JP7322158B2 - 3次元メモリデバイスおよびその製造方法 - Google Patents

3次元メモリデバイスおよびその製造方法 Download PDF

Info

Publication number
JP7322158B2
JP7322158B2 JP2021546334A JP2021546334A JP7322158B2 JP 7322158 B2 JP7322158 B2 JP 7322158B2 JP 2021546334 A JP2021546334 A JP 2021546334A JP 2021546334 A JP2021546334 A JP 2021546334A JP 7322158 B2 JP7322158 B2 JP 7322158B2
Authority
JP
Japan
Prior art keywords
layer
trapping
vertical direction
memory device
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021546334A
Other languages
English (en)
Other versions
JP2022519875A (ja
Inventor
チグアン・ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Memory Technologies Co Ltd
Original Assignee
Yangtze Memory Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Memory Technologies Co Ltd filed Critical Yangtze Memory Technologies Co Ltd
Publication of JP2022519875A publication Critical patent/JP2022519875A/ja
Application granted granted Critical
Publication of JP7322158B2 publication Critical patent/JP7322158B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本開示は、メモリデバイスおよびその製造方法に関し、より具体的には、3次元(3D)メモリデバイスおよびその製造方法に関する。
平面的なメモリセルは、プロセス技術、回路設計、プログラミングアルゴリズム、および製作プロセスを改善することによって、より小さいサイズにスケーリングされる。しかし、メモリセルの特徴サイズが下限に接近するにつれて、平面的なプロセスおよび製作技法は、困難でコストがかかるようになる。結果として、平面的なメモリセルに関するメモリ密度は、上限に接近する。
3次元(3D)メモリアーキテクチャは、平面的なメモリセルの密度限界に対処することが可能である。3Dメモリアーキテクチャは、メモリアレイと、メモリアレイへのおよびメモリアレイからの信号を制御するための周辺デバイスとを含む。従来の3Dメモリアーキテクチャにおいて、メモリストリングが、半導体基板の上の複数の層スタック構造体を貫通するチャネルホールの中に形成されている。エピタキシャル構造体が、メモリストリングのチャネル層と半導体基板とを電気的に接続するために、それぞれのチャネルホールの底部に形成されている。しかし、スタック構造体の中の層の量が増加するにつれて、および、スタック構造体の中のそれぞれの層が、より高いストレージ密度のために、より薄くなるにつれて、いくつかの問題は深刻になり、3Dメモリデバイスの電気的性能および製造歩留まりに影響を与える。したがって、3Dメモリデバイスの構造および/または製造プロセスは、3Dメモリデバイスの電気的性能および/または製造歩留まりを改善するために修正されなければならない。
3次元(3D)メモリデバイスおよびその製造方法が、本開示において提供される。トラッピング層は、3Dメモリデバイスの電気的性能を改善するために、垂直方向に整合させられ、互いに分離されている複数のトラッピングセクションを含む。
本開示の一実施形態によれば、3Dメモリデバイスが提供される。3Dメモリデバイスは、基板と、絶縁層と、ゲート材料層と、垂直構造体とを含む。絶縁層およびゲート材料層は、基板の上に配設されており、垂直方向に交互に積層されている。垂直構造体は、垂直方向にゲート材料層を貫通する。垂直構造体は、半導体層およびトラッピング層を含む。半導体層は、垂直方向に細長くなっている。トラッピング層は、水平方向に半導体層を取り囲む。トラッピング層は、垂直方向に整合させられ、互いに分離されているトラッピングセクションを含む。
いくつかの実施形態において、トラッピングセクションのうちの1つは、水平方向に半導体層とゲート材料層のうちの1つとの間に位置する。
いくつかの実施形態において、絶縁層のうちの1つは、垂直方向に互いに隣接するトラッピングセクションのうちの2つの間に部分的に位置する。
いくつかの実施形態において、垂直方向におけるトラッピングセクションのそれぞれの長さは、垂直方向におけるゲート材料層のそれぞれの長さよりも小さい。
いくつかの実施形態において、3Dメモリデバイスは、絶縁層のうちの少なくとも1つに配設されている空隙をさらに含み、空隙は、垂直方向に互いに隣接するゲート材料層のうちの2つの間に位置する。
いくつかの実施形態において、垂直構造体は、水平方向にトラッピング層および半導体層を取り囲むブロッキング層をさらに含み、ブロッキング層は、垂直方向に整合させられ、互いに分離されているブロッキングセクションを含む。
いくつかの実施形態において、ブロッキングセクションのうちの1つは、水平方向にトラッピングセクションのうちの1つとゲート材料層のうちの1つとの間に配設されている。
いくつかの実施形態において、垂直方向は、水平方向と直交する。
本開示の一実施形態によれば、3Dメモリデバイスの製造方法が提供される。製造方法は、以下のステップを含む。交互の犠牲スタックが、基板の上に形成される。交互の犠牲スタックは、垂直方向に交互に積層された第1の犠牲層および第2の犠牲層を含む。垂直構造体が、垂直方向に交互の犠牲スタックを貫通して形成される。垂直構造体は、半導体層およびトラッピング層を含む。半導体層は、垂直方向に細長くなっている。トラッピング層は、水平方向に半導体層を取り囲む。第1の犠牲層が、垂直構造体の一部を露出させるために除去される。第1の犠牲層が除去された後に、第1のエッチングプロセスが実施される。トラッピング層は、第1のエッチングプロセスによってエッチングされて、垂直方向に整合させられ、互いに分離されているトラッピングセクションを含む。
いくつかの実施形態において、垂直構造体は、水平方向にトラッピング層および半導体層を取り囲むブロッキング層をさらに含み、3Dメモリデバイスの製造方法は、第1の犠牲層が除去された後であって、かつ、第1のエッチングプロセスの前に、第2のエッチングプロセスを実施するステップをさらに含む。ブロッキング層は、第2のエッチングプロセスによってエッチングされて、トラッピング層の一部を露出させる。
いくつかの実施形態において、3Dメモリデバイスの製造方法は、第2の犠牲層同士の間に絶縁層を形成するステップをさらに含む。絶縁層および第2の犠牲層は、垂直方向に交互に積層される。
いくつかの実施形態において、空隙が、絶縁層のうちの少なくとも1つに形成される。
いくつかの実施形態において、絶縁層のうちの1つが、垂直方向に互いに隣接するトラッピングセクションのうちの2つの間に部分的に位置する。
いくつかの実施形態において、3Dメモリデバイスの製造方法は、絶縁層を形成するステップの後に、第2の犠牲層をゲート材料層と置換するステップをさらに含む。
いくつかの実施形態において、空隙が、絶縁層のうちの少なくとも1つに形成され、空隙は、垂直方向に互いに隣接するゲート材料層のうちの2つの間に位置する。
いくつかの実施形態において、トラッピングセクションのうちの1つが、水平方向に半導体層とゲート材料層のうちの1つとの間に位置する。
いくつかの実施形態において、垂直方向におけるトラッピングセクションのそれぞれの長さは、垂直方向におけるゲート材料層のそれぞれの長さよりも小さい。
いくつかの実施形態において、垂直構造体は、基板とトラッピング層との間に配設されているエピタキシャル層をさらに含み、エピタキシャル層の一部は、第2の犠牲層が除去された後であって、かつ、ゲート材料層が形成される前に、酸化物領域になるように酸化される。
いくつかの実施形態において、酸化物領域は、水平方向にエピタキシャル層とゲート材料層のうちの1つとの間に位置する。
いくつかの実施形態において、垂直方向は、水平方向と直交する。
本開示の他の態様は、本開示の説明、特許請求の範囲、および図面に照らして、当業者によって理解され得る。
本発明のこれらのおよび他の目的は、さまざまな図および図面に図示されている好適な実施形態の以下の詳細な説明を読んだ後に、間違いなく当業者に明らかになることとなる。
添付の図面は、本明細書に組み込まれ、明細書の一部を形成しており、添付の図面は、本開示の実施形態を図示しており、さらに、説明とともに本開示の原理を説明する役割を果たし、当業者が本開示を作製および使用することを可能にする役割を果たす。
本開示の一実施形態による3次元(3D)メモリデバイスを図示する概略図である。 図1に示されている3Dメモリデバイスの一部分を図示する概略図である。 本開示の一実施形態による、3Dメモリデバイスの製造方法のフローチャートである。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図4の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図5の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図6の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図7の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図8の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図9の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図10の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図11の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図12の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図13の後に続くステップにおける概略図である。 本開示の一実施形態による3Dメモリデバイスの製造方法を図示する概略図であり、図14の後に続くステップにおける概略図である。
特定の構成および配置が議論されているが、これは、単に例示目的のためだけに行われているということが理解されるべきである。当業者は、本開示の要旨および範囲から逸脱することなく、他の構成および配置が使用され得るということを認識することとなる。本開示は、さまざまな他の用途においても用いられ得るということが、当業者に明らかであることとなる。
本明細書における「1つの実施形態」、「ある実施形態」、「いくつかの実施形態」などに対する言及は、説明されている実施形態が、特定の特徴、構造体、または特質を含むことが可能であるが、すべての実施形態が、必ずしも、その特定の特徴、構造体、または特質を含むとは限らない可能性があるということを示しているということが留意される。そのうえ、そのような語句は、必ずしも、同じ実施形態を指しているとは限らない。さらに、特定の特徴、構造体、または特質が、実施形態に関連して説明されているときには、明示的に説明されているかどうかにかかわらず、他の実施形態に関連して、そのような特徴、構造体、または特質に影響を与えることは、当業者の知識の範囲内であることとなる。
一般的に、専門用語は、文脈における使用法から少なくとも部分的に理解され得る。たとえば、本明細書で使用されているような「1つまたは複数の」という用語は、少なくとも部分的に文脈に応じて、単数形の意味で、任意の特徴、構造体、または特質を説明するために使用され得るか、または、複数形の意味で、特徴、構造体、または特質の組み合わせを説明するために使用され得る。同様に、「a」、「an」、または「the」などのような用語は、繰り返しになるが、少なくとも部分的に文脈に応じて、単数形の使用法を伝えるということ、または、複数形の使用法を伝えるということを理解され得る。加えて、「基づく」という用語は、必ずしも、排他的な要因のセットを伝えることを意図しているとは限らないということが理解され得、その代わりに、繰り返しになるが、少なくとも部分的に文脈に応じて、必ずしも明示的に記載されていない追加的な要因の存在を可能にする可能性がある。
さまざまなエレメント、コンポーネント、領域、層、および/またはセクションを説明するために、第1の、第2のなどの用語が本明細書で使用され得るが、これらのエレメント、コンポーネント、領域、層、および/またはセクションは、これらの用語によって限定されるべきではないということが理解されることとなる。これらの用語は、1つのエレメント、コンポーネント、領域、層、および/またはセクションを別のものから区別するためだけに使用されている。したがって、下記に議論されている第1のエレメント、コンポーネント、領域、層、またはセクションは、本開示の教示から逸脱することなく、第2のエレメント、コンポーネント、領域、層またはセクションと呼ばれ得る。
本開示における「の上に」、「の上方に(above)」、および「の上方に(over)」の意味は、最も広い様式で解釈されるべきであり、「の上に」は、何か「の上に直接的に」を意味するだけではなく、中間特徴または層がそれらの間にある状態で、何か「の上に」を意味することも含むようになっており、「の上方に(above)」または「の上方に(over)」は、何か「の上方に(above)」または「の上方に(over)」を意味するだけでなく、中間特徴または層がそれらの間にない状態で、それが何か「の上方に(above)」または「の上方に(over)」(すなわち、何かの上に直接的に)あることを意味することも含むことが可能であるということが容易に理解されるべきである。
さらに、「の下に」、「の下方に」、「下側」、「の上方に」、および「上側」などのような、空間的に相対的な用語は、説明を容易にするために、図に図示されているような別のエレメントまたは特徴に対する1つのエレメントまたは特徴の関係を説明するために本明細書で使用され得る。空間的に相対的な用語は、図に示されている配向に加えて、使用中または動作中のデバイスの異なる配向を包含することを意図している。装置は、その他の方法で配向され得(90度回転させられるか、または、他の配向で)、本明細書で使用されている空間的に相対的な記述子は、同様にそのように解釈され得る。
「形成する」という用語、または、「配設する」という用語は、材料の層を物体に適用する挙動を説明するために以降で使用されている。そのような用語は、それに限定されないが、熱膨張、スパッタリング、蒸発、化学蒸着、およびエピタキシャル成長、電気めっきなどを含む、任意の可能な層形成技法を説明することを意図している。
図1および図2を参照されたい。図1は、本開示の実施形態による3次元(3D)メモリデバイスを図示する概略図であり、図2は、図1に示されている3Dメモリデバイスの一部分を図示する概略図である。図1および図2に示されているように、この実施形態では、3Dメモリデバイス100が提供される。3Dメモリデバイス100は、基板10、複数の絶縁層38A、複数のゲート材料層50G、および垂直構造体VSを含む。絶縁層38Aおよびゲート材料層50Gは、基板10の上に配設されており、垂直方向D1に交互に積層されている。いくつかの実施形態において、垂直方向D1は、基板10の厚さ方向と見なされ得、垂直方向D1は、基板10の上部表面に直交することが可能であるが、それに限定されない。垂直構造体VSは、垂直方向D1にゲート材料層50Gを貫通している。垂直構造体VSは、半導体層28およびトラッピング層24を含む。半導体層28は、垂直方向D1に細長くなっている。トラッピング層24は、水平方向D2に半導体層28を取り囲む。垂直方向D1は、水平方向D2に直交することが可能であり、水平方向D2は、基板10の上部表面に平行であることが可能であるが、それに限定されない。トラッピング層24は、複数のトラッピングセクション、たとえば、複数の第1のトラッピングセクション24Aおよび第2のトラッピングセクション24Bなどを含む。第1のトラッピングセクション24Aは、垂直方向D1に第2のトラッピングセクション24Bの上方に配設され得、第1のトラッピングセクション24Aは、垂直方向D1に整合させられ、互いに分離され得る。
いくつかの実施形態において、垂直構造体VSは、エピタキシャル層20、ブロッキング層22、トンネリング層26、充填層30、および導電性構造体34をさらに含むことが可能である。ブロッキング層22は、トラッピング層24、トンネリング層26、半導体層28、および充填層30を、水平方向D2に取り囲むことが可能である。トンネリング層26は、半導体層28とトラッピング層24との間に配設され得、充填層30は、半導体層28、トンネリング層26、トラッピング層24、およびブロッキング層22によって、水平方向D2に取り囲まれ得る。いくつかの実施形態において、垂直構造体VSは、垂直方向D1に交互の誘電体/ゲート材料スタックST2を貫通するNANDストリングと見なされ得るが、それに限定されない。いくつかの実施形態において、垂直構造体VSは、垂直方向D1に細長い円筒形状を有することが可能であり、半導体層28、トンネリング層26、トラッピング層24、およびブロッキング層22が、円筒の中心から円筒の外側表面に向けて、半径方向にこの順序で配置され得るが、それに限定されない。
いくつかの実施形態において、ブロッキング層22の底部部分、トラッピング層24の底部部分、および、トンネリング層26の底部部分は、垂直方向D1に積層され、エピタキシャル層20の上に配設され得る。したがって、エピタキシャル層20は、垂直方向D1にブロッキング層22と基板10との間に配設され得る。いくつかの実施形態において、開口部が、ブロッキング層22の底部部分、トラッピング層24の底部部分、および、トンネリング層26の底部部分を、垂直方向D1に貫通することが可能であり、エピタキシャル層20の一部を露出させることが可能であり、半導体層28は、エピタキシャル層20に接触するために、エピタキシャル層20と直接的に電気的に接続されるために、この開口部の中に部分的に配設され得るが、それに限定されない。いくつかの実施形態において、エピタキシャル層20は、NANDメモリ構造体の中の底部選択ゲート(BSG)トランジスターのチャネル構造体と見なされ得、半導体層28は、エピタキシャル層20を介して、基板10の中のドープされたウェル(doped well)(図示せず)に電気的に接続され得るが、それに限定されない。いくつかの実施形態において、1つまたは複数の空隙(たとえば、図1に示されている第1の空隙32など)が、充填層30に配設され得、導電性構造体34は、充填層30の上方に配設されており、半導体層28と直接的に接続され得るが、それに限定されない。
いくつかの実施形態において、交互の誘電体/ゲート材料スタックST2の中のゲート材料層50Gのうちの少なくともいくつかは、メモリユニットの中のゲート構造体として使用され得、メモリユニットは、ゲート材料層50Gによって水平方向D2取り囲まれている、ブロッキング層22の一部、トラッピング層24の一部、トンネリング層26の一部、および、半導体層28の一部を含むことが可能である。換言すれば、3Dメモリデバイス100は、垂直方向D1に積層された複数のメモリユニットを含むことが可能である。いくつかの実施形態において、ゲート材料層50Gは、導電性材料の単一の層であるか、または、異なる材料の複数の層であることが可能である。たとえば、ゲート材料層50Gのそれぞれは、ゲート誘電体層52、バリア層54、および金属層56を含むことが可能であるが、それに限定されない。ゲート材料層50Gのそれぞれにおいて、ゲート誘電体層52が、水平方向D2に金属層56とブロッキング層22との間に部分的に配設され得、また、垂直方向D1に金属層56と絶縁層38Aとの間に部分的に配設され得、バリア層54が、ゲート誘電体層52と金属層56との間に配設され得る。
図1および図2に示されているように、第1のトラッピングセクション24Aのうちの1つは、水平方向D2に半導体層28とゲート材料層50Gのうちの1つとの間に位置し得る。第1のトラッピングセクション24Aのそれぞれは、水平方向D2にゲート材料層50Gのうちの1つに対応して位置し得、異なるゲート材料層50Gに対応して位置する第1のトラッピングセクション24Aは、垂直方向D1に配置されている複数のメモリユニットに対応して位置する連続的なトラッピング層の中の電荷の横方向拡散、および/または、水平方向D2に絶縁層38Aと半導体層28との間に位置するトラッピング層の中に捕獲された電荷によって発生させられる結合効果などのような、隣接するメモリユニット同士の間の干渉を低減させるために、互いに分離されている。換言すれば、互いに分離されて配設されている第1のトラッピングセクション24Aは、3Dメモリデバイス100の電気的性能(たとえば、電荷捕獲および/または電界維持能力など)を改善するために、異なるメモリユニットにそれぞれ属することが可能である。その理由は、連続的なトラッピング層の中の電荷、および/または、水平方向D2に絶縁層38Aと半導体層28との間に位置するトラッピング層の中に捕獲された電荷の横方向拡散が、それに応じて回避され得るからである。
いくつかの実施形態において、ブロッキング層22は、複数の第1のブロッキングセクション22Aおよび第2のブロッキングセクション22Bを含むことが可能である。第1のブロッキングセクション22Aは、垂直方向D1に第2のブロッキングセクション22Bの上方に配設され得、第1のブロッキングセクション22Aは、垂直方向D1に整合させられ、互いに分離され得る。いくつかの実施形態において、第1のブロッキングセクション22Aのそれぞれは、水平方向D2に第1のトラッピングセクション24Aのうちの1つとゲート材料層50Gのうちの1つとの間に位置し得、互いに分離されて配設されている第1のブロッキングセクション22Aは、異なるメモリユニットにそれぞれ属することが可能である。いくつかの実施形態において、絶縁層38Aのうちの1つは、垂直方向D1に互いに隣接する第1のトラッピングセクション24Aのうちの2つの間に部分的に位置し得る。換言すれば、垂直方向D1に互いに隣接する第1のトラッピングセクション24Aのうちの2つは、絶縁層38Aによって分離され得る。追加的に、いくつかの実施形態において、3Dメモリデバイス100は、絶縁層38Aのうちの少なくとも1つに配設されている第2の空隙40をさらに含むことが可能である。いくつかの実施形態において、第2の空隙40は、ゲート材料層50G同士の間の静電容量を低減させるために、および、ゲート材料層50G同士の間のRC遅延問題を改善するために、垂直方向D1に互いに隣接するゲート材料層50Gのうちの2つの間に位置し得る。いくつかの実施形態において、隣接するメモリユニット同士の間の干渉問題をさらに低減させるために、第2の空隙40は、垂直方向D1に互いに隣接して配設されている第1のブロッキングセクション22Aのうちの2つの間に部分的に位置し得、および/または、垂直方向D1に互いに隣接して配設されている第1のトラッピングセクション24Aのうちの2つの間に部分的に位置し得るが、それに限定されない。いくつかの実施形態において、水平方向D2に絶縁層38Aと半導体層28との間にトラッピング層24を形成することを回避するために、垂直方向D1への第1のトラッピングセクション24Aのそれぞれの長さL1は、垂直方向D1へのゲート材料層50Gのそれぞれの長さL3よりも小さくなっていることが可能である。いくつかの実施形態において、垂直方向D1への第1のブロッキングセクション22Aのそれぞれの長さL2は、同様に、垂直方向D1へのゲート材料層50Gのそれぞれの長さL3よりも小さくなっていることが可能であるが、それに限定されない。
いくつかの実施形態において、3Dメモリデバイス100は、第1の封鎖層16、第2の封鎖層18、ドープ領域36、第1の酸化物領域42、第2の酸化物領域44、第2の絶縁材料60、スリット構造体70、および第1の開口部H1をさらに含むことが可能である。第1の封鎖層16および第2の封鎖層18は、交互の誘電体/ゲート材料スタックST2の上に配設され得、垂直構造体VSは、第2の封鎖層18および第1の封鎖層16をさらに貫通することが可能である。第1の酸化物領域42は、エピタキシャル層20に配設され得、第1の酸化物領域42は、水平方向D2にエピタキシャル層20とゲート材料層50Gのうちの1つとの間に位置し得る。いくつかの実施形態において、第1の酸化物領域42は、NANDメモリ構造体の中のBSGトランジスターのゲート誘電体層の一部と見なされ得るが、それに限定されない。ドープ領域36は、基板10に配設され得、第2の酸化物領域44は、ドープ領域36の上に配設され得る。第1の開口部H1は、垂直方向D1にドープ領域36の上方に位置する、第2の封鎖層18、第1の封鎖層16、および、交互の誘電体/ゲート材料スタックST2を貫通することが可能である。スリット構造体70は、第1の開口部H1に配設され得、ドープ領域36と接触して電気的に接続されるように、ドープ領域36の上方の第2の酸化物領域44を貫通することが可能である。第2の絶縁材料60は、第1の開口部H1に配設され得、ゲート材料層50Gからスリット構造体70を絶縁するために、水平方向D2にスリット構造体70を取り囲むことが可能である。いくつかの実施形態において、基板10がP型半導体基板であるときには、ドープ領域36は、N型ドープ領域であることが可能であり、ドープ領域36は、共通のソース領域と見なされ得、スリット構造体70は、ソース接触構造体と見なされ得るが、それに限定されない。
図3~図15および図1~図2を参照されたい。図3は、本開示の実施形態による3Dメモリデバイスの製造方法のフローチャートであり、図4~図15は、この実施形態では、3Dメモリデバイスの製造方法を図示する概略図である。図5は、図4の後に続くステップにおける概略図であり、図6は、図5の後に続くステップにおける概略図であり、図7は、図6の後に続くステップにおける概略図であり、図8は、図7の後に続くステップにおける概略図であり、図9は、図8の後に続くステップにおける概略図であり、図10は、図9の後に続くステップにおける概略図であり、図11は、図10の後に続くステップにおける概略図であり、図12は、図11の後に続くステップにおける概略図であり、図13は、図12の後に続くステップにおける概略図であり、図14は、図13の後に続くステップにおける概略図であり、図15は、図14の後に続くステップにおける概略図であり、図1は、図15の後に続くステップにおける概略図と見なされ得る。3Dメモリデバイス100の製造方法は、それに限定されないが、以下のステップを含むことが可能である。図4に示されているように、基板10が提供され、交互の犠牲スタックST1が基板10の上に形成される。いくつかの実施形態において、基板10は、シリコン(たとえば、単結晶シリコン、多結晶シリコン)、シリコンゲルマニウム(SiGe)、炭化ケイ素(SiC)、窒化ガリウム(GaN)、リン化インジウム(InP)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレーター(SOI)、ゲルマニウムオンインシュレーター(GOI)、または、それらの任意の適切な組み合わせを含むことが可能である。交互の犠牲スタックST1は、垂直方向D1に交互に積層されている複数の第1の犠牲層12および複数の第2の犠牲層14を含むことが可能である。後続のプロセスにおいて必要とされるエッチング選択性を提供するために、第1の犠牲層12の材料組成は、第2の犠牲層14の材料組成とは異なっている。たとえば、第1の犠牲層12の材料は、酸化ケイ素または窒化ケイ素を含むことが可能であり、第2の犠牲層14の材料は、ポリシリコンを含むことが可能であるが、それに限定されない。いくつかの実施形態において、第1の犠牲層12および第2の犠牲層14は、必要とされるエッチング選択性を備えた他の適切な材料からも作製され得る。いくつかの実施形態において、交互の犠牲スタックST1の中の第1の犠牲層12および第2の犠牲層14の合計数は、32または64であることが可能であるが、それに限定されない。
図3および図4に示されているように、ステップS11において、垂直構造体VSは、垂直方向D1に交互の犠牲スタックST1を貫通して形成され得る。いくつかの実施形態において、第1の封鎖層16および第2の封鎖層18は、垂直構造体VSを形成するステップの前に形成され得、垂直構造体VSは、垂直方向D1に第2の封鎖層18および第1の封鎖層16をさらに貫通することが可能である。いくつかの実施形態において、第1の封鎖層16および第2の封鎖層18は、第1の犠牲層12を除去するように構成された後続のプロセス、および、第2の犠牲層14を除去するように構成された後続のプロセスによってエッチングされることを回避するために、第1の犠牲層12の材料および第2の犠牲層14の材料とは異なる誘電材料を含むことが可能である。
いくつかの実施形態において、垂直構造体VSの形成方法は、それに限定されないが、以下のステップを含むことが可能である。最初に、開口部が、垂直方向D1に交互の犠牲スタックST1を貫通して形成され得る。いくつかの実施形態において、3Dメモリデバイスの上面図における開口部の形状は、円形、長方形、または他の適切な閉じた形状であることが可能である。いくつかの実施形態において、基板10の一部は、開口部によって露出され得、基板10の一部は、開口部を形成するステップによって除去され得る。その後に、エピタキシャル層20が、開口部の中に形成され得、次いで、ブロッキング層22、トラッピング層24、およびトンネリング層26が、垂直方向D1にエピタキシャル層20の上方に形成され得る。いくつかの実施形態において、エピタキシャル層20は、選択エピタキシャル成長(SEG)プロセスによって形成されたポリシリコン層であることが可能であり、エピタキシャル層20は、開口部によって露出された基板10の表面において成長することが可能であるが、それに限定されない。エピタキシャル層20は、他の適切なエピタキシャル材料を含むことが可能であり、および/または、いくつかの実施形態において、他の適切なプロセスによって形成され得る。追加的に、ブロッキング層22、トラッピング層24、およびトンネリング層26は、原子層堆積(ALD)プロセス、化学蒸着(CVD)プロセス、または他の適切なフィルム形成プロセスなどのような、堆積プロセスによって形成され得る。いくつかの実施形態において、ブロッキング層22は、酸化ケイ素、酸窒化ケイ素、高誘電率(高k)誘電体、または、それらの任意の組み合わせを含むことが可能であり、トラッピング層24は、窒化ケイ素、酸窒化ケイ素、シリコン、または、それらの任意の組み合わせを含むことが可能であり、トンネリング層26は、酸化ケイ素、酸窒化ケイ素、または、それらの任意の組み合わせを含むことが可能である。たとえば、ブロッキング層22、トラッピング層24、およびトンネリング層26は、酸化物-窒化物-酸化物(ONO)構造体であることが可能であるが、それに限定されない。
その後に、開口部が、ブロッキング層22の底部部分、トラッピング層24の底部部分、および、トンネリング層26の底部部分を垂直方向D1に貫通して形成され、エピタキシャル層20の一部を露出させることが可能であり、半導体層28が、交互の犠牲スタックST1を貫通する開口部の中に形成され得、ブロッキング層22、トラッピング層24、およびトンネリング層26を貫通する開口部の中に形成され得る。半導体層28は、垂直方向D1に細長くなっていることが可能であり、半導体層28は、水平方向D2に、トンネリング層26、トラッピング層24、およびブロッキング層22によって取り囲まれ得る。充填層30および導電性構造体34が、半導体層28を形成するステップの後に形成され得る。充填層30は、水平方向D2に、半導体層28、トンネリング層26、トラッピング層24、およびブロッキング層22によって取り囲まれ得る。いくつかの実施形態において、半導体層28は、アモルファスシリコン、ポリシリコン、または他の適切な半導体材料を含むことが可能であり、充填層30は、酸化物または他の適切な絶縁材料を含むことが可能であるが、それに限定されない。導電性構造体34が、充填層30の上方の凹部の上に形成され得、導電性構造体34は、ポリシリコンまたは他の適切な導電性材料を含むことが可能である。いくつかの実施形態において、トンネリング層26は、電子電荷(電子または正孔)をトンネリングするために使用され得る。半導体層28からの電子または正孔は、トンネリング層26を通ってトラッピング層24にトンネルすることが可能であり、トラッピング層24は、メモリ動作のための電子電荷(電子または正孔)を貯蔵するために使用され得るが、それに限定されない。したがって、垂直構造体VSは、エピタキシャル層20、ブロッキング層22、トラッピング層24、トンネリング層26、半導体層28、充填層30、第1の空隙32、および導電性構造体34を含むことが可能であるが、それに限定されない。
図5に示されているように、第1の開口部H1は、第2の封鎖層18、第1の封鎖層16、および交互の犠牲スタックST1を貫通して形成され得、垂直構造体VSを形成するステップの後に、基板10の一部を露出させることが可能であり、ドープ領域36は、第1の開口部H1によって露出された基板10の中に形成され得る。いくつかの実施形態において、ドープ領域36は、インプランテーションプロセスまたは他の適切なドーピングアプローチによって形成され得る。いくつかの実施形態において、ドープ領域36は、共通のソース領域と見なされ得、第1の開口部H1は、共通のソーストレンチと見なされ得るが、それに限定されない。いくつかの実施形態において、第1の開口部H1およびドープ領域36を形成するステップによって損傷および/または影響を受けることから垂直構造体VSを保護するために、パターニングされたマスク層(図示せず)が、第1の開口部H1を形成するステップの前に、垂直構造体VSをカバーするように形成され得、パターニングされたマスク層は、ドープ領域36が形成された後に除去され得るが、それに限定されない。いくつかの実施形態において、垂直構造体VSは、第2の封鎖層18を貫通しない場合があり、第2の封鎖層18は、後続のプロセスによって損傷および/または影響を受けることから垂直構造体VSを保護するために、後続のプロセスの間に垂直構造体VSをカバーすることが可能であるが、それに限定されない。
図3および図6に示されているように、ステップS12において、ドープ領域36を形成するステップの後に、垂直構造体VSの一部を露出させるために、交互の犠牲スタックST1の中の第1の犠牲層12が除去され得る。いくつかの実施形態において、第1の犠牲層12は、他の材料層に損傷を与えることなく第1の犠牲層12を完全に除去することができるウェットエッチングプロセスまたは他の適切な除去アプローチによって除去され得る。図3、図6、および図7に示されているように、ステップS13において、エッチングプロセスが、第1の犠牲層12を除去するステップによって露出されたブロッキング層22の一部を除去するために実施され得る。ブロッキング層22は、エッチングプロセスによってエッチングされ、トラッピング層24の一部を露出させることが可能であり、ブロッキング層22は、エッチングプロセスによってエッチングされ、第1のブロッキングセクション22Aおよび第2のブロッキングセクション22Bを含むことが可能である。換言すれば、ブロッキング層22の一部分は、エッチングプロセスによってエッチングされ、第1のブロッキングセクション22Aになることが可能であり、ブロッキング層22の別の部分は、エッチングプロセスによってエッチングされ、第2のブロッキングセクション22Bになることが可能である。複数の第2の開口部H2が、水平方向D2にブロッキング層22を貫通して形成され得、トラッピング層24の一部を露出させることが可能である。第1のブロッキングセクション22Aは、垂直方向D1に整合させられ、互いに分離され得る。第1のブロッキングセクション22Aは、垂直方向D1に第2のブロッキングセクション22Bの上方に配設され得、第2のブロッキングセクション22Bは、第1のブロッキングセクション22Aから分離されて配設され得る。
図3、図7、および図8に示されているように、ステップS14において、別のエッチングプロセスは、第2の開口部H2によって露出されたトラッピング層24を除去するために実施され得る。トラッピング層24は、エッチングプロセスによってエッチングされ、トンネリング層26の一部を露出させることが可能であり、トラッピング層24は、エッチングプロセスよってエッチングされ、第1のトラッピングセクション24Aおよび第2のトラッピングセクション24Bを含むことが可能である。換言すれば、トラッピング層24の一部分は、エッチングプロセスによってエッチングされ、第1のトラッピングセクション24Aになることが可能であり、トラッピング層24の別の部分は、エッチングプロセスによってエッチングされ、第2のトラッピングセクション24Bになることが可能である。複数の第3の開口部H3が、水平方向D2にトラッピング層24を貫通して形成され得、トンネリング層26の一部を露出させることが可能である。第1のトラッピングセクション24Aは、垂直方向D1に整合させられ、互いに分離され得る。第1のトラッピングセクション24Aは、垂直方向D1に第2のトラッピングセクション24Bの上方に配設され得、第2のトラッピングセクション24Bは、第1のトラッピングセクション24Aから分離されて配設され得るが、それに限定されない。いくつかの実施形態において、第2のトラッピングセクション24Bは、最も底部にある第1のトラッピングセクション24Aと直接的に接続され得る。いくつかの実施形態において、トラッピング層24をエッチングするように構成されたエッチングプロセスは、第1のエッチングプロセスと見なされ得、ブロッキング層22をエッチングするように構成されたエッチングプロセスは、第1のエッチングプロセスの前に実施される第2のエッチングプロセスと見なされ得る。第1のエッチングプロセスおよび第2のエッチングプロセスは、第1の犠牲層を除去するステップの後に実施され得る。いくつかの実施形態において、第1のエッチングプロセスおよび第2のエッチングプロセスは、高いエッチング選択性を備えたウェットエッチングプロセスまたは他の適切なエッチングアプローチを含むことが可能である。いくつかの実施形態において、特に、トンネリング層26の材料がブロッキング層22の材料と同様であるときに、第1のエッチングプロセスにおいて使用されるエッチャントは、第2のエッチングプロセスにおいて使用されるエッチャントとは異なっていることが可能であるが、本開示は、これに限定されない。いくつかの実施形態において、ブロッキング層22およびトラッピング層24は、また、第1のブロッキングセクション22Aおよび第1のトラッピングセクション24Aを形成するために、同じエッチングプロセスによってエッチングされ得る。
図3、図9、および図10に示されているように、ステップS15において、絶縁層38Aが、垂直方向D1に第2の犠牲層14同士の間に形成され得る。いくつかの実施形態において、第1の絶縁材料38は、第2の犠牲層14同士の間に部分的に形成され得、CVDプロセスまたは他の適切なフィルム形成プロセスによって、第1の開口部H1の中に部分的に形成され得る。第1の絶縁材料38は、酸化物、窒化物、酸窒化物、または他の適切な絶縁材料を含むことが可能である。第1の開口部H1の中に形成された第1の絶縁材料38は、第2の犠牲層14同士の間に絶縁層38Aを形成するために、その後に除去され得る。したがって、絶縁層38Aおよび第2の犠牲層14が、垂直方向D1に交互に積層され得る。いくつかの実施形態において、絶縁層38Aのうちの1つは、垂直方向D1に互いに隣接する第1のトラッピングセクション24Aのうちの2つの間に部分的に位置し得る。換言すれば、垂直方向D1に互いに隣接する第1のトラッピングセクション24Aのうちの2つは、絶縁層38Aによって分離され得る。いくつかの実施形態において、特に、垂直方向D1に互いに隣接して位置する第2の犠牲層14のうちの2つの間の距離が極端に短いとき、および/または、第1の絶縁材料38のギャップ充填能力が比較的に悪いときには、1つまたは複数の第2の空隙40が、絶縁層38Aのうちの1つの中に形成され得る。第2の空隙40は、垂直方向D1に互いに隣接する第2の犠牲層14のうちの2つの間に位置し得る。いくつかの実施形態において、第2の空隙40は、垂直方向D1に互いに隣接して配設されている第1のブロッキングセクション22Aのうちの2つの間に部分的に位置し得、および/または、垂直方向D1に互いに隣接して配設されている第1のトラッピングセクション24Aのうちの2つの間に部分的に位置し得るが、それに限定されない。
図3および図10~図15に示されているように、ステップS16において、第2の犠牲層14は、絶縁層38Aを形成するステップの後に、ゲート材料層50Gと置換され得る。第2の犠牲層14をゲート材料層50Gと置換する方法は、それに限定されないが、以下のステップを含むことが可能である。図10および図11に示されているように、第2の犠牲層14は、垂直方向D1に絶縁層38A同士の間に複数の第4の開口部H4を形成するために除去され得る。いくつかの実施形態において、第4の開口部H4は、ゲートトレンチと見なされ得、第2の犠牲層14は、他の材料層に損傷を与えることなく第2の犠牲層14を完全に除去することができるウェットエッチングプロセスまたは他の適切な除去アプローチによって除去され得るが、それに限定されない。いくつかの実施形態において、第2の犠牲層14の材料が基板10の材料と同様であるときには、第1の開口部H1によって露出されるドープ領域36の一部が、第2の犠牲層14を除去するように構成されたエッチングプロセスによって除去され得る。
図10~図12に示されているように、いくつかの実施形態において、エピタキシャル層20の一部は、第2の犠牲層14を除去するステップの後に、および、ゲート材料層を形成するステップの前に、酸化プロセスによって第1の酸化物領域42になるように酸化され得る。いくつかの実施形態において、第4の開口部H4のうちの1つは、エピタキシャル層20の一部を露出させることが可能であり、第1の酸化物領域42は、第4の開口部H4によって露出されたエピタキシャル層20の中に形成され得る。いくつかの実施形態において、第1の酸化物領域42を形成するための酸化プロセスは、熱酸化プロセス、化学的な酸化プロセス、または他の適切な酸化アプローチを含むことが可能であり、ドープ領域36の一部は、酸化プロセスによって第2の酸化物領域44になるように酸化され得るが、それに限定されない。図13に示されているように、ゲート材料50は、絶縁層38A同士の間に部分的に形成され得、第1の開口部H1の中に部分的に形成され得る。いくつかの実施形態において、ゲート材料50は、単一の導電性材料、または、異なる材料層(たとえば、上記に説明されている図2に示されているゲート誘電体層52、バリア層54、および金属層56など)を含む複合材料であることが可能である。いくつかの実施形態において、ゲート誘電体層52は、高k誘電材料または他の適切な誘電材料を含むことが可能であり、バリア層54は、窒化チタン、窒化タンタル、または他の適切なバリア材料を含むことが可能であり、金属層56は、比較的に低い抵抗率を有する金属材料(たとえば、銅、アルミニウム、タングステン、または他の適切な金属材料など)を含むことが可能である。
図13および図14に示されているように、第1の開口部H1の中に形成されたゲート材料50は、絶縁層38A同士の間にゲート材料層50Gを形成するために、その後に除去され得る。したがって、絶縁層38Aおよびゲート材料層50Gは、交互の誘電体/ゲート材料スタックST2を形成するために、垂直方向D1に交互に積層され得る。いくつかの実施形態において、ゲート材料層50Gは、水平方向D2に凹んでいることが可能であるが、それに限定されない。いくつかの実施形態において、ゲート材料層50G同士の間の静電容量を低減させるために、および、ゲート材料層50G同士の間のRC遅延問題を改善するために、第2の空隙40が、垂直方向D1に互いに隣接するゲート材料層50Gのうちの2つの間に位置し得る。いくつかの実施形態において、第1の酸化物領域42が、水平方向D2にエピタキシャル層20とゲート材料層50Gのうちの1つとの間に位置し得、第1の酸化物領域42は、NANDメモリ構造体の中のBSGトランジスターのゲート誘電体層の一部と見なされ得るが、それに限定されない。
図15および図1に示されているように、いくつかの実施形態において、第2の絶縁材料60が、第1の開口部H1の中に形成され得、スリット構造体70が、ドープ領域36と接触して電気的に接続されるように、ドープ領域36の上方の第2の絶縁材料60および第2の酸化物領域44を貫通するように形成され得る。いくつかの実施形態において、第2の絶縁材料60は、酸化ケイ素または他の適切な絶縁材料を含むことが可能であり、スリット構造体70は、導電性材料(たとえば、タングステン、銅、アルミニウム、または他の適切な導電性材料など)を含むことが可能である。
上記の説明を要約すると、本開示による3Dメモリデバイスおよびその製造方法において、トラッピング層は、複数の第1のトラッピングセクションを含み、複数の第1のトラッピングセクションは、垂直方向に整合させられ、隣接するメモリユニット同士の間の干渉を低減させるために互いに分離されている。垂直方向に配置されている複数のメモリユニットに対応して位置する連続的なトラッピング層の中の電荷の横方向拡散、および/または、水平方向に絶縁層と半導体層との間に位置するトラッピング層の中に捕獲された電荷によって発生させられる結合効果などのような、関連の問題が回避され得、3Dメモリデバイスの電気的性能が、それにしたがって改善され得る。加えて、ゲート材料層同士の間の静電容量を低減させるために、および、ゲート材料層同士の間のRC遅延問題を改善するために、空隙が、垂直方向に互いに隣接するゲート材料層のうちの2つの間に配設されている絶縁層の中に形成され得る。
当業者は、本発明の教示を保ちながら、デバイスおよび方法の多数の修正例および代替例が作製され得るということに容易に気付くこととなる。したがって、上記の開示は、添付の特許請求の範囲の境界および境界線によってのみ限定されるものと解釈されるべきである。
10 基板
12 第1の犠牲層
14 第2の犠牲層
16 第1の封鎖層
18 第2の封鎖層
20 エピタキシャル層
22 ブロッキング層
22A 第1のブロッキングセクション
22B 第2のブロッキングセクション
24 トラッピング層
24A 第1のトラッピングセクション
24B 第2のトラッピングセクション
26 トンネリング層
28 半導体層
30 充填層
32 第1の空隙
34 導電性構造体
36 ドープ領域
38 第1の絶縁材料
38A 絶縁層
40 第2の空隙
42 第1の酸化物領域
44 第2の酸化物領域
50 ゲート材料
50G ゲート材料層
52 ゲート誘電体層
54 バリア層
56 金属層
60 第2の絶縁材料
70 スリット構造体
100 3Dメモリデバイス
D1 垂直方向
D2 水平方向
H1 第1の開口部
H2 第2の開口部
H3 第3の開口部
H4 第4の開口部
L1 第1のトラッピングセクション24Aの長さ
L2 第1のブロッキングセクション22Aの長さ
L3 ゲート材料層50Gの長さ
ST1 交互の犠牲スタック
ST2 交互誘電体/ゲート材料スタック
VS 垂直構造体

Claims (10)

  1. 基板と、
    前記基板の上に配設されている絶縁層と、
    前記基板の上に配設されているゲート材料層であって、前記絶縁層および前記ゲート材料層は、垂直方向に交互に積層されている、ゲート材料層と、
    前記垂直方向に前記ゲート材料層を貫通する垂直構造体であって、前記垂直構造体は、
    前記垂直方向に細長くなっている半導体層、
    水平方向に前記半導体層を取り囲むトラッピング層であって、前記トラッピング層が、前記垂直方向に整合させられ、互いに分離された複数のトラッピングセクションを含み、前記垂直方向における前記トラッピングセクションのそれぞれの長さが、前記垂直方向における前記ゲート材料層のそれぞれの長さより小さい、トラッピング層、
    前記半導体層と前記トラッピング層との間に配設されるトンネリング層、および、
    前記絶縁層のうちの少なくとも1つに配設されている空隙であって、前記空隙が、前記垂直方向に互いに隣接する前記ゲート材料層のうちの2つの間に位置し、前記空隙が、前記絶縁層の少なくとも1つの一部によって前記トンネリング層から分離される、空隙、
    を含む、垂直構造体と、
    を備え
    前記トラッピングセクションが第1のトラッピングセクション及び第2のトラッピングセクションを含み、
    前記第1のトラッピングセクションが前記垂直方向に前記第2のトラッピングセクションの上方に配設され、
    前記第2のトラッピングセクションが前記第1のトラッピングセクションのそれぞれから分離され、
    前記絶縁層の1つが、前記垂直方向に前記トンネリング層の下に完全に配設される前記第2のトラッピングセクション、及び前記第1のトラッピングセクションの1つと直接的に接続される、3次元(3D)メモリデバイス。
  2. 前記トラッピングセクションのうちの1つは、前記水平方向に前記半導体層と前記ゲート材料層のうちの1つとの間に位置する、請求項1に記載の3Dメモリデバイス。
  3. 前記絶縁層のうちの1つは、前記垂直方向に互いに隣接する前記トラッピングセクションのうちの2つの間に部分的に位置する、請求項1に記載の3Dメモリデバイス。
  4. 前記垂直構造体は、前記水平方向に前記トラッピング層および前記半導体層を取り囲むブロッキング層をさらに含み、前記ブロッキング層は、前記垂直方向に整合させられ、互いに分離されているブロッキングセクションを含む、請求項1に記載の3Dメモリデバイス。
  5. 前記ブロッキングセクションのうちの1つは、前記水平方向に前記トラッピングセクションのうちの1つと前記ゲート材料層のうちの1つとの間に配設されている、請求項4に記載の3Dメモリデバイス。
  6. 前記垂直方向は、前記水平方向と直交する、請求項1に記載の3Dメモリデバイス。
  7. 前記絶縁層のそれぞれが、酸化物、窒化物または酸窒化物である、請求項1に記載の3Dメモリデバイス。
  8. 前記半導体層が前記垂直方向に前記第2のトラッピングセクションを貫通し、
    前記第2のトラッピングセクションの全体が、前記垂直方向に前記トンネリング層の下に完全に配設され、
    前記垂直方向に前記トンネリング層の下に完全に配設された前記第2のトラッピングセクションに直接的に接続された前記絶縁層の1つの材料組成が、前記第1のトラッピングセクションの1つに直接的に接続された前記絶縁層の1つの材料組成と同一である、
    請求項1に記載の3Dメモリデバイス。
  9. 前記垂直方向に前記トンネリング層の下に完全に配設される前記第2のトラッピングセクション、及び前記第1のトラッピングセクションの1つと直接的に接続される前記絶縁層の1つが、前記垂直方向に前記第1のトラッピングセクションの下に完全に配設される、請求項8に記載の3Dメモリデバイス。
  10. 前記垂直方向に前記トンネリング層の下に完全に配設される前記第2のトラッピングセクションと直接的に接続される前記絶縁層の1つ、及び前記第1のトラッピングセクションの1つと直接的に接続される前記絶縁層の1つが、互いに直接的に接続される、請求項8に記載の3Dメモリデバイス。
JP2021546334A 2019-09-20 2019-09-20 3次元メモリデバイスおよびその製造方法 Active JP7322158B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106881 WO2021051371A1 (en) 2019-09-20 2019-09-20 Three-dimensional memory device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2022519875A JP2022519875A (ja) 2022-03-25
JP7322158B2 true JP7322158B2 (ja) 2023-08-07

Family

ID=69394813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021546334A Active JP7322158B2 (ja) 2019-09-20 2019-09-20 3次元メモリデバイスおよびその製造方法

Country Status (7)

Country Link
US (2) US11751389B2 (ja)
EP (1) EP3895214B1 (ja)
JP (1) JP7322158B2 (ja)
KR (1) KR20210102983A (ja)
CN (2) CN110785844B (ja)
TW (1) TWI707461B (ja)
WO (1) WO2021051371A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11289501B2 (en) 2019-05-20 2022-03-29 Micron Technology, Inc. Integrated assemblies having vertically-extending channel material with alternating regions of different dopant distributions, and methods of forming integrated assemblies
US11189629B2 (en) * 2020-04-30 2021-11-30 Micron Technology, Inc. Integrated assemblies and methods of forming integrated assemblies
US11476268B2 (en) * 2020-05-29 2022-10-18 Micron Technology, Inc. Methods of forming electronic devices using materials removable at different temperatures
CN112567518B (zh) * 2020-11-10 2024-04-09 长江存储科技有限责任公司 具有在三维存储器器件中的突出部分的沟道结构和用于形成其的方法
CN112820736A (zh) * 2021-03-23 2021-05-18 长江存储科技有限责任公司 三维存储器及其制备方法
WO2022265686A1 (en) * 2021-06-18 2022-12-22 Sandisk Technologies Llc Three-dimensional memory device and method of making thereof using double pitch word line formation
US11942429B2 (en) 2021-06-18 2024-03-26 Sandisk Technologies Llc Three-dimensional memory device and method of making thereof using double pitch word line formation
TWI824382B (zh) * 2022-01-13 2023-12-01 旺宏電子股份有限公司 三維記憶體結構及其製造方法
WO2024069681A1 (ja) * 2022-09-26 2024-04-04 キオクシア株式会社 半導体記憶装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130248977A1 (en) 2012-03-23 2013-09-26 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and manufacturing method of the same
WO2016032838A2 (en) 2014-08-26 2016-03-03 Sandisk Technologies Inc. Monolithic three dimensional nand strings and methods of fabrication thereof
US20160086972A1 (en) 2014-08-26 2016-03-24 SanDisk Technologies, Inc. Monolithic three-dimensional nand strings and methods of fabrication thereof
US20170271349A1 (en) 2016-03-18 2017-09-21 Kabushiki Kaisha Toshiba Semiconductor memory device
CN108878438A (zh) 2017-05-09 2018-11-23 三星电子株式会社 半导体存储器装置及其制造方法
CN109326608A (zh) 2017-07-31 2019-02-12 旺宏电子股份有限公司 三维叠层半导体结构的制造方法及其制得的结构
WO2019032323A1 (en) 2017-08-11 2019-02-14 Micron Technology, Inc. EMPTY FORMATION IN LOAD TRAP STRUCTURES
JP2019153626A (ja) 2018-03-01 2019-09-12 東芝メモリ株式会社 半導体記憶装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW469601B (en) * 2000-12-08 2001-12-21 Ememory Technology Inc Dual bit trench type gate non-volatile flash memory cell structure and the operating method thereof
KR100585107B1 (ko) * 2003-11-13 2006-05-30 삼성전자주식회사 자기 정렬을 이용한 로컬 소노스 소자 제조 방법
JP2010010596A (ja) * 2008-06-30 2010-01-14 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
US8816424B2 (en) * 2008-12-26 2014-08-26 SK Hynix Inc. Nonvolatile memory device
KR101792778B1 (ko) * 2010-10-26 2017-11-01 삼성전자주식회사 비휘발성 메모리 장치 및 그 형성 방법
KR101825534B1 (ko) * 2011-02-07 2018-02-06 삼성전자주식회사 3차원 반도체 장치
US8658499B2 (en) * 2012-07-09 2014-02-25 Sandisk Technologies Inc. Three dimensional NAND device and method of charge trap layer separation and floating gate formation in the NAND device
WO2015066794A1 (en) 2013-11-08 2015-05-14 Conversant Intellectual Property Management Inc. A three-dimensional nonvolatile memory cell structure with upper body connection
TW201539454A (zh) 2013-12-05 2015-10-16 Conversant Intellectual Property Man Inc 具有電荷儲存節點隔離之三維非揮發性記憶體
KR102175763B1 (ko) * 2014-04-09 2020-11-09 삼성전자주식회사 반도체 메모리 장치 및 이의 제조 방법
KR102248205B1 (ko) 2014-06-25 2021-05-04 삼성전자주식회사 수직 채널 및 에어 갭을 갖는 반도체 소자
TWI570893B (zh) 2014-08-05 2017-02-11 旺宏電子股份有限公司 具有交錯之控制結構的三維陣列記憶體構造
US9368509B2 (en) * 2014-10-15 2016-06-14 Sandisk Technologies Inc. Three-dimensional memory structure having self-aligned drain regions and methods of making thereof
US9589979B2 (en) 2014-11-19 2017-03-07 Macronix International Co., Ltd. Vertical and 3D memory devices and methods of manufacturing the same
US9455261B1 (en) * 2015-07-10 2016-09-27 Micron Technology, Inc. Integrated structures
US9935124B2 (en) 2015-11-25 2018-04-03 Sandisk Technologies Llc Split memory cells with unsplit select gates in a three-dimensional memory device
CN106941103A (zh) * 2016-01-04 2017-07-11 中芯国际集成电路制造(北京)有限公司 Nand存储器的形成方法
KR102624498B1 (ko) 2016-01-28 2024-01-12 삼성전자주식회사 수직형 메모리 장치 및 그 제조 방법
US10115732B2 (en) * 2016-02-22 2018-10-30 Sandisk Technologies Llc Three dimensional memory device containing discrete silicon nitride charge storage regions
KR20180012640A (ko) * 2016-07-27 2018-02-06 삼성전자주식회사 수직형 메모리 소자 및 이의 제조방법
US10056399B2 (en) 2016-12-22 2018-08-21 Sandisk Technologies Llc Three-dimensional memory devices containing inter-tier dummy memory cells and methods of making the same
US9875929B1 (en) * 2017-01-23 2018-01-23 Sandisk Technologies Llc Three-dimensional memory device with annular blocking dielectrics and discrete charge storage elements and method of making thereof
US10431591B2 (en) * 2017-02-01 2019-10-01 Micron Technology, Inc. NAND memory arrays
US9960045B1 (en) * 2017-02-02 2018-05-01 Applied Materials, Inc. Charge-trap layer separation and word-line isolation for enhanced 3-D NAND structure
US20180269222A1 (en) 2017-03-17 2018-09-20 Macronix International Co., Ltd. 3d memory device with layered conductors
US10381364B2 (en) * 2017-06-20 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device including vertically offset drain select level layers and method of making thereof
US10446572B2 (en) * 2017-08-11 2019-10-15 Micron Technology, Inc. Void formation for charge trap structures
US10164009B1 (en) * 2017-08-11 2018-12-25 Micron Technology, Inc. Memory device including voids between control gates
CN107579068B (zh) 2017-08-31 2019-01-25 长江存储科技有限责任公司 三维计算机闪存设备的栅极氧化层的制作方法及栅极结构
US10700087B2 (en) * 2017-10-12 2020-06-30 Applied Materials, Inc. Multi-layer stacks for 3D NAND extendibility
KR102505240B1 (ko) * 2017-11-09 2023-03-06 삼성전자주식회사 3차원 반도체 메모리 장치
CN107968091A (zh) * 2017-11-16 2018-04-27 长江存储科技有限责任公司 一种共源极钨墙与钨栅极之间高质量间隙层的3d nand制备方法
CN107946193B (zh) 2017-11-23 2021-02-26 长江存储科技有限责任公司 三维存储结构制作方法、存储结构、存储器及电子设备
CN109314116B (zh) 2018-07-20 2019-10-01 长江存储科技有限责任公司 用于形成三维存储器件的方法
WO2020198944A1 (en) * 2019-03-29 2020-10-08 Yangtze Memory Technologies Co., Ltd. Memory stacks having silicon nitride gate-to-gate dielectric layers and methods for forming the same
KR20220020357A (ko) * 2019-09-26 2022-02-18 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리 디바이스 및 그 제조 방법

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130248977A1 (en) 2012-03-23 2013-09-26 Kabushiki Kaisha Toshiba Non-volatile semiconductor storage device and manufacturing method of the same
JP2013201270A (ja) 2012-03-23 2013-10-03 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
WO2016032838A2 (en) 2014-08-26 2016-03-03 Sandisk Technologies Inc. Monolithic three dimensional nand strings and methods of fabrication thereof
US20160086972A1 (en) 2014-08-26 2016-03-24 SanDisk Technologies, Inc. Monolithic three-dimensional nand strings and methods of fabrication thereof
US20170271349A1 (en) 2016-03-18 2017-09-21 Kabushiki Kaisha Toshiba Semiconductor memory device
JP2017174866A (ja) 2016-03-18 2017-09-28 東芝メモリ株式会社 半導体記憶装置
CN108878438A (zh) 2017-05-09 2018-11-23 三星电子株式会社 半导体存储器装置及其制造方法
CN109326608A (zh) 2017-07-31 2019-02-12 旺宏电子股份有限公司 三维叠层半导体结构的制造方法及其制得的结构
WO2019032323A1 (en) 2017-08-11 2019-02-14 Micron Technology, Inc. EMPTY FORMATION IN LOAD TRAP STRUCTURES
US20190051656A1 (en) 2017-08-11 2019-02-14 Micron Technology, Inc. Void formation in charge trap structures
JP2020530657A (ja) 2017-08-11 2020-10-22 マイクロン テクノロジー,インク. 電荷トラップ構造における空間の形成
JP2019153626A (ja) 2018-03-01 2019-09-12 東芝メモリ株式会社 半導体記憶装置

Also Published As

Publication number Publication date
CN110785844B (zh) 2021-01-29
US20210091106A1 (en) 2021-03-25
US12016180B2 (en) 2024-06-18
WO2021051371A1 (en) 2021-03-25
EP3895214A4 (en) 2022-08-10
CN112768461A (zh) 2021-05-07
KR20210102983A (ko) 2021-08-20
CN112768461B (zh) 2023-10-20
TW202114173A (zh) 2021-04-01
US11751389B2 (en) 2023-09-05
JP2022519875A (ja) 2022-03-25
TWI707461B (zh) 2020-10-11
US20220093641A1 (en) 2022-03-24
CN110785844A (zh) 2020-02-11
EP3895214A1 (en) 2021-10-20
EP3895214B1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP7322158B2 (ja) 3次元メモリデバイスおよびその製造方法
JP7234369B2 (ja) 三次元メモリ装置およびその製造方法
US9768186B2 (en) Three dimensional memory device having well contact pillar and method of making thereof
US10804194B2 (en) Semiconductor device and method of manufacturing the same
US9230974B1 (en) Methods of selective removal of blocking dielectric in NAND memory strings
KR102385568B1 (ko) 수직형 메모리 장치
CN110870068B (zh) 三维存储器件及其制造方法
US11791287B2 (en) Semiconductor device including a cutting region having a height greater than a height of a channel structure
US11411024B2 (en) Vertical type semiconductor devices and methods of manufacturing the same
CN112687700B (zh) 三维存储器及其制备方法
US11917821B2 (en) Process for a 3-dimensional array of horizontal nor-type memory strings
KR20240096870A (ko) 3 차원 메모리 장치 및 이의 제조 방법
CN117133752A (zh) 三维存储器及其制备方法、存储系统

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7322158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150