JP7273064B2 - ヒステリシスコンパレータ、半導体装置、及び蓄電装置 - Google Patents

ヒステリシスコンパレータ、半導体装置、及び蓄電装置 Download PDF

Info

Publication number
JP7273064B2
JP7273064B2 JP2020560639A JP2020560639A JP7273064B2 JP 7273064 B2 JP7273064 B2 JP 7273064B2 JP 2020560639 A JP2020560639 A JP 2020560639A JP 2020560639 A JP2020560639 A JP 2020560639A JP 7273064 B2 JP7273064 B2 JP 7273064B2
Authority
JP
Japan
Prior art keywords
transistor
insulator
oxide
circuit
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020560639A
Other languages
English (en)
Other versions
JPWO2020128722A5 (ja
JPWO2020128722A1 (ja
Inventor
佑樹 岡本
圭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JPWO2020128722A1 publication Critical patent/JPWO2020128722A1/ja
Publication of JPWO2020128722A5 publication Critical patent/JPWO2020128722A5/ja
Application granted granted Critical
Publication of JP7273064B2 publication Critical patent/JP7273064B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/12Arrangements for performing computing operations, e.g. operational amplifiers
    • G06G7/18Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals
    • G06G7/184Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements
    • G06G7/186Arrangements for performing computing operations, e.g. operational amplifiers for integration or differentiation; for forming integrals using capacitive elements using an operational amplifier comprising a capacitor or a resistor in the feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/22Modifications for ensuring a predetermined initial state when the supply voltage has been applied
    • H03K17/223Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • H03K5/082Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding with an adaptive threshold
    • H03K5/084Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding with an adaptive threshold modified by switching, e.g. by a periodic signal or by a signal in synchronism with the transitions of the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960735Capacitive touch switches characterised by circuit details
    • H03K2217/96074Switched capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

本発明の一態様は、ヒステリシスコンパレータ、半導体装置、及び蓄電装置に関する。
なお本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、又は、製造方法に関するものである。又は、本発明の一態様は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、蓄電装置、撮像装置、記憶装置、信号処理装置、プロセッサ、電子機器、システム、それらの駆動方法、それらの製造方法、又はそれらの検査方法を一例として挙げることができる。
一般的に、電気自動車やノート型パーソナルコンピュータなどの電子機器に備えられている二次電池は、充電及び放電を繰り返すことによって、容量の低下、内部抵抗の増加などの劣化現象が現れるようになる。また、電池の初期不良や、電池に対する乱暴な扱い方などによって、電池の発火など予期しない事故が起こる場合がある。
近年では、安全上の観点から、電池に、当該電池を検査及び/又は監視するための回路や保護回路を設けることが増えている。特許文献1には、電池の温度保護を高精度に行い、かつ適切な充電制御を行う回路を設けた電池パックの発明が開示されている。
特開2009-152129号公報
保護回路は、例えば、ヒステリシスコンパレータを有する場合がある。ヒステリシスコンパレータを駆動する場合、電源電圧の他に、低レベルしきい値電圧と、高レベルしきい値電圧と、の参照電位が必要になる。また、保護回路には、一又は複数の電源電圧を供給する必要があるため、複数の電圧生成回路が保護回路の内部、又は保護回路の周辺に設けられている場合がある。
本発明の一態様は、新規のヒステリシスコンパレータを提供することを課題の一とする。又は、本発明の一態様は、消費電力が低減されたヒステリシスコンパレータを提供することを課題の一とする。又は、本発明の一態様は、当該ヒステリシスコンパレータを有する新規な半導体装置を提供することを課題の一とする。又は、本発明の一態様は、当該半導体装置を有する蓄電装置を提供することを課題の一とする。
なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した課題、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した課題、及び他の課題の全てを解決する必要はない。
(1)
本発明の一態様は、コンパレータと、スイッチと、第1容量と、第2容量と、論理回路と、を有し、スイッチの第1端子は、第1容量の1対の導電領域の一方と、第2容量の1対の導電領域の一方と、コンパレータの第1入力端子と、に電気的に接続され、コンパレータの出力端子は、論理回路の入力端子に電気的に接続され、論理回路の出力端子は、第2容量の1対の導電領域の他方に電気的に接続され、論理回路は、論理回路の入力端子に入力された信号の反転信号を生成して、反転信号を論理回路の出力端子に出力する機能を有する、ヒステリシスコンパレータである。
(2)
また、本発明の一態様は、上記(1)において、論理回路は、インバータ回路を有し、論理回路の入力端子は、インバータ回路の入力端子に電気的に接続され、論理回路の出力端子は、インバータ回路の出力端子に電気的に接続されている、ヒステリシスコンパレータである。
(3)
また、本発明の一態様は、上記(1)において、論理回路は、NAND回路を有し、論理回路の入力端子は、NAND回路の第1入力端子に電気的に接続され、論理回路の出力端子は、NAND回路の出力端子に電気的に接続されている、ヒステリシスコンパレータである。
(4)
また、本発明の一態様は、上記(1)において、論理回路は、NOR回路を有し、論理回路の入力端子は、NOR回路の第1入力端子に電気的に接続され、論理回路の出力端子は、NOR回路の出力端子に電気的に接続されている、ヒステリシスコンパレータである。
(5)
また、本発明の一態様は、上記(1)乃至(4)のいずれか一において、スイッチは、トランジスタを有し、トランジスタは、チャネル形成領域に金属酸化物を有する、ヒステリシスコンパレータである。
(6)
また、本発明の一態様は、上記(1)乃至(5)のいずれか一のヒステリシスコンパレータと、回路と、を有し、回路は、スイッチのオン状態とオフ状態の切り替えを行う機能と、スイッチの第2端子に入力するための参照電位を生成する機能と、コンパレータの第2入力端子に入力するための入力電圧を生成する機能と、を有する、半導体装置である。
(7)
また、本発明の一態様は、上記(6)の半導体装置と、セルと、を有し、回路は、セルの正極端子の電位と、セルの負極端子の電位と、が入力されることで、正極端子の電位と、負極端子の電位と、に応じて、参照電位と、入力電圧と、を生成する機能を有する、蓄電装置である。
なお、本明細書等において、半導体装置とは、半導体特性を利用した装置であり、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等をいう。また、半導体特性を利用することで機能しうる装置全般をいう。例えば、集積回路、集積回路を備えたチップや、パッケージにチップを収納した電子部品は半導体装置の一例である。また、記憶装置、表示装置、発光装置、照明装置及び電子機器等は、それ自体が半導体装置であり、半導体装置を有している場合がある。
また、本明細書等において、XとYとが接続されていると記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図又は文章に示された接続関係に限定されず、図又は文章に示された接続関係以外のものも、図又は文章に開示されているものとする。X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層など)であるとする。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示デバイス、発光デバイス、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイッチは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)、電圧源、電流源、切り替え回路、増幅回路(信号振幅又は電流量などを大きく出来る回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能である。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号がYへ伝達される場合は、XとYとは機能的に接続されているものとする。
なお、XとYとが電気的に接続されている、と明示的に記載する場合は、XとYとが電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)とを含むものとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続されている、とのみ明示的に記載されている場合と同じであるとする。
また、例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に接続されている。」と表現することができる。又は、「トランジスタのソース(又は第1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている」と表現することができる。又は、「Xは、トランジスタのソース(又は第1の端子など)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様な表現方法を用いて、回路構成における接続の順序について規定することにより、トランジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定することができる。なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されている場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もある。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場合も、その範疇に含める。
また、本明細書等において、「抵抗素子」とは、抵抗値を有する回路素子、配線などとする。そのため、本明細書等において、「抵抗素子」は、抵抗値を有する配線、ソース-ドレイン間に電流が流れるトランジスタ、ダイオード、コイルなどを含むものとする。そのため、「抵抗素子」という用語は、「抵抗」「負荷」「抵抗値を有する領域」などの用語に言い換えることができ、逆に「抵抗」「負荷」「抵抗値を有する領域」という用語は、「抵抗素子」などの用語に言い換えることができる。抵抗値としては、例えば、好ましくは1mΩ以上10Ω以下、より好ましくは5mΩ以上5Ω以下、更に好ましくは10mΩ以上1Ω以下とすることができる。また、例えば、1Ω以上1×10Ω以下としてもよい。
また、本明細書等において、「容量素子」とは、静電容量の値を有する回路素子、静電容量の値を有する配線の領域、寄生容量、トランジスタのゲート容量などとする。そのため、本明細書等において、「容量素子」は、1対の電極と、当該電極の間に含まれている誘電体と、を含む回路素子だけでなく、配線と配線との間に現れる寄生容量、トランジスタのソース又はドレインの一方とゲートとの間に現れるゲート容量などを含むものとする。また、「容量素子」「寄生容量」「ゲート容量」などという用語は、「容量」などの用語に言い換えることができ、逆に、「容量」という用語は、「容量素子」「寄生容量」「ゲート容量」などの用語に言い換えることができる。また、「容量」の「1対の電極」という用語は、「1対の導電体」「1対の導電領域」「1対の領域」などに言い換えることができる。なお、静電容量の値としては、例えば、0.05fF以上10pF以下とすることができる。また、例えば、1pF以上10μF以下としてもよい。
また、本明細書等において、トランジスタは、ゲート、ソース、及びドレインと呼ばれる3つの端子を有する。ゲートは、トランジスタの導通状態を制御する制御端子である。ソース又はドレインとして機能する2つの端子は、トランジスタの入出力端子である。2つの入出力端子は、トランジスタの導電型(nチャネル型、pチャネル型)及びトランジスタの3つの端子に与えられる電位の高低によって、一方がソースとなり他方がドレインとなる。このため、本明細書等においては、ソースやドレインの用語は、言い換えることができるものとする。また、本明細書等では、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。なお、トランジスタの構造によっては、上述した3つの端子に加えて、バックゲートを有する場合がある。この場合、本明細書等において、トランジスタのゲート又はバックゲートの一方を第1ゲートと呼称し、トランジスタのゲート又はバックゲートの他方を第2ゲートと呼称することがある。更に、同じトランジスタにおいて、「ゲート」と「バックゲート」の用語は互いに入れ換えることができる場合がある。また、トランジスタが、3以上のゲートを有する場合は、本明細書等においては、それぞれのゲートを第1ゲート、第2ゲート、第3ゲートなどと呼称することがある。
また、本明細書等において、ノードは、回路構成やデバイス構造等に応じて、端子、配線、電極、導電層、導電体、不純物領域等と言い換えることが可能である。また、端子、配線等をノードと言い換えることが可能である。
また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
一般的に、「電流」とは、正の荷電体の移動に伴う電荷の移動現象(電気伝導)として定義されているが、「正の荷電体の電気伝導が起きている」という記載は、「その逆向きに負の荷電体の電気伝導が起きている」と換言することができる。そのため、本明細書等において、「電流」とは、特に断らない限り、キャリアの移動に伴う電荷の移動現象(電気伝導)をいうものとする。ここでいうキャリアとは、電子、正孔、アニオン、カチオン、錯イオン等が挙げられ、電流の流れる系(例えば、半導体、金属、電解液、真空中など)によってキャリアが異なる。また、配線等における「電流の向き」は、正のキャリアが移動する方向とし、正の電流量で記載する。換言すると、負のキャリアが移動する方向は、電流の向きと逆の方向となり、負の電流量で表現される。そのため、本明細書等において、電流の正負(又は電流の向き)について断りがない場合、「素子Aから素子Bに電流が流れる」等の記載は「素子Bから素子Aに電流が流れる」等に言い換えることができるものとする。また、「素子Aに電流が入力される」等の記載は「素子Aから電流が出力される」等に言い換えることができるものとする。
また、本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている場合がある。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書等で説明した語句に限定されず、状況に応じて適切に言い換えることができる。例えば、「導電体の上面に位置する絶縁体」の表現では、示している図面の向きを180度回転することによって、「導電体の下面に位置する絶縁体」と言い換えることができる。
また、「上」や「下」の用語は、構成要素の位置関係が直上又は直下で、かつ、直接接していることを限定するものではない。例えば、「絶縁層A上の電極B」の表現であれば、絶縁層Aの上に電極Bが直接接して形成されている必要はなく、絶縁層Aと電極Bとの間に他の構成要素を含むものを除外しない。
また、本明細書等において、「膜」、「層」などの語句は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。又は、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。又は、場合によっては、又は、状況に応じて、「膜」、「層」などの語句を使わずに、別の用語に入れ替えることが可能である。例えば、「導電層」又は「導電膜」という用語を、「導電体」という用語に変更することが可能な場合がある。又は、例えば、「絶縁層」「絶縁膜」という用語を、「絶縁体」という用語に変更することが可能な場合がある。
また、本明細書等において「電極」「配線」「端子」などの用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」や「配線」の用語は、複数の「電極」や「配線」が一体となって形成されている場合なども含む。また、例えば、「端子」は「配線」や「電極」の一部として用いられることがあり、その逆もまた同様である。更に、「端子」の用語は、複数の「電極」「配線」「端子」などが一体となって形成されている場合なども含む。そのため、例えば、「電極」は「配線」又は「端子」の一部とすることができ、また、例えば、「端子」は「配線」又は「電極」の一部とすることができる。また、「電極」「配線」「端子」などの用語は、場合によって、「領域」などの用語に置き換える場合がある。
また、本明細書等において、「配線」、「信号線」、「電源線」などの用語は、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「配線」という用語を、「信号線」という用語に変更することが可能な場合がある。また、例えば、「配線」という用語を、「電源線」などの用語に変更することが可能な場合がある。また、その逆も同様で、「信号線」「電源線」などの用語を、「配線」という用語に変更することが可能な場合がある。「電源線」などの用語は、「信号線」などの用語に変更することが可能な場合がある。また、その逆も同様で「信号線」などの用語は、「電源線」などの用語に変更することが可能な場合がある。また、配線に印加されている「電位」という用語を、場合によっては、又は、状況に応じて、「信号」などという用語に変更することが可能な場合がある。また、その逆も同様で、「信号」などの用語は、「電位」という用語に変更することが可能な場合がある。
本明細書等において、半導体の不純物とは、例えば、半導体層を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体にDOS(Density of States)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコン層である場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
本明細書等において、スイッチとは、導通状態(オン状態)、又は、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。又は、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。一例としては、電気的なスイッチ、機械的なスイッチなどを用いることができる。つまり、スイッチは、電流を制御できるものであればよく、特定のものに限定されない。
電気的なスイッチの一例としては、トランジスタ(例えば、バイポーラトランジスタ、MOSトランジスタなど)、ダイオード(例えば、PNダイオード、PINダイオード、ショットキーダイオード、MIM(Metal Insulator Metal)ダイオード、MIS(Metal Insulator Semiconductor)ダイオード、ダイオード接続のトランジスタなど)、又はこれらを組み合わせた論理回路などがある。なお、スイッチとしてトランジスタを用いる場合、トランジスタの「導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に短絡されているとみなせる状態をいう。また、トランジスタの「非導通状態」とは、トランジスタのソース電極とドレイン電極が電気的に遮断されているとみなせる状態をいう。なおトランジスタを単なるスイッチとして動作させる場合には、トランジスタの極性(導電型)は特に限定されない。
機械的なスイッチの一例としては、デジタルマイクロミラーデバイス(DMD)のように、MEMS(マイクロ・エレクトロ・メカニカル・システム)技術を用いたスイッチがある。そのスイッチは、機械的に動かすことが可能な電極を有し、その電極が動くことによって、導通と非導通とを制御して動作する。
本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度で配置されている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、「略平行」又は「概略平行」とは、二つの直線が-30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」又は「概略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
本発明の一態様によって、新規のヒステリシスコンパレータを提供することができる。又は、本発明の一態様によって、消費電力が低減されたヒステリシスコンパレータを提供することができる。又は、本発明の一態様によって、当該ヒステリシスコンパレータを有する半導体装置を提供することができる。又は、本発明の一態様によって、当該半導体装置を有する新規な蓄電装置を提供することができる。
なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1は半導体装置の一例を示すブロック図である。
図2A、図2B、図2C、図2Dはヒステリシスコンパレータの一例を示す回路図である。
図3はヒステリシスコンパレータの動作例を示すタイミングチャートである。
図4A、図4B、図4C、図4Dはヒステリシスコンパレータの一例を示す回路図である。
図5はヒステリシスコンパレータの動作例を示すタイミングチャートである。
図6はヒステリシスコンパレータの動作例を示すタイミングチャートである。
図7は半導体装置の一例を示すブロック図である。
図8は半導体装置の構成例を説明する断面模式図である。
図9は半導体装置の構成例を説明する断面模式図である。
図10A、図10B、図10Cはトランジスタの構成例を説明する断面模式図である。
図11A、図11Bはトランジスタの構成例を説明する断面模式図である。
図12は半導体装置の構成例を説明する断面模式図である。
図13A、図13Bはトランジスタの構成例を説明する断面模式図である。
図14は半導体装置の構成例を説明する断面模式図である。
図15A、図15B、図15Cは容量の構成例を示す上面図、及び斜視図である。
図16A、図16B、図16Cは容量の構成例を示す上面図、及び斜視図である。
図17A、図17B、図17C、図17Dは半導体ウェハと電子部品の一例を示す斜視図である。
図18A、図18B、図18C、図18Dは蓄電装置の一例を説明する斜視図である。
図19A、図19B、図19Cは蓄電装置の一例を説明する斜視図である。
図20A、図20B、図20C、図20D、図20E、図20F、図20G、図20H、図20Iは製品の一例を説明する斜視図である。
本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)などに分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、及びスイッチング作用の少なくとも1つを有するトランジスタのチャネル形成領域を構成し得る場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。また、OS FET、又はOSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
また、本明細書等において、各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)と、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)との少なくとも一つの内容に対して、適用、組み合わせ、又は置き換えなどを行うことができる。
なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)と、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)との少なくとも一つの図に対して、組み合わせることにより、さらに多くの図を構成させることができる。
本明細書に記載の実施の形態について図面を参照しながら説明している。但し、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなく、その形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態の発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、斜視図などにおいて、図面の明確性を期すために、一部の構成要素の記載を省略している場合がある。
本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。
また、本明細書の図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
(実施の形態1)
本実施の形態では、一の電池において、過充電、又は過放電が起きたときに、それらを検知して、検知信号を発信する半導体装置について説明する。また、当該半導体装置は、一の電池だけでなく、複数の電池(セル)が直列に接続された組電池においても同様に、それぞれのセルのうちの一つで過充電、又は過放電を検知することができる。
図1に示した、セルの過充電、又は過放電の検知が可能な半導体装置について説明する。
半導体装置100は、複数の回路CNCと、複数のヒステリシスコンパレータHCMPと、を有する。半導体装置100は、組電池BATに含まれる複数のセルCEのそれぞれに対して、過充電、又は過放電を検知する機能を有する。
複数のセルCEは、組電池BAT内において、直列に電気的に接続されている。
回路CNCの個数は、例えば、組電池BATが有するセルCEと同じ個数とすることができる。また、ヒステリシスコンパレータHCMPの個数は、例えば、組電池BATが有するセルCEと同じ個数とすることができる。
回路CNCは、一例として、入力端子CI1と、入力端子CI2と、出力端子CO1と、出力端子CO2と、を有する。また、ヒステリシスコンパレータHCMPは、一例として、入力端子ITと、参照電位入力端子RTと、出力端子OTと、を有する。
複数のセルCEの一において、セルCEの正極端子は、回路CNCの入力端子CI1に電気的に接続され、セルCEの負極端子は、回路CNCの入力端子CI2に電気的に接続されている。また、回路CNCの出力端子CO1は、ヒステリシスコンパレータHCMPの入力端子ITに電気的に接続され、回路CNCの出力端子CO2は、ヒステリシスコンパレータHCMPの参照電位入力端子RTに電気的に接続されている。
回路CNCは、例えば、セルCEの正極と負極との間の電圧を取得して、当該電圧に応じた情報(例えば、電圧、電流、抵抗値など)に変換する機能と、ヒステリシスコンパレータHCMPの参照電位入力端子RTに入力される電圧を生成する機能と、ヒステリシスコンパレータHCMPの出力端子OTから出力される電位から、セルCEにおける過放電、過充電を検知する機能などを有する。なお、回路CNCの詳細については、実施の形態2で説明する。
ヒステリシスコンパレータHCMPは、コンパレータの一種であって、入力端子ITに入力された電位と、参照電位入力端子RTに入力された参照電位と、を比較して、その比較結果に応じた電位を出力端子OTから出力する機能を有する。
一般的に、コンパレータは、例えば、入力端子に入力された電位が、参照電位入力端子に入力された参照電位よりも高い場合、出力端子から高レベル電位を出力することができ、入力端子に入力された電位が、参照電位入力端子に入力された参照電位よりも低い場合、出力端子から低レベル電位を出力することができる。また、当該コンパレータの回路構成によっては、例えば、入力端子に入力された電位が、参照電位入力端子に入力された参照電位よりも高い場合、出力端子から低レベル電位を出力することができ、入力端子に入力された電位が、参照電位入力端子に入力された参照電位よりも低い場合、出力端子から高レベル電位を出力することができる。
また、ヒステリシスコンパレータは、例えば、2個の参照電位入力端子を有する場合がある。入力端子ITに入力される電位として、十分に低い電位から高くしていく場合、参照電位としては、一方の参照電位入力端子に入力された電位が用いられ、また、入力端子ITに入力される電位として、十分に高い電位から低くしていく場合、参照電位としては、他方の参照電位入力端子に入力された電位が用いられる。なお、一方の参照電位入力端子に入力された電位は、他方の参照電位入力端子に入力された電位よりも高いことが好ましい。
セルの過充電、又は過放電を検知するには、例えば、ヒステリシスコンパレータを用いることができる。
ヒステリシスコンパレータによってセルの過充電を検知する場合、セルの電圧が、電圧V1より高い場合を過充電状態として、ヒステリシスコンパレータの高レベル側しきい値電圧(高レベル参照電位という場合がある。)として電圧V1を設定し、ヒステリシスコンパレータの低レベル側しきい値電圧(低レベル参照電位という場合がある。)として所望の電圧V2を設定すればよい。このとき、一例として、電圧V1を4.35Vとしたとき、電圧V2は4.0V、より好ましくは4.1Vとすることができる。ここで電圧V1を4.35V、電圧V2を4.1Vとしたとき、セルが過充電電圧として4.35Vを超えたとき、ヒステリシスコンパレータの出力電位は高レベル電位から低レベル電位(又は低レベル電位から高レベル電位)に遷移することになる。別途設けられた制御回路などによって、当該出力電位の遷移(以後、検知信号という場合がある。)を検知することによって、当該セルを過充電状態として検知することができ、当該セルへの充電を停止することができる。その後、当該セルが放電を行うとき、当該セルの電圧が4.1Vを下回ったとき、ヒステリシスコンパレータの出力電位は低レベル電位から高レベル電位(又は高レベル電位から低レベル電位)に遷移することになる。当該セルの電圧が4.1V未満のとき、当該セルは過充電状態ではないため、充電が可能な状態となる。つまり、別途設けられた制御回路などによって、当該出力電位の遷移を検知することによって、当該セルが充電可能な状態として検知することができ、当該セルへの充電を行うことができる。
ヒステリシスコンパレータによってセルの過放電を検知する場合、セルの電圧が、電圧V2より低い場合を過放電状態として、ヒステリシスコンパレータの低レベル側しきい値電圧として電圧V2を設定し、ヒステリシスコンパレータの高レベル側しきい値電圧として所望の電圧V1を設定すればよい。このとき、一例として、電圧V2を2.5Vとしたとき、電圧V1は3.2V、より好ましくは3.0Vとすることができる。ここで電圧V1を3.0V、電圧V2を2.5Vとしたとき、セルが過放電電圧として2.5Vを下回ったとき、ヒステリシスコンパレータの出力電位は高レベル電位から低レベル電位(又は低レベル電位から高レベル電位)に遷移することになる。別途設けられた制御回路などによって、当該出力電位の遷移(以後、検知信号という場合がある。)を検知することによって、当該セルを過放電状態として検知することができ、当該セルの放電を停止することができる。その後、当該セルが充電を行う場合、当該セルの電圧が3.0Vを超えたときに、ヒステリシスコンパレータの出力電位は低レベル電位から高レベル電位(又は高レベル電位から低レベル電位)に遷移することになる。当該セルの電圧が3.0Vより高いとき、当該セルは過放電状態ではないため、放電が可能な状態となる。つまり、別途設けられた制御回路などによって、当該出力電位の遷移を検知することによって、当該セルが放電可能な状態として検知することができ、当該セルの放電を行うことができる。
上述の通り、1つのセルに対して、ヒステリシスコンパレータの高レベル側しきい値電圧、及び低レベル側しきい値電圧を設定し、ヒステリシスコンパレータの出力端子から出力される検知信号を取得することで、当該セルにおいて、過充電、又は過放電が起きたか否かを知ることができる。なお、ヒステリシスコンパレータの高レベル側しきい値電圧、及び低レベル側しきい値電圧の設定は、上述の通り、過充電状態、又は過放電状態のどちらか検知したい方に合わせて行うのが好ましい。
ところで、ヒステリシスコンパレータを用いる場合、上記の通り、高レベル側しきい値電圧と低レベル側しきい値電圧との2つの定電圧が必要になる。そのため、ヒステリシスコンパレータを用いる場合は、コンパレータを用いる場合よりも、定電圧を生成する回路を増やす必要があるため、回路面積が増え、また、消費電力が高くなることがある。
本発明の一態様は、上記に鑑みなされたヒステリシスコンパレータであって、ヒステリシスコンパレータの参照電位入力端子を1個としており、1つの参照電位の入力によって駆動が可能な構成となっている。
<構成例1>
本発明の一態様のヒステリシスコンパレータを、図2Aに示す。ヒステリシスコンパレータHCMP1は、コンパレータCMP1と、スイッチSW1と、容量C1と、容量C2と、論理回路LCと、を有する。
コンパレータCMP1は、+側入力端子と、-側入力端子と、出力端子と、を有する。なお、本明細書等において、+側入力端子を第1入力端子又は第2入力端子の一方に言い換え、かつ-側入力端子を第1入力端子又は第2入力端子の他方に言い換える場合がある。
入力端子ITは、コンパレータCMP1の+側入力端子に電気的に接続され、参照電位入力端子RTは、スイッチSW1の第1端子に電気的に接続され、出力端子OTは、コンパレータCMP1の出力端子と、論理回路LCの端子VITに電気的に接続されている。スイッチSW1の第2端子は、容量C1の1対の導電領域の一方と、容量C2の1対の導電領域の一方と、コンパレータCMP1の-側入力端子と、に電気的に接続されている。容量C1の1対の導電領域の他方は、配線VGEに電気的に接続され、容量C2の1対の導電領域の他方は、論理回路LCの端子VOTに電気的に接続されている。
なお、図2Aでは、スイッチSW1の第2端子と、容量C1の1対の導電領域の一方と、容量C2の1対の導電領域の一方と、コンパレータCMP1の-側入力端子と、の電気的接続点をノードND1(第1電位保持部という場合がある。)と図示し、容量C2の1対の導電領域の他方と、論理回路LCの端子VOTと、の電気的接続点をノードND2(第2電位保持部という場合がある。)と図示している。また、容量C1、及び容量C2のそれぞれの静電容量の値は、0.01fF以上100pF以下、より好ましくは0.05fF以上10pF以下、更に好ましくは0.1fF以上1pF以下とすればよい。
配線VGEは、一例として、定電圧を与える配線として機能する。特に、配線VGEが与える定電圧としては、例えば、接地電位(GND)とすることができる。また、例えば、接地電位(GND)以外の電位として、正の電位、又は負の電位などとしてもよい。
論理回路LCは、端子VITと、端子VOTと、を有する。論理回路LCは、インバータ回路の機能を有し、具体的には、端子VITに入力された信号の反転信号を端子VOTに出力する機能を有する。そのため、論理回路LCは、一例として、インバータ回路を有してもよい。図2Bに示すヒステリシスコンパレータHCMP2は、図2AのヒステリシスコンパレータHCMP1に含まれている論理回路LCがインバータ回路INVを有する構成となっている。また、論理回路LCは、例えば、インバータ回路、NAND回路、NOR回路、XOR回路など、これらを組み合わせた回路等としてもよい。
本明細書等におけるスイッチSW1は、制御端子に高レベル電位が印加されたときにオン状態となり、制御端子に低レベル電位が印加されたときにオフ状態になるものとする。なお、図2Aでは、スイッチSW1の制御端子は、配線SHEに電気的に接続されている。
また、スイッチSW1としては、例えば、アナログスイッチ、トランジスタなどの電気的なスイッチを適用することができる。また、スイッチSW1としては、例えば、MEMS(Micro Electro Mechanical Systems)などの機械的なスイッチを適用することができる。
図2Cに示すヒステリシスコンパレータHCMP3は、図2AのヒステリシスコンパレータHCMP1が有するスイッチSW1をトランジスタTrS1に置き換えた構成となっている。トランジスタTrS1は、例えば、OSトランジスタ、またはチャネル形成領域にシリコンを有するトランジスタ(以後、Siトランジスタと呼称する。)とすることができる。シリコンとしては、例えば、単結晶シリコン、非晶質シリコン(水素化アモルファスシリコン)、微結晶シリコン、または多結晶シリコン等を用いることができる。また、OSトランジスタ、Siトランジスタ以外のトランジスタとしては、例えば、化合物半導体を活性層としたトランジスタ、カーボンナノチューブを活性層としたトランジスタ、有機半導体を活性層としたトランジスタ等を用いることができる。
特に、トランジスタTrS1は容量C1、及び容量C2に蓄積された電荷を保持するため、トランジスタTrS1のオフ電流は低いことが好ましい。このため、トランジスタTrS1は、OSトランジスタであることが好ましい。特に、トランジスタTrS1としてOSトランジスタを適用する場合、OSトランジスタは、特に実施の形態3に記載するトランジスタの構造であることがより好ましい。
例えば、OSトランジスタにおいて、チャネル形成領域に含まれる金属酸化物は、インジウム、元素M(元素Mとしては、アルミニウム、ガリウム、イットリウム、スズなどが挙げられる。)、亜鉛の少なくとも一を含む酸化物であることがより好ましい。また、当該金属酸化物がチャネル形成領域に含まれるOSトランジスタのオフ電流は、チャネル幅1μmあたり10aA(1×10-17A)以下、好ましくはチャネル幅1μmあたり1aA(1×10-18A)以下、さらには好ましくはチャネル幅1μmあたり10zA(1×10-20A)以下、さらに好ましくはチャネル幅1μmあたり1zA(1×10-21A)以下、さらに好ましくはチャネル幅1μmあたり100yA(1×10-22A)以下とすることができる。また当該OSトランジスタは、金属酸化物のキャリア濃度が低いため、OSトランジスタの温度が変化した場合でも、オフ電流は低いままとなる。例えば、OSトランジスタの温度が150℃であっても、オフ電流を、チャネル幅1μmあたり100zAとすることもできる。
また、図2CのヒステリシスコンパレータHCMP3が有するトランジスタTrS1はnチャネル型トランジスタとしているが、pチャネル型トランジスタとしてもよい。
また、ヒステリシスコンパレータHCMP3が有するトランジスタTrS1はシングルゲート構造のトランジスタとしているが、トランジスタTrS1をマルチゲート構造のnチャネル型トランジスタとしてもよい。図2Dに示すヒステリシスコンパレータHCMP4のトランジスタTrS1は、マルチゲート構造のnチャネル型トランジスタとして、第1ゲートと第2ゲートとを有する。但し、本明細書等において、便宜上、一例として、第1ゲートをゲート(フロントゲートと記載する場合がある。)、第2ゲートをバックゲートとして区別するように記載しているが、第1ゲートと第2ゲートは互いに入れ替えることができる。そのため、本明細書等において、「ゲート」という語句は「バックゲート」という語句と入れ替えて記載することができる。同様に、「バックゲート」という語句は「ゲート」という語句と入れ替えて記載することができる。具体例としては、「ゲートは第1配線に電気的に接続され、バックゲートは第2配線に電気的に接続されている」という接続構成は、「バックゲートは第1配線に電気的に接続され、ゲートは第2配線に電気的に接続されている」という接続構成として置き換えることができる。
また、本発明の一態様のヒステリシスコンパレータは、トランジスタのバックゲートの接続構成に依らない。図2Dに図示されているトランジスタTrS1には、バックゲートが図示され、当該バックゲートの接続構成については図示されていないが、当該バックゲートの電気的な接続先は、設計の段階で決めることができる。例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのオン電流を高めるために、ゲートとバックゲートとを電気的に接続してもよい。つまり、例えば、トランジスタTrS1のゲートとバックゲートとを電気的に接続してもよい。また、例えば、バックゲートを有するトランジスタにおいて、そのトランジスタのしきい値電圧を変動させるため、または、そのトランジスタのオフ電流を小さくするために、外部回路などと電気的に接続されている配線を設けて、当該外部回路などによってトランジスタのバックゲートに電位を与えてもよい。なお、これについては、図2Dだけでなく、明細書の他の箇所に記載されている別のトランジスタ、又は他の図面に図示されている別のトランジスタについても同様である。
図2DのヒステリシスコンパレータHCMP4において、バックゲートを有するトランジスタTrS1としては、例えば、上述したOSトランジスタを用いることができる。
また、図2Aに示されているコンパレータCMP1、及び/又は論理回路LCにトランジスタが含まれている場合、当該トランジスタはOSトランジスタであることが好ましい。つまり、コンパレータCMP1、及び/又は論理回路LCは、OSトランジスタで構成された単極性回路としてもよい。また、コンパレータCMP1、及び/又は論理回路LCに含まれているOSトランジスタは、マルチゲート構造のトランジスタ、バックゲートを有するトランジスタなどとしてもよい。
ところで、OSトランジスタの半導体層の金属酸化物において、インジウムを含む金属酸化物(例えば、In酸化物)、あるいは亜鉛を含む金属酸化物(例えば、Zn酸化物)では、n型半導体は作製できているが、p型半導体は移動度及び信頼性の点で作製が難しい場合がある。そのため、コンパレータCMP1、及び/又は論理回路LCをCMOS回路とする場合、コンパレータCMP1、及び/又は論理回路LCに含まれるnチャネル型トランジスタを一例としてOSトランジスタとし、pチャネル型トランジスタを一例としてSiトランジスタとしてもよい。
また、本明細書等に記載のトランジスタとしては、様々な構造のトランジスタを用いることが出来る。よって、用いられるトランジスタの種類に限定はない。トランジスタの一例としては、Siトランジスタ(単結晶シリコンを有するトランジスタ、または、非晶質シリコン、多結晶シリコン、微結晶(マイクロクリスタル、ナノクリスタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体膜を有するトランジスタなど)を用いることが出来る。または、トランジスタに含まれている半導体を薄膜化した薄膜トランジスタ(TFT)などを用いることが出来る。TFTを用いる場合、様々なメリットがある。例えば、単結晶シリコンの場合よりも低い温度で製造できるため、製造コストの削減、又は製造装置の大型化を図ることができる。製造装置を大きくできるため、大型基板上に製造できる。そのため、同時に多くの個数の表示装置を製造できるため、低コストで製造できる。または、製造温度が低いため、耐熱性の弱い基板を用いることができる。そのため、透光性を有する基板上にトランジスタを製造できる。または、透光性を有する基板上のトランジスタを用いて表示素子での光の透過を制御することが出来る。または、トランジスタの膜厚が薄いため、トランジスタを形成する膜の一部は、光を透過させることが出来る。そのため、開口率が向上させることができる。
なお、トランジスタの一例としては、化合物半導体(例えば、Ge、ZnSe、CdS、GaAs、InP、GaN、SiGeなど)、又は酸化物半導体(例えば、Zn-O、In-Ga-Zn-O、In-Zn-O、In-Sn-O(ITO)、Sn-O、Ti-O、Al-Zn-Sn-O(AZTO)、In-Sn-Zn-Oなど)などを有するトランジスタを用いることが出来る。または、これらの化合物半導体、又は、これらの酸化物半導体を薄膜化した薄膜トランジスタなどを用いることが出来る。これらにより、製造温度を低くできるので、例えば、室温でトランジスタを製造することが可能となる。その結果、耐熱性の低い基板、例えばプラスチック基板又はフィルム基板などに直接トランジスタを形成することが出来る。なお、これらの化合物半導体又は酸化物半導体を、トランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることも出来る。例えば、これらの化合物半導体又は酸化物半導体を配線、抵抗素子、画素電極、又は透光性を有する電極などとして用いることができる。それらをトランジスタと同時に成膜又は形成することが可能なため、コストを低減できる。
なお、トランジスタの一例としては、インクジェット法又は印刷法を用いて形成したトランジスタなどを用いることが出来る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができる。よって、マスク(レチクル)を用いなくても製造することが可能となるため、トランジスタのレイアウトを容易に変更することが出来る。または、レジストを用いずに製造することが可能なので、材料費が安くなり、工程数を削減できる。または、必要な部分にのみ膜を付けることが可能なので、全面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コストにできる。
なお、トランジスタの一例としては、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることができる。これらにより、曲げることが可能な基板上にトランジスタを形成することが出来る。有機半導体やカーボンナノチューブを有するトランジスタを用いた装置は、衝撃に強くすることができる。
なお、トランジスタの一例としては、半導体として機能する層状物質を有するトランジスタを用いることができる。本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。層状物質としては、例えば、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
また、トランジスタの一例としては、半導体として機能する遷移金属カルコゲナイドを用いることができる。遷移金属カルコゲナイドの具体例としては、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
なお、トランジスタとしては、他にも様々な構造のトランジスタを用いることができる。例えば、トランジスタとして、MOS型トランジスタ、接合型トランジスタ、バイポーラトランジスタなどを用いることが出来る。トランジスタとしてMOS型トランジスタを用いることにより、トランジスタのサイズを小さくすることが出来る。よって、多数のトランジスタを搭載することができる。トランジスタとしてバイポーラトランジスタを用いることにより、大きな電流を流すことが出来る。よって、高速に回路を動作させることができる。なお、MOS型トランジスタとバイポーラトランジスタとを1つの基板に混在させて形成してもよい。これにより、低消費電力、小型化、高速動作などを実現することが出来る。
なお、トランジスタの一例としては、活性層の上下にゲート電極が配置されている構造のトランジスタを適用することができる。活性層の上下にゲート電極が配置される構造にすることにより、複数のトランジスタが並列に接続されたような回路構成となる。よって、チャネル形成領域が増えるため、電流値の増加を図ることができる。または、活性層の上下にゲート電極が配置されている構造にすることにより、空乏層ができやすくなるため、S値の改善を図ることができる。
なお、トランジスタの一例としては、活性層の上にゲート電極が配置されている構造、活性層の下にゲート電極が配置されている構造、正スタガ構造、逆スタガ構造、チャネル領域を複数の領域に分けた構造、活性層を並列に接続した構造、又は活性層が直列に接続する構造などのトランジスタを用いることができる。または、トランジスタとして、プレーナ型、FIN型(フィン型)、TRI-GATE型(トライゲート型)、トップゲート型、ボトムゲート型、ダブルゲート型(チャネルの上下にゲートが配置されている)、など、様々な構成をとることが出来る。
なお、トランジスタの一例としては、活性層(もしくはその一部)にソース電極やドレイン電極が重なっている構造のトランジスタを用いることができる。活性層(もしくはその一部)にソース電極やドレイン電極が重なる構造にすることによって、活性層の一部に電荷が溜まることにより動作が不安定になることを防ぐことができる。
なお、トランジスタの一例としては、LDD領域を設けた構造を適用できる。LDD領域を設けることにより、オフ電流の低減、又はトランジスタの耐圧向上(信頼性の向上)を図ることができる。または、LDD領域を設けることにより、飽和領域で動作する時に、ドレインとソースとの間の電圧が変化しても、ドレイン電流があまり変化せず、傾きがフラットな電圧・電流特性を得ることができる。
例えば、本明細書等において、様々な基板を用いて、トランジスタを形成することが出来る。基板の種類は、特定のものに限定されることはない。その基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、サファイアガラス基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどがある。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどがある。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド、エポキシ樹脂、無機蒸着フィルム、又は紙類などがある。特に、半導体基板、単結晶基板、又はSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、又は形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、又は回路の高集積化を図ることができる。
また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタを形成してもよい。または、基板とトランジスタの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタは耐熱性の劣る基板や可撓性の基板にも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構造の構成や、基板上にポリイミド等の有機樹脂膜が形成された構成等を用いることができる。
つまり、ある基板を用いてトランジスタを形成し、その後、別の基板にトランジスタを転置し、別の基板上にトランジスタを配置してもよい。トランジスタが転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などがある。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さいトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図ることができる。
なお、所定の機能を実現させるために必要な回路の全てを、同一の基板(例えば、ガラス基板、プラスチック基板、単結晶基板、又はSOI基板など)に形成することが可能である。こうして、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。
なお、所定の機能を実現させるために必要な回路の全てを同じ基板に形成しないことが可能である。つまり、所定の機能を実現させるために必要な回路の一部は、ある基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、別の基板に形成されていることが可能である。例えば、所定の機能を実現させるために必要な回路の一部は、ガラス基板に形成され、所定の機能を実現させるために必要な回路の別の一部は、単結晶基板(又はSOI基板)に形成されることが可能である。そして、所定の機能を実現させるために必要な回路の別の一部が形成される単結晶基板(ICチップともいう)を、COG(Chip On Glass)によって、ガラス基板に接続して、ガラス基板にそのICチップを配置することが可能である。または、ICチップを、TAB(Tape Automated Bonding)、COF(Chip On Film)、SMT(Surface Mount Technology)、又はプリント基板などを用いてガラス基板と接続することが可能である。このように、回路の一部が画素部と同じ基板に形成されていることにより、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることができる。特に、駆動電圧が大きい部分の回路、又は駆動周波数が高い部分の回路などは、消費電力が大きくなってしまう場合が多い。そこで、このような回路を、画素部とは別の基板(例えば単結晶基板)に形成して、ICチップを構成する。このICチップを用いることによって、消費電力の増加を防ぐことができる。
<動作例1>
次に、図2AのヒステリシスコンパレータHCMP1の動作例について説明する。なお、図2B乃至図2Dのヒステリシスコンパレータについては、図2Aのヒステリシスコンパレータの動作例の説明を参酌する。
図3は、時刻T1から時刻T10までの間、及び、その近傍における、入力端子ITに入力される電圧、参照電位入力端子RTに入力される電圧、出力端子OTから出力される電圧、配線SHEに入力される電圧、ノードND1、及びノードND2のそれぞれの電位の変動を示したタイミングチャートである。なお、図3に記載しているhighは高レベル電位を示し、lowは低レベル電位を示している。
図3のタイミングチャートにおいて、時刻T1から時刻T2までの間では、入力端子ITと、参照電位入力端子RTには、VGNDが入力されている。また、配線SHEには低レベル電位が入力されている。VGNDは、例えば、接地電位とすることができる。また、VGNDは、例えば、接地電位より低い、又は高い基準電位とすることができる。
また、時刻T1から時刻T3までの間では、出力端子OTから出力される電圧を不定とする。また、そのため、ノードND2の電位も定まらなくなる。なお、図3のタイミングチャートでは、時刻T1以前、及び、時刻T1から時刻T3までの間の出力端子OTとノードND2とのそれぞれの電位をハッチングで示している。
また、時刻T1から時刻T2までの間では、配線SHEには低レベル電位が入力されている。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になるため、時刻T1から時刻T2までの間では、参照電位入力端子RTに入力された電位は、コンパレータCMP1の-側入力端子(ノードND1)に入力されない。
時刻T2から時刻T3までの間では、参照電位入力端子RTに電圧Vref1が入力される。Vref1は、例えば、VGNDよりも高い電位とすることができる。なお、時刻T2から時刻T3までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はない。
時刻T3から時刻T4までの間では、配線SHEに高レベル電位が入力される。これにより、スイッチSW1の制御端子に高レベル電位が入力されて、スイッチSW1はオン状態となる。スイッチSW1がオン状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が導通状態になるため、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
このとき、コンパレータCMP1の+側入力端子にVGND、-側入力端子にVref1が入力されるため、コンパレータCMP1の出力端子からは低レベル電位が出力される。つまり、出力端子OTから低レベル電位が出力される。また、論理回路LCの端子VITに、低レベル電位が入力されるため、論理回路LCの端子VOTから高レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、高レベル電位となる。
時刻T4から時刻T5までの間では、配線SHEに低レベル電位が入力される。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になる。加えて、コンパレータCMP1の内側から、-側入力端子(ノードND1)に対して電源電位が与えられていないため、ノードND1は電気的に浮遊状態となる。そのため、コンパレータCMP1の-側入力端子(ノードND1)の電位Vref1は、容量C1、及び容量C2のそれぞれの1対の導電領域の一方によって保持される。
時刻T5から時刻T6までの間では、参照電位入力端子RTに電圧VGNDが入力される。なお、時刻T5から時刻T6までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はなく、Vref1のままとなる。
また、時刻T6から時刻T8までの間において、入力端子ITから入力される電位は、VGNDからVMAXまで時間経過で高くなるものとする。つまり、時刻T6から時刻T8までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVMAXまで高くなる。なお、VMAXは、Vref1よりも高い電位とする。
時刻T7で入力端子ITから入力される電位がVref1に達する場合、時刻T7から時刻T8までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が高くなるため、コンパレータCMP1の出力端子から高レベル電位が出力される。つまり、出力端子OTから高レベル電位が出力される。
また、論理回路LCの端子VITに、高レベル電位が入力されるため、論理回路LCの端子VOTから低レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、低レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の1対の導電領域の他方(ノードND2)の電位の変動量と、容量C1、及び容量C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。本動作例では、これによって、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1からVref2に変化するものとする。
具体的には、時刻T3から時刻T7までの間の容量C2の1対の導電領域の他方(ノードND2)の高レベル電位をVとし、時刻T7から時刻T8までの間の容量C2の1対の導電領域の他方(ノードND2)の低レベル電位をVとし、容量C1、及び容量C2のそれぞれの静電容量の値をC、Cとしたとき、Vref2は次の式として表すことができる。
Figure 0007273064000001
時刻T8から時刻T10までの間において、入力端子ITから入力される電位は、VMAXからVGNDまで時間経過で低くなるものとする。つまり、時刻T8から時刻T10までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVGNDまで低くなる。
時刻T9で入力端子ITから入力される電位がVref2まで低くなった場合、時刻T9から時刻T10までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が低くなるため、コンパレータCMP1の出力端子から低レベル電位が出力される。つまり、出力端子OTから低レベル電位が出力される。
また、論理回路LCの端子VITに低レベル電位が入力されるため、論理回路LCの端子VOTから高レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、高レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の1対の導電領域の他方(ノードND2)の電位の変動量と、容量C1、C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。なお、時刻T9から時刻T10までの間での容量C2の1対の導電領域の他方(ノードND2)の電位は、時刻T6から時刻T7までの間での容量C2の1対の導電領域の他方(ノードND2)の電位と同じ高レベル電位であるため、時刻T9から時刻T10までの間でのコンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
上述の動作例のとおり、図2Aに示す回路を構成することによって、ヒステリシス幅をVref1-Vref2とするヒステリシスコンパレータを実現することができる。
また、ヒステリシスコンパレータHCMP1の設計段階において、容量C1、及び容量C2のそれぞれの静電容量の値C、Cを定めることによって、式(E1)より、ヒステリシスコンパレータHCMP1のヒステリシス幅を決めることができる。例えば、静電容量の値C、Cのそれぞれを0.1fFとしたとき、ヒステリシス幅は、(V-V)/2となる。また、例えば、静電容量の値C、Cのそれぞれを0.3fF、0.1fFとしたとき、ヒステリシス幅は、(V-V)/4となる。
<構成例2>
本発明の一態様は、図2A乃至図2Dに示したヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP4に限定されない。状況に応じて、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP4のいずれか一の構成を変更してもよい。
例えば、図2AのヒステリシスコンパレータHCMP1において、論理回路LCは、NAND回路を有してもよい。例えば、図4Aに示すヒステリシスコンパレータHCMP5は、図2AのヒステリシスコンパレータHCMP1において、端子VITをNAND回路LCNAの第1入力端子とし、端子VOTをNAND回路LCNAの出力端子とした構成となっている。なお、NAND回路LCNAの第2入力端子には、配線ENが電気的に接続されている。
配線ENは、一例として、高レベル電位、又は、低レベル電位を与える配線として機能する。
<動作例2>
図4AのヒステリシスコンパレータHCMP5の動作例について説明する。
図5は、時刻T11から時刻T20までの間、及び、その近傍における、入力端子ITに入力される電圧、参照電位入力端子RTに入力される電圧、出力端子OTから出力される電圧、配線SHEに入力される電圧、配線ENに入力される電圧、ノードND1、及びノードND2のそれぞれの電位の変動を示したタイミングチャートである。なお、図5に記載しているhighは高レベル電位を示し、lowは低レベル電位を示している。
図5のタイミングチャートにおいて、時刻T11から時刻T12までの間では、入力端子ITと、参照電位入力端子RTには、VGNDが入力されている。また、配線SHEには低レベル電位が入力されている。VGNDは、動作例1で説明したVGNDの説明の記載を参酌する。
ところで、一般的には、NAND回路は、第1端子又は第2端子の一方に低レベル電位が入力されることによって、出力端子から高レベル電位が出力される。時刻T11から時刻T12までの間では、配線ENには、低レベル電位が入力されているため、NAND回路LCNAの第2端子に低レベル電位が入力されて、NAND回路LCNAの出力端子から高レベル電位が出力される。
なお、出力端子OTは、NAND回路LCNAの第1端子に電気的に接続されているが、NAND回路LCNAの第2端子に低レベル電位が入力されているため、NAND回路LCNAの出力端子から出力される電圧は、NAND回路LCNAの第1端子に入力されている電圧に依存しない。本動作例では、時刻T11から時刻T13までの間において、出力端子OTから出力される電圧を不定とし、図5のタイミングチャートでは、出力端子OTの電位をハッチングで示している。
また、時刻T11から時刻T12までの間では、配線SHEには低レベル電位が入力されている。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になるため、時刻T11から時刻T12までの間では、参照電位入力端子RTに入力された電位は、コンパレータCMP1の-側入力端子(ノードND1)に入力されない。
時刻T12から時刻T13までの間では、参照電位入力端子RTに電圧Vref1が入力される。Vref1は、例えば、VGNDよりも高い電位とすることができる。なお、時刻T12から時刻T13までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はない。
時刻T13から時刻T14までの間では、配線SHEに高レベル電位が入力される。これにより、スイッチSW1の制御端子に高レベル電位が入力されて、スイッチSW1はオン状態となる。スイッチSW1がオン状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が導通状態になるため、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
このとき、コンパレータCMP1の+側入力端子にVGND、-側入力端子にVref1が入力されるため、コンパレータCMP1の出力端子からは低レベル電位が出力される。つまり、出力端子OTから低レベル電位が出力される。また、NAND回路LCNAの第1端子に、低レベル電位が入力されるが、NAND回路LCNAの出力端子からは、時刻T13以前から引き続き高レベル電位が出力される。
時刻T14から時刻T15までの間では、配線SHEに低レベル電位が入力される。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になる。加えて、コンパレータCMP1の内側から、-側入力端子(ノードND1)に対して電源電位が与えられていないため、ノードND1は電気的に浮遊状態となる。そのため、コンパレータCMP1の-側入力端子(ノードND1)の電位Vref1は、容量C1、及び容量C2のそれぞれの1対の導電領域の一方によって保持される。
時刻T15から時刻T16までの間では、参照電位入力端子RTに電圧VGNDが入力される。なお、時刻T15から時刻T16までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はなく、Vref1のままとなる。
また、時刻T15から時刻T16までの間では、配線ENに高レベル電位が入力される。なお、NAND回路LCNAの第1端子には、低レベル電位が入力されているため、NAND回路LCNAの出力端子からは、時刻T15以前から引き続き高レベル電位が出力される。
また、時刻T16から時刻T18までの間において、入力端子ITから入力される電位は、VGNDからVMAXまで時間経過で高くなるものとする。つまり、時刻T16から時刻T18までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVMAXまで高くなる。なお、VMAXは、Vref1よりも高い電位とする。
時刻T17で入力端子ITから入力される電位がVref1に達する場合、時刻T17から時刻T18までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が高くなるため、コンパレータCMP1の出力端子から高レベル電位が出力される。つまり、出力端子OTから高レベル電位が出力される。
また、NAND回路LCNAの第1端子に、高レベル電位が入力される。時刻T17から時刻T18までの間では、NAND回路LCNAの第2端子には、高レベル電位が入力されているため、NAND回路LCNAの出力端子から低レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、低レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の1対の導電領域の他方(ノードND2)の電位の変動量と、容量C1、及び容量C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。本動作例では、動作例1と同様に、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1からVref2に変化するものとする。
なお、Vref1とVref2の関係については、動作例1の説明の記載を参酌する。
時刻T18から時刻T20までの間において、入力端子ITから入力される電位は、VMAXからVGNDまで時間経過で低くなるものとする。つまり、時刻T18から時刻T20までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVGNDまで低くなる。
時刻T19で入力端子ITから入力される電位がVref2まで低くなった場合、時刻T19から時刻T20までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が低くなるため、コンパレータCMP1の出力端子から低レベル電位が出力される。つまり、出力端子OTから低レベル電位が出力される。
また、NAND回路LCNAの第2端子に高レベル電位が入力されているため、NAND回路LCNAの出力端子から高レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、高レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の1対の導電領域の他方(ノードND2)の電位の変動量と、容量C1、及び容量C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。なお、時刻T19から時刻T20までの間での容量C2の1対の導電領域の他方(ノードND2)の電位は、時刻T16から時刻T17までの間での容量C2の1対の導電領域の他方(ノードND2)の電位と同じ高レベル電位であるため、時刻T19から時刻T20までの間でのコンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
上述の動作例のとおり、図4Aに示す回路を構成することでも、ヒステリシス幅をVref1-Vref2とするヒステリシスコンパレータを実現することができる。
<構成例3>
ここでは、図2B乃至図2D、図4Aとは異なる、別の構成のヒステリシスコンパレータについて説明する。
図4BのヒステリシスコンパレータHCMP6は、図2B乃至図2D、図4Aとは異なる構成のヒステリシスコンパレータであって、図2AのヒステリシスコンパレータHCMP1において、論理回路LCがNOR回路を有する構成となっている。端子VITをNOR回路LCNOの第1入力端子とし、端子VOTをNOR回路LCNOの出力端子とした構成となっている。なお、NOR回路LCNOの第2入力端子には、配線ENが電気的に接続されている。
なお、配線ENは、構成例2で説明した配線ENの説明の記載を参酌する。
<動作例3>
図4BのヒステリシスコンパレータHCMP6の動作例について説明する。
図6は、時刻T21から時刻T30までの間、及び、その近傍における、入力端子ITに入力される電圧、参照電位入力端子RTに入力される電圧、出力端子OTから出力される電圧、配線SHEに入力される電圧、配線ENに入力される電圧、ノードND1、ND2のそれぞれの電位の変動を示したタイミングチャートである。なお、図6に記載しているhighは高レベル電位を示し、lowは低レベル電位を示している。
図6のタイミングチャートにおいて、時刻T21から時刻T22までの間では、入力端子ITにはVMAXが入力され、参照電位入力端子RTには、VGNDが入力されている。また、配線SHEには低レベル電位が入力されている。VMAX、VGNDのそれぞれは、動作例1で説明したVMAX、VGNDの説明の記載を参酌する。
ところで、一般的には、NOR回路は、第1端子又は第2端子の一方に高レベル電位が入力されることによって、出力端子から低レベル電位が出力される。時刻T21から時刻T22までの間では、配線ENには、高レベル電位が入力されているため、NOR回路LCNOの第2端子に高レベル電位が入力されて、NOR回路LCNOの出力端子から低レベル電位が出力される。
なお、出力端子OTは、NOR回路LCNOの第1端子に電気的に接続されているが、NOR回路LCNOの第2端子に低レベル電位が入力されているため、NOR回路LCNOの出力端子から出力される電圧は、NOR回路LCNOの第1端子に入力されている電圧に依存しない。本動作例では、時刻T21から時刻T23までの間において、出力端子OTから出力される電圧を不定とし、図6のタイミングチャートでは、出力端子OTの電位をハッチングで示している。
また、時刻T21から時刻T22までの間では、配線SHEには低レベル電位が入力されている。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になるため、時刻T21から時刻T22までの間では、参照電位入力端子RTに入力された電位は、コンパレータCMP1の-側入力端子(ノードND1)に入力されない。
時刻T22から時刻T23までの間では、参照電位入力端子RTに電圧Vref1が入力される。Vref1は、例えば、VGNDよりも高く、かつVMAXよりも低い電位とすることができる。なお、時刻T22から時刻T23までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はない。
時刻T23から時刻T24までの間では、配線SHEに高レベル電位が入力される。これにより、スイッチSW1の制御端子に高レベル電位が入力されて、スイッチSW1はオン状態となる。スイッチSW1がオン状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が導通状態になるため、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
このとき、コンパレータCMP1の+側入力端子にVMAX、-側入力端子にVref1が入力されるため、コンパレータCMP1の出力端子からは高レベル電位が出力される。つまり、出力端子OTから高レベル電位が出力される。また、NOR回路LCNOの第1端子に、高レベル電位が入力されるが、NOR回路LCNOの出力端子からは、時刻T23以前から引き続き低レベル電位が出力される。
時刻T24から時刻T25までの間では、配線SHEに低レベル電位が入力される。これにより、スイッチSW1の制御端子に低レベル電位が入力されて、スイッチSW1はオフ状態となる。スイッチSW1がオフ状態となることによって、参照電位入力端子RTと、コンパレータCMP1の-側入力端子との間が非導通状態になる。加えて、コンパレータCMP1の内側から、-側入力端子(ノードND1)に対して電源電位が与えられていないため、ノードND1は電気的に浮遊状態となる。そのため、コンパレータCMP1の-側入力端子(ノードND1)の電位Vref1は、容量C1、及び容量C2のそれぞれの1対の導電領域の一方によって保持される。
時刻T25から時刻T26までの間では、参照電位入力端子RTに電圧VGNDが入力される。なお、時刻T25から時刻T26までの間では、スイッチSW1はオフ状態であるため、コンパレータCMP1の-側入力端子(ノードND1)の電位に変化はなく、Vref1のままとなる。
また、時刻T25から時刻T26までの間では、配線ENに低レベル電位が入力される。なお、NOR回路LCNOの第1端子には、高レベル電位が入力されているため、NAND回路LCNAの出力端子からは、時刻T25以前から引き続き低レベル電位が出力される。
また、時刻T26から時刻T28までの間において、入力端子ITから入力される電位は、VMAXからVGNDまで時間経過で低くなるものとする。つまり、時刻T26から時刻T28までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVGNDまで低くなる。
時刻T27で入力端子ITから入力される電位がVref1まで低くなった場合、時刻T27から時刻T28までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が低くなるため、コンパレータCMP1の出力端子から低レベル電位が出力される。つまり、出力端子OTから低レベル電位が出力される。
また、NOR回路LCNOの第1端子に、低レベル電位が入力される。時刻T27から時刻T28までの間では、NOR回路LCNOの第2端子には、低レベル電位が入力されているため、NOR回路LCNOの出力端から高レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、高レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の1対の導電領域の他方(ノードND2)の電位の変動量と、容量C1、及び容量C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。本動作例では、コンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1からVref3に変化するものとする。
具体的には、時刻T23から時刻T27までの間の容量C2の1対の導電領域の他方(ノードND2)の低レベル電位をVとし、時刻T27から時刻T28までの間の容量C2の1対の導電領域の他方(ノードND2)の高レベル電位をVとし、容量C1、C2のそれぞれの静電容量の値をC、Cとしたとき、Vref3は次の式として表すことができる。
Figure 0007273064000002
時刻T28から時刻T30までの間において、入力端子ITから入力される電位は、VGNDからVMAXまで時間経過で高くなるものとする。つまり、時刻T28から時刻T30までの間では、コンパレータCMP1の+側入力端子に入力される電位は時間経過でVMAXまで高くなる。
時刻T29で入力端子ITから入力される電位がVref3に達する場合、時刻T29から時刻T30までの間では、コンパレータCMP1の-側入力端子(ノードND1)の電位よりも、コンパレータCMP1の+側入力端子に入力される電位(入力端子ITから入力される電位)が高くなるため、コンパレータCMP1の出力端子から高レベル電位が出力される。つまり、出力端子OTから高レベル電位が出力される。
また、NOR回路LCNOの第2端子に低レベル電位が入力されているため、NOR回路LCNOの出力端子から高レベル電位が出力される。そのため、容量C2の1対の導電領域の他方(ノードND2)の電位は、低レベル電位となる。ノードND1は電気的に浮遊状態となっているため、このとき、容量C2の第2端子(ノードND2)の電位の変動量と、容量C1、C2のそれぞれの静電容量の値と、に応じて、コンパレータCMP1の-側入力端子(ノードND1)の電位が変化する。なお、時刻T29から時刻T30までの間での容量C2の1対の導電領域の他方(ノードND2)の電位は、時刻T26から時刻T27までの間での容量C2の1対の導電領域の他方(ノードND2)の電位と同じ高レベル電位であるため、時刻T29から時刻T30までの間でのコンパレータCMP1の-側入力端子(ノードND1)の電位は、Vref1となる。
上述の動作例のとおり、図4Bに示す回路を構成することでも、ヒステリシス幅をVref3-Vref1とするヒステリシスコンパレータを実現することができる。
<構成例4>
上述の構成例1乃至構成例3に示したヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP6では、+側入力端子には入力端子ITが電気的に接続され、-側入力端子にはスイッチSW1を介して参照電位入力端子RTが電気的に接続されているが、本発明の一態様は、これに限定されない。例えば、本発明の一態様のヒステリシスコンパレータは、図4Cに示すヒステリシスコンパレータHCMP7のとおり、コンパレータCMP1の+側入力端子にはスイッチSW1を介して参照電位入力端子RTが電気的に接続され、コンパレータCMP1の-側入力端子には入力端子ITが電気的に接続されている構成としてもよい。
また、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP7は、入力端子ITに入力された電位とノードND1の電位とに応じた電位が出力端子OTから出力される構成となっているが、本発明の一態様は、これに限定されない。例えば、本発明の一態様のヒステリシスコンパレータは、図4Dに示すヒステリシスコンパレータHCMP8のとおり、出力端子として、論理回路LCの端子VOTに電気的に接続されている出力端子OTBを別途設けても良い。また、図4DのヒステリシスコンパレータHCMP8では、出力端子OTと出力端子OTBの2個図示しているが、本発明の一態様のヒステリシスコンパレータは、出力端子として出力端子OTBのみとしてもよい。
上記の通り、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8のいずれか一を構成することができる。また、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8は、セルCEに対して過充電、又は過放電を検知する機能を有する半導体装置に適用することができる。また、当該半導体装置は、組電池BATに含まれている、直列に電気的に接続された複数のセルCEのそれぞれにおいて、過充電、又は過放電を検知することができる場合がある。また、従来のヒステリシスコンパレータの動作では、参照電位として、高レベル側しきい値電圧と低レベル側しきい値電圧との2つの定電圧が必要となるが、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8は、1つの定電圧を参照電位入力端子に入力することによって動作することができる。つまり、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8の駆動において参照電位は1つの定電圧の供給でよいため、参照電位の生成に必要な電圧生成回路の面積を小さくすることができる。また、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8は、従来のヒステリシスコンパレータよりも回路面積を小さくすることができ、また、消費電力を低くすることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
本実施の形態では、半導体装置100が有する回路CNCの具体例について説明する。
図7は、回路CNCの構成例を示している。なお、図7には、回路CNCの他に、実施の形態1で説明したヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8を適用できるヒステリシスコンパレータHCMPと、セルCEと、も図示している。また、図7には、セルCEにおける放電、及び/又は充電の動作を制御する機能を有する回路として、回路CADCを図示している。
ヒステリシスコンパレータHCMPは、実施の形態1で説明したとおり、入力端子IT、参照電位入力端子RT、出力端子OTを有する。更に、ヒステリシスコンパレータHCMPは、制御端子SHを有する。制御端子SHは、実施の形態1で説明したヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8のそれぞれにおいて、配線SHEに電気的に接続されている端子とする。
回路CNCは、制御回路CTLと、回路CNVと、回路RPGと、を有する。
制御回路CTLは、回路CNVと、回路RPGと、ヒステリシスコンパレータHCMPの制御端子SH及び出力端子OTと、に電気的に接続されている。また、ヒステリシスコンパレータHCMPとして、ヒステリシスコンパレータHCMP8を適用している場合、制御回路CTLは、出力端子OTBに電気的に接続されていてもよい。
回路CNCの入力端子CI1は、回路CNVと、回路RPGと、に電気的に接続されている。また、回路CNCの入力端子CI2は、回路CNVと、回路RPGと、に電気的に接続されている。また、実施の形態1で説明したとおり、回路CNCの入力端子CI1は、セルCEの正極端子に電気的に接続され、回路CNCの入力端子CI2は、セルCEの負極端子に電気的に接続されている。つまり、回路CNVと、回路RPGと、のそれぞれには、セルCEの正極端子の電位と、負極端子の電位と、が入力される。
回路CNVは、回路CNCの出力端子CO1に電気的に接続され、回路RPGは、回路CNCの出力端子CO2に電気的に接続されている。また、実施の形態1で説明したとおり、回路CNCの出力端子CO1は、ヒステリシスコンパレータHCMPの入力端子ITに電気的に接続され、回路CNCの出力端子CO2は、ヒステリシスコンパレータHCMPの参照電位入力端子RTに電気的に接続されている。つまり、回路CNVは、ヒステリシスコンパレータHCMPの入力端子ITに電気的に接続され、回路RPGは、ヒステリシスコンパレータHCMPの参照電位入力端子RTに電気的に接続されている。
回路CNVは、回路CNVに入力された、セルCEの正極端子の電位と、負極端子の電位と、に基づいて、ヒステリシスコンパレータHCMPの入力端子ITに入力するための入力電圧を生成する機能を有する。回路CNVとしては、例えば、分圧回路、アナログ-デジタル変換回路(ADC)、デジタル-アナログ変換回路(DAC)、電位レベル変換回路などの変換回路を適用することができる。また、回路CNVは、生成した入力電圧を保持する機能を有してもよい。
回路RPGは、ヒステリシスコンパレータHCMPの参照電位入力端子RTに入力するための参照電位を生成する機能を有する回路である。例えば、回路RPGは、回路RPGに入力されたセルCEの正極端子の電位と、負極端子の電位と、に基づいて、当該参照電位を生成することができる。つまり、回路RPGは、セルCEに応じた参照電位を生成して、当該参照電位をヒステリシスコンパレータHCMPの参照電位入力端子に入力することができる。また、回路RPGは、生成した参照電位を保持する機能を有してもよい。
制御回路CTLは、ヒステリシスコンパレータHCMPの出力端子OTからの出力された電位の変化を取得して、セルCEにおいて、過放電、又は過充電を検知する機能を有する。また、制御回路CTLがセルCEに対して過放電を検知したとき、制御回路CTLは、セルCEの放電を制御する回路CADCに対して、放電動作を停止するための所定の信号を送信する機能を有してもよい。また、制御回路CTLがセルCEにおける過充電を検知したとき、制御回路CTLは、セルCEにおける充電を制御する回路CADCに対して、充電動作を停止するための所定の信号を送信する機能を有してもよい。
また、制御回路CTLは、ヒステリシスコンパレータHCMP、回路CNV、回路RPGのそれぞれを制御する機能を有してもよい。具体的には、例えば、制御回路CTLは、ヒステリシスコンパレータHCMPの制御端子SHに高レベル電位、又は低レベル電位の一方を与えて、ヒステリシスコンパレータHCMPが有するスイッチSW1(トランジスタTrS1)をオン状態、又はオフ状態の一方にすることができる。また、例えば、制御回路CTLは、半導体装置100を一時的に停止するときに、回路CNV、及び回路RPGに所定の信号を送信して、回路CNV、及び回路RPGへの電源電圧の供給を停止することができる。また、例えば、回路CNVが生成した入力電圧を保持する機能を有する場合、制御回路CTLは、回路CNVに対して、当該入力電圧を保持するための制御信号を送信する機能を有してもよい。また、例えば、回路RPGが生成した参照電位を保持する機能を有する場合、制御回路CTLは、回路RPGに対して、当該参照電位を保持するための制御信号を送信する機能を有してもよい。
半導体装置100の回路CNCを図7に示す回路CNCの構成にすることにより、半導体装置100は、セルCEの正極端子の電位と、負極端子の電位と、に基づいた参照電位を用いて、セルCEの過充電状態、又は過放電状態を検知することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、上記実施の形態で説明した半導体装置の構成例、及び当該半導体装置に適用可能なトランジスタの構成例について説明する。
<半導体装置の構成例>
図8に示す半導体装置は、トランジスタ300と、トランジスタ500と、容量素子600と、を有している。図10Aはトランジスタ500のチャネル長方向の断面図であり、図10Bはトランジスタ500のチャネル幅方向の断面図であり、図10Cはトランジスタ300のチャネル幅方向の断面図である。
トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、オフ電流が小さいため、これを半導体装置、例えば、ヒステリシスコンパレータのトランジスタTrS1などに用いることにより、長期にわたり書き込んだデータを保持することが可能である。つまり、リフレッシュ動作の頻度が少ない、あるいは、リフレッシュ動作を必要としないため、半導体装置の消費電力を低減することができる。
本実施の形態で説明する半導体装置は、図8に示すようにトランジスタ300、トランジスタ500、容量素子600を有する。トランジスタ500はトランジスタ300の上方に設けられ、容量素子600はトランジスタ300、及びトランジスタ500の上方に設けられている。なお、容量素子600は、上記実施の形態で説明したヒステリシスコンパレータHCMP、ヒステリシスコンパレータHCMP1乃至ヒステリシスコンパレータHCMP8における容量C1、及び容量C2などとすることができる。
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域又はドレイン領域として機能する低抵抗領域314a、及び低抵抗領域314bを有する。なお、トランジスタ300は、例えば、上記実施の形態で説明したコンパレータCMP1に含まれているトランジスタに適用することができる。
また、基板311としては、半導体基板(例えば単結晶基板又はシリコン基板)を用いるのが好ましい。
トランジスタ300は、図10Cに示すように、半導体領域313の上面及びチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、又はドレイン領域となる低抵抗領域314a、及び低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。又は、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。又はGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、及び低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、又はホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図8に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路とする場合、図9に示すとおり、トランジスタ300の構成を、酸化物半導体を用いているトランジスタ500と同様の構成にすればよい。なお、トランジスタ500の詳細については後述する。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、及び絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、又はトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、及び絶縁体326には容量素子600、又はトランジスタ500と接続する導電体328、及び導電体330等が埋め込まれている。なお、導電体328、及び導電体330は、プラグ又は配線としての機能を有する。また、プラグ又は配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、及び導電体の一部がプラグとして機能する場合もある。
各プラグ、及び配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、又は金属酸化物材料などの導電性材料を、単層又は積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。又は、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、及び導電体330上に、配線層を設けてもよい。例えば、図8において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、又は配線としての機能を有する。なお導電体356は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、及び導電体356上に、配線層を設けてもよい。例えば、図8において、絶縁体360、絶縁体362、及び絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、及び絶縁体364には、導電体366が形成されている。導電体366は、プラグ又は配線としての機能を有する。なお導電体366は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体364、及び導電体366上に、配線層を設けてもよい。例えば、図8において、絶縁体370、絶縁体372、及び絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、及び絶縁体374には、導電体376が形成されている。導電体376は、プラグ又は配線としての機能を有する。なお導電体376は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体374、及び導電体376上に、配線層を設けてもよい。例えば、図8において、絶縁体380、絶縁体382、及び絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、及び絶縁体384には、導電体386が形成されている。導電体386は、プラグ又は配線としての機能を有する。なお導電体386は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、及び導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、及び絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、及び絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
例えば、絶縁体510、及び絶縁体514には、例えば、基板311、又はトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、及び絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、例えば、絶縁体512、及び絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、及び絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体510、絶縁体512、絶縁体514、及び絶縁体516には、導電体518、及びトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体518は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
特に、絶縁体510、及び絶縁体514と接する領域の導電体518は、酸素、水素、及び水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、及び水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体516の上方には、トランジスタ500が設けられている。
図10A、及び図10Bに示すように、トランジスタ500は、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
また、図10A、及び図10Bに示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544が配置されることが好ましい。また、図10A、及び図10Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図10A、及び図10Bに示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。
なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図8、及び図10Aに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a及び導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542a及び導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、及び導電体560と、重なるように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S-channel)構造とよぶ。
また、導電体503は、導電体518と同様の構成であり、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一又は、すべての拡散を抑制する機能とする。
例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体505は、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。
絶縁体520、絶縁体522、及び絶縁体524は、第2のゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→V+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542a、及び導電体542bに拡散または捕獲(ゲッタリングともいう)される場合がある。
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)などのいわゆるhigh-k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh-k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、及び酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン又は窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため、好適である。また、high-k材料の絶縁体と、酸化シリコン又は酸化窒化シリコンと、を組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
なお、図10A、及び図10Bのトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In-M-Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムなどから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn-M-Zn酸化物は、CAAC-OS(C-Axis Aligned Crystalline Oxide Semiconductor)、CAC-OS(Cloud-Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物530として、In-Ga酸化物、In-Zn酸化物を用いてもよい。
また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。また、酸化物530中の酸素欠損に水素が入った場合、酸素欠損と水素とが結合しVHを形成する場合がある。VHはドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。また、金属酸化物中の水素は、熱、電界などのストレスによって動きやすいため、金属酸化物に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された金属酸化物を得るには、金属酸化物中の水分、水素などの不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、金属酸化物に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VHなどの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、酸化物530に金属酸化物を用いる場合、当該金属酸化物は、バンドギャップが高く、真性(I型ともいう。)、又は実質的に真性である半導体であって、かつチャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm-3未満であることが好ましく、1×1017cm-3未満であることがより好ましく、1×1016cm-3未満であることがさらに好ましく、1×1013cm-3未満であることがさらに好ましく、1×1012cm-3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10-9cm-3とすることができる。
また、酸化物530に金属酸化物を用いる場合、導電体542a及び導電体542bと酸化物530とが接することで、酸化物530中の酸素が導電体542a及び導電体542bへ拡散し、導電体542a及び導電体542bが酸化する場合がある。導電体542a及び導電体542bが酸化することで、導電体542a及び導電体542bの導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542a及び導電体542bへ拡散することを、導電体542a及び導電体542bが酸化物530中の酸素を吸収する、と言い換えることができる。
また、酸化物530中の酸素が導電体542a及び導電体542bへ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542a及び導電体542bよりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542a又は導電体542bと、当該異層と、酸化物530bとの3層構造は、金属-絶縁体-半導体からなる3層構造とみなすことができ、MIS(Metal-Insulator-Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
なお、上記異層は、導電体542a及び導電体542bと酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542a及び導電体542bと酸化物530cとの間に形成される場合や、導電体542a及び導電体542bと酸化物530bとの間、導電体542a及び導電体542bと酸化物530cとの間に形成される場合がある。
酸化物530においてチャネル形成領域にとして機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる金属酸化物を、用いることができる。
具体的には、酸化物530aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物530bとして、In:Ga:Zn=4:2:3[原子数比]、または1:1:1[原子数比]の金属酸化物を用いればよい。また、酸化物530cとして、In:Ga:Zn=1:3:4[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物530cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]と、In:Ga:Zn=1:3:4[原子数比]との積層構造、Ga:Zn=2:1[原子数比]と、In:Ga:Zn=4:2:3[原子数比]との積層構造、Ga:Zn=2:5[原子数比]と、In:Ga:Zn=4:2:3[原子数比]との積層構造、酸化ガリウムと、In:Ga:Zn=4:2:3[原子数比]との積層構造などが挙げられる。
また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn-Ga-Zn酸化物の場合、酸化物530a及び酸化物530cとして、In-Ga-Zn酸化物、Ga-Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。
また、図10A、及び図10Bでは、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅-マグネシウム-アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。
また、図10Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン又は、マグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコンなども用いることができる。
特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、及びハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体544を有することで、絶縁体580に含まれる水、及び水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)に接して配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high-k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
第1のゲート電極として機能する導電体560は、図10A、及び図10Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂などを有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530へと効率良く供給することができる。なお、絶縁体580中の水又は水素などの不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウムなどから選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水又は水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。導電体540a及び導電体540bは、後述する導電体546、及び導電体548と同様の構成である。
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、及びトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中及び作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、及び絶縁体586には、導電体546、及び導電体548等が埋め込まれている。
導電体546、及び導電体548は、容量素子600、トランジスタ500、又はトランジスタ300と接続するプラグ、又は配線としての機能を有する。導電体546、及び導電体548は、導電体328、及び導電体330と同様の材料を用いて設けることができる。
なお、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体514または絶縁体522に達する開口を形成し、絶縁体514または絶縁体522に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522と同様の材料を用いればよい。
続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620、絶縁体630とを有する。
また、導電体546、及び導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、又は配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、及び導電体610は、同時に形成することができる。
導電体612、及び導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図8では、導電体612、及び導電体610は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、及び導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、又は金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
導電体620、及び絶縁体630上には、絶縁体650が設けられている。絶縁体650は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体650は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。又は、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化又は高集積化を図ることができる。
次に、図8、図9に図示している、OSトランジスタの別の構成例について説明する。図11A、及び図11Bは、図10A、及び図10Bに示すトランジスタ500の変形例であって、図11Aは、トランジスタ500のチャネル長方向の断面図であり、図11Bはトランジスタ500のチャネル幅方向の断面図である。なお、図11A、及び図11Bに示す構成は、トランジスタ300等、本発明の一態様の半導体装置が有する他のトランジスタにも適用することができる。
図11A、及び図11Bに示す構成のトランジスタ500は、絶縁体402及び絶縁体404を有する点が、図10A、及び図10Bに示す構成のトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体552が設けられ、導電体540bの側面に接して絶縁体552が設けられる点が、図10A、及び図10Bに示す構成のトランジスタ500と異なる。さらに、絶縁体520を有さない点が、図10A、及び図10Bに示す構成のトランジスタ500と異なる。
図11A、及び図11Bに示す構成のトランジスタ500は、絶縁体512上に絶縁体402が設けられている。また、絶縁体574上、及び絶縁体402上に絶縁体404が設けられている。
図11A、及び図11Bに示す構成のトランジスタ500では、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、及び絶縁体574が設けられており、絶縁体404がこれらを覆う構造になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体402の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体402によって外部から隔離される。
絶縁体402及び絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一)又は水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体402及び絶縁体404として、水素バリア性が高い材料である、窒化シリコン又は窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ500の特性が低下することを抑制することができる。よって、本発明の一態様の半導体装置の信頼性を高めることができる。
絶縁体552は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、及び絶縁体544に接して設けられる。絶縁体552は、水素又は水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体552として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、又は窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体552として用いると好適である。絶縁体552として水素バリア性が高い材料を用いることにより、水又は水素等の不純物が、絶縁体580等から導電体540a及び導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540a及び導電体540bに吸収されることを抑制することができる。以上により、本発明の一態様の半導体装置の信頼性を高めることができる。
図12は、トランジスタ500及びトランジスタ300を図11A、及び図11Bに示す構成とした場合における、半導体装置の構成例を示す断面図である。導電体546の側面に、絶縁体552が設けられている。
また、図11A、及び図11Bに示すトランジスタ500は、状況に応じて、トランジスタの構成を変更してもよい。例えば、図11A、及び図11Bのトランジスタ500は、変更例として、図13に示すトランジスタにすることができる。図13Aはトランジスタのチャネル長方向の断面図であり、図13Bはトランジスタのチャネル幅方向の断面図である。図13A、及び図13Bに示すトランジスタは、酸化物530cが酸化物530c1及び酸化物530c2の2層構造である点で、図11A、及び図11Bに示すトランジスタと異なる。
酸化物530c1は、絶縁体524の上面、酸化物530aの側面、酸化物530bの上面及び側面、導電体542a及び導電体542bの側面、絶縁体544の側面、及び絶縁体580の側面と接する。酸化物530c2は、絶縁体550と接する。
酸化物530c1として、例えばIn-Zn酸化物を用いることができる。また、酸化物530c2として、酸化物530cが1層構造である場合に酸化物530cに用いることができる材料と同様の材料を用いることができる。例えば、酸化物530c2として、n:Ga:Zn=1:3:4[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いることができる。
酸化物530cを酸化物530c1及び酸化物530c2の2層構造とすることにより、酸化物530cを1層構造とする場合より、トランジスタのオン電流を高めることができる。そのため、トランジスタは、例えばパワーMOSトランジスタとして適用することができる。なお、図10A、及び図10Bに示す構成のトランジスタが有する酸化物530cも、酸化物530c1と酸化物530c2の2層構造とすることができる。
図13A、図13Bに示す構成のトランジスタは、例えば、図8、図9に示すトランジスタ300に適用することができる。また、例えば、トランジスタ300は、前述のとおり、コンパレータCMP1に含まれているトランジスタに適用することができる。なお、図13A、図13Bに示すトランジスタは、本発明の一態様の半導体装置が有する、トランジスタ300、及びトランジスタ500以外のトランジスタにも適用することができる。
図14は、トランジスタ500を図10Aに示すトランジスタの構成とし、トランジスタ300を図13Aに示すトランジスタ構成とした場合における、半導体装置の構成例を示す断面図である。なお、図12と同様に、導電体546の側面に絶縁体552を設ける構成としている。図14に示すように、本発明の一態様の半導体装置は、トランジスタ300とトランジスタ500を両方ともOSトランジスタとしつつ、トランジスタ300とトランジスタ500のそれぞれを異なる構成にすることができる。
次に、図8、図9の半導体装置に適用できる容量素子について説明する。
図15A乃至図15Cでは、図8に示す半導体装置に適用できる容量素子600の一例として容量素子600Aについて示している。図15Aは容量素子600Aの上面図であり、図15Bは容量素子600Aの一点鎖線L3-L4における断面を示した斜視図であり、図15Cは容量素子600Aの一点鎖線W3-L4における断面を示した斜視図である。
導電体610は、容量素子600Aの1対の電極の一方として機能し、導電体620は、容量素子600Aの1対の電極の他方として機能する。また、絶縁体630は、1対の電極に挟まれる誘電体として機能する。
容量素子600Aは、導電体610の下部において、導電体546と、導電体548とに電気的に接続されている。導電体546と、導電体548は、別の回路素子と接続するためのプラグ、又は配線として機能する。また図15では、導電体546と、導電体548と、をまとめて導電体540と記載している。
また、図15では、図を明瞭に示すために、導電体546及び導電体548が埋め込まれている絶縁体586と、導電体620及び絶縁体630を覆っている絶縁体650と、を省略している。
なお、図8、図9に示す容量素子600、図15A乃至図15Cに示す容量素子600Aはプレーナ型であるが、容量素子の形状はこれに限定されない。例えば、容量素子600(容量素子600A)は、図16A乃至図16Cに示すシリンダ型の容量素子600Bとしてもよい。
図16Aは容量素子600Bの上面図であり、図16Bは容量素子600Bの一点鎖線L3-L4における断面図であり、図16Cは容量素子600Bの一点鎖線W3-L4における断面を示した斜視図である。
図16Bにおいて、容量素子600Bは、導電体540が埋め込まれている絶縁体586上の絶縁体631と、開口部を有する絶縁体651と、1対の電極の一方として機能する導電体610と、1対の電極の他方として機能する導電体620と、を有する。
また、図16Cでは、図を明瞭に示すために、絶縁体586と、絶縁体650と、絶縁体651と、を省略している。
絶縁体631としては、例えば、絶縁体586と同様の材料を用いることができる。
また、絶縁体631には、導電体540に電気的に接続されるように導電体611が埋め込まれている。導電体611は、例えば、導電体330、導電体518と同様の材料を用いることができる。
絶縁体651としては、例えば、絶縁体586と同様の材料を用いることができる。
また、絶縁体651は、前述の通り、開口部を有し、当該開口部は導電体611に重畳している。
導電体610は、当該開口部の底部と、側面と、に形成されている。つまり、導電体610は、導電体611に重畳し、かつ導電体611に電気的に接続されている。
なお、導電体610の形成方法としては、エッチング法などによって絶縁体651に開口部を形成し、次に、スパッタリング法、ALD法などによって導電体610を成膜する。その後、CMP(Chemichal Mechanical Polishing)法などによって、開口部に成膜された導電体610を残して、絶縁体651上に成膜された導電体610を除去すればよい。
絶縁体630は、絶縁体651上と、導電体610の形成面上と、に位置する。なお、絶縁体630は、容量素子において、1対の電極に挟まれる誘電体として機能する。
導電体620は、絶縁体651の開口部が埋まるように、絶縁体630上に形成されている。
絶縁体650は、絶縁体630と、導電体620と、を覆うように形成されている。
図16に示すシリンダ型の容量素子600Bは、プレーナ型の容量素子600Aよりも静電容量の値を高くすることができる。そのため、例えば、上記の実施の形態で説明した容量C1、容量C2などとして、容量素子600Bを適用することによって、長時間、容量の端子間の電圧を維持することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物であるCAC-OS(Cloud-Aligned Composite Oxide Semiconductor)、及びCAAC-OS(c-axis Aligned Crystalline Oxide Semiconductor)の構成について説明する。なお、明細書等において、CACは機能、又は材料の構成の一例を表し、CAACは結晶構造の一例を表す。
<金属酸化物の構成>
CAC-OS又はCAC-metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC-OS又はCAC-metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(又はホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC-OS又はCAC-metal oxideに付与することができる。CAC-OS又はCAC-metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC-OS又はCAC-metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC-OS又はCAC-metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC-OS又はCAC-metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC-OS又はCAC-metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC-OS又はCAC-metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC-OS又はCAC-metal oxideは、マトリックス複合材(matrix composite)、又は金属マトリックス複合材(metal matrix composite)と呼称することもできる。
<金属酸化物の構造>
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc-OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a-like OS:amorphous-like oxide semiconductor)及び非晶質酸化物半導体などがある。
CAAC-OSは、c軸配向性を有し、かつa-b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、及び七角形などの格子配列を有する場合がある。なお、CAAC-OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC-OSが、a-b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
また、CAAC-OSは、インジウム、及び酸素を有する層(以下、In層)と、元素M、亜鉛、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC-OSは結晶性の高い酸化物半導体である。一方、CAAC-OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC-OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC-OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC-OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC-OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC-OSを用いると、製造工程の自由度を広げることが可能となる。
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc-OSは、分析方法によっては、a-like OSや非晶質酸化物半導体と区別が付かない場合がある。
a-like OSは、nc-OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a-like OSは、鬆又は低密度領域を有する。即ち、a-like OSは、nc-OS及びCAAC-OSと比べて、結晶性が低い。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a-like OS、nc-OS、CAAC-OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性という場合があり、また、真性又は実質的に真性という場合がある。
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態は、上記実施の形態に示す半導体装置などが形成された半導体ウェハ、及び当該半導体装置が組み込まれた電子部品の一例を示す。
<半導体ウェハ>
初めに、半導体装置などが形成された半導体ウェハの例を、図17Aを用いて説明する。
図17Aに示す半導体ウェハ4800は、ウェハ4801と、ウェハ4801の上面に設けられた複数の回路部4802と、を有する。なお、ウェハ4801の上面において、回路部4802の無い部分は、スペーシング4803であり、ダイシング用の領域である。
半導体ウェハ4800は、ウェハ4801の表面に対して、前工程によって複数の回路部4802を形成することで作製することができる。また、その後に、ウェハ4801の複数の回路部4802が形成された反対側の面を研削して、ウェハ4801の薄膜化してもよい。この工程により、ウェハ4801の反りなどを低減し、部品としての小型化を図ることができる。
次の工程としては、ダイシング工程が行われる。ダイシングは、一点鎖線で示したスクライブラインSCL1及びスクライブラインSCL2(ダイシングライン、又は切断ラインと呼ぶ場合がある)に沿って行われる。なお、スペーシング4803は、ダイシング工程を容易に行うために、複数のスクライブラインSCL1が平行になるように設け、複数のスクライブラインSCL2が平行になるように設け、スクライブラインSCL1とスクライブラインSCL2が垂直になるように設けるのが好ましい。
ダイシング工程を行うことにより、図17Bに示すようなチップ4800aを、半導体ウェハ4800から切り出すことができる。チップ4800aは、ウェハ4801aと、回路部4802と、スペーシング4803aと、を有する。なお、スペーシング4803aは、極力小さくなるようにするのが好ましい。この場合、隣り合う回路部4802の間のスペーシング4803の幅が、スクライブラインSCL1の切りしろと、又はスクライブラインSCL2の切りしろとほぼ同等の長さであればよい。
なお、本発明の一態様の素子基板の形状は、図17Aに図示した半導体ウェハ4800の形状に限定されない。例えば、矩形の形状の半導体ウェハあってもよい。素子基板の形状は、素子の作製工程、及び素子を作製するための装置に応じて、適宜変更することができる。
<電子部品>
次に、チップ4800aが組み込まれた電子部品の例を、図17C、及び図17Dを用いて説明を行う。
図17Cに電子部品4700および電子部品4700が実装された基板(実装基板4704)の斜視図を示す。図17Cに示す電子部品4700は、リード4701と、上述したチップ4800aと、を有し、ICチップ等として機能する。
電子部品4700は、例えば、リードフレームのリード4701とチップ4800a上の電極とを金属の細線(ワイヤー)で電気的に接続するワイヤーボンディング工程と、エポキシ樹脂等によって封止するモールド工程と、リードフレームのリード4701へのメッキ処理と、パッケージの表面への印字処理と、を行うことで作製することができる。また、ワイヤーボンディング工程は、例えば、ボールボンディングや、ウェッジボンディングなどを用いることができる。また、図17Cでは、電子部品4700のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
電子部品4700は、例えばプリント基板4702に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板4702上で電気的に接続されることで実装基板4704が完成する。
図17Dに電子部品4730の斜視図を示す。電子部品4730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品4730は、パッケージ基板4732(プリント基板)上にインターポーザ4731が設けられ、インターポーザ4731上に半導体装置4735、および複数の半導体装置4710が設けられている。
電子部品4730では、半導体装置4710を有する。半導体装置4710としては、例えば、上記実施の形態で説明した半導体装置、広帯域メモリ(HBM:High Bandwidth Memory)などとすることができる。また、半導体装置4735は、CPU、GPU、FPGA、記憶装置などの集積回路(半導体装置)を用いることができる。
パッケージ基板4732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ4731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
インターポーザ4731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ4731は、インターポーザ4731上に設けられた集積回路をパッケージ基板4732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ4731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板4732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
インターポーザ4731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
また、電子部品4730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ4731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品4730では、半導体装置4710と半導体装置4735の高さを揃えることが好ましい。
電子部品4730を他の基板に実装するため、パッケージ基板4732の底部に電極4733を設けてもよい。図17Dでは、電極4733を半田ボールで形成する例を示している。パッケージ基板4732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極4733を導電性のピンで形成してもよい。パッケージ基板4732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
電子部品4730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J-leaded package)、またはQFN(Quad Flat Non-leaded package)などの実装方法を用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、上記実施の形態で説明した半導体装置及び当該半導体装置を備えた電子部品を適用可能な蓄電装置および蓄電システムの構成について説明する。
[円筒型二次電池]
円筒型の二次電池の例について図18Aを参照して説明する。円筒型の二次電池1400は、図18Aに示すように、上面に正極キャップ(電池蓋)1401を有し、側面及び底面に電池缶(外装缶)1402を有している。これら正極キャップ1401と電池缶(外装缶)1402とは、ガスケット(絶縁パッキン)1410によって絶縁されている。
図18Bは、円筒型の二次電池の断面を模式的に示した図である。図18Bに示す円筒型の二次電池は、上面に正極キャップ(電池蓋)1601を有し、側面および底面に電池缶(外装缶)1602を有している。これら正極キャップと電池缶(外装缶)1602とは、ガスケット(絶縁パッキン)1610によって絶縁されている。
中空円柱状の電池缶1602の内側には、帯状の正極1604と負極1606とがセパレータ1605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶1602は、一端が閉じられ、他端が開いている。電池缶1602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を電池缶1602に被覆することが好ましい。電池缶1602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板1608、1609により挟まれている。また、電池素子が設けられた電池缶1602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極1604には正極端子(正極集電リード)1603が接続され、負極1606には負極端子(負極集電リード)1607が接続される。正極端子1603および負極端子1607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子1603は安全弁機構1613に、負極端子1607は電池缶1602の底にそれぞれ抵抗溶接される。安全弁機構1613は、PTC素子(Positive Temperature Coefficient)1611を介して正極キャップ1601と電気的に接続されている。安全弁機構1613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ1601と正極1604との電気的な接続を切断するものである。また、PTC素子1611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
図18Cは蓄電システム1415の一例を示す。蓄電システム1415は複数の二次電池1400を有する。それぞれの二次電池の正極は、絶縁体1425で分離された導電体1424に接触し、電気的に接続されている。導電体1424は配線1423を介して、制御回路1420に電気的に接続されている。また、それぞれの二次電池の負極は、配線1426を介して制御回路1420に電気的に接続されている。制御回路1420として、先の実施の形態にて述べた半導体装置(又は、半導体装置を備える電子部品)を用いることができる。
図18Dは、蓄電システム1415の一例を示す。蓄電システム1415は複数の二次電池1400を有し、複数の二次電池1400は、導電板1413及び導電板1414の間に挟まれている。複数の二次電池1400は、配線1416により導電板1413及び導電板1414と電気的に接続される。複数の二次電池1400は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池1400を有する蓄電システム1415を構成することで、大きな電力を取り出すことができる。
複数の二次電池1400の間に温度制御装置を有していてもよい。二次電池1400が過熱されたときは、温度制御装置により冷却し、二次電池1400が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム1415の性能が外気温に影響されにくくなる。
また、図18Dにおいて、蓄電システム1415は制御回路1420に配線1421及び配線1422を介して電気的に接続されている。制御回路1420として、先の実施の形態にて述べた電池制御回路を用いることができる。配線1421は導電板1413を介して複数の二次電池1400の正極に、配線1422は導電板1414を介して複数の二次電池1400の負極に、それぞれ電気的に接続される。
[二次電池パック]
次に本発明の一態様の蓄電システムの例について、図19を用いて説明する。
図19Aは、二次電池パック1531の外観を示す図である。図19Bは二次電池パック1531の構成を説明する図である。二次電池パック1531は、回路基板1501と、二次電池1513と、を有する。二次電池1513には、ラベル1509が貼られている。回路基板1501は、シール1515により固定されている。また、二次電池パック1531は、アンテナ1517を有する。
回路基板1501は制御回路1590を有する。制御回路1590は、先の実施の形態に示す電池制御回路を用いることができる。例えば、図19Bに示すように、回路基板1501上に、制御回路1590を有する。また、回路基板1501は、端子1511と電気的に接続されている。また回路基板1501は、アンテナ1517、二次電池1513の正極リード及び負極リードの一方1551、正極リード及び負極リードの他方1552と電気的に接続される。
あるいは、図19Cに示すように、回路基板1501上に設けられる回路システム1590aと、端子1511を介して回路基板1501に電気的に接続される回路システム1590bと、を有してもよい。例えば、本発明の一態様の制御回路の一部分が回路システム1590aに、他の一部分が回路システム1590bに、それぞれ設けられる。
なお、アンテナ1517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ1517は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ1517を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
二次電池パック1531は、アンテナ1517と、二次電池1513との間に層1519を有する。層1519は、例えば二次電池1513による電磁界を遮蔽することができる機能を有する。層1519としては、例えば磁性体を用いることができる。
二次電池1513は、図19Cに示すような捲回された電池素子1593を有する。電池素子1593は、負極1594と、正極1595と、セパレータ1596と、を有する。電池素子1593は、セパレータ1596を挟んで負極1594と、正極1595とが重なり合って積層され、該積層シートを捲回したものである。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態7)
本実施の形態では、上記実施の形態で説明した半導体装置、又は当該半導体装置を有する電子部品、及び、上記実施の形態で説明した蓄電装置を備えることができる電子機器の一例について説明する。
[携帯電話]
図20Aに示す情報端末5500は、情報端末の一種である携帯電話(スマートフォン)である。情報端末5500は、筐体5510と、表示部5511と、を有しており、入力用インターフェースとして、タッチパネルが表示部5511に備えられ、ボタンが筐体5510に備えられている。
情報端末5500は、上記実施の形態で説明した半導体装置を適用することで、情報端末5500に備えられている電池の過充電、及び/又は過放電を防ぐことができる。
[ウェアラブル端末]
また、図20Bには、情報端末の一例としてウェアラブル端末5900が図示されている。ウェアラブル端末5900は、筐体5901、表示部5902、操作ボタン5903、操作子5904、バンド5905などを有する。
ウェアラブル端末5900は、先述した情報端末5500と同様に、上記実施の形態で説明した半導体装置を適用することで、ウェアラブル端末に備えられている電池の過充電、又は過放電を防ぐことができる。
[パーソナルコンピュータ]
また、図20Cには、情報端末の一種であるノート型パーソナルコンピュータ5300が図示されている。ノート型パーソナルコンピュータ5300は、筐体5301、表示部5302、キーボード5303、トラックパッド型のポインティングデバイス5304、を有する。また、使用者の好みによっては、マウス型のポインティングデバイス5305をノート型パーソナルコンピュータ5300に用いることができる。
ノート型パーソナルコンピュータ5300は、先述の電子機器と同様に、上記実施の形態で説明した半導体装置を適用することで、ノート型パーソナルコンピュータ5300に備えられている電池の過充電、又は過放電を防ぐことができる。また、マウス型のポインティングデバイス5305にも上記実施の形態で説明した半導体装置を適用することができ、同様に、マウス型のポインティングデバイス5305に備えられている電池の過充電、又は過放電を防ぐことができる。
[ゲーム機]
また、図20Dには、ゲーム機の一例である携帯ゲーム機5200が図示されている。携帯ゲーム機5200は、筐体5201、表示部5202、ボタン5203等を有する。
更に、図20Eには、ゲーム機の一例である据え置き型ゲーム機7500が図示されている。据え置き型ゲーム機7500は、本体7520と、コントローラ7522を有する。なお、本体7520には、無線または有線によってコントローラ7522を接続することができる。また、図20Eには示していないが、コントローラ7522は、ゲームの画像を表示する表示部、ボタン以外の入力インターフェースとなるタッチパネルやスティック、回転式つまみ、スライド式つまみなどを備えることができる。また、コントローラ7522は、図20Eに示す形状に限定されず、ゲームのジャンルに応じて、コントローラ7522の形状を様々に変更してもよい。例えば、FPS(First Person Shooter)などのシューティングゲームでは、トリガーをボタンとし、銃を模した形状のコントローラを用いることができる。また、例えば、音楽ゲームなどでは、楽器、音楽機器などを模した形状のコントローラを用いることができる。更に、据え置き型ゲーム機は、コントローラを使わず、代わりにカメラ、深度センサ、マイクロフォンなどを備えて、ゲームプレイヤーのジェスチャー、及び/又は音声によって操作する形式としてもよい。
また、上述したゲーム機の映像は、テレビジョン装置、パーソナルコンピュータ用ディスプレイ、ゲーム用ディスプレイ、ヘッドマウントディスプレイなどの表示装置によって、出力することができる。
携帯ゲーム機5200は、先述の電子機器と同様に、上記実施の形態で説明した半導体装置を適用することで、携帯ゲーム機5200に備えられている電池の過充電、又は過放電を防ぐことができる。また、据え置き型ゲーム機7500において、無線でコントローラ7522を接続している場合、コントローラ7522は据え置き型ゲーム機7500と電波によって通信するため、電池が備えられている場合がある。そのため、コントローラ7522は、先述の電子機器と同様に、上記実施の形態で説明した半導体装置を適用することで、コントローラ7522に備えられている電池の過充電、又は過放電を防ぐことができる。
[移動体]
上記実施の形態で説明した半導体装置は、移動体である自動車に適用することができる。
図20Fには移動体の一例である自動車5700が図示されている。
自動車5700の運転席周辺には、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供するインストゥルメントパネルが備えられている。また、運転席周辺には、それらの情報を示す表示装置が備えられていてもよい。
特に、自動車5700が、電池を備える電気自動車である場合、自動車5700に、先述の電子機器と同様に、上記実施の形態で説明した半導体装置を適用することで、コントローラ7522に備えられている電池の過充電、又は過放電を防ぐことができる。
なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができる。
[カメラ]
上記実施の形態で説明した半導体装置は、カメラに適用することができる。
図20Gには、撮像装置の一例であるデジタルカメラ6240が図示されている。デジタルカメラ6240は、筐体6241、表示部6242、操作ボタン6243、シャッターボタン6244等を有し、また、デジタルカメラ6240には、着脱可能なレンズ6246が取り付けられている。なお、ここではデジタルカメラ6240を、レンズ6246を筐体6241から取り外して交換することが可能な構成としたが、レンズ6246と筐体6241とが一体となっていてもよい。また、デジタルカメラ6240は、ストロボ装置や、ビューファインダー等を別途装着することができる構成としてもよい。
デジタルカメラ6240に上記実施の形態で説明した半導体装置を適用することによって、先述の電子機器と同様に、デジタルカメラ6240に備えられている電池の過充電、又は過放電を防ぐことができる。
[ビデオカメラ]
上記実施の形態で説明した半導体装置は、ビデオカメラに適用することができる。
図20Hには、撮像装置の一例であるビデオカメラ6300が図示されている。ビデオカメラ6300は、第1筐体6301、第2筐体6302、表示部6303、操作キー6304、レンズ6305、接続部6306等を有する。操作キー6304及びレンズ6305は第1筐体6301に設けられており、表示部6303は第2筐体6302に設けられている。そして、第1筐体6301と第2筐体6302とは、接続部6306により接続されており、第1筐体6301と第2筐体6302の間の角度は、接続部6306により変更が可能である。表示部6303における映像を、接続部6306における第1筐体6301と第2筐体6302との間の角度に従って切り替える構成としてもよい。
ビデオカメラ6300に上記実施の形態で説明した半導体装置を適用することによって、先述の電子機器と同様に、ビデオカメラ6300に備えられている電池の過充電、又は過放電を防ぐことができる。
[ICD]
上記実施の形態で説明した半導体装置は、植え込み型除細動器(ICD)に適用することができる。
図20Iは、ICDの一例を示す断面模式図である。ICD本体5400は、バッテリー5401と、記憶装置5407と、レギュレータと、制御回路と、アンテナ5404と、右心房へのワイヤ5402、右心室へのワイヤ5403とを少なくとも有している。
ICD本体5400は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5405及び上大静脈5406を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
ICD本体5400は、ペースメーカのとしての機能を有し、心拍数が規定の範囲から外れた場合に心臓に対してペーシングを行う。また、ペーシングによって心拍数が改善しない場合(速い心室頻拍や心室細動など)、電気ショックによる治療が行われる。
ICD本体5400は、ペーシング及び電気ショックを適切に行うため、心拍数を常に監視する必要がある。そのため、ICD本体5400は、心拍数を検知するためのセンサを有する。また、ICD本体5400は、当該センサなどによって取得した心拍数のデータ、ペーシングによる治療を行った回数、時間などを記憶装置5407に記憶することができる。
また、アンテナ5404で電力が受信でき、その電力はバッテリー5401に充電される。また、ICD本体5400は複数のバッテリーを有することにより、安全性を高くすることができる。具体的には、ICD本体5400の一部のバッテリーが使えなくなったとしても残りのバッテリーが機能させることができるため、補助電源としても機能する。
また、ICD本体5400に上記実施の形態で説明した半導体装置を適用することによって、先述の電子機器と同様に、バッテリー5401の過充電、又は過放電を防ぐことができる。
また、電力を受信できるアンテナ5404とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
BAT:組電池、CNC:回路、HCMP:ヒステリシスコンパレータ、HCMP1:ヒステリシスコンパレータ、HCMP2:ヒステリシスコンパレータ、HCMP3:ヒステリシスコンパレータ、HCMP4:ヒステリシスコンパレータ、HCMP5:ヒステリシスコンパレータ、HCMP6:ヒステリシスコンパレータ、HCMP7:ヒステリシスコンパレータ、HCMP8:ヒステリシスコンパレータ、LC:論理回路、CTL:制御回路、CNV:回路、RPG:回路、CE:セル、CADC:回路、SW1:スイッチ、TrS1:トランジスタ、C1:容量、C2:容量、ND1:ノード、ND2:ノード、CMP1:コンパレータ、INV:インバータ回路、LCNA:NAND回路、LCNO:NOR回路、CI1:入力端子、CI2:入力端子、CO1:出力端子、CO2:出力端子、IT:入力端子、RT:参照電位入力端子、VIT:端子、VOT:端子、OT:出力端子、OTB:出力端子、SH:制御端子、SHE:配線、VGE:配線、EN:配線、100:半導体装置、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、402:絶縁体、404:絶縁体、500:トランジスタ、503:導電体、503a:導電体、503b:導電体、505:導電体、510:絶縁体、512:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、522:絶縁体、524:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、530c:酸化物、530c1:酸化物、530c2:酸化物、540:導電体、540a:導電体、540b:導電体、542a:導電体、542b:導電体、543a:領域、543b:領域、544:絶縁体、546:導電体、548:導電体、550:絶縁体、552:絶縁体、560:導電体、560a:導電体、560b:導電体、574:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、586:絶縁体、600:容量素子、600A:容量素子、600B:容量素子、610:導電体、611:導電体、612:導電体、620:導電体、621:導電体、630:絶縁体、631:絶縁体、650:絶縁体、651:絶縁体、1400:二次電池、1401:正極キャップ、1413:導電板、1414:導電板、1415:蓄電システム、1416:配線、1420:制御回路、1421:配線、1422:配線、1423:配線、1424:導電体、1425:絶縁体、1426:配線、1501:回路基板、1509:ラベル、1511:端子、1513:二次電池、1515:シール、1517:アンテナ、1519:層、1531:二次電池パック、1551:一方、1552:他方、1590:制御回路、1590a:回路システム、1590b:回路システム、1593:電池素子、1594:負極、1595:正極、1596:セパレータ、1601:正極キャップ、1602:電池缶、1603:正極端子、1604:正極、1605:セパレータ、1606:負極、1607:負極端子、1608:絶縁板、1609:絶縁板、1611:PTC素子、1613:安全弁機構、4700:電子部品、4701:リード、4702:プリント基板、4704:実装基板、4710:半導体装置、4730:電子部品、4731:インターポーザ、4732:パッケージ基板、4733:電極、4735:半導体装置、4800:半導体ウェハ、4800a:チップ、4801:ウェハ、4801a:ウェハ、4802:回路部、4803:スペーシング、4803a:スペーシング、5200:携帯ゲーム機、5201:筐体、5202:表示部、5203:ボタン、5300:ノート型パーソナルコンピュータ、5301:筐体、5302:表示部、5303:キーボード、5304:ポインティングデバイス、5305:ポインティングデバイス、5400:ICD本体、5401:バッテリー、5402:ワイヤ、5403:ワイヤ、5404:アンテナ、5405:鎖骨下静脈、5406:上大静脈、5407:記憶装置、5500:情報端末、5510:筐体、5511:表示部、5700:自動車、5900:ウェアラブル端末、5901:筐体、5902:表示部、5903:操作ボタン、5904:操作子、5905:バンド、6240:デジタルカメラ、6241:筐体、6242:表示部、6243:操作ボタン、6244:シャッターボタン、6246:レンズ、6300:ビデオカメラ、6301:第1筐体、6302:第2筐体、6303:表示部、6304:操作キー、6305:レンズ、6306:接続部、7500:据え置き型ゲーム機、7520:本体、7522:コントローラ

Claims (7)

  1. コンパレータと、スイッチと、第1容量と、第2容量と、論理回路と、を有し、
    前記スイッチの第1端子は、前記第1容量の1対の導電領域の一方と、前記第2容量の1対の導電領域の一方と、前記コンパレータの第1入力端子と、に電気的に接続され、
    前記コンパレータの出力端子は、前記論理回路の入力端子に電気的に接続され、
    前記論理回路の出力端子は、前記第2容量の1対の導電領域の他方に電気的に接続され、
    前記論理回路は、前記論理回路の入力端子に入力された信号の反転信号を生成して、前記反転信号を前記論理回路の出力端子から出力する機能を有する、
    ヒステリシスコンパレータ。
  2. 請求項1において、
    前記論理回路は、インバータ回路を有し、
    前記論理回路の入力端子は、前記インバータ回路の入力端子に電気的に接続され、
    前記論理回路の出力端子は、前記インバータ回路の出力端子に電気的に接続される
    ヒステリシスコンパレータ。
  3. 請求項1において、
    前記論理回路は、NAND回路を有し、
    前記論理回路の入力端子は、前記NAND回路の第1入力端子に電気的に接続され、
    前記論理回路の出力端子は、前記NAND回路の出力端子に電気的に接続される
    ヒステリシスコンパレータ。
  4. 請求項1において、
    前記論理回路は、NOR回路を有し、
    前記論理回路の入力端子は、前記NOR回路の第1入力端子に電気的に接続され、
    前記論理回路の出力端子は、前記NOR回路の出力端子に電気的に接続される
    ヒステリシスコンパレータ。
  5. 請求項1乃至請求項4のいずれか一において、
    前記スイッチは、トランジスタを有し、
    前記トランジスタは、チャネル形成領域に金属酸化物を有する、
    ヒステリシスコンパレータ。
  6. 請求項1乃至請求項5のいずれか一に記載のヒステリシスコンパレータと、回路と、を有し、
    前記回路は、
    前記スイッチのオン状態とオフ状態の切り替えを行う機能と、
    前記スイッチの第2端子に入力するための参照電位を生成する機能と、
    前記コンパレータの第2入力端子に入力するための入力電圧を生成する機能と、を有する、
    半導体装置。
  7. 請求項6に記載の半導体装置と、セルと、を有し、
    前記回路は、前記セルの正極端子の電位と、前記セルの負極端子の電位と、に応じて、前記参照電位と、前記入力電圧と、を生成する機能を有する、
    蓄電装置。
JP2020560639A 2018-12-19 2019-12-11 ヒステリシスコンパレータ、半導体装置、及び蓄電装置 Active JP7273064B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018237337 2018-12-19
JP2018237337 2018-12-19
PCT/IB2019/060640 WO2020128722A1 (ja) 2018-12-19 2019-12-11 ヒステリシスコンパレータ、半導体装置、及び蓄電装置

Publications (3)

Publication Number Publication Date
JPWO2020128722A1 JPWO2020128722A1 (ja) 2020-06-25
JPWO2020128722A5 JPWO2020128722A5 (ja) 2022-11-11
JP7273064B2 true JP7273064B2 (ja) 2023-05-12

Family

ID=71101109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560639A Active JP7273064B2 (ja) 2018-12-19 2019-12-11 ヒステリシスコンパレータ、半導体装置、及び蓄電装置

Country Status (5)

Country Link
US (2) US11362647B2 (ja)
JP (1) JP7273064B2 (ja)
KR (1) KR20210104682A (ja)
CN (1) CN113196659A (ja)
WO (1) WO2020128722A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11714138B2 (en) 2018-11-22 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power storage device, and electronic device
JP7273064B2 (ja) * 2018-12-19 2023-05-12 株式会社半導体エネルギー研究所 ヒステリシスコンパレータ、半導体装置、及び蓄電装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300011A (ja) 2001-03-30 2002-10-11 Seiko Instruments Inc ヒステリシス付き電圧比較器
JP2006279765A (ja) 2005-03-30 2006-10-12 Toshiba Microelectronics Corp ヒステリシスコンパレータ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624313B2 (ja) * 1985-11-21 1994-03-30 日本電気株式会社 スイツチトキヤパシタ回路
JPH09266639A (ja) 1996-03-27 1997-10-07 Makita Corp 充電装置
KR100263551B1 (ko) 1996-10-12 2000-08-01 윤종용 2차 배터리 충전 회로
JP3593261B2 (ja) * 1998-06-22 2004-11-24 株式会社リコー ヒステリシスコンパレータ回路、及び波形発生回路
JP3510546B2 (ja) 1999-12-01 2004-03-29 Necエレクトロニクス株式会社 Mosトランジスタのゲート酸化膜トンネル電流モデル
JP4884295B2 (ja) 2007-05-16 2012-02-29 トヨタ自動車株式会社 車両に搭載された電気機器の冷却装置
JP2009017703A (ja) 2007-07-05 2009-01-22 Mitsumi Electric Co Ltd 二次電池の充電制御回路及びこれを用いた充電制御装置
JP5061884B2 (ja) 2007-12-21 2012-10-31 ミツミ電機株式会社 電池パック
JP5815195B2 (ja) 2008-09-11 2015-11-17 ミツミ電機株式会社 電池状態検知装置及びそれを内蔵する電池パック
JP2010086774A (ja) 2008-09-30 2010-04-15 Toshiba Corp 二次電池の残量管理システムおよび残量管理方法
JP5403514B2 (ja) 2009-10-29 2014-01-29 セイコーエプソン株式会社 温度センサ及び温度検出方法
JP2011097772A (ja) 2009-10-30 2011-05-12 Seiko Instruments Inc バッテリ状態監視回路及びバッテリ装置
JP5738667B2 (ja) 2010-05-28 2015-06-24 株式会社半導体エネルギー研究所 蓄電装置
JP5777148B2 (ja) 2011-04-27 2015-09-09 セイコーエプソン株式会社 温度計測方法
US10298043B2 (en) 2011-12-23 2019-05-21 Semiconductor Energy Laboratory Co., Ltd. Method for charging lithium ion secondary battery and battery charger
KR20150023547A (ko) 2012-06-01 2015-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 디바이스 및 경보 장치
US9160195B2 (en) * 2012-07-17 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Charging device
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
JP6150255B2 (ja) * 2013-09-30 2017-06-21 セイコーNpc株式会社 ヒステリシスコンパレータ回路
JP2016154110A (ja) 2015-02-20 2016-08-25 株式会社東芝 バッテリおよびバッテリのためのアラーム提示方法
JP6672949B2 (ja) 2016-03-29 2020-03-25 株式会社豊田自動織機 充電装置
KR102367787B1 (ko) 2016-06-30 2022-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 동작 방법
FR3082959A1 (fr) * 2018-06-26 2019-12-27 Stmicroelectronics (Rousset) Sas Commande cyclique de cellules d'un circuit integre
JP7273064B2 (ja) * 2018-12-19 2023-05-12 株式会社半導体エネルギー研究所 ヒステリシスコンパレータ、半導体装置、及び蓄電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002300011A (ja) 2001-03-30 2002-10-11 Seiko Instruments Inc ヒステリシス付き電圧比較器
JP2006279765A (ja) 2005-03-30 2006-10-12 Toshiba Microelectronics Corp ヒステリシスコンパレータ

Also Published As

Publication number Publication date
US20220329233A1 (en) 2022-10-13
US11362647B2 (en) 2022-06-14
JPWO2020128722A1 (ja) 2020-06-25
US11664786B2 (en) 2023-05-30
US20220021376A1 (en) 2022-01-20
WO2020128722A1 (ja) 2020-06-25
CN113196659A (zh) 2021-07-30
KR20210104682A (ko) 2021-08-25

Similar Documents

Publication Publication Date Title
US11664786B2 (en) Hysteresis comparator, semiconductor device, and power storage device
US12051924B2 (en) Semiconductor device and charge control system
KR20210080425A (ko) 축전 장치 및 축전 장치의 동작 방법
JP7514240B2 (ja) 記憶装置、半導体装置、及び電子機器
CN112385113A (zh) 半导体装置
JP2023140355A (ja) 半導体装置
JP7325439B2 (ja) 蓄電装置
JP7345497B2 (ja) 電池パック
WO2022084782A1 (ja) 半導体装置、及び電子機器
US20230298650A1 (en) Driving method of semiconductor device
JP7508370B2 (ja) 半導体装置、半導体ウェハ、及び電子機器
TW202201727A (zh) 半導體裝置及電子裝置
US11996133B2 (en) Memory circuit using oxide semiconductor
US20230198509A1 (en) Semiconductor device
US20230018223A1 (en) Semiconductor device
JP7222657B2 (ja) 二次電池の残量計測回路
WO2023144653A1 (ja) 記憶装置
WO2023144652A1 (ja) 記憶装置
US20220246596A1 (en) Display Device
KR20230071154A (ko) 반도체 장치 및 전자 기기
KR20230088692A (ko) 반도체 장치 및 전자 기기
JP2024125340A (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230427

R150 Certificate of patent or registration of utility model

Ref document number: 7273064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150