と電気的に接続される。容量212の一方の端子は端子221と電気的に接続され、他方の端子は端子222および端子204と電気的に接続される。
トランジスタ213のソースまたはドレインの一方は端子222および端子204と電気的に接続され、ゲートは端子223と電気的に接続される。ダイオード215のアノードはトランジスタ213のソースまたはドレインの一方と電気的に接続される。ダイオード215のカソードはトランジスタ213のソースまたはドレインの他方と電気的に接続される。
トランジスタ214のソースまたはドレインの一方は、トランジスタ213のソースまたはドレインの他方と電気的に接続され、トランジスタ214のソースまたはドレインの他方は、抵抗121の一方の端子と電気的に接続される。トランジスタ214のゲートは端子224と電気的に接続される。ダイオード216のカソードはトランジスタ214のソースまたはドレインの一方と電気的に接続される。ダイオード216のアノードはトランジスタ214のソースまたはドレインの他方と電気的に接続される。抵抗121の他方の端子は端子202と電気的に接続される。
電位生成回路220は、端子Rに電位Vを供給する機能と、端子RFNに電位VRFNを供給する機能と、を有する。制御回路210は、電位生成回路220の動作を制御する機能を有する。
コンパレータ101は、非反転入力端子、反転入力端子、および出力端子を有する。コンパレータ101は、非反転入力端子の電位が反転入力端子の電位よりも高い場合、出力端子に電位VOUTとしてH電位を出力する機能を有する。また、コンパレータ101は、非反転入力端子の電位が反転入力端子の電位よりも低い場合、出力端子に電位VOUTとしてL電位を出力する機能を有する。コンパレータ101は、比較回路として機能する。コンパレータ101の出力端子は、端子OUTと電気的に接続される。また、端子OUTは、配線122を介して制御回路210の端子225と電気的に接続される。
トランジスタ111のソースまたはドレインの一方は、端子Rと電気的に接続され、トランジスタ111のソースまたはドレインの他方は、コンパレータ101の非反転入力端子と電気的に接続される。トランジスタ111のゲートは端子SHと電気的に接続される。
容量102の一方の電極は、コンパレータ101の非反転入力端子と電気的に接続される。容量102の他方の電極は、基準電位または固定電位が供給される。
トランジスタ111のソースまたはドレインの他方、コンパレータ101の非反転入力端子、および容量102の一方の電極が電気的に接続する節点をノードND1という。
トランジスタ112のソースまたはドレインの一方は、端子RFNと電気的に接続され、トランジスタ112のソースまたはドレインの他方は、コンパレータ101の反転入力端子と電気的に接続される。トランジスタ112のゲートは端子SHと電気的に接続される。
容量103の一方の電極は、コンパレータ101の反転入力端子と電気的に接続される。
トランジスタ112のソースまたはドレインの他方、コンパレータ101の反転入力端子、および容量103の一方の電極が電気的に接続する節点をノードND2という。
トランジスタ113のソースまたはドレインの一方は、抵抗121の一方の端子と電気的に接続され、トランジスタ113のソースまたはドレインの他方は、容量103の他方の電極と電気的に接続される。トランジスタ113のゲートは端子SHと電気的に接続される。
トランジスタ114のソースまたはドレインの一方は、抵抗121の他方の端子と電気的に接続され、トランジスタ114のソースまたはドレインの他方は、容量103の他方の電極と電気的に接続される。トランジスタ114のゲートは端子SHBと電気的に接続される。
なお、端子SHBには端子SHの反転電位が供給される。例えば、端子SHにH電位が供給される時、端子SHBにL電位が供給される。同様に、端子SHにL電位が供給される時、端子SHBにH電位が供給される。ただし、回路動作上ある特定の期間において、端子SHBおよび端子SHの電位が同電位になる場合もありうる。
トランジスタ113のソースまたはドレインの他方、トランジスタ114のソースまたはドレインの他方、および容量103の他方の電極が電気的に接続する節点をノードND3という。
トランジスタ214のソースまたはドレインの他方、トランジスタ113のソースまたはドレインの一方、および抵抗121の一方の端子が電気的に接続する節点をノードNDAという。トランジスタ114のソースまたはドレインの一方、抵抗121の他方の端子、および端子202が電気的に接続する節点をノードNDBという。
また、二次電池300の正極は端子203と電気的に接続され、負極は端子204と電気的に接続される。
トランジスタ111乃至トランジスタ114は、チャネルが形成される半導体層に金属酸化物の一種である酸化物半導体を用いたトランジスタ(「OSトランジスタ」ともいう。)を用いることが好ましい。特に、トランジスタ111およびトランジスタ112にOSトランジスタを用いることが好ましい。
OSトランジスタはオフ電流を極めて少なくすることができる。具体的には、チャネル幅1μm当たりのオフ電流を室温下において1×10-20A未満、好ましくは1×10-22A未満、さらに好ましくは1×10-24A未満とすることができる。
また、OSトランジスタは高温環境下でもオフ電流がほとんど増加しない。具体的には室温以上200℃以下の環境温度下でもオフ電流がほとんど増加しない。半導体装置を構成するトランジスタにOSトランジスタを用いることで、高温環境下においても動作が安定し、信頼性の良好な半導体装置を実現できる。
トランジスタ111にOSトランジスタを用いることによって、容量102を小さくすることができる。または、容量102を設けずに、トランジスタなどの寄生容量を容量102に代えて用いることができる。その結果、半導体装置100Cの占有面積を小さくすることができる。よって、半導体装置200Aの占有面積を小さくすることができる。
一般に、容量は二つの電極が誘電体を介して向かい合う構成を有する。容量値は、向かい合う電極の重畳面積と誘電体の比誘電率に比例し、二つの電極間の距離に反比例する。容量102を設ける場合、容量値が大きすぎると半導体装置200Aの占有面積が大きくなりやすく好ましくない。また、容量102の容量値が大きいと、容量102の充電および放電による消費電力の増加が生じる。
容量102を設ける場合、容量102の容量値は、好ましくは0.01fF以上100pF以下、より好ましくは0.05fF以上10pF以下、さらに好ましくは0.1fF以上1pF以下、にすればよい。
同様に、トランジスタ112にOSトランジスタを用いることによって、容量103を小さくすることができる。または、容量103を設けずに、トランジスタなどの寄生容量を容量103に代えて用いることができる。
容量103を設ける場合、容量値が大きすぎると半導体装置200Aの占有面積が大きくなりやすく好ましくない。また、容量103の容量値が大きいと、容量103の充電および放電による消費電力の増加が生じる。
容量103を設ける場合、容量103の容量値は、好ましくは0.01fF以上100pF以下、より好ましくは0.05fF以上10pF以下、さらに好ましくは0.1fF以上1pF以下、にすればよい。
また、OSトランジスタは、高温環境下(例えば、50℃以上150℃以下の環境下。)においても、オフ電流が増加しにくい。よって、高温環境下においても、ノードND1およびノードND2に供給された電位(電荷)を長期間保持することができる。
このように、トランジスタ111と容量102によって、記憶素子151が構成される。また、トランジスタ112と容量103によって、記憶素子152が構成される。記憶素子を構成するトランジスタにOSトランジスタを用いた記憶素子を「OSメモリ」と呼ぶ場合がある。
また、OSトランジスタは、ソースとドレイン間の絶縁耐圧が高い。よって、トランジスタ213およびトランジスタ214にOSトランジスタを用いることもできる。OSトランジスタを用いることによって、信頼性の良好な半導体装置などを提供できる。
なお、OSトランジスタを用いた充電制御回路、放電制御回路、過電流検知回路、異常検知回路、または二次電池制御システムなどを、BTOS(Battery operating system、またはBattery oxide semiconductor)と呼称する場合がある。
<半導体装置200Aの動作例>
制御回路210はトランジスタ213のオン状態とオフ状態を選択する機能を有する。また、制御回路210はトランジスタ214のオン状態とオフ状態を選択する機能を有する。
二次電池300の充電は、充電用の外部電源の正極を端子201に接続し、同電源の負極を端子202に接続して行なわれる。また、充電動作は、トランジスタ214をオン状態にして行なわれる。外部電源から供給される電流を、端子203および端子204を経由して、端子201から端子202に流すことで、二次電池300の充電を行なうことができる。
二次電池300の放電は、端子201および端子202間に負荷を接続して行なわれる。放電動作は、トランジスタ213をオン状態にして行なわれる。放電動作時は、端子204および端子203を経由して、端子202から端子201に電流が流れる。充電動作と放電動作では、抵抗121に流れる電流の向きが逆になる。
また、制御回路210は、二次電池300の充電電圧、温度、などの、二次電池300の状態を検知する機能を有する。また、制御回路210は、二次電池300の状態を検知して、充電動作および放電動作の実行または停止を制御する機能を有する。
具体的には、制御回路210はトランジスタ213をオフ状態にすることで、二次電池300の放電動作を停止することができる。また、制御回路210はトランジスタ214をオフ状態にすることで、二次電池300の充電動作を停止することができる。トランジスタ213およびトランジスタ214のどちらか一方をオフ状態とすることで、二次電池300の充電動作および放電動作のどちらか一方を停止することができる。
半導体装置100Cは、充電動作中に抵抗121に規定以上の電流(「過電流」ともいう。)が流れた場合、それを検知する機能を有する。具体的には、半導体装置100Cは、充電動作中に過電流を検知するとH電位を出力する。半導体装置100Cの出力(電位VOUT)は、配線122を介して制御回路210の端子225に供給される。半導体装置100Cは、充電動作中の過電流検知回路として機能する。
半導体装置200Aの制御回路210は、端子225にH電位が供給されると、トランジスタ214をオフ状態にし、充電動作を停止する。過電流による充電を行なわないことで、二次電池300の急激な特性劣化を防ぐことができる。よって、二次電池300の電池寿命を延ばすことができる。また、二次電池300の信頼性を向上することができる。また、二次電池300の安全性を向上することができる。
〔半導体装置100Cの動作例〕
半導体装置100Cは、過電流検知回路として機能する。図2および図3を用いて、半導体装置100Cの動作例について説明する。図2および図3は、半導体装置100Cの動作状態を示す図である。
また、図面などにおいて、配線および電極の電位をわかりやすくするため、配線および電極に隣接してH電位を示す“H”、またはL電位を示す“L”を付記する場合がある。また、電位変化が生じた配線および電極には、“H”または“L”を囲み文字で付記する場合がある。また、トランジスタがオフ状態である場合、当該トランジスタに重ねて“×”記号を付記する場合がある。
前述した通り、端子Rには電位Vが供給され、端子RFNには電位VRFNが供給される。本実施の形態では、電位Vを1.1Vとし、電位VRFNを1.25Vとする。
まず、充電開始前に、端子SHにH電位を供給し、端子SHBにL電位を供給する(図2A参照)。すると、トランジスタ111がオン状態になり、ノードND1の電位が1.1Vになる。また、トランジスタ112がオン状態になり、ノードND2の電位が1.25Vになる。よって、コンパレータ101から出力される電位VOUTがL電位になる。
また、この時点では、抵抗121に電流が流れていないため、ノードNDAおよびノードNDBの電位は0V(基準電位)である。端子SHにH電位が供給されると、トランジスタ113がオン状態になり、ノードND3の電位は0Vになる。
次に、端子SHにL電位を供給し、端子SHBにH電位を供給する(図2B参照)。すると、トランジスタ111がオフ状態になり、ノードND1の電位が保持される。同様に、トランジスタ112がオフ状態になり、ノードND2の電位が保持される。また、トランジスタ113もオフ状態になる。
次に、充電動作を開始する。充電が始まると、抵抗121に電流Iが流れる(図3A参照)。電流IはノードNDAからノードNDBに向かって流れるため、充電が始まるとノードNDBの電位は0Vよりも低くなる。よって、ノードND3の電位も0Vより低くなる。
抵抗121の抵抗値は、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、さらに好ましくは10mΩ以上1Ω以下、とすればよい。抵抗121の抵抗値を変えることで、半導体装置100Cで検知する過電流の値を変えることができる。また、配線の一部を抵抗121として機能させてもよい。言い換えると、配線抵抗を抵抗121として用いてもよい。
電流値Ith(A)以上を過電流として検出するための抵抗121の抵抗値R(Ω)は、数式1で求めることが出来る。
Figure 0007345497000001
例えば、電流Ithの値を1mAに設定する場合、電位VRFNが1.25V、電位Vが1.1Vであるため、数式1より抵抗値Rを150Ωにすればよいことがわかる。
図3Aは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして0.8mAが流れている状態を示している。この場合、ノードNDBの電位は-0.12Vになる。よって、ノードND3の電位も-0.12Vになる。また、ノードND3とノードND2は容量103を介して容量結合している。よって、ノードND2の電位は1.13Vになる。ノードND2の電位はノードND1の電位よりも大きいままである。よって、電位VOUTはL電位のままである。
図3Bは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして1.1mAが流れた時の状態を示している。この場合、ノードNDBの電位は-0.165Vになる。よって、ノードND3の電位も-0.165Vになる。上記と同様の理由により、ノードND2の電位が1.085Vになる。すると、ノードND2の電位がノードND1の電位よりも小さくなり、電位VOUTがH電位になる。
このようにして、充電動作時の過電流を検知することができる。本発明の一態様の半導体装置100Cは、端子202、トランジスタ213、およびトランジスタ214と直列に接続された抵抗121で過電流の検知を行なう構成である。よって、トランジスタ213およびトランジスタ214の抵抗値ばらつきの影響を受けることなく、精度よく過電流を検知することができる。
なお、抵抗121は固定抵抗に限らない。図4Aに示すように、抵抗121を可変抵抗にしてもよい。抵抗121を可変抵抗にすることで、電流値Ithの値を任意に変化させることができる。例えば、二次電池300の表面温度に応じて電流値Ithを最適な値に変化させることができる。
また、トランジスタ111乃至トランジスタ114、トランジスタ213、およびトランジスタ214はスイッチとして機能する。スイッチは、端子間を導通状態(ON)と非導通状態(OFF)に切り替える機能を有しており、電流を流すか流さないかを制御する機能を有する素子である。トランジスタのソースがスイッチの一端に相当し、トランジスタのドレインがスイッチの他端に相当する。よって、例えば、図4Bに示すように、半導体装置100Cに含まれるトランジスタ111乃至トランジスタ114を、スイッチ111s乃至スイッチ114sに置き換えて示すことができる。
また、トランジスタ111乃至トランジスタ114、トランジスタ213、およびトランジスタ214のそれぞれは、ダブルゲート型のトランジスタであってもよい。図5Aに、ダブルゲート型のトランジスタ150Aの回路記号例を示す。
トランジスタ150Aは、トランジスタTr1とトランジスタTr2を直列に接続した構成を有する。図5Aでは、トランジスタTr1のソースまたはドレインの一方が端子Sと電気的に接続され、トランジスタTr1のソースまたはドレインの他方がトランジスタTr2のソースまたはドレインの一方と電気的に接続され、トランジスタTr2のソースまたはドレインの他方が端子Dと電気的に接続されている状態を示している。また、図5Aでは、トランジスタTr1とトランジスタTr2のゲートが電気的に接続され、かつ、端子Gと電気的に接続されている状態を示している。
図5Aに示すトランジスタ150Aは、端子Gの電位を変化させることで端子Sと端子D間を導通状態または非導通状態に切り替える機能を有する。よって、ダブルゲート型のトランジスタであるトランジスタ150Aは、トランジスタTr1とトランジスタTr2を内在するもの、1つのトランジスタとして機能する。すなわち、図5Aにおいて、トランジスタ150Aのソースまたはドレインの一方は端子Sと電気的に接続され、ソースまたはドレインの他方は端子Dと電気的に接続され、ゲートは端子Gと電気的に接続されていると言える。
また、トランジスタ111乃至トランジスタ114、トランジスタ213、およびトランジスタ214のそれぞれは、トリプルゲート型のトランジスタであってもよい。図5Bに、トリプルゲート型のトランジスタ150Bの回路記号例を示す。
トランジスタ150Bは、トランジスタTr1、トランジスタTr2、およびトランジスタTr3を直列に接続した構成を有する。図5Bでは、トランジスタTr1のソースまたはドレインの一方が端子Sと電気的に接続され、トランジスタTr1のソースまたはドレインの他方がトランジスタTr2のソースまたはドレインの一方と電気的に接続され、トランジスタTr2のソースまたはドレインの他方がトランジスタTr3のソースまたはドレインの一方と電気的に接続され、トランジスタTr3のソースまたはドレインの他方が端子Dと電気的に接続されている状態を示している。また、図5Bでは、トランジスタTr1、トランジスタTr2、およびトランジスタTr3のゲートが電気的に接続され、かつ、端子Gと電気的に接続されている状態を示している。
図5Bに示すトランジスタ150Bは、端子Gの電位を変化させることで端子Sと端子D間を導通状態または非導通状態に切り替える機能を有する。よって、トリプルゲート型のトランジスタであるトランジスタ150Bは、トランジスタTr1、トランジスタTr2、およびトランジスタTr3を内在するもの、1つのトランジスタとして機能する。すなわち、図5Bにおいて、トランジスタ150Bのソースまたはドレインの一方は端子Sと電気的に接続され、ソースまたはドレインの他方は端子Dと電気的に接続され、ゲートは端子Gと電気的に接続されていると言える。
トランジスタ150Aおよびトランジスタ150Bのように、複数のゲートを有し、かつ、複数のゲートが電気的に接続されているトランジスタを「マルチゲート型のトランジスタ」または「マルチゲートトランジスタ」と呼ぶ場合がある。
また、トランジスタ111乃至トランジスタ114、トランジスタ213、およびトランジスタ214のそれぞれは、バックゲートを有するトランジスタであってもよい。図5Cに、バックゲートを有するトランジスタ150Cの回路記号例を示す。また、図5Dに、バックゲートを有するトランジスタ150Dの回路記号例を示す。
トランジスタ150Cは、ゲートとバックゲートを電気的に接続する構成を有する。トランジスタ150Dは、バックゲートを端子BGと電気的に接続する構成を有する。バックゲートは、ゲートとバックゲートで半導体層のチャネル形成領域を挟むように配置される。バックゲートはゲートと同様に機能させることができる。
ゲートとバックゲートを電気的に接続することで、トランジスタのオン電流を増やすことができる。また、バックゲートの電位を独立して変化させることで、トランジスタのしきい値電圧を変化させることができる。
<変形例>
図6に、半導体装置200Aの変形例である半導体装置200Aaの構成例を示す。本実施の形態では、説明の繰り返しを減らすため、半導体装置200Aと異なる点について主に説明する。半導体装置200Aaは、半導体装置100Cに換えて半導体装置100Caを有する点が半導体装置200Aと異なる。
半導体装置100Caは、半導体装置100Cからトランジスタ113、トランジスタ114、端子SHBを除いた構成を有する。半導体装置100Caにおいて、容量103の他方の電極は、抵抗121の他方の端子と電気的に接続する。よって、半導体装置200Aaでは、容量103の他方の電極と抵抗121の他方の端子が電気的に接続する節点をノードNDBという。また、半導体装置200Aaでは、トランジスタ214のソースまたはドレインの他方と抵抗121の一方の端子が電気的に接続する節点をノードNDAという。
半導体装置100Caは、半導体装置100Cよりも構成要素が少ないため、占有面積を小さくすることができる。また、半導体装置100Caは端子SHBを有さないため、半導体装置200Aaが有する制御回路210から端子227を削減できる。
〔半導体装置100Caの動作例〕
半導体装置100Caは、半導体装置100Cと同様に過電流検知回路として機能する。図7および図8を用いて、半導体装置100Caの動作例について説明する。図7および図8は、半導体装置100Caの動作状態を示す図である。
まず、充電開始前に、端子SHにH電位を供給する(図7A参照)。すると、トランジスタ111がオン状態になり、ノードND1の電位が1.1Vになる。また、トランジスタ112がオン状態になり、ノードND2の電位が1.25Vになる。よって、コンパレータ101から出力される電位VOUTがL電位になる。
また、この時点では、抵抗121に電流が流れていないため、ノードNDBの電位は0V(基準電位)である。
次に、端子SHにL電位を供給する(図7B参照)。すると、トランジスタ111がオフ状態になり、ノードND1の電位が保持される。同様に、トランジスタ112がオフ状態になり、ノードND2の電位が保持される。
次に、充電動作を開始する。充電が始まると、抵抗121に電流Iが流れる(図8A参照)。電流IはノードNDAからノードNDBに向かって流れるため、充電が始まるとノードNDBの電位は0Vよりも低くなる。図8Aは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして0.8mAが流れている状態を示している。この場合、ノードNDBの電位は-0.12Vになる。また、ノードNDBとノードND2は容量103を介して容量結合している。よって、ノードND2の電位は1.13Vになる。ノードND2の電位はノードND1の電位よりも大きいままである。よって、電位VOUTはL電位のままである。
図8Bは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして1.1mAが流れた時の状態を示している。この場合、ノードNDBの電位は-0.165Vになる。上記と同様の理由により、ノードND2の電位が1.085Vになる。すると、ノードND2の電位がノードND1の電位よりも小さくなり、電位VOUTがH電位になる。
このようにして、充電動作時の過電流を検知することができる。本発明の一態様の半導体装置200Aaは、半導体装置200Aよりも構成要素が少ないため、占有面積をさらに小さくすることができる。
なお、本発明の一態様に係る半導体装置は、本実施の形態に示した回路図に限定して解釈されるものではない。本発明の一態様に係る半導体装置には、本実施の形態に示した回路構成と同等の回路構成を有する場合も含まれる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の半導体装置の他の構成例などについて、図面を用いて説明する。
<半導体装置200Bの構成例>
図9に半導体装置200Bの構成例を示す。半導体装置200Bは、半導体装置200Aの変形例である。よって、説明の繰り返しを減らすため、本実施の形態では半導体装置200Aと異なる点について主に説明する。
半導体装置200Bは、半導体装置100Cに換えて半導体装置100Dを有する点が半導体装置200Aと異なる。半導体装置100Dは、半導体装置100Cと同様に、端子R、端子RFN、端子SH、端子SHB、および端子OUTを有する。また、半導体装置100Dは、コンパレータ101、トランジスタ111乃至トランジスタ114、容量102、容量103、および抵抗121を有する。
半導体装置100Dにおいて、トランジスタ111のソースまたはドレインの一方は、端子RFNと電気的に接続され、トランジスタ111のソースまたはドレインの他方は、コンパレータ101の反転入力端子と電気的に接続される。トランジスタ111のゲートは端子SHと電気的に接続される。
容量102の一方の電極は、コンパレータ101の反転入力端子と電気的に接続される。容量102の他方の電極は、基準電位または固定電位が供給される。
トランジスタ111のソースまたはドレインの他方、コンパレータ101の反転入力端子、および容量102の一方の電極が電気的に接続する節点をノードND1という。
トランジスタ112のソースまたはドレインの一方は、端子Rと電気的に接続され、トランジスタ112のソースまたはドレインの他方は、コンパレータ101の非反転入力端子と電気的に接続される。トランジスタ112のゲートは端子SHと電気的に接続される。
容量103の一方の電極は、コンパレータ101の非反転入力端子と電気的に接続される。
トランジスタ112のソースまたはドレインの他方、コンパレータ101の非反転入力端子、および容量103の一方の電極が電気的に接続する節点をノードND2という。
トランジスタ113のソースまたはドレインの一方は、抵抗121の一方の端子と電気的に接続され、トランジスタ113のソースまたはドレインの他方は、容量103の他方の電極と電気的に接続される。トランジスタ113のゲートは端子SHと電気的に接続される。
トランジスタ114のソースまたはドレインの一方は、抵抗121の他方の端子と電気的に接続され、トランジスタ114のソースまたはドレインの他方は、容量103の他方の電極と電気的に接続される。トランジスタ114のゲートは端子SHBと電気的に接続される。
トランジスタ113のソースまたはドレインの他方、トランジスタ114のソースまたはドレインの他方、および容量103の他方の電極が電気的に接続する節点をノードND3という。
<半導体装置200Bの動作例>
半導体装置200Bが有する半導体装置100Dは、放電動作中に抵抗121に規定以上の電流(「過電流」ともいう。)が流れた場合、それを検知する機能を有する。具体的には、半導体装置100Dは、放電動作中に過電流を検知するとH電位を出力する。半導体装置100Dは、放電動作中の過電流検知回路として機能する。半導体装置100Dの出力(電位VOUT)は、配線122を介して制御回路210の端子225に供給される。
制御回路210は、端子225にH電位が供給されると、トランジスタ213をオフ状態にし、放電動作を停止する。過電流による放電を行なわないことで、二次電池300の急激な特性劣化を防ぐことができる。よって、二次電池300の電池寿命を延ばすことができる。また、二次電池300の信頼性を向上することができる。また、二次電池300の安全性を向上することができる。
〔半導体装置100Dの動作例〕
半導体装置100Dは、過電流検知回路として機能する。図10および図11を用いて、半導体装置100Dの動作例について説明する。図10および図11は、半導体装置100Dの動作状態を示す図である。前述した通り、本実施の形態では、電位Vを1.1Vとし、電位VRFNを1.25Vとする。
まず、放電開始前に、端子SHにH電位を供給し、端子SHBにL電位を供給する(図10A参照)。すると、トランジスタ112がオン状態になり、ノードND2の電位が1.1Vになる。また、トランジスタ111がオン状態になり、ノードND1の電位が1.25Vになる。よって、コンパレータ101から出力される電位VOUTがL電位になる。
また、この時点では、抵抗121に電流が流れていないため、ノードNDAおよびノードNDBの電位は0V(基準電位)である。端子SHにH電位が供給されると、トランジスタ113がオン状態になり、ノードND3の電位は0Vになる。
次に、端子SHにL電位を供給し、端子SHBにH電位を供給する(図10B参照)。すると、トランジスタ111がオフ状態になり、ノードND1の電位が保持される。同様に、トランジスタ112がオフ状態になり、ノードND2の電位が保持される。また、トランジスタ113もオフ状態になる。
次に、放電動作を開始する。放電が始まると、抵抗121に電流Iが流れる(図11A参照)。電流IはノードNDBからノードNDAに向かって流れるため、放電が始まるとノードNDBの電位は0Vよりも高くなる。よって、ノードND3の電位も0Vより高くなる。
抵抗121の抵抗値を変えることで、半導体装置100Dで検知する過電流の値を変えることができる。抵抗121を可変抵抗にしてもよい。
図11Aは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして0.8mAが流れている状態を示している。この場合、ノードNDBの電位は0.12Vになる。よって、ノードND3の電位も0.12Vになる。また、ノードND3とノードND2は容量103を介して容量結合している。よって、ノードND2の電位は1.22Vになる。ノードND1の電位はノードND2の電位よりも大きいままである。よって、電位VOUTはL電位のままである。
図11Bは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして1.1mAが流れた時の状態を示している。この場合、ノードNDBの電位は0.165Vになる。よって、ノードND3の電位も0.165Vになる。上記と同様の理由により、ノードND2の電位が1.265Vになる。すると、ノードND1の電位がノードND2の電位よりも小さくなり、電位VOUTがH電位になる。
このようにして、放電動作時の過電流を検知することができる。本発明の一態様の半導体装置100Dは、端子202、トランジスタ213、およびトランジスタ214と直列に接続された抵抗121で過電流の検知を行なう構成である。よって、トランジスタ213およびトランジスタ214の抵抗値ばらつきの影響を受けることなく、精度よく過電流を検知することができる。
<変形例>
図12に、半導体装置200Bの変形例である半導体装置200Baの構成例を示す。本実施の形態では、説明の繰り返しを減らすため、半導体装置200Bと異なる点について主に説明する。半導体装置200Baは、半導体装置100Dに換えて半導体装置100Daを有する点が半導体装置200Bと異なる。
半導体装置100Daは、半導体装置100Dからトランジスタ113、トランジスタ114、端子SHBを除いた構成を有する。半導体装置100Daにおいて、容量103の他方の電極は、抵抗121の他方の端子と電気的に接続する。よって、半導体装置200Baでは、容量103の他方の電極と抵抗121の他方の端子が電気的に接続する節点をノードNDBという。また、半導体装置200Baでは、トランジスタ214のソースまたはドレインの他方と抵抗121の一方の端子が電気的に接続する節点をノードNDAという。
半導体装置100Daは、半導体装置100Dよりも構成要素が少ないため、占有面積を小さくすることができる。また、半導体装置100Daは端子SHBを有さないため、半導体装置200Baが有する制御回路210から端子227を削減できる。
〔半導体装置100Daの動作例〕
半導体装置100Daは、半導体装置100Dと同様に過電流検知回路として機能する。図13および図14を用いて、半導体装置100Daの動作例について説明する。図13および図14は、半導体装置100Daの動作状態を示す図である。
まず、放電開始前に、端子SHにH電位を供給する(図13A参照)。すると、トランジスタ112がオン状態になり、ノードND2の電位が1.1Vになる。また、トランジスタ111がオン状態になり、ノードND1の電位が1.25Vになる。よって、コンパレータ101から出力される電位VOUTがL電位になる。
また、この時点では、抵抗121に電流が流れていないため、ノードNDAおよびノードNDBの電位は0V(基準電位)である。
次に、端子SHにL電位を供給する(図13B参照)。すると、トランジスタ111がオフ状態になり、ノードND1の電位が保持される。同様に、トランジスタ112がオフ状態になり、ノードND2の電位が保持される。
次に、放電動作を開始する。放電が始まると、抵抗121に電流Iが流れる(図14A参照)。電流IはノードNDBからノードNDAに向かって流れるため、放電が始まるとノードNDBの電位は0Vよりも高くなる。
図14Aは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして0.8mAが流れている状態を示している。この場合、ノードNDBの電位は0.12Vになる。よって、ノードND3の電位も0.12Vになる。また、ノードNDBとノードND2は容量103を介して容量結合している。よって、ノードND2の電位は1.22Vになる。ノードND1の電位はノードND2の電位よりも大きいままである。よって、電位VOUTはL電位のままである。
図14Bは、抵抗121の抵抗値Rが150Ωの時に、電流Iとして1.1mAが流れた時の状態を示している。この場合、ノードNDBの電位は0.165Vになる。上記と同様の理由により、ノードND2の電位が1.265Vになる。すると、ノードND1の電位がノードND2の電位よりも小さくなり、電位VOUTがH電位になる。
このようにして、放電動作時の過電流を検知することができる。本発明の一態様の半導体装置200Baは、半導体装置200Bよりも構成要素が少ないため、占有面積をさらに小さくすることができる。
なお、本発明の一態様に係る半導体装置は、本実施の形態に示した回路図に限定して解釈されるものではない。本発明の一態様に係る半導体装置には、本実施の形態に示した回路構成と同等の回路構成を有する場合も含まれる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、本発明の一態様の半導体装置の他の構成例などについて、図面を用いて説明する。
<半導体装置200Cの構成例>
図15に半導体装置200Cの構成例を示す。半導体装置200Cは、半導体装置200Aおよび半導体装置200Bの変形例である。よって、説明の繰り返しを減らすため、本実施の形態では半導体装置200Aまたは半導体装置200Bと異なる点について主に説明する。
半導体装置200Cは、制御回路210に換えて制御回路210Aを有する。また、半導体装置200Cは、半導体装置100Cおよび半導体装置100Dの両方を有する。制御回路210Aは制御回路210の変形例であり、制御回路210と同等の機能に加えて、半導体装置100Cおよび半導体装置100Dを制御する機能を有する。
制御回路210Aは、端子225として端子225aおよび端子225bを有し、端子226として端子226aおよび端子226bを有し、端子227として端子227aおよび端子227bを有する。
端子225aは、半導体装置100Cの端子OUTと配線122aを介して電気的に接続される。端子225bは、半導体装置100Dの端子OUTと配線122bを介して電気的に接続される。端子226aは、半導体装置100Cの端子SHと電気的に接続される。端子226bは、半導体装置100Dの端子SHと電気的に接続される。端子227aは、半導体装置100Cの端子SHBと電気的に接続される。端子227bは、半導体装置100Dの端子SHBと電気的に接続される。
電位生成回路220は、半導体装置100Cの端子Rおよび半導体装置100Dの端子Rに電位Vを供給する機能と、半導体装置100Cの端子RFNおよび半導体装置100Dの端子RFNに電位VRFNを供給する機能と、を有する。
制御回路210Aは、半導体装置100Cおよび半導体装置100Dを制御する機能を有する。よって、半導体装置200Cは、充電動作時の過電流を検出する機能と、放電動作時の過電流を検出する機能と、を有する。半導体装置200Cを用いることによって、二次電池300の電池寿命をさらに延ばすことができる。また、二次電池300の信頼性をさらに向上することができる。また、二次電池300の安全性をさらに向上することができる。
また、図16に示すように、半導体装置200Cでは、半導体装置100Cに用いる抵抗121と、半導体装置100Dに用いる抵抗121を共用することができる。よって、半導体装置200Cの構成要素を低減できる。言い換えると、半導体装置200Cを構成する部品の数を少なくできる。
また、半導体装置200Cでは、半導体装置100Cに換えて半導体装置100Caを用いてもよい。同様に、半導体装置100Dに換えて半導体装置100Daを用いてもよい。半導体装置200Cに、半導体装置100Caおよび半導体装置100Daの一方または双方を用いることで、半導体装置200Cの構成要素をさらに低減できる。言い換えると、半導体装置200Cを構成する部品の数をさらに少なくできる。
なお、本発明の一態様に係る半導体装置は、本実施の形態に示した回路図に限定して解釈されるものではない。本発明の一態様に係る半導体装置には、本実施の形態に示した回路構成と同等の回路構成を有する場合も含まれる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、本発明の一態様の半導体装置の他の構成例などについて、図面を用いて説明する。
<半導体装置200Adの構成例>
図17に半導体装置200Adの構成例を示す。半導体装置200Adは、半導体装置200Aの変形例である。よって、説明の繰り返しを減らすため、半導体装置200Adの半導体装置200Aと異なる点について主に説明する。
半導体装置200Adは、半導体装置200Aに保護装置250を付加した構成を有する。保護装置250は、端子VP、端子VN、および端子SIGを有する。端子VPは端子201と電気的に接続され、端子VNは端子202と電気的に接続される。よって、端子VPは二次電池300の正極と電気的に接続され、端子VNは二次電池300の負極と電気的に接続される。また、端子SIGは半導体装置100Cの端子OUTと電気的に接続される。また、端子SIGは制御回路210の端子225と電気的に接続される。
〔保護装置250〕
保護装置250は、ESD(Electro Static Discharge)などの高電圧ノイズによる、制御回路210および半導体装置100Cの損傷および誤動作などを防ぎ、半導体装置200Adの信頼性を高める機能を有する。
図18Aに保護装置250の等価回路図の一例を示す。図18Aに示す保護装置250は、ダイオード251a、ダイオード251b、抵抗252、および容量253を有する。抵抗252の一方の端子は端子SIGと電気的に接続され、他方の端子はダイオード251aのアノードと電気的に接続される。また、ダイオード251aのカソードは端子VPと電気的に接続される。
容量253の一方の電極は抵抗252の他方の端子と電気的に接続され、容量253の他方の電極は端子VNと電気的に接続される。ダイオード251bのアノードは端子VNと電気的に接続され、カソードはダイオード251aのアノードと電気的に接続される。すなわち、容量253の一方の電極はダイオード251bのカソードと電気的に接続され、容量253の他方の電極はダイオード251bのアノードと電気的に接続される。容量253とダイオード251bは、並列に接続している。
定常状態では、端子VPが高電位側で、端子VNが低電位側であるため、ダイオード251aおよびダイオード251bには逆バイアスが印加される。よって、保護装置250内で端子VPから端子VNへは電流は流れない。しかしながら、ESD現象などによって、予期せず端子VNが端子VPよりも高電位になると、端子VPと端子VNの間が導通状態となり、半導体装置200Adの損傷および誤動作を防ぐことができる。
また、端子SIGには端子OUTから出力された信号が供給されるが、当該信号は定常状態で端子VNの電位以上、端子VPの電位以下である。よって、定常状態では保護装置250内で端子SIGから端子VPおよび端子VNへは電流は流れない。しかしながら、ESD現象などによって、端子SIGに予期せず端子VPを超える電位もしくは端子VNを下回る電位が印加されると、端子VPまたは端子VNの一方と端子SIGが導通状態となり、半導体装置200Adの損傷および誤動作を防ぐことができる。
また、抵抗252および容量253は直列に接続されており、ハイパスフィルタとして機能する。端子SIGに印加された高周波の高電圧ノイズは、抵抗252および容量253を介して端子VNに逃がされる。
抵抗252の抵抗値は10Ω以上1kΩ以下が好ましく、50Ω以上500Ω以下がより好ましい。容量253の容量値は0.1pF以上100pF以下が好ましく、1pF以上10pF以下がより好ましい。
また、図19Aに示すように、抵抗252の他方の端子と端子VPの間に容量254を設けてもよい。容量254の容量値は、容量253と同程度とすればよい。
また、ダイオード251aおよびダイオード251bは、トランジスタに置き換えることができる。図18Bは、ダイオード251aをトランジスタ251aTに置き換え、ダイオード251bをトランジスタ251bTに置き換えた保護装置250の等価回路図である。トランジスタ251aTのゲートをソースまたはドレインの一方と電気的に接続することで、トランジスタ251aTをダイオードとして機能させることができる。この場合、ゲートと電気的に接続するソースまたはドレインの一方がアノードとして機能し、ソースまたはドレインの他方がカソードとして機能する。
トランジスタ251aTおよびトランジスタ251bTとして、OSトランジスタを用いることが好ましい。酸化物半導体はバンドギャップが2eV以上あるため、オフ電流が著しく少ないだけでなく、ソースとドレイン間の絶縁耐圧が高い。すなわち、ダイオードで言うところの逆方向電流が少なく、かつ、降伏現象が生じにくい。
また、トランジスタ251aTおよびトランジスタ251bTとして、バックゲートを有するトランジスタを用いてもよい。バックゲートを有するトランジスタを用いる場合は、ゲートとバックゲートを電気的に接続すればよい(図18C参照。)。または、バックゲートを端子VNと電気的に接続してもよい(図18D参照。)。
また、図19Bに示すように、複数のダイオード251aを並列に接続してもよい。同様に、複数のダイオード251bを並列に接続してもよい。ダイオード251aおよびダイオード251bを並列に接続することで、保護装置250の電流バイパス能力を高めることができる。また、ダイオード251aおよびダイオード251bの一部が破損しても保護装置250の機能を維持することが出来る。よって、保護装置250の冗長性を高めることができる。
また、図20Aに示すように、複数のダイオード251aを直列に接続してもよい。同様に、複数のダイオード251bを直列に接続してもよい。図20Aでは2つのダイオード251aと2つのダイオード251bを直列に接続する例を示している。複数のダイオード251aと複数のダイオード251bをそれぞれ直列に接続することで、ダイオード1つ当たりの逆バイアスが軽減されるため、保護装置250の絶縁耐圧を高めることができる。よって、保護装置250の信頼性を高めることができる。
図21Aは、ダイオード251aをトランジスタ251aTに置き換え、ダイオード251bをトランジスタ251bTに置き換えた図20Aに示す保護装置250の等価回路図である。図21Bおよび図21Cは、トランジスタ251aTおよびトランジスタ251bTにバックゲートを有するトランジスタを用いた場合の図20Aに示す保護装置250の等価回路図である。図21Bは、ゲートとバックゲートを電気的に接続する例を示している。図21Cは、バックゲートを端子VNと電気的に接続する例を示している。
また、図20Bに示すように、複数のダイオード251aを直列かつ並列に接続してもよい。同様に、複数のダイオード251bを直列かつ並列に接続してもよい。図20Bでは、直列接続された2つのダイオード251aと、直列接続された2つのダイオード251bが、それぞれ3つ並列接続する例を示している。複数のダイオードを直列かつ並列接続することで、保護装置250の冗長性と絶縁耐圧を高めることができる。よって、保護装置250の信頼性を高めることができる。
<半導体装置200AdAの構成例>
図22に半導体装置200AdAの構成例を示す。半導体装置200AdAは、半導体装置200Adの変形例である。よって、説明の繰り返しを減らすため、半導体装置200AdAの半導体装置200Adと異なる点について主に説明する。半導体装置200AdAは、半導体装置200Adの保護装置250に換えて保護装置250Aを有する。
また、例えば、制御回路210および/または半導体装置100Cが、バックゲートを有するトランジスタで構成され、当該バックゲートに負極の電位よりも低い電位を供給する場合がある。このような場合は、保護装置250に換えて保護装置250Aを用いればよい。
図23Aは、保護装置250Aの等価回路図である。図23Aに示す保護装置250Aは、図20Aに示す保護装置250に、2つのダイオード251cと、容量255と、抵抗256と、を有する。容量255の一方の電極は端子VNと電気的に接続され、他方の電極は1つ目のダイオード251cのアノードと電気的に接続される。1つ目のダイオード251cのカソードは、2つ目のダイオード251cのアノードと電気的に接続される。2つ目のダイオード251cのカソードは、端子VNと電気的に接続される。抵抗256の一方の端子は端子VBGと電気的に接続され、他方の端子は1つ目のダイオード251cのアノードと電気的に接続される。端子VBGは、例えば、制御回路210および/または半導体装置100Cに含まれるトランジスタのバックゲートと電気的に接続される。
図23Aでは、ダイオード251a、ダイオード251b、およびダイオード251cをそれぞれ2つずつ直列に接続する構成を示しているが、それぞれ3つ以上の直列であってもよい。ダイオード251a、ダイオード251b、およびダイオード251cをそれぞれ1つで構成してもよい。
図23Bおよび図23Cは、ダイオード251aをトランジスタ251aTに置き換え、ダイオード251bをトランジスタ251bTに置き換え、ダイオード251cをトランジスタ251cTに置き換えた保護装置250Aの等価回路図である。図23Bおよび図23Cでは、トランジスタ251aT、トランジスタ251bT、およびトランジスタ251cTを、バックゲートを有するトランジスタで示しているが、これらのトランジスタはバックゲートを有さないトランジスタであってもよい。図23Bは、ゲートとバックゲートを電気的に接続する例を示している。図23Cは、バックゲートを端子VNと電気的に接続する例を示している。
<半導体装置200AdBの構成例>
図24に半導体装置200AdBの構成例を示す。半導体装置200AdBは、半導体装置200Adの変形例である。よって、説明の繰り返しを減らすため、半導体装置200AdBの半導体装置200Adと異なる点について主に説明する。半導体装置200AdBは、半導体装置200Adの保護装置250に換えて保護装置250Bを有する。
保護装置250Bは、保護装置250の変形例である。保護装置250Bは、保護装置250の端子SIGに換えて、端子SIG_inおよび端子SIG_outを有する。端子SIG_inは半導体装置100Cの端子OUTと電気的に接続される。端子SIG_outは配線122を介して端子225と電気的に接続される。
〔保護装置250B〕
図25に保護装置250Bの等価回路図の一例を示す。保護装置250Bは、図18Aに示す保護装置250に抵抗262を付加した構成を有する。抵抗262の一方の端子は抵抗252の他方の端子と電気的に接続され、抵抗262の他方の端子は端子SIG_outと電気的に接続される。
抵抗262の抵抗値は、抵抗252と同様に設定すればよい。端子OUTから出力された信号は、保護装置250Bを通ってから端子225に供給される。このように、信号経路の途中に保護装置を設けてもよい。
<半導体装置200Bdの構成例>
図26に半導体装置200Bdの構成例を示す。半導体装置200Bdは、半導体装置200Adの変形例である。また、半導体装置200Bdは、半導体装置200Bの変形例でもある。よって、説明の繰り返しを減らすため、半導体装置200Bdの半導体装置200Adと異なる点について主に説明する。同様に、半導体装置200Bdの半導体装置200Bと異なる点について主に説明する。
半導体装置200Bdは、半導体装置200Adの半導体装置100Cに換えて半導体装置100Dを有する。よって、端子SIGは半導体装置100Dの端子OUTと電気的に接続される。
半導体装置200Bdの構成などについては、半導体装置200Adおよび半導体装置200Bを参酌すれば理解できる。よって、ここでの詳細な説明は省略する。
<半導体装置200Cdの構成例>
図27に半導体装置200Cdの構成例を示す。半導体装置200Cdは、半導体装置200Adの変形例である。また、半導体装置200Cdは、半導体装置200Cの変形例でもある。よって、説明の繰り返しを減らすため、半導体装置200Cdの半導体装置200Adと異なる点について主に説明する。同様に、半導体装置200Cdの半導体装置200Cと異なる点について主に説明する。
半導体装置200Cdは、半導体装置200Cに保護装置250Cを付加した構成を有する。保護装置250Cは、保護装置250の変形例である。保護装置250Cは、保護装置250の端子SIGに換えて、端子SIG1および端子SIG2を有する。端子SIG1は半導体装置100Cの端子OUTと電気的に接続される。また、端子SIG1は制御回路210Aの端子225aと電気的に接続される。端子SIG2は半導体装置100Dの端子OUTと電気的に接続される。また、端子SIG2は制御回路210Aの端子225bと電気的に接続される。
〔保護装置250C〕
図28に保護装置250Cの等価回路図の一例を示す。保護装置250Cは、ダイオード251a_1、ダイオード251b_1、ダイオード251a_2、ダイオード251b_2、抵抗252_1、抵抗252_2、容量253_1、および容量253_2を有する。
抵抗252_1の一方の端子は端子SIG1と電気的に接続され、他方の端子はダイオード251a_1のアノードと電気的に接続される。また、ダイオード251a_1のカソードは端子VPと電気的に接続される。
容量253_1の一方の電極は抵抗252_1の他方の端子と電気的に接続され、容量253_1の他方の電極は端子VNと電気的に接続される。ダイオード251b_1のアノードは端子VNと電気的に接続され、カソードはダイオード251a_1のアノードと電気的に接続される。
抵抗252_2の一方の端子は端子SIG2と電気的に接続され、他方の端子はダイオード251a_2のアノードと電気的に接続される。また、ダイオード251a_2のカソードは端子VPと電気的に接続される。
容量253_2の一方の電極は抵抗252_2の他方の端子と電気的に接続され、容量253_2の他方の電極は端子VNと電気的に接続される。ダイオード251b_1のアノードは端子VNと電気的に接続され、カソードはダイオード251a_2のアノードと電気的に接続される。
保護装置250Cは、実質的に2つの保護装置250を並列に接続した構成を有する。よって、前述した保護装置250の変形例は、保護装置250Cにも適用できる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、上記実施の形態で説明した半導体装置に適用可能なトランジスタの構成ついて説明する。具体的には、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
図29に示す半導体装置は、トランジスタ400と、トランジスタ500と、容量600と、を有している。図31Aはトランジスタ500のチャネル長方向の断面図であり、図31Bはトランジスタ500のチャネル幅方向の断面図であり、図31Cはトランジスタ400のチャネル幅方向の断面図である。
トランジスタ500は、OSトランジスタである。よって、トランジスタ500は、オフ電流が極めて少ないため、これを半導体装置が有するトランジスタに用いることにより、長期にわたり書き込んだデータ電圧あるいは電荷を保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
本実施の形態で説明する半導体装置は、図29に示すようにトランジスタ400、トランジスタ500、容量600を有する。トランジスタ500はトランジスタ400の上方に設けられ、容量600はトランジスタ400、およびトランジスタ500の上方に設けられている。
トランジスタ400は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。なお、トランジスタ400は、例えば、上記実施の形態におけるコンパレータ101が有するトランジスタ等に適用することができる。
トランジスタ400は、図31Cに示すように、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ400をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ400のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ400のオフ特性を向上させることができる。
なお、トランジスタ400は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ400をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図29に示すトランジスタ400は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、図30に示すとおり、トランジスタ400の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
トランジスタ400を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁体322は、その下方に設けられるトランジスタ400などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、またはトランジスタ400などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ400との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図29において、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ400と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ400とトランジスタ500とは、バリア層により分離することができ、トランジスタ400からトランジスタ500への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ400からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図29において、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ400とトランジスタ500とは、バリア層により分離することができ、トランジスタ400からトランジスタ500への水素の拡散を抑制することができる。
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図29において、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ400とトランジスタ500とは、バリア層により分離することができ、トランジスタ400からトランジスタ500への水素の拡散を抑制することができる。
絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図29において、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ400とトランジスタ500とは、バリア層により分離することができ、トランジスタ400からトランジスタ500への水素の拡散を抑制することができる。
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ400を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ400との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ400と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ400とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ400からトランジスタ500への水素の拡散を抑制することができる。
絶縁体516の上方には、トランジスタ500が設けられている。
図31Aおよび図31Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
また、図31Aおよび図31Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図31Aおよび図31Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図31Aおよび図31Bに示すように、絶縁体580、導電体560、および絶縁体550の上に絶縁体574が配置されることが好ましい。
なお、本明細書等において、酸化物530a、酸化物530b、および酸化物530cをまとめて酸化物530という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、および酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図29、図31Aに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。また、本明細書等において、surrounded channel(S-channel)構造は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面および周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面および周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS-channel構造は、Fin型構造およびプレーナ型構造とは異なる。S-channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構造であってもよい。
絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、酸化物半導体に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542にゲッタリングされる場合がある。
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh-k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
なお、図31Aおよび図31Bのトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn-M-Zn酸化物は、CAAC-OS(c-axis aligned crystalline oxide semiconductor)であることが好ましい。または、CAC-OS(Cloud-Aligned Composite oxide semiconductor)であることが好ましい。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。また、酸化物530として、In-Ga酸化物、In-Zn酸化物を用いてもよい。
CAC-OSは、CAC-metal oxideと呼ばれる場合がある。CAC-OSまたはCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OSまたはCAC-metal oxideを、トランジスタのチャネル形成領域に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OSまたはCAC-metal oxideに付与することができる。CAC-OSまたはCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC-OSまたはCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC-OSまたはCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC-OSまたはCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OSまたはCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OSまたはCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC-OSまたはCAC-metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
なお、酸化物半導体として機能する金属酸化物は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)、および非晶質酸化物半導体などがある。
CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC-OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC-OSは結晶性の高い金属酸化物である。一方、CAAC-OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない金属酸化物ともいえる。したがって、CAAC-OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC-OSを有する金属酸化物は熱に強く、信頼性が高い。
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する金属酸化物の一種である、In-Ga-Zn酸化物(「IGZO」ともいう。)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a-like OSは、鬆または低密度領域を有する。すなわち、a-like OSは、nc-OSおよびCAAC-OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。金属酸化物中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、酸化物530に金属酸化物を用いる場合、チャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm-3以下であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。
また、酸化物530に金属酸化物を用いる場合、導電体542(導電体542a、および導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542へ拡散し、導電体542が酸化する場合がある。導電体542が酸化することで、導電体542の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542へ拡散することを、導電体542が酸化物530中の酸素を吸収する、と言い換えることができる。
また、酸化物530中の酸素が導電体542(導電体542a、および導電体542b)へ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542と、当該異層と、酸化物530bとの3層構造は、金属-絶縁体-半導体からなる3層構造とみなすことができ、MIS(Metal-Insulator-Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
なお、上記異層は、導電体542と酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542と酸化物530cとの間に形成される場合や、導電体542と酸化物530bとの間、および導電体542と酸化物530cとの間に形成される場合がある。
また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530aまたは酸化物530bに用いることができる金属酸化物を、用いることができる。
また、酸化物530aおよび酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530aおよび酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530a、酸化物530b、および酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。言い換えると、酸化物530a、酸化物530b、および酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn-Ga-Zn酸化物の場合、酸化物530aおよび酸化物530cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
また、図31では、導電体542a、および導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、図31Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、および側面)に接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high-k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
第1のゲート電極として機能する導電体560は、図31Aおよび図31Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ400と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
本実施の形態では、導電体612、および導電体610を単層構造で示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
可撓性を有する基板上に半導体装置を設けることで、例えば、二次電池300が曲面形状または屈曲形状を有する場合であっても、半導体装置を二次電池の外形に沿って設けることができる。例えば、二次電池300が円筒形状である場合に、当該二次電池の側面に半導体装置を巻きつけるように設けることができる。
<トランジスタの変形例1>
図32A、図32Bに示すトランジスタ500Aは、図31A、図31Bに示す構成のトランジスタ500の変形例である。図32Aはトランジスタ500Aのチャネル長方向の断面図であり、図32Bはトランジスタ500Aのチャネル幅方向の断面図である。なお、図32A、図32Bに示す構成は、トランジスタ400等、本発明の一態様の半導体装置が有する他のトランジスタにも適用することができる。
図32A、図32Bに示す構成のトランジスタ500Aは、絶縁体552、絶縁体402および絶縁体404を有し、酸化物530cが酸化物530c1と酸化物530c2の積層で構成されている点が、図31A、図31Bに示す構成のトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体552が設けられ、導電体540bの側面に接して絶縁体552が設けられる点が、図31A、図31Bに示す構成のトランジスタ500と異なる。さらに、絶縁体520を有さない点が、図31A、図31Bに示す構成のトランジスタ500と異なる。
図32A、図32Bに示す構成のトランジスタ500Aは、絶縁体512上に絶縁体402が設けられる。また、絶縁体574上、および絶縁体402上に絶縁体404が設けられる。
図32A、図32Bに示す構成のトランジスタ500Aでは、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、および絶縁体574がパターニングされており、絶縁体404がこれらを覆う構造になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体402の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体402によって外部から隔離される。
絶縁体402および絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一)または水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体402および絶縁体404として、水素バリア性が高い材料である、窒化シリコンまたは窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ500Aの特性低下を抑制できる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
絶縁体552は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、および絶縁体544に接して設けられる。絶縁体552は、水素または水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体552として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、または窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体552として用いると好適である。絶縁体552として水素バリア性が高い材料を用いることにより、水または水素等の不純物が、絶縁体580等から導電体540aおよび導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540aおよび導電体540bに吸収されることを抑制することができる。以上により、本発明の一態様の半導体装置の信頼性を高めることができる。
酸化物530c1は、絶縁体524の上面、酸化物530aの側面、酸化物530bの上面および側面、導電体542aおよび導電体542bの側面、絶縁体544の側面、および絶縁体580の側面と接する(図32B参照。)。酸化物530c2は、絶縁体550と接する。
酸化物530c1としては、例えばIn-Zn酸化物を用いることができる。また、酸化物530c2としては、酸化物530cが単層構造である場合に酸化物530cに用いる材料と同様の材料を用いることができる。例えば、酸化物530c2として、In:Ga:Zn=1:3:4[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いることができる。
酸化物530cを酸化物530c1および酸化物530c2の2層構造とすることにより、酸化物530cを1層構造とする場合より、トランジスタのオン電流を高めることができる。よって、トランジスタを、例えばパワーMOSトランジスタとすることもできる。
<トランジスタの変形例2>
図33A、図33Bおよび図33Cを用いて、トランジスタ500Bの構造例を説明する。図33Aはトランジスタ500Bの上面図である。図33Bは、図33Aに一点鎖線で示すL1-L2部位の断面図である。図33Cは、図33Aに一点鎖線で示すW1-W2部位の断面図である。なお、図33Aの上面図では、図の明瞭化のために一部の要素の記載を省略している。
トランジスタ500Bはトランジスタ500の変形例であり、トランジスタ500に置き換え可能なトランジスタである。よって、説明の繰り返しを防ぐため、主にトランジスタ500と異なる点について説明する。
第1のゲート電極として機能する導電体560は、導電体560a、および導電体560a上の導電体560bを有する。導電体560aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体560aが酸素の拡散を抑制する機能を持つことにより、導電体560bの材料選択性を向上することができる。つまり、導電体560aを有することで、導電体560bの酸化が抑制され、導電率が低下することを防止することができる。
また、導電体560の上面および側面、絶縁体550の側面、および酸化物530cの側面を覆うように、絶縁体544を設けることが好ましい。なお、絶縁体544は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
絶縁体544を設けることで、導電体560の酸化を抑制することができる。また、絶縁体544を有することで、絶縁体580が有する水、および水素などの不純物がトランジスタ500Bへ拡散することを抑制することができる。
トランジスタ500Bは、導電体542aの一部と導電体542bの一部に導電体560が重なるため、トランジスタ500よりも寄生容量が大きくなりやすい。よって、トランジスタ500に比べて動作周波数が低くなる傾向がある。しかしながら、絶縁体580などに開口を設けて導電体560や絶縁体550などを埋めこむ工程が不要であるため、トランジスタ500と比較して生産性が高い。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、二次電池300に用いることができる電池の構造例について図面を用いて説明する。本実施の形態では、リチウムイオン二次電池の例を示すが、二次電池300に用いることができる電池はリチウムイオン二次電池に限定されない。
〔円筒形状二次電池〕
図34Aは円筒形状の二次電池715の外観図である。図34Bは、円筒形状の二次電池715の断面を模式的に示した図である。中空円柱状の電池缶702の内側には、帯状の正極704と負極706とがセパレータ705を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶702は、一端が閉じられ、他端が開いている。電池缶702には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、またはこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶702の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板708、絶縁板709により挟まれている。また、電池素子が設けられた電池缶702の内部は、非水電解液(図示せず)が注入されている。二次電池は、コバルト酸リチウム(LiCoO)やリン酸鉄リチウム(LiFePO)などの活物質を含む正極と、リチウムイオンの吸蔵・放出が可能な黒鉛等の炭素材料からなる負極と、エチレンカーボネートやジエチルカーボネートなどの有機溶媒に、LiBFやLiPF等のリチウム塩からなる電解質を溶解させた非水電解液などにより構成される。
円筒形状二次電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極704には正極端子(正極集電リード)703が接続され、負極706には負極端子(負極集電リード)707が接続される。正極端子703および負極端子707は、ともにアルミニウムなどの金属材料を用いることができる。正極端子703は安全弁機構712に、負極端子707は電池缶702の底にそれぞれ抵抗溶接される。安全弁機構712は、PTC素子(Positive Temperature Coefficient)711を介して正極キャップ701と電気的に接続されている。安全弁機構712は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ701と正極704との電気的な接続を切断するものである。また、PTC素子711は温度が上昇した場合に抵抗が増大する熱感抵抗であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
電解液を用いるリチウムイオン二次電池は、正極と、負極と、セパレータと、電解液と、外装体とを有する。なお、リチウムイオン二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆バイアス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「-極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
本実施の形態では、リチウムイオン二次電池の例を示すが、リチウムイオン二次電池に限定されず、二次電池の正極材料として例えば、元素A、元素X、及び酸素を有する材料を用いることができる。元素Aは第1族の元素および第2族の元素から選ばれる一以上であることが好ましい。第1族の元素として例えば、リチウム、ナトリウム、カリウム等のアルカリ金属を用いることができる。また、第2族の元素として例えば、カルシウム、ベリリウム、マグネシウム等を用いることができる。元素Xとして例えば金属元素、シリコン及びリンから選ばれる一以上を用いることができる。また、元素Xはコバルト、ニッケル、マンガン、鉄、及びバナジウムから選ばれる一以上であることが好ましい。代表的には、リチウムコバルト複合酸化物(LiCoO)や、リン酸鉄リチウム(LiFePO)が挙げられる。
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電助剤およびバインダを有していてもよい。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4700mAh/gと高い。
また、二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。
図34Cでは、可撓性基板720上に形成または固定された充電制御回路724が、二次電池715の側面に沿って設けられている様子を示している。充電制御回路724として上記実施の形態に示した半導体装置200などを用いることができる。充電制御回路724を可撓性基板720上に設けることで、円筒形状の二次電池715の曲面に沿って充電制御回路724を設けることができる。よって、充電制御回路724の占有空間を小さくすることができる。よって、二次電池715および充電制御回路724を含む電子機器などの小型化が実現できる。
〔扁平形状二次電池〕
図35Aは、扁平形状の二次電池913を含む電池パック901の外観を示す図である。図35Aに示す二次電池913は、充電制御回路914および接続端子911と併せて、電池パック901として機能する。図35Bは、二次電池913と充電制御回路914を分離した状態を示している。
充電制御回路914は、可撓性基板910上に形成または固定されている。充電制御回路914として上記実施の形態に示した半導体装置200などを用いることができる。充電制御回路914はマイクロショートなどの異常を検出する機能を有してもよい。
二次電池913は、端子951および端子952を有する。充電制御回路914は端子951および端子952と電気的に接続される。接続端子911は、充電制御回路914を介して、端子951および端子952と電気的に接続される。なお、接続端子911を複数設けて、複数の接続端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
電池パック901は、充電制御回路914と、二次電池913との間に絶縁シート916を有する。絶縁シート916は、例えば二次電池913と充電制御回路914の間の不要な電気的接触を防止する機能を有する。絶縁シート916としては、例えば有機樹脂フィルムや接着シートを用いることができる。
また、図35Cに示すように、電池パック901にアンテナ917および受信回路918を設けてもよい。アンテナを用いて二次電池913に非接触で充電を行うこともできる。アンテナは、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。アンテナは、たとえば外部機器とのデータ通信を行う機能を有する。データ通信の通信方式としては、NFCなど、電池パックと他の機器との間で用いる応答方式などを用いることができる。
次に、二次電池913の内部構造例について説明する。
二次電池913の内部に配置される捲回体950の構造を図36Aに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
負極931は、端子951または端子952の一方を介して、図35Aに示す接続端子911に接続される。正極932は、端子951または端子952の他方を介して図35Aに示す接続端子911に接続される。
図36Bにおいて、二次電池913は、筐体930(「外装体」ともいう。)の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図36Bでは、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)または樹脂材料を用いることができる。
筐体930としては、金属材料、有機樹脂など、絶縁材料を用いることができる。筐体930をフィルムで構成する場合もあり、その場合、そのフィルムに可撓性基板上に形成された充電制御回路を設ける場合もある。
図35Aでは、筐体表面に絶縁シート916を設け、充電制御回路が設けられている面を内側にして可撓性基板を固定している例を示しているが、充電制御回路が形成されている面を外側にして端子951や端子952と接続を行ってもよい。ただし、その場合には接続部分が露出することとなり、静電破壊、または短絡の危険があるため注意して組み立てることとなる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、本発明の一態様に係る半導体装置を適用できる電子機器について説明する。
本発明の一態様に係る半導体装置は、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、自動車、二輪車、船舶、および航空機などの移動体も電子機器と言える。本発明の一態様に係る半導体装置は、これらの電子機器に内蔵されるバッテリの充放電制御装置などに用いることができる。
電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナおよび二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
本発明の一態様に係る半導体装置を備えた電子機器の例について、図37を用いて説明を行う。
ロボット7100は、照度センサ、マイクロフォン、カメラ、スピーカ、ディスプレイ、各種センサ(赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなど)、および移動機構などを備える。
マイクロフォンは、使用者の音声および環境音などの音響信号を検知する機能を有する。また、スピーカは、音声および警告音などのオーディオ信号を発する機能を有する。ロボット7100は、マイクロフォンを介して入力されたオーディオ信号を解析し、必要なオーディオ信号をスピーカから発することができる。ロボット7100は、マイクロフォン、およびスピーカを用いて、使用者とコミュニケーションをとることが可能である。
カメラは、ロボット7100の周囲を撮像する機能を有する。また、ロボット7100は、移動機構を用いて移動する機能を有する。ロボット7100は、カメラを用いて周囲の画像を撮像し、画像を解析して移動する際の障害物の有無などを察知することができる。ロボット7100の二次電池(バッテリ)に本発明の一態様に係る半導体装置を用いることで、充電動作または放電動作時の過電流を検知することができる。また、ロボット7100の信頼性および安全性を向上することができる。
飛行体7120は、プロペラ、カメラ、バッテリ、記憶装置、および演算装置などを有し、自律して飛行する機能を有する。
例えば、カメラで撮影した画像データは、記憶装置に記憶される。飛行体7120は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、演算装置によってバッテリの蓄電容量の変化から、バッテリ残量を推定することができる。飛行体7120のバッテリに本発明の一態様に係る半導体装置を用いることで、充電動作または放電動作時の過電流を検知することができる。よって、飛行体7120の信頼性および安全性を向上することができる。
掃除ロボット7140は、上面に配置されたディスプレイ、側面に配置された複数のカメラ、ブラシ、操作ボタン、各種センサなどを有する。図示されていないが、掃除ロボット7140には、タイヤ、吸い込み口等が備えられている。掃除ロボット7140は自走し、ゴミを検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
例えば、掃除ロボット7140は、カメラが撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシに絡まりそうな物体を検知した場合は、ブラシの回転を止めることができる。掃除ロボット7140のバッテリに本発明の一態様に係る半導体装置を用いることで、充電動作または放電動作時の過電流を検知することができる。よって、掃除ロボット7140の信頼性および安全性を向上することができる。
移動体の一例として電気自動車7160を示す。電気自動車7160は、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。電気自動車7160のバッテリに本発明の一態様に係る半導体装置を用いることで、充電動作または放電動作時の過電流を検知することができる。よって、電気自動車7160の信頼性および安全性を向上することができる。
なお、上述では、移動体の一例として電気自動車について説明しているが、移動体は電気自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体のバッテリに本発明の一態様に係る半導体装置を用いることで、充電動作または放電動作時の過電流を検知することができる。よって、これらの移動体の信頼性および安全性を向上することができる。
本発明の一態様の半導体装置を備えたバッテリは、TV装置7200(テレビジョン受像装置)、スマートフォン7210、PC7220(パーソナルコンピュータ)、PC7230、ゲーム機7240、ゲーム機7260等に組み込むことができる。
スマートフォン7210は、携帯情報端末の一例である。スマートフォン7210は、マイクロフォン、カメラ、スピーカ、各種センサ、および表示部を有する。
PC7220、PC7230はそれぞれノート型PC、据え置き型PCの例である。PC7230には、キーボード7232、およびモニタ装置7233が無線または有線により接続可能である。ゲーム機7240は携帯型ゲーム機の例である。ゲーム機7260は据え置き型ゲーム機の例である。ゲーム機7260には、無線または有線でコントローラ7262が接続されている。
本発明の一態様に係る半導体装置を電子機器のバッテリに備えることで、充電動作または放電動作時の過電流を検知することができる。よって、電子機器の信頼性および安全性を向上することができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
101:コンパレータ、102:容量、103:容量、111:トランジスタ、112:トランジスタ、113:トランジスタ、114:トランジスタ、121:抵抗、122:配線、200:半導体装置、201:端子、202:端子、203:端子、204:端子、210:制御回路、211:抵抗、212:容量、213:トランジスタ、214:トランジスタ、215:ダイオード、216:ダイオード、220:電位生成回路、221:端子、222:端子、223:端子、224:端子、225:端子、226:端子、227:端子、100C:半導体装置、100D:半導体装置、300:二次電池

Claims (2)

  1. 第1トランジスタ、第2トランジスタ、第1容量、第2容量、抵抗、及びコンパレータと、
    前記第1トランジスタのゲート電極及び前記第2トランジスタのゲート電極と電気的に接続された制御回路と、
    前記制御回路と電気的に接続された二次電池と、を有し、
    前記第1トランジスタのソース及びドレインの一方は、前記コンパレータの非反転入力端子と電気的に接続され、
    前記第1容量は、前記第1トランジスタのソース及びドレインの一方に電気的に接続され、
    前記第2トランジスタのソース及びドレインの一方は、前記コンパレータの反転入力端子と電気的に接続され、
    前記第2容量は、前記第2トランジスタのソース及びドレインの一方と前記抵抗の間に電気的に接続され、
    前記第1トランジスタ及び前記第2トランジスタは、半導体層に酸化物半導体を含む電池パック。
  2. 第1トランジスタ、第2トランジスタ、第3トランジスタ、第4トランジスタ、第1容量、第2容量、抵抗、及びコンパレータと、
    前記第1トランジスタのゲート電極、前記第2トランジスタのゲート電極、前記第3トランジスタのゲート電極、及び前記第4トランジスタのゲート電極と電気的に接続された制御回路と、
    前記制御回路と電気的に接続された二次電池と、を有し、
    前記第1トランジスタのソース及びドレインの一方は、前記コンパレータの非反転入力端子と電気的に接続され、
    前記第2トランジスタのソース及びドレインの一方は、前記コンパレータの反転入力端子と電気的に接続され、
    前記第3トランジスタのソース及びドレインの一方は、前記第4トランジスタのソース及びドレインの一方と電気的に接続され、
    前記抵抗は、前記第3トランジスタのソース及びドレインの他方と前記第4トランジスタのソース及びドレインの他方の間に電気的に接続され、
    前記第1容量は、前記第1トランジスタのソース及びドレインの一方に電気的に接続され、
    前記第2容量は、前記第2トランジスタのソース及びドレインの一方と前記第3トランジスタのソース及びドレインの一方の間に電気的に接続され、
    前記第1トランジスタ及び前記第2トランジスタは、半導体層に酸化物半導体を含む電池パック。
JP2020557012A 2018-11-22 2019-11-12 電池パック Active JP7345497B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023143577A JP2024008933A (ja) 2018-11-22 2023-09-05 電池パック

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018219232 2018-11-22
JP2018219232 2018-11-22
JP2018227040 2018-12-04
JP2018227040 2018-12-04
JP2018237055 2018-12-19
JP2018237055 2018-12-19
PCT/IB2019/059679 WO2020104890A1 (ja) 2018-11-22 2019-11-12 半導体装置および電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023143577A Division JP2024008933A (ja) 2018-11-22 2023-09-05 電池パック

Publications (3)

Publication Number Publication Date
JPWO2020104890A1 JPWO2020104890A1 (ja) 2020-05-28
JPWO2020104890A5 JPWO2020104890A5 (ja) 2022-08-25
JP7345497B2 true JP7345497B2 (ja) 2023-09-15

Family

ID=70773349

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020557012A Active JP7345497B2 (ja) 2018-11-22 2019-11-12 電池パック
JP2023143577A Pending JP2024008933A (ja) 2018-11-22 2023-09-05 電池パック

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023143577A Pending JP2024008933A (ja) 2018-11-22 2023-09-05 電池パック

Country Status (5)

Country Link
US (1) US12132334B2 (ja)
JP (2) JP7345497B2 (ja)
KR (1) KR20210093273A (ja)
CN (1) CN113169382B (ja)
WO (1) WO2020104890A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325439B2 (ja) 2018-11-22 2023-08-14 株式会社半導体エネルギー研究所 蓄電装置
JPWO2022018560A1 (ja) 2020-07-24 2022-01-27
WO2022210367A1 (ja) * 2021-03-29 2022-10-06 ヌヴォトンテクノロジージャパン株式会社 半導体装置、電池保護回路、および、パワーマネージメント回路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138870A (ja) 2010-12-28 2012-07-19 Renesas Electronics Corp 半導体装置
JP2013149609A (ja) 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd リチウム二次電池の充電方法及び充電装置
JP2013233072A (ja) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 保護回路モジュールおよび電池パック
JP2013251891A (ja) 2012-05-02 2013-12-12 Semiconductor Energy Lab Co Ltd 信号処理回路および制御回路
JP2014030191A (ja) 2012-07-06 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法
JP2015046580A5 (ja) 2014-07-08 2017-07-27
JP2017198546A (ja) 2016-04-27 2017-11-02 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、及び検出方法

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218607A (en) 1989-06-23 1993-06-08 Kabushiki Kaisha Toshiba Computer having a resume function and operable on an internal power source
JPH06303728A (ja) 1993-04-09 1994-10-28 Sanyo Electric Co Ltd 電池の過電流保護回路
US5585994A (en) 1993-01-22 1996-12-17 Sanyo Electric Co., Ltd. Battery over-current protection circuit
US5378912A (en) 1993-11-10 1995-01-03 Philips Electronics North America Corporation Lateral semiconductor-on-insulator (SOI) semiconductor device having a lateral drift region
US5498988A (en) 1994-11-25 1996-03-12 Motorola, Inc. Low power flip-flop circuit and method thereof
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP3380107B2 (ja) 1996-03-22 2003-02-24 シャープ株式会社 半導体記憶装置
GB9614800D0 (en) 1996-07-13 1996-09-04 Plessey Semiconductors Ltd Programmable logic arrays
JP3632720B2 (ja) 1996-09-18 2005-03-23 ミツミ電機株式会社 電源制御回路
JP3753492B2 (ja) 1997-01-29 2006-03-08 ローム株式会社 電源監視ic及び電池パック
JP3689798B2 (ja) 1997-03-27 2005-08-31 ローム株式会社 電源監視ic及び電池パック
US6046606A (en) 1998-01-21 2000-04-04 International Business Machines Corporation Soft error protected dynamic circuit
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4182313B2 (ja) 1999-12-28 2008-11-19 ミツミ電機株式会社 二次電池の保護方法及び保護回路
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US6639827B2 (en) 2002-03-12 2003-10-28 Intel Corporation Low standby power using shadow storage
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US6989702B2 (en) 2002-07-11 2006-01-24 Texas Instruments Incorporated Retention register with normal functionality independent of retention power supply
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
KR100519787B1 (ko) 2002-11-07 2005-10-10 삼성전자주식회사 슬립 모드에서 데이터 보존이 가능한 mtcmos플립플롭 회로
US6775180B2 (en) 2002-12-23 2004-08-10 Intel Corporation Low power state retention
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US20070194379A1 (en) 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7872259B2 (en) 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
EP2453480A2 (en) 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
DE102004055006B4 (de) 2004-11-15 2012-09-13 Infineon Technologies Ag Flipflop mit zusätzlicher Zustandsspeicherung bei Abschaltung
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI390735B (zh) 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
US20070085585A1 (en) 2005-10-13 2007-04-19 Arm Limited Data retention in operational and sleep modes
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101103374B1 (ko) 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4954639B2 (ja) 2006-08-25 2012-06-20 パナソニック株式会社 ラッチ回路及びこれを備えた半導体集積回路
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4224094B2 (ja) 2006-09-27 2009-02-12 株式会社東芝 半導体集積回路装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
US7868677B2 (en) 2006-12-28 2011-01-11 Stmicroelectronics Pvt. Ltd. Low power flip-flop circuit
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7626434B2 (en) 2007-03-30 2009-12-01 Intel Corporation Low leakage state retention circuit
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8289060B2 (en) 2007-06-22 2012-10-16 Freescale Semiconductor, Inc. Pulsed state retention power gating flip-flop
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
US7791389B2 (en) 2008-01-30 2010-09-07 Freescale Semiconductor, Inc. State retaining power gated latch and method therefor
TWI508282B (zh) 2008-08-08 2015-11-11 Semiconductor Energy Lab 半導體裝置及其製造方法
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101671544B1 (ko) 2008-11-21 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 장치 및 전자 기기
TWI489628B (zh) 2009-04-02 2015-06-21 Semiconductor Energy Lab 半導體裝置和其製造方法
TWI535023B (zh) 2009-04-16 2016-05-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
TWI397184B (zh) 2009-04-29 2013-05-21 Ind Tech Res Inst 氧化物半導體薄膜電晶體
EP2502272B1 (en) 2009-11-20 2015-04-15 Semiconductor Energy Laboratory Co. Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US8242826B2 (en) 2010-04-12 2012-08-14 Taiwan Semiconductor Manufacturing Co., Ltd. Retention flip-flop
JP5510228B2 (ja) 2010-09-15 2014-06-04 ミツミ電機株式会社 保護回路
TWI525614B (zh) 2011-01-05 2016-03-11 半導體能源研究所股份有限公司 儲存元件、儲存裝置、及信號處理電路
US8493120B2 (en) 2011-03-10 2013-07-23 Arm Limited Storage circuitry and method with increased resilience to single event upsets
CN102904534B (zh) * 2011-07-27 2016-05-25 瑞昱半导体股份有限公司 功率放大器及控制功率放大器的方法
JP6041707B2 (ja) 2012-03-05 2016-12-14 株式会社半導体エネルギー研究所 ラッチ回路および半導体装置
US9087573B2 (en) 2012-03-13 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Memory device and driving method thereof
TWI464997B (zh) * 2012-05-02 2014-12-11 Wistron Corp 電池充電電路
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN104769842B (zh) 2012-11-06 2017-10-31 株式会社半导体能源研究所 半导体装置以及其驱动方法
US9316695B2 (en) 2012-12-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6143492B2 (ja) 2013-02-26 2017-06-07 エスアイアイ・セミコンダクタ株式会社 充放電制御回路、充放電制御装置及びバッテリ装置
JP6410496B2 (ja) 2013-07-31 2018-10-24 株式会社半導体エネルギー研究所 マルチゲート構造のトランジスタ
JP6301188B2 (ja) * 2014-05-14 2018-03-28 エイブリック株式会社 充放電制御回路およびバッテリ装置
KR20170098839A (ko) 2014-12-29 2017-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치를 가지는 표시 장치
KR102335018B1 (ko) * 2015-03-05 2021-12-02 삼성에스디아이 주식회사 충전 전압 제어 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138870A (ja) 2010-12-28 2012-07-19 Renesas Electronics Corp 半導体装置
JP2013149609A (ja) 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd リチウム二次電池の充電方法及び充電装置
JP2013233072A (ja) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 保護回路モジュールおよび電池パック
JP2013251891A (ja) 2012-05-02 2013-12-12 Semiconductor Energy Lab Co Ltd 信号処理回路および制御回路
JP2014030191A (ja) 2012-07-06 2014-02-13 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法
JP2015046580A5 (ja) 2014-07-08 2017-07-27
JP2017198546A (ja) 2016-04-27 2017-11-02 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、及び検出方法

Also Published As

Publication number Publication date
JP2024008933A (ja) 2024-01-19
KR20210093273A (ko) 2021-07-27
US20220006309A1 (en) 2022-01-06
CN113169382B (zh) 2024-09-24
CN113169382A (zh) 2021-07-23
US12132334B2 (en) 2024-10-29
WO2020104890A1 (ja) 2020-05-28
JPWO2020104890A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP2024008933A (ja) 電池パック
JP7399857B2 (ja) 二次電池の保護回路
JP7463290B2 (ja) 半導体装置
KR20220143061A (ko) 반도체 장치, 축전 장치, 전지 제어 회로, 전자 부품, 차량, 및 전자 기기
WO2020128722A1 (ja) ヒステリシスコンパレータ、半導体装置、及び蓄電装置
JP2023181187A (ja) 電池パック
JP2024114732A (ja) 半導体装置
JP7325439B2 (ja) 蓄電装置
WO2020128743A1 (ja) 半導体装置および電池パック
JP7327927B2 (ja) 半導体装置
CN116235379A (zh) 控制电路及电子设备
US20220246596A1 (en) Display Device
JP7222657B2 (ja) 二次電池の残量計測回路
JP7508454B2 (ja) 記憶回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230905

R150 Certificate of patent or registration of utility model

Ref document number: 7345497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150