JP7317068B2 - 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法 - Google Patents

石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法 Download PDF

Info

Publication number
JP7317068B2
JP7317068B2 JP2021073990A JP2021073990A JP7317068B2 JP 7317068 B2 JP7317068 B2 JP 7317068B2 JP 2021073990 A JP2021073990 A JP 2021073990A JP 2021073990 A JP2021073990 A JP 2021073990A JP 7317068 B2 JP7317068 B2 JP 7317068B2
Authority
JP
Japan
Prior art keywords
carrier substrate
saw
piezoelectric layer
quartz
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021073990A
Other languages
English (en)
Other versions
JP2021108495A (ja
Inventor
ソラル,マーク
将吾 井上
Original Assignee
コーボ ユーエス,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーボ ユーエス,インコーポレイティド filed Critical コーボ ユーエス,インコーポレイティド
Publication of JP2021108495A publication Critical patent/JP2021108495A/ja
Application granted granted Critical
Publication of JP7317068B2 publication Critical patent/JP7317068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/562Monolithic crystal filters comprising a ceramic piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Description

本開示は、弾性表面波(SAW)デバイスに関する。
弾性表面波(SAW)共振子、及びSAWフィルタなどの、SAWデバイスは、高周波(RF)フィルタなどの多くのアプリケーションにおいて使用される。たとえば、SAWフィルタは、第2世代(2G)、第3世代(3G)、及び第4世代(4G)無線受信器のフロントエンド、デュプレクサ、及び受信フィルタにおいて一般に使用される。SAWフィルタの普及は、SAWフィルタが良好な除去により低い挿入損失を示し、広帯域幅を達成することが可能であり、従来のキャビティ及びセラミックフィルタの大きさのごく一部である、という事実に少なくとも部分的に起因する。任意の電子機器と同様に、SAWデバイスの性能は、システムの全体的な性能に影響を与えることが可能である重要なパラメータである。この点について、高性能のSAWデバイスが必要とされる。
弾性表面波(SAW)デバイス及びその製造方法の実施形態を開示する。いくつかの実施形態において、SAWデバイスは、石英キャリア基板、この石英キャリア基板の表面上に圧電層、及び石英キャリア基板に対向する圧電層の表面上に少なくとも1つの交差指電極を含む。特に、本明細書に使用されるように、「石英」は、非晶質である、溶融シリカ(ときには溶融シリカ石英と称される)とは対照的に単結晶石英である。いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である。他の実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である。キャリア基板上に圧電層を使用することは、バルク(すなわち、基板)内への音響放射を抑制することにより、SAWデバイスの性能を向上させる。さらに、キャリア基板に石英を利用することにより、わずかな粘性損失、わずかな誘電率、及びわずかな温度感度のさらなる利点を達成する。さらに、ケイ素と比較されるように、キャリア基板への石英の使用は、抵抗損失をなくす。
いくつかの実施形態において、少なくとも1つの交差指電極の伝搬方向は、石英キャリア基板の水晶振動子のz軸または-z軸に関して10度未満の角度を形成する。さらに、いくつかの実施形態において、圧電層は、タンタル酸リチウム(LiTaO)(ときには本明細書において「LT」と称される)から形成され、このタンタル酸リチウムは、たとえば、水晶振動子のz軸とLT結晶のx軸のアライメントを取るように結合することにより可能である、YからY+60度の間の配向、及びLT結晶のx軸沿いの伝搬を有する。さらに、いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の60%未満である。
いくつかの実施形態において、石英キャリア基板の法線は、石英キャリア基板の水晶振動子のx軸またはy軸沿いに配向される。さらに、いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の30%から50%の間にある。
他の実施形態において、石英キャリア基板の法線は、石英キャリア基板の水晶振動子のx軸に関して30度から55度の間の角度を形成する。さらに、いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の20%から40%の間にある。
いくつかの実施形態において、圧電層は、YからY+60度の間の配向を有するLTから形成される。他の実施形態において、圧電層は、Y-20度からY+60度の間の配向を有するニオブ酸リチウム(LiNbO)から形成される。
いくつかの実施形態において、SAWデバイスは、石英キャリア基板と圧電層との間の石英キャリア基板の表面上に1層以上の追加の層をさらに含む。さらに、いくつかの実施形態において、1層以上の追加の層は、1層以上の誘電体層を含む。いくつかの実施形態において、1層以上の誘電体層は、少なくとも1層の酸化ケイ素を含む。
いくつかの実施形態において、少なくとも1つの交差指電極は、1層以上の誘電体層の内側に埋め込まれる。いくつかの実施形態において、1層以上の誘電体層は、酸化ケイ素を含む。
いくつかの実施形態において、SAWデバイスは、圧電層に対向する少なくとも1つの交差指電極の表面上に1層以上の誘電体層をさらに含む。
いくつかの実施形態において、SAWデバイスは、石英キャリア基板と圧電層との間の石英キャリア基板の表面上に少なくとも1層の酸化ケイ素をさらに含み、そこで少なくとも1層の酸化ケイ素は、その温度感度を低下させるようにドーピングされる。いくつかの実施形態において、少なくとも1層の酸化ケイ素は、フッ化物またはホウ素原子を含有するドーパントによりドーピングされる。
いくつかの実施形態において、SAWデバイスは、SAW共振子である。
またフィルタリング回路の実施形態を開示する。一般に、フィルタリング回路は、上記の実施形態のうちのいずれかに従い1つ以上のSAWフィルタを含む。
いくつかの実施形態において、フィルタリング回路は、石英キャリア基板、石英キャリア基板の表面上に圧電層、及び石英キャリア基板に対向する圧電層の表面上に少なくとも1つの交差指電極を含むSAW共振子を備える。いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である。他の実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である。
いくつかの実施形態において、フィルタリング回路は、ラダー型フィルタを含み、このラダー型フィルタは、石英キャリア基板と、石英キャリア基板の表面上に圧電層と、石英キャリア基板に対向する圧電層の表面上に少なくとも1つの交差指電極とを各含む複数のSAW共振子を備える。いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である。他の実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である。
いくつかの実施形態において、フィルタリング回路は、2つのグレーティング間に複数のトランスデューサを関連付けることにより形成される石英キャリア基板、石英キャリア基板の表面上に圧電層、及び石英キャリア基板に対向する圧電層の表面上に少なくとも1つの交差指電極を各含む複数のSAW共振子を備える結合型共振子フィルタ(CRF)を含む。いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である。他の実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である。いくつかの実施形態において、フィルタリング回路は、CRFを含む、少なくとも1つのCRFのカス
ケード、及び直列に、または並列に接続される少なくとも1つの追加のSAW共振子をさらに備える。
またSAWデバイスを製造する方法の実施形態を開示する。いくつかの実施形態において、SAWデバイスを製造する方法は、石英キャリア基板を提供し、石英キャリア基板の表面上に圧電層を提供し、石英キャリア基板に対向する圧電層の表面上に少なくとも1つの交差指電極を提供することを備える。いくつかの実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である。他の実施形態において、圧電層の厚さは、少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である。
いくつかの実施形態において、石英キャリア基板の表面上に圧電層を提供することは、石英キャリア基板の表面上に圧電材料を付着させ、圧電材料を加工して圧電層の所望の厚さへ圧電材料の厚さを減少させることにより、圧電層を提供することを備える。
いくつかの実施形態において、石英キャリア基板の表面上に圧電層を提供することは、圧電材料の表面内へのイオン注入を実行することにより、圧電材料の損傷部分を形成し、石英キャリア基板の表面上に圧電材料を付着させ、圧電材料を加工して圧電材料の損傷部分を除去することにより、圧電層を提供することを備える。
いくつかの実施形態において、方法は、石英キャリア基板と圧電層と間の石英キャリア基板の表面上に1層以上の追加の層を提供することをさらに備える。
当業者は、本開示の範囲を理解し、添付の描写する図面と関連付けて、以下の発明を実施するための形態を読解した後に、その追加の態様を実現するであろう。
本明細書の一部に援用され、これを形成する添付の描写する図面は、本開示のいくつかの態様を図示し、説明と併せて、本開示の原理を説明するために役立つ。
弾性表面波(SAW)交差指電極の原理を示す図である。 SAW共振子の図である。 SAW共振子についてのインピーダンス(Z)の実施例を示すプロットである。 ラダー型フィルタの原理を示す概略図である。 共振子によりカスケード接続される、結合型共振子フィルタの実施例を示す図である。 キャリア基板、圧電膜、及び任意選択で誘電体層を使用するSAWデバイスを示す図である。 本開示のいくつかの実施形態に従い、石英キャリア基板、圧電膜/層、及び任意選択で1層以上の誘電体層を含むSAWデバイスを示す図である。 石英のY+36度に関するタンタル酸リチウム(LiTaO)(ときには本明細書において「LT」と称される)のY+42度についてのアドミタンス及びコンダクタンスを示すプロットである。 石英のY+36度に関するLTのY+42度についてのアドミタンス及びコンダクタンスを示すプロットである。 XY平面内の石英に関するバルク弾性モード(単位、10-4秒/メートル(s/m))についてのスローネス曲線を示すプロットである。 XZ平面内の石英に関するバルク弾性モード(単位、10-4s/m)についてのスローネス曲線を示すプロットである。 YZ平面内の石英に関するバルク弾性モード(単位、10-4s/m)についてのスローネス曲線を示すプロットである。 Yカット、Z伝搬にカットされる石英に関してLTのY+42度についてのアドミタンス及びコンダクタンスを示すプロットである。 石英ZXI tetaのキャリア基板上に配向YXI42を有するLTの膜についての結合係数の変化を示すプロットであり、そこでx軸は、キャリア基板角度であり、y軸は、波長内のLT膜厚さである。 石英ZXI tetaのキャリア基板上に配向YXI42を有するLTの膜についての共振において周波数の温度係数の変化を示すプロットであり、そこでx軸は、キャリア基板角度であり、y軸は、波長内のLT膜厚さである。 石英ZXI tetaのキャリア基板上に配向YXI42を有するLTの膜についての反共振において周波数の温度係数の変化を示すプロットであり、そこでx軸は、キャリア基板角度であり、y軸は、波長内のLT膜厚さである。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの1つの実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。 本開示のいくつかの実施形態に従い、図7のSAWデバイスを製造するプロセスの別の実施例を示す。
以下に記載される実施形態は、当業者が実施形態を実施することを可能にするために必要な情報を表現し、実施形態を実施する最良なモードを図示する。添付の描写する図面に照らして下記の説明を読解すると、当業者は、本開示の概念を理解し、特に本明細書に指定されないこれらの概念の適用を認識するであろう。これらの概念及び適用が本開示の範囲、及び添付の特許請求の範囲内に入ることを理解するであろう。
用語、第一、第二などがさまざまな要素を記述するために本明細書に使用されることができるが、これらの要素がこれらの用語により限定されるべきではないことを理解するであろう。これらの用語は、一方の要素を他方の要素から区別するためにのみ使用される。たとえば、本開示の範囲から逸脱することなく、第一要素は、第二要素と称されることが可能であり、同様に、第二要素は、第一要素と称されることが可能である。本明細書に使用されるように、用語「及び/または」は、関連した、列挙される項目のうちの1つ以上のいずれかの、及びすべての組み合わせを含む。
一方の要素が他方の要素に「接続される」、若しくは「結合される」と称されるときに、それが残りの要素に直接に接続される、若しくは結合されることが可能である、または複数の介在要素が存在することができることも理解するであろう。対照的に、一方の要素が他方の要素へ「直接に接続される」、または「直接に結合される」と称されるときに、介在要素が存在しない。
用語「上部の」、「下部の」、「基部の」、「中間の」、「中央の」、「最上部の」、及び同様のものがさまざまな要素を記述するために本明細書に使用されることができ、これらの要素がこれらの用語により限定されるべきではないことを理解するであろう。これらの用語は、一方の要素を他方から区別するためにのみ使用される。たとえば、本開示の範囲から逸脱することなく、第一要素は、「上部」要素と称されることが可能であり、同様に、第二要素は、これらの要素の相対的な位置に起因して「上部」要素と称されることが可能である。
本明細書に使用される専門用語は、特定の実施形態のみを説明するためのものであり、本開示の制限であることを意図されない。本明細書に使用されるように、単数形「a」、「an」、及び「the」は、文脈が明確に別段に示さない限り、複数形をも含むことを意図される。本明細書に使用されるときに、用語「comprises(を含む)」、「comprising(を含むこと)」、「includes(を含む)」、及び/または「including(を含むこと)」が記載された特徴、整数、ステップ、操作、要素、及び/または構成要素の存在を明示するが、1つ以上の他の特徴、整数、ステップ、操作、要素、構成要素、及び/またはその群の存在または追加を排除しないことをさらに理解するであろう。
別段に定義されない限り、本明細書に使用される、すべての用語(技術及び科学用語を含む)は、本開示が属する当業者により一般に理解されるものと同一の意味を有する。本明細書に明確にそのように定義されない限り、本明細書に使用される用語が本明細書及び関連技術の文脈にそれらの意味と一貫している意味を有すると解釈されるべきであり、理想化された意味、または過度に形式的な意味に解釈されないであろうことをさらに理解するであろう。
水平せん断波を使用する高周波(RF)弾性表面波(SAW)デバイスについての損失の主な要因は、SAWデバイスのバルク基板内の音響放射である。この放射を抑制する方式は、キャリア基板上に積層される、圧電膜または層を使用することである。本開示は、キャリア基板としての石英の使用に関連する。石英は、わずかな粘性損失、わずかな誘電率、及びわずかな温度感度の利点を提示する。また、ケイ素(Si)と比較して、この基板内の抵抗損失は、石英のために存在しない。いくつかの実施形態において、石英ウェハについて最適な配向を開示する。
本開示の実施形態を記述する前に、SAWデバイス及びいくつかの関連した問題の考察は、有益である。SAWフィルタは、圧電基板の表面に音波の伝搬を使用する。図1は、
SAW交差指電極(IDT)10の1つの実施例を示す。図示されるように、IDT10は、圧電基板(示されない)の表面上に(たとえば、表面上に直接に)成膜する2つの交差指電極12-1及び12-2を含む。電圧は、2つの電極12-1と12-2との間に印加される。これは、2つの電極12-1と12-2との間に電界を、及び圧電効果によりSAWの生成をもたらす。交番電位における電極シーケンスにより、2つの連続する周期についての電界は、反対方向のものである。これは、電極周期が音波長の半分であるときに、IDT10がその最大効率を有することを意味する。
図2は、SAW共振子14の1つの実施例を示す。SAW共振子14は、図2においてグラウンドへ接続される、2つのグレーティング18-1と18-2との間に挿入されるIDT16を含む。2つのグレーティング18-1及び18-2は、反射器として作用し、(音響)キャビティを画定する。
図3は、共振子インピーダンスの実施例(すなわち、たとえば、図2のSAW共振子14などの、SAW共振子の1つの実施例のインピーダンス)を示す。図3は、対数目盛り、すなわち、プロットされるabs(Z)ではないが、あるスケーリングファクタを有するその対数である。図3は、説明のためだけのものである。共振周波数において、SAW共振子のインピーダンスは、ゼロに近く、SAW共振子は、短絡として作用する。反共振周波数において、SAW共振子のインピーダンスは、非常に大きく、SAW共振子は、開回路として作用する。これらの特性を使用して、ラダー型フィルタを設計することが可能である。
ラダー型フィルタ20の1つの実施例を図4に示す。示されるように、いくつかのSAW共振子22-1から22-7は、電気回路内側に接続される。一般に、ラダー型フィルタ20は、シャント共振子(すなわち、SAW共振子22-1、22-3、22-5、及び22-7)がラダー型フィルタ20の中心周波数に近い反共振周波数を有するように設計される。また、直列共振子(すなわち、図4の実施例において、SAW共振子22-2、22-4、及び22-6)は、ラダー型フィルタ20の中心周波数に近いそれらの共振周波数を有するように設計される。したがって、中心周波数において、シャント共振子は、開回路として作用し、直列共振子は、短絡として作用し、ラダー型フィルタ20の入力と出力との間に直接接続がある。それらの共振周波数において、シャント共振子は、短絡として作用し、通過帯域より下のラダー型フィルタ20の伝達関数においてノッチを生成する。同様に、それらの反共振周波数において、直列共振子は、開回路として作用し、阻止帯域より上のノッチを生成する。明らかに、これは、概略的な説明のみであり、物理的なフィルタは、シャント共振子についていくつかの異なる周波数、及び直列共振子について反共振周波数を有することが多い。また、設計は、共振子の有効な共振周波数をシフトさせる、キャパシタンスまたはインダクタンスなどのいくつかの集中定数素子を含むことができる。また、図4に示されるフィルタは、シャント共振子により開始し(入力において)、終了する(出力において)。明らかに、これは、説明のためだけのものであり、直列共振子は、入力及び/または出力にも接続されることが可能である。
ラダー型フィルタに加えて、いわゆる結合型共振子フィルタ(CRF)、またはダブルモード型SAWフィルタ(DMS)を設計することが可能である。回路素子としてSAW共振子を使用する代替に、CRFは、2つの反射型グレーティング間にいくつかのトランスデューサを配置することにより設計される。図5に示される例示的なCRF24において、3つのIDT26-1から26-3は、2つの反射器28-1と28-2との間に配置される。中央のIDT26-2は、入力信号に接続されるが、2つの外側のIDT26-1及び26-3は、並列に接続される。2つの反射器28-1と28-2との間のキャビティは、いくつかの縦モードを有する。IDT26-1から26-3の対称配置を選択することにより、対称的な縦モードのみを励振させる。このタイプのCRFは、入力ID
T26-2を出力IDT26-1及び26-3に結合するように、主に2つの縦モードを通常は使用する。通過帯域幅は、これら2つのモードの周波数差に比例する。結合係数は、フィルタを電気的に整合させる可能性を定める。ラダー型フィルタについてのような、結合係数が大きいほど、相対的な帯域幅が広くなることを可能にする。図5の実施例において、CRFステージの出力IDT26-1及び26-3は、この実施例において、IDT30及び反射器32-1及び32-2により、形成される直列共振子に接続される。
さらに一般的に、1つまたはいくつかのCRFステージは、いくつかのラダー型素子のうちの1つにカスケード接続されることが可能である。これらのラダー型素子は、直列またはシャント共振子であることが可能である。また、グレーティング間のトランスデューサ数は、たとえば、2つから9つと同じくらい大きい数に変わることが可能である。それがよく知られているように、トランスデューサ、それらの長さ、極性、及び周期間の間隔シフトは、デバイス性能に大きな影響を有する。
いくつかのパラメータは、SAW共振子に重要である。1つの重要なパラメータは、反共振と共振周波数との間の割合に依存する、有効圧電結合係数である。より大きな結合係数を有するSAW共振子は、共振と反共振との間でより大きな周波数シフトを有し、広帯域フィルタを設計するために使用されることが可能である。結合係数は、選択された圧電基板に主に依存する。SAW共振子の別の重要なパラメータは、SAW共振子により設計されるフィルタの挿入損失、及びフィルタ応答の急峻性に影響を与える、共振子の品質係数(Q)である。この品質係数(Q)は、SAW共振子内の音響及び電気損失に主に依存する。
また、SAW共振子の共振周波数は、SAWの速度に比例する。温度が変化するときに、波の速度は、変化し、フィルタは、周波数においてシフトする。加えて、熱膨張により、コンポーネント寸法は、変化し、追加の周波数シフトにもつながる。SAWフィルタは、一般的に100℃(摂氏100度)以上の範囲である温度範囲について周波数帯域を選択することが可能である必要がある。SAWフィルタの中心周波数の大きな温度感度は、周波数内でシフトするフィルタ応答をもたらし、所与の温度範囲内の全体的な性能低下をもたらす。温度感度は、周波数温度係数(TCF)と一般的に称される、係数により測定される。ほとんどの材料は、温度が上昇するときに周波数が低下することを意味する、負のTCFを有する。
SAWフィルタについての基板選択は、デバイスの性能のために重要である。本明細書においてときにはLTと省略される、タンタル酸リチウム(LiTaO)から作製される基板を使用することは、一般的であり、このタンタル酸リチウムは、一般的にY+36度からY+50度の間の配向、及びLT結晶のx軸(すなわち、LTの結晶学上のx軸)沿いの伝搬を有する。平面への法線がtetaにより回転する軸Yであることを配向Y+teta、伝搬Xが意味し、そこで回転がx軸周囲で行われることに留意する。これらの基板上で、デバイスは、主に、いわゆる漏洩SAWまたは疑似SAWまたは水平せん断波を励振させている。これらの波と関連する機械的変位は、電極へ平行な方向に主にある。このタイプの波の利点は、デバイス周波数の比較的に良好な温度安定性を維持しながら、大きな電気音響結合を生成することである。同様に、x軸沿いの伝搬を有する、Y-20度からY+60度の間の配向を有する、ニオブ酸リチウム(LiNbO)の基板についてのフィルタを設計することも可能である。この事例において、同一のタイプの音波を励振させる。大きな結合係数を取得することが可能である。
漏洩SAWを励振させるSAWデバイスを設計するときに、既知の問題は、SAW共振子について、悪い品質係数に変換し、SAWフィルタについて、急峻な周波数遷移、及び高い挿入損失を実現することが不可能であるように変換する、伝搬損失の存在である。こ
れらの伝搬損失は、漏洩SAWの速度に近い速度におけるバルクモードの存在に起因する。これは、バルク内で音響エネルギーの放射または散乱をもたらす。
このバルク放射を抑制する方式は、圧電層または膜と本明細書において称される、圧電材料の層がキャリア基板の表面上に(たとえば、表面上に直接に)結合される、または成膜する、層状基板を使用することである。キャリア基板38上に結合される、または成膜する、圧電層または膜36を含むSAWデバイス34の1つの実施例を図6に示す。図示されるように、SAWデバイス34は、キャリア基板38、キャリア基板38の表面上に(たとえば、表面上に直接に)任意選択で1層以上の誘電体層40、キャリア基板38に対向する1層以上の誘電体層40の表面上に圧電層36、及びキャリア基板38に対向する圧電層36の表面上に金属トランスデューサまたはIDT42を含む。代替に、圧電層36がキャリア基板38の表面上に(たとえば、表面上に直接に)あるように誘電体層(複数可)40がない可能性がある。
SAWの伝搬方向においてキャリア基板38のバルク波(BAW)速度が(疑似)SAWデバイス34の速度より高い場合に、つぎに音波エネルギーを圧電層36の内側にガイドすることが可能であり、バルク内の損失(すなわち、基板内の損失)は、打ち消されることが可能である。いくつかの中間層(たとえば、1層以上の誘電体層40)は、圧電層36とキャリア基板38との間に配置されることが可能である。これらの層は、音響ガイド若しくは圧電結合を改善するために使用されることが可能である、またはそれらは、このデバイスの製造プロセスのために必要とされる可能性がある。たとえば、このタイプのアプローチは、2002年9月3日に発行された、DEVICE WITH ACOUSTIC WAVES GUIDED IN A FINE PIEZOELECTRIC
MATERIAL FILM BONDED WITH A MOLECULAR BONDING ON A BEARING SUBSTRATE AND METHOD
FOR MAKING THE SAMEと題する、米国特許第6,445,265号と、2001年5月25日に発行された、DISPOSITIF A ONDES ACOUSTIQUES GUIDEES DANS UNE FINE COUCHE DE MATERIAU PIEZOELECTRIQUE COLLEE PAR UNE COLLE MOLECULAIRE SUR UN SUBSTRAT PORTEUR ET PROCEDE DE FABRICATIONと題する、仏特許第2788176号と、Solal,M.et al.,「Oriented Lithium
Niobate Layers Transferred on 4”[100] Silicon Wafer for RF SAW Devices」、Proceedings of the 2002 IEEE Ultrasonics Symposium,Vol.1,October 8-11,2002,pages 131-134(以後、「Solal」)と、Pastureaud,T.et al.,「High-Frequency Surface Acoustic Waves Excited on Thin-Oriented LiNbO Single-Crystal
Layers Transferred onto Silicon」,IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,Vol.54.No.4,April 2007,pages 870-876(以降、「Pastureaud」)と、において提案されている。これらの文書は、キャリア基板の最上部上の圧電材料の薄層上に構築されるSAWデバイスを開示する。他の層は、圧電層とキャリア基板との間に存在することが可能である。これらの中間層は、通常は誘電体層であるが、いくつかの事例において、それは、金属層を使用するように提案された。圧電層も可能である。キャリア基板において速度は、音波をガイドすることを可能にするために十分に高い。
SAWデバイス34を製造するために使用されるプロセスは、いくつかの実施例におい
て、キャリア基板38上に圧電材料のウェハ、または成膜した層(たとえば、1層以上の誘電体層40)を含むキャリア基板38のウェハ結合を使用する。層40のうちの1層として酸化ケイ素を使用すること、及び酸化ケイ素層上に圧電層36を結合することは、比較的に一般的である。圧電層36は、たとえば、米国特許第6,445,265号、仏特許第2788176号、Solal、及びPastureaudに記述されるような、たとえば、イオンスライシングプロセスを使用することにより形成されることが可能である。この事例において、圧電基板は、キャリア基板38に結合される前に注入される。この注入は、注入エネルギーによる深さにおいて圧電基板内側に欠陥を生じる。これは、圧電基板を破損すること、及び圧電材料の薄層が圧電層36としてキャリア基板38の表面に残ることを可能にする。このアプローチの欠点は、圧電基板の厚さが注入エネルギーにより制限されることであり、マイクロメートルの数十分の一より厚い圧電層を取得することは、困難である。また、注入は、さらに損失、またはより小さな結合係数をもたらす圧電膜を損傷させる可能性がある。このプロセスは、「イオンスライシング」と一般に称される。代替のプロセスは、圧電材料の薄層(すなわち、圧電層36)を得るために圧電基板を研削することからなる。この事例において、厚さの精度は、取得することが困難であり、通常は製造プロセスへの周波数の感度を最小にする周波数及び層厚を選択することを推奨する。
キャリア基板38の選択は、良好な性能を得るために重要である。米国特許第6,445,265号、及び仏特許第2788176号は、ガラス、サファイア、Si、またはヒ化ガリウムから作製されるキャリア基板を開示するが、一般に使用されるキャリア基板は、Siから作製されるものである。Siの1つの問題は、誘電の影響による損失をもたらす、その導電率である。これは、注入によりSiを処理すること、または圧電層36とキャリア基板38との間に相対的に厚い層を使用することにより、低減することが可能である。SAWデバイス34の製造コストを増加させることに加えて、成膜した層の使用は、良質の成膜材料を得ることの困難さにより音響伝搬損失のある程度の増加をもたらす可能性がある。この問題は、キャリア基板38と圧電層36との間に酸化ケイ素層を使用するときに存在する。一方、酸化ケイ素の使用は、SAWデバイス34のTCFを低下させるために使用されることが可能である、その速度の正の温度係数にとって有利となる。また、酸化ケイ素は、SAWデバイス34のキャパシタンスを減少させ、その結合係数を増加させる、低い誘電率を有することの利点を備える。
図7は、本開示のいくつかの実施形態に従うSAWデバイス44を示す。図示されるように、SAWデバイス44は、石英キャリア基板48上に圧電層または膜46、石英キャリア基板48の表面上に(たとえば、表面上に直接に)任意選択で1層以上の誘電体層50、石英キャリア基板48に対向する1層以上の誘電体層50の表面上に圧電層46、石英キャリア基板48に対向する圧電層46の表面上に金属トランスデューサまたはIDT52、及び金属トランスデューサ52の表面と、圧電層46の露出面との上に任意選択で1層以上の誘電体層53(たとえば、いくつかの実施形態においてドーピングされることができる、1層以上の酸化ケイ素)を含む。1つの金属トランスデューサ52のみを図示するが、圧電層46の表面上に1つ以上の金属トランスデューサ52及びグレーティング/反射器のうちのいずれの数もあることができることを理解するであろうことに留意する。金属トランスデューサ52の個々の指間の分離は、トランスデューサ電極周期(p)と本明細書において称される、周期(p)を定める。再度、1層以上の誘電体層50及び53を図7に示すが、1層以上の誘電体層50及び53は、任意選択である。さらに、いくつかの実施形態において、1層以上の誘電体層50は、いくつかの実施形態において、たとえば、さらにTCFを改善するために、たとえば、フッ化物またはホウ素などの、ドーパントによりドーピングされる、酸化ケイ素の層を含む。
キャリア基板48のために使用される材料の選択は、SAWデバイス44の性能にとっ
て重要である。キャリア基板48は、つぎの特性を有する必要がある。
・キャリア基板48は、絶縁していなければならない。金属基板は、フィルタ入力と出力との間に強い結合を生じ、電気音響結合を低減させるキャパシタンスを加える。また半導体基板は、その導電率により、ある程度の損失を生じる。
・キャリア基板48は、デバイスキャパシタンスを減少させるために、及び圧電結合を増加させるために低い誘電率を有する必要がある。
・キャリア基板48は、単結晶基板を使用することにより通常は得られることが可能である、低い音響粘性損失を有する必要がある。
・キャリア基板48についてのTCFは、小さく(絶対値において)、可能であれば、負である、圧電層46のTCFの記号と反対の記号を有する。加えて、低い熱膨張係数は、有利である。
音響デバイスのために広く使用される結晶のうちの1つは、石英である。石英は、つぎのいくつかの利点を提示する。
・石英は、約4.5の低い比誘電率を有する。
・石英は、その導電率が非常に低いことを意味する、半導体ではない。
・石英は、SAW及びBAWデバイス用に大規模に研究されており、石英の品質は、粘性損失を低減させるために向上している。このために、非常に良い品質係数を有する共振子は、石英上の圧電層を使用して取得されることが可能である。
・温度感度の視点から、石英は、低い温度感度の利点を有し、周波数の温度係数が0である補償されたカットを有する。
このようなものとして、石英は、SAWデバイス44のキャリア基板48についての材料として利用される。
1層以上の誘電体層50は、任意選択である。使用される場合に、1層以上の誘電体層50は、たとえば、酸化ケイ素などの、1つまたは複数の誘電体材料を含むことができる。誘電体層(複数可)50は、通常は音波長より各薄い。圧電層46は、任意の適切な圧電材料(複数可)から形成される。本明細書に記述される、いくつかの好ましい実施形態において、圧電層46は、LT、またはLiNbOから形成されるが、それに限定されない。いくつかの実施形態において、圧電層46は、トランスデューサ電極周期(p)の4倍未満である厚さ(t圧電)を有する。他の実施形態において、圧電層46の厚さ(t圧電)は、トランスデューサ電極周期(p)の2倍未満である。また、それが既知である場合に、任意選択で、たとえば、酸化ケイ素、窒化ケイ素、及び酸化アルミニウムのような、1層またはいくつかの誘電体層(すなわち、誘電体層(複数可)53)は、パッシベーションを実現するために表面に成膜することが可能である。また、酸化ケイ素の誘電体膜内側に電極を埋め込み、SAWデバイス44の温度感度をさらに低下させることは、有利であることが可能である。
たとえば、いくつかの実施形態において、圧電層46は、LTであり、圧電層46の厚さ(t圧電)は、2p未満である。さらに、いくつかの実施形態において、圧電層46のために使用されるLTは、YからY+60度の間に配向を有する。いくつかの他の実施形
態において、圧電層46は、LiNbOであり、圧電層46の厚さ(t圧電)は、2p未満である。さらに、いくつかの実施形態において、圧電層46のために使用されるLiNbOは、Y-20度からY+60度の間に配向を有する。
以下に詳細に考察されるように、いくつかの実施形態において、金属トランスデューサ52の伝搬方向は、石英キャリア基板48の水晶振動子のz軸または-z軸に関して10度より小さい角度を形成する。さらに、いくつかの実施形態において、圧電層46は、LTであり、圧電層46の厚さ(t圧電)は、2p未満である。さらに、いくつかの実施形態において、圧電層46のために使用されるLTは、YからY+60度の間に配向、及びLTのx軸沿いの伝搬を有する(そこでx軸は石英キャリア基板48においてz軸沿いの伝搬のために水晶振動子のz軸とアライメントを取る)。さらに、いくつかの実施形態において、圧電層46の厚さ(t圧電)は、トランスデューサ電極周期(p)の60%未満である。さらに、いくつかの実施形態において、石英キャリア基板48は、水晶振動子のx軸またはy軸沿いに配向されるその法線(すなわち、石英キャリア基板48の法線)を有する石英から作製される。さらに、いくつかの実施形態において、圧電層46の厚さ(t圧電)は、トランスデューサ電極周期(p)の30%から50%の間にある。他の実施形態において、石英キャリア基板48は、水晶振動子のx軸に関して30度から55度の間の角度を形成するその法線(すなわち、石英キャリア基板48の法線)を有する石英から作製される。さらに、いくつかの実施形態において、圧電層46の厚さ(t圧電)は、トランスデューサ電極周期(p)の20%から40%の間にある。
SAWデバイス44は、図示された実施例において、SAW共振子である。このSAW共振子は、たとえば、SAW共振子44のうちの1つ以上を含むフィルタ、SAW共振子44のうちの少なくとも2つを含むラダー型フィルタ、2つのグレーティング/反射器間に配置されるSAW共振子44のうちの少なくとも2つを含むCRF、及びSAW共振子44のうちの少なくとも1つに関して直列に、または並列に接続される前述のCRFのカスケードを使用するフィルタなどの、任意の数のデバイスにおいて利用されることができる。さらに、これらのフィルタは、たとえば、デュプレクサ(すなわち、デュプレックスフィルタ)、マルチプレクサ(すなわち、マルチプレックスフィルタ)、または同様のものにおいて、利用されることができる。
つぎの考察は、本開示のいくつかの実施形態に従い、石英キャリア基板48の配向の重要性を図示する、図7のSAWデバイス44のいくつかの例示的な実施態様についてのシミュレーション結果の考察を提供する。上記で考察されるように、SAWの伝搬方向において石英キャリア基板48のBAW速度が(疑似)SAWデバイス44の速度より高い場合に、つぎに、圧電層46の内側に音響エネルギーをガイドすることが可能であり、バルク内の損失が打ち消されることができる。換言すれば、SAWデバイス44の速度より高いことは、SAWの伝搬方向における石英キャリア基板48のBAW速度にとって望ましい。
この点について、図8は、圧電層46がY+42度の配向を有するLT膜である、SAWデバイス44の実装についてのシミュレーション結果を示し、石英キャリア基板48は、Y+36度の配向を有する石英から形成され、SAWの伝搬は、石英キャリア基板48の水晶振動子のx軸沿いにあり(すなわち、X伝搬があり)、そこで石英キャリア基板48の水晶振動子のx軸は、LTのx軸とアライメントを取る。これらの結果は、石英キャリア基板48内のバルクカットオフ周波数がSAWデバイス44の共振周波数より低いことを示す。これは、音響エネルギーがバルク内に放射されることが可能であり、伝搬損失及び低い品質係数をもたらすことを意味する。したがって、これは、望ましくない配向である。
同様に、図9は、圧電層46がY+42度の配向を有するLT膜であり、石英キャリア基板48がY+36度の配向を有するが、石英キャリア基板48の水晶振動子のx軸から90度においてSAWの伝搬を有する、石英から形成される、SAWデバイス44の実装についてのシミュレーション結果を示す。これは、石英上のいわゆる横波型弾性表面波(STW)デバイスについての配向である。図示されるように、バルクカットオフ周波数は、メインモードがバルク内へ漏洩させ、その品質係数を低下させる、SAWデバイス44の共振周波数に近い周波数にある。したがって、これも、望ましくない配向である。
この問題は、石英のこれらの配向についての石英キャリア基板48におけるバルクモードが遅すぎることである。カットオフ周波数を上回る、多くのエネルギーは、バルク内に損失する。pが金属トランスデューサ52の電極周期である場合に、カットオフ周波数は、Vs/2pであり、そこでVsは、SAWの伝搬方向についての石英キャリア基板48における速度である。石英における速度は、低すぎることが多い。
図10から図12は、XY、XZ、及びYZ平面における石英についてのBAWスローネス曲線を示す。ほとんどの配向について、最も低い速度が3300メートル/秒(m/s)から4000m/sの間にあることを示す。これらの速度は、LTにおける速度と比較して低すぎる(すなわち、対応するカットオフ周波数は共振周波数を上回るほど高くはない)。最も高いせん断速度を有する配向は、約4660m/sの速度を有する、Z配向である。共振周波数(この実施例について、2マイクロメートル(μm)周期に対して1ギガヘルツ(GHz)と仮定される)より高い10%を超えるカットオフ周波数を有するため、石英における速度は、少なくとも4400m/sである、またはスローネスは、2.273 10-4秒/メートル(s/m)未満である。XZ平面におけるこの条件は、z軸(または-z軸)周囲の±8度、及びYZ平面における±10度の角度範囲についてのみである。世界的に、これは、キャリア基板48が水晶振動子のz軸に関して10度より小さい角度をなす伝搬方向を有する石英の基板でなければならないことを意味する。このようなものとして、上記に言及されるように、いくつかの実施形態において、金属トランスデューサ52の伝搬方向は、石英キャリア基板48の水晶振動子のz軸または-z軸に関して10度より小さい角度を形成する。
図13は、圧電層46がY+42度の配向、石英Yカットから作製される石英キャリア基板48上のX伝搬、及び石英キャリア基板48の水晶振動子のz軸沿いのSAWの伝搬(すなわち、Z伝搬)を有するLT膜である、SAWデバイス44(SAW共振子として)の実装についてのシミュレーション結果を示す。換言すれば、結晶学的なLTのx軸は、結晶学的な石英のz軸とアライメントを取る。結晶学的な石英のy軸は、石英の平面に垂直であり、LTについてのY+42軸は、この表面に垂直である。スローネス曲線により予測されるように、バルクカットオフ周波数は、共振周波数を上回り十分に離れており、良好なガイドを有する(及び同一の基板上にあるが異なる周波数を有するこの共振子及び他のものを使用して、フィルタ(たとえば、ラダー型フィルタ)を作製する場合に、フィルタの帯域における放射損失を有さない)。また、非常になめらかな応答は、スプリアスモードなしで得られる。
上述される最適化に加えて、いくつかの実施形態において、石英キャリア基板48のために使用される石英のカット角度も、たとえば、圧電結合及び/またはTCFなどの、SAWデバイス44の1つ以上の性能パラメータを最適化するように選択される。この点について、図14から図16は、圧電層46がYXI42(すなわち、Y+42)の配向を有するLT膜である、SAWデバイス44の1つの例示的な実施態様についてのシミュレーション結果を示し、そこでキャリア基板48は、石英キャリア基板48についてのカット角度シータ(グラフ内のx軸)、及び波長内のLTの厚さ(グラフ内のy軸)の関数として、配向XZI tetaを有する石英(すなわち、z軸沿いの伝搬、及びz軸沿いに
回転する平面を有する石英、そこで0はX配向に対応し、90はY配向に対応する)から作製される。図14において、最高の圧電結合がZ伝搬に関してXまたはYカット石英のキャリア基板に対応する、0または90度に近い角度シータについて得られることを明確に理解することが可能である。図15及び図16において、TCFについての最高の結果が40度(たとえば、30度から55度の範囲)、または140度(たとえば、130度から155度の範囲)に近い角度シータについて得られることを明確に理解することが可能である。
図17Aから図17Gは、本開示のいくつかの実施形態に従い、図7のSAWデバイス44を製造するプロセスを示す。図17Aに示されるように、プロセスは、石英キャリア基板48により開始する。図17Bに示されるように、1層以上の誘電体層50(及び/または他のタイプの追加の層)は、石英キャリア基板48の表面上に形成される(たとえば、成膜する、または結合される)。また、誘電体層(複数可)50は、任意選択である。圧電材料54は、図17Cに示されるように、石英キャリア基板48に対向する誘電体層(複数可)50の表面上に(または誘電体層(複数可)50が存在しない場合に石英キャリア基板48の表面上に)結合される。図17Dに示されるように、圧電材料54を研削し、またはその他の方法で処理し、所望の厚さ(t圧電)を有する圧電層46を形成する。結果として生じる構造を図17Eに示す。つぎに金属トランスデューサ52は、図17Fに示されるように、誘電体層(複数可)50(存在する場合に)及び石英キャリア基板48に対向する圧電層46の表面上に(たとえば、表面上に直接に)形成される。任意選択で、1層以上の誘電体層53は、図17Gに示されるように、金属トランスデューサ52の表面、及び圧電層46の露出面上に形成される(たとえば、成膜する)。
図18Aから図18Hは、本開示のいくつかの他の実施形態に従い、図7のSAWデバイス44を製造するプロセスを示す。図18Aに示されるように、プロセスは、石英キャリア基板48により開始する。図18Bに示されるように、1層以上の誘電体層50(及び/または他のタイプの追加の層)は、石英キャリア基板48の表面上に形成される(たとえば、成膜する、または結合される)。また、誘電体層(複数可)50は、任意選択である。図18Cに示されるように、圧電材料54の表面内へのイオン注入を使用して、圧電層46の所望の厚さ(t圧電)を画定する、所望の、または制御された深さにおいて圧電材料54内に損傷した層54Aを作製する。圧電材料54は、図18Dに示されるように、石英キャリア基板48に対向する誘電体層(複数可)50の表面上に(または誘電体層(複数可)50が存在しない場合に石英キャリア基板48の表面上に)結合される。図18E及び図18Fに示されるように、損傷した層54Aより上の圧電材料54の部分を除去することにより、所望の厚さ(t圧電)を有する圧電層46を形成する。特に、圧電層46の表面を好ましくは研磨し、圧電層46の表面上に残るいかなる欠陥も取り除く。結果として生じる構造は、図18Fに示される。つぎに金属トランスデューサ52は、図18Gに示されるように、誘電体層(複数可)50(存在する場合に)及び石英キャリア基板48に対向する圧電層46の表面上に(たとえば、表面上に直接に)形成される。任意選択で、つぎに1層以上の誘電体層53は、図18Hに示されるように、金属トランスデューサ52の表面、及び下層の露出面上に形成される(たとえば、成膜する)。
本開示は、限定されないが、つぎのものを提供する。
キャリア基板上に結合される、または成膜する圧電層を備える基板上に少なくとも1つの交差指電極を含む音波共振子であって、そこで前記キャリア基板は石英であり、前記圧電層厚はたとえば、4倍の前記トランスデューサ電極周期より小さく、他の実施形態において、2倍の前記トランスデューサ電極周期より小さく、
○そこで前記圧電膜はYからY+60度の間の配向を有するタンタル酸リチウム(LiTaO)から作製され、
○そこで前記圧電膜はY-20度からY+60度の間の配向を有するニオブ酸リチウム(
LiNbO)から作製され、
○そこで前記トランスデューサ電極周期より薄い厚さを有する追加の層は前記キャリア基板と前記圧電層との間に配置され、
■そこで前記追加の層のうちの少なくとも1層は酸化ケイ素から作製され、
○そこで前記圧電層は薄膜を得るために、前記キャリア基板上に圧電材料のウェハを結合することにより、及び前記圧電材料のウェハを研削することにより作製され、
○そこで前記圧電層は所与の深さにおいて前記ウェハ内の欠陥を生じるために圧電材料のウェハ内にイオンを注入することにより、このウェハを前記キャリア基板に結合することにより、前記圧電材料を前記欠陥の前記位置において分割することにより、及び前記圧電材料を研磨することにより作製され、
○そこで前記キャリアウェハは、石英から作製され、そこで前記トランスデューサの前記伝搬方向は前記水晶振動子の前記軸zまたは-zに関して10度より小さい角度を形成し、
■そこで前記圧電層はYからY+60度の間の配向、及びX沿いの伝搬を有するLiTaOから作製され、
●そこで前記圧電層の前記厚さは前記トランスデューサの前記電極周期の60%未満であり、
○そこで前記キャリア基板は前記石英の前記xまたはy軸沿いにその法線配向を有する石英であり、
○そこで前記キャリア基板は前記石英の前記x軸に関して30度から55度の間の角度を形成するその法線を有する石英であり、
■そこで前記LiTaO層厚は前記電極周期の20%から40%の間にあり、
■そこで前記LiTaO層厚は前記電極周期の30%から50%の間にあり、
○そこで少なくとも1つの共振子は結合型共振子フィルタ内に実装され、
■そこで前記結合型共振子フィルタは2つのグレーティング間に配置される少なくとも2つのトランスデューサを含み、
●そこで少なくとも1つの共振子素子はラダー型フィルタに組み込まれ、
○そこで前記結合型共振子フィルタの前記カスケードを使用するフィルタ、及び少なくとも1つの共振子は直列で、または並列で接続され、
●そこで少なくとも1つのフィルタはデュプレクサ内に組み込まれる、
前記音波共振子。
当業者は、本開示の好ましい実施形態への改良及び変更を認識するであろう。すべてのこれらのような改良及び変更は、本明細書に開示される概念の範囲、及び以下の特許請求の範囲内にあると考察される。

Claims (21)

  1. 石英キャリア基板と、
    前記石英キャリア基板の表面上の圧電層と、
    前記石英キャリア基板に対向する前記圧電層の表面上にある少なくとも1つの交差指電極と
    を備え、
    前記石英キャリア基板内の弾性表面波(SAW)の伝搬速度が最も遅いバルクモードに対応するバルクカットオフ周波数は、弾性表面波(SAW)デバイスの共振周波数よりも高く、
    前記石英キャリア基板は、前記石英キャリア基板の結晶学的なz軸を含む平面、または前記石英キャリア基板の前記結晶学的なz軸と10度未満の角度をなす平面を含む、SAWデバイス。
  2. 前記石英キャリア基板内の前記バルクカットオフ周波数は、前記SAWデバイスの前記共振周波数よりも10%を超えて高い、請求項1に記載のSAWデバイス。
  3. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は、前記石英キャリア基板の結晶学的なx軸に関して30度から55度の範囲の角度を形成する、請求項1に記載のSAWデバイス。
  4. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は、前記石英キャリア基板の結晶学的なx軸と90度の角度を形成する、請求項1に記載のSAWデバイス。
  5. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は、前記石英キャリア基板の結晶学的なx軸と0度の角度を形成する、請求項1に記載のSAWデバイス。
  6. 前記圧電層は、20°Yカットから+60°Yカットの間の配向を有するニオブ酸リチウムで形成される、請求項1に記載のSAWデバイス。
  7. 前記圧電層は、0°Yカットから+60°Yカットの間の配向を有するタンタル酸リチウムで形成される、請求項1に記載のSAWデバイス。
  8. 前記圧電層の厚さは、前記少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である、請求項1に記載のSAWデバイス。
  9. 前記圧電層の厚さは、前記少なくとも1つの交差指電極のトランスデューサ電極周期の2倍未満である、請求項1に記載のSAWデバイス。
  10. 前記石英キャリア基板と前記圧電層との間の前記石英キャリア基板の表面上に1つまたは複数の追加の層をさらに備える、請求項1に記載のSAWデバイス。
  11. 前記1つまたは複数の追加の層は、1つまたは複数の誘電体層を備える、請求項10に記載のSAWデバイス。
  12. 弾性表面波(SAW)デバイスであって、
    石英キャリア基板と、
    前記石英キャリア基板の表面上の圧電層と、
    前記石英キャリア基板に対向する前記圧電層の表面上にある少なくとも1つの交差指電極と、
    を備え、前記石英キャリア基板内の弾性表面波(SAW)の伝搬速度が最も遅いバルクモードに対応するバルク波(BAW)速度は、前記SAWデバイスのSAWの速度よりも速く、
    前記石英キャリア基板は、前記石英キャリア基板の結晶学的なz軸を含む平面、または前記石英キャリア基板の前記結晶学的なz軸と10度未満の角度をなす平面を備える、SAWデバイス。
  13. 前記BAW速度は、少なくとも4400メートル/秒(m/s)である、請求項12に記載のSAWデバイス。
  14. 前記BAW速度は、4400m/sから4660m/秒の間の範囲にある、請求項13に記載のSAWデバイス。
  15. 前記石英キャリア基板内のバルクカットオフ周波数は、前記SAWデバイスの共振周波数よりも10%を超えて高い、請求項12に記載のSAWデバイス。
  16. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は前記石英キャリア基板の結晶学的なx軸と30度から55度の範囲の角度を形成する、請求項12に記載のSAWデバイス。
  17. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は前記石英キャリア基板の結晶学的なx軸と90度の角度を形成する、請求項12に記載のSAWデバイス。
  18. 前記平面は前記結晶学的なz軸沿いに回転し、前記平面の法線は、前記石英キャリア基板の結晶学的なx軸と0度の角度を形成する、請求項12に記載のSAWデバイス。
  19. 前記圧電層は、20°Yカットから+60°Yカットの間の配向を有するニオブ酸リチウムで形成される、請求項12に記載のSAWデバイス。
  20. 前記圧電層は、0°Yカットから+60°Yカットの間の配向を有するタンタル酸リチウムで形成される、請求項12に記載のSAWデバイス。
  21. 前記圧電層の厚さは、前記少なくとも1つの交差指電極のトランスデューサ電極周期の4倍未満である、請求項12に記載のSAWデバイス。
JP2021073990A 2016-01-28 2021-04-26 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法 Active JP7317068B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662288018P 2016-01-28 2016-01-28
US62/288,018 2016-01-28
US15/086,895 US10084427B2 (en) 2016-01-28 2016-03-31 Surface acoustic wave device having a piezoelectric layer on a quartz substrate and methods of manufacturing thereof
US15/086,895 2016-03-31
JP2018539290A JP6877447B2 (ja) 2016-01-28 2017-01-25 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018539290A Division JP6877447B2 (ja) 2016-01-28 2017-01-25 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法

Publications (2)

Publication Number Publication Date
JP2021108495A JP2021108495A (ja) 2021-07-29
JP7317068B2 true JP7317068B2 (ja) 2023-07-28

Family

ID=59387138

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018539290A Active JP6877447B2 (ja) 2016-01-28 2017-01-25 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法
JP2021073990A Active JP7317068B2 (ja) 2016-01-28 2021-04-26 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018539290A Active JP6877447B2 (ja) 2016-01-28 2017-01-25 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法

Country Status (3)

Country Link
US (2) US10084427B2 (ja)
JP (2) JP6877447B2 (ja)
WO (1) WO2017132183A1 (ja)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8735219B2 (en) 2012-08-30 2014-05-27 Ziptronix, Inc. Heterogeneous annealing method and device
US10574203B2 (en) 2015-07-28 2020-02-25 Qorvo Us, Inc. Bonded wafers and surface acoustic wave devices using same
US10812038B2 (en) * 2015-08-25 2020-10-20 Avago Technologies International Sales Pte. Limited Acoustic wave resonator
US10084427B2 (en) 2016-01-28 2018-09-25 Qorvo Us, Inc. Surface acoustic wave device having a piezoelectric layer on a quartz substrate and methods of manufacturing thereof
US10128814B2 (en) 2016-01-28 2018-11-13 Qorvo Us, Inc. Guided surface acoustic wave device providing spurious mode rejection
US11095266B2 (en) 2016-10-07 2021-08-17 Qorvo Us, Inc. Slanted apodization for acoustic wave devices
US10924086B2 (en) 2016-10-14 2021-02-16 Qorvo Us, Inc. Surface acoustic wave (SAW) device with antireflective structure
US10848121B2 (en) 2016-10-14 2020-11-24 Qorvo Us, Inc. Guided SAW device
US10924085B2 (en) 2016-10-17 2021-02-16 Qorvo Us, Inc. Guided acoustic wave device
TWI780103B (zh) * 2017-05-02 2022-10-11 日商日本碍子股份有限公司 彈性波元件及其製造方法
JP6963423B2 (ja) 2017-06-14 2021-11-10 株式会社日本製鋼所 接合基板、弾性表面波素子および接合基板の製造方法
US20190074819A1 (en) * 2017-08-18 2019-03-07 Skyworks Solutions, Inc. Filter with surface acoustic wave device for carrier aggregation system
US11206007B2 (en) 2017-10-23 2021-12-21 Qorvo Us, Inc. Quartz orientation for guided SAW devices
JP7170402B2 (ja) * 2018-02-16 2022-11-14 株式会社日本製鋼所 接合基板、弾性表面波素子、弾性表面波素子デバイスおよび接合基板の製造方法
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US20210328574A1 (en) 2020-04-20 2021-10-21 Resonant Inc. Small transversely-excited film bulk acoustic resonators with enhanced q-factor
US10756697B2 (en) 2018-06-15 2020-08-25 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10790802B2 (en) 2018-06-15 2020-09-29 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated Y-X cut lithium niobate
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
JP7080671B2 (ja) * 2018-02-27 2022-06-06 NDK SAW devices株式会社 弾性表面波デバイス
NO345072B1 (en) * 2018-03-08 2020-09-21 Kongsberg Defence & Aerospace As Correction Unit for RF filter
FR3079667B1 (fr) * 2018-03-28 2020-03-27 Frec'n'sys Dispositif d'onde acoustique de surface sur substrat composite
DE102018108605A1 (de) * 2018-04-11 2019-10-17 RF360 Europe GmbH SAW-Resonator mit verbesserter Leistungsbeständigkeit und Wärmeresistenz und SAW-Resonator umfassendes HF-Filter
DE102018108961A1 (de) * 2018-04-16 2019-10-17 RF360 Europe GmbH TF-SAW-Resonator mit verbessertem Gütefaktor, HF-Filter und Verfahren zur Herstellung eines TF-SAW-Resonators
US11050406B2 (en) 2018-05-21 2021-06-29 Skyworks Solutions, Inc. Multi-layer piezoelectric substrate with heat dissipation
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US10998877B2 (en) 2018-06-15 2021-05-04 Resonant Inc. Film bulk acoustic resonator fabrication method with frequency trimming based on electric measurements prior to cavity etch
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11329628B2 (en) 2020-06-17 2022-05-10 Resonant Inc. Filter using lithium niobate and lithium tantalate transversely-excited film bulk acoustic resonators
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11349450B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US10992284B2 (en) 2018-06-15 2021-04-27 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with multiple frequency setting layers
US11228296B2 (en) 2018-06-15 2022-01-18 Resonant Inc. Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10992283B2 (en) 2018-06-15 2021-04-27 Resonant Inc. High power transversely-excited film bulk acoustic resonators on rotated Z-cut lithium niobate
US11323095B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Rotation in XY plane to suppress spurious modes in XBAR devices
US11201601B2 (en) 2018-06-15 2021-12-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US10868513B2 (en) 2018-06-15 2020-12-15 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US10797675B2 (en) 2018-06-15 2020-10-06 Resonant Inc. Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
US11728785B2 (en) 2018-06-15 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US20210391844A1 (en) * 2018-06-15 2021-12-16 Resonant Inc. Transversely-excited film bulk acoustic resonator
US11171629B2 (en) 2018-06-15 2021-11-09 Resonant Inc. Transversely-excited film bulk acoustic resonator using pre-formed cavities
US11374549B2 (en) 2018-06-15 2022-06-28 Resonant Inc. Filter using transversely-excited film bulk acoustic resonators with divided frequency-setting dielectric layers
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
WO2019244461A1 (ja) * 2018-06-22 2019-12-26 日本碍子株式会社 接合体および弾性波素子
US11664357B2 (en) 2018-07-03 2023-05-30 Adeia Semiconductor Bonding Technologies Inc. Techniques for joining dissimilar materials in microelectronics
JP7231368B2 (ja) * 2018-09-26 2023-03-01 太陽誘電株式会社 弾性波デバイス
DE112019005176T5 (de) * 2018-10-16 2021-09-23 Tohoku University Akustische wellenvorrichtungen
JP2022506474A (ja) * 2018-10-31 2022-01-17 レゾナント インコーポレイテッド 音響反射型の横方向に励振される薄膜バルク弾性波共振子
JP2020145567A (ja) * 2019-03-06 2020-09-10 株式会社村田製作所 弾性波装置
JP2022524136A (ja) 2019-03-14 2022-04-27 レゾナント インコーポレイテッド ハーフラムダ誘電体層を有する横方向に励起されたフィルムバルク音響共振器
US11901873B2 (en) 2019-03-14 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with partial BRAGG reflectors
JP2022525465A (ja) 2019-04-05 2022-05-16 レゾナント インコーポレイテッド 横方向に励起されたフィルムバルク音響共振器パッケージ及び方法
CN113939998A (zh) 2019-06-11 2022-01-14 日本碍子株式会社 复合基板、弹性波元件及复合基板的制造方法
WO2020250490A1 (ja) 2019-06-11 2020-12-17 日本碍子株式会社 複合基板、弾性波素子および複合基板の製造方法
KR20220002527A (ko) 2019-06-11 2022-01-06 엔지케이 인슐레이터 엘티디 복합 기판, 탄성파 소자 및 복합 기판의 제조 방법
WO2020250491A1 (ja) 2019-06-11 2020-12-17 日本碍子株式会社 複合基板、弾性波素子および複合基板の製造方法
US10911021B2 (en) 2019-06-27 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with lateral etch stop
JPWO2021002047A1 (ja) * 2019-07-03 2021-09-13 日本碍子株式会社 接合体および弾性波素子
CN113940002A (zh) * 2019-07-05 2022-01-14 株式会社村田制作所 弹性波装置、高频前端电路以及通信装置
KR20220011693A (ko) * 2019-07-05 2022-01-28 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
US11329625B2 (en) 2019-07-18 2022-05-10 Resonant Inc. Film bulk acoustic sensors using thin LN-LT layer
US10862454B1 (en) 2019-07-18 2020-12-08 Resonant Inc. Film bulk acoustic resonators in thin LN-LT layers
US20210111688A1 (en) * 2019-10-10 2021-04-15 Skyworks Solutions, Inc. Surface acoustic wave device with multi-layer piezoelectric substrate
US11804822B2 (en) 2019-10-23 2023-10-31 Skyworks Solutions, Inc. Surface acoustic wave resonator with reduced frequency shift
KR20220158679A (ko) * 2019-11-27 2022-12-01 도호쿠 다이가쿠 음향파 디바이스들에서의 에너지 구속
JP2021118366A (ja) * 2020-01-22 2021-08-10 株式会社日本製鋼所 弾性表面波フィルタ及びその製造方法
US20210273629A1 (en) 2020-02-28 2021-09-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with multi-pitch interdigital transducer
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11469733B2 (en) 2020-05-06 2022-10-11 Resonant Inc. Transversely-excited film bulk acoustic resonators with interdigital transducer configured to reduce diaphragm stress
US10992282B1 (en) 2020-06-18 2021-04-27 Resonant Inc. Transversely-excited film bulk acoustic resonators with electrodes having a second layer of variable width
US11742828B2 (en) 2020-06-30 2023-08-29 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with symmetric diaphragm
US11817845B2 (en) 2020-07-09 2023-11-14 Murata Manufacturing Co., Ltd. Method for making transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11264969B1 (en) 2020-08-06 2022-03-01 Resonant Inc. Transversely-excited film bulk acoustic resonator comprising small cells
US11671070B2 (en) 2020-08-19 2023-06-06 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators using multiple dielectric layer thicknesses to suppress spurious modes
US11271539B1 (en) 2020-08-19 2022-03-08 Resonant Inc. Transversely-excited film bulk acoustic resonator with tether-supported diaphragm
US11894835B2 (en) 2020-09-21 2024-02-06 Murata Manufacturing Co., Ltd. Sandwiched XBAR for third harmonic operation
US11929733B2 (en) 2020-10-05 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with input and output impedances matched to radio frequency front end elements
US11405019B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters
US11728784B2 (en) 2020-10-05 2023-08-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with split die sub-filters
US11476834B2 (en) 2020-10-05 2022-10-18 Resonant Inc. Transversely-excited film bulk acoustic resonator matrix filters with switches in parallel with sub-filter shunt capacitors
US11405017B2 (en) 2020-10-05 2022-08-02 Resonant Inc. Acoustic matrix filters and radios using acoustic matrix filters
US11658639B2 (en) 2020-10-05 2023-05-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator matrix filters with noncontiguous passband
US11463066B2 (en) 2020-10-14 2022-10-04 Resonant Inc. Transversely-excited film bulk acoustic resonators with piezoelectric diaphragm supported by piezoelectric substrate
US11496113B2 (en) 2020-11-13 2022-11-08 Resonant Inc. XBAR devices with excess piezoelectric material removed
US11405020B2 (en) 2020-11-26 2022-08-02 Resonant Inc. Transversely-excited film bulk acoustic resonators with structures to reduce acoustic energy leakage
US11239816B1 (en) 2021-01-15 2022-02-01 Resonant Inc. Decoupled transversely-excited film bulk acoustic resonators
JP7245860B2 (ja) 2021-03-09 2023-03-24 公益財団法人電磁材料研究所 振動発電素子
WO2023048256A1 (ja) * 2021-09-27 2023-03-30 株式会社村田製作所 弾性波装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095941A1 (en) 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave device
JP2004526977A (ja) 2001-05-21 2004-09-02 マイクロテクノロジー・センター・マネージメント・リミテッド 表面弾性波センサ
JP2006319679A (ja) 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd 複合圧電基板
WO2012086639A1 (ja) 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
JP2015109574A (ja) 2013-12-05 2015-06-11 株式会社村田製作所 縦結合共振子型弾性表面波フィルタおよび通信機

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600853A (en) 1985-08-23 1986-07-15 The United States Of America As Represented By The Secretary Of The Navy Saw-CTD serial to parallel imager and waveform recorder
FR2682833B1 (fr) 1991-10-18 1993-12-03 Thomson Csf Filtre a ondes de surface et a trajet acoustique replie.
US5384477A (en) 1993-03-09 1995-01-24 National Semiconductor Corporation CMOS latchup suppression by localized minority carrier lifetime reduction
JP3435789B2 (ja) * 1993-03-15 2003-08-11 松下電器産業株式会社 表面弾性波素子
US5719538A (en) * 1995-09-01 1998-02-17 Murata Manufacturing Co., Ltd. Surface acoustic wave device having negative temperature coefficient of decay
JP3196678B2 (ja) 1997-02-07 2001-08-06 株式会社村田製作所 表面波装置
FR2774826B1 (fr) 1998-02-06 2000-05-05 Thomson Csf Filtre a resonateurs a ondes acoustiques de surface
FR2788176B1 (fr) 1998-12-30 2001-05-25 Thomson Csf Dispositif a ondes acoustiques guidees dans une fine couche de materiau piezo-electrique collee par une colle moleculaire sur un substrat porteur et procede de fabrication
JP2002076835A (ja) * 2000-08-31 2002-03-15 Seiko Epson Corp 弾性表面波素子
US7105980B2 (en) 2002-07-03 2006-09-12 Sawtek, Inc. Saw filter device and method employing normal temperature bonding for producing desirable filter production and performance characteristics
DE102004045181B4 (de) 2004-09-17 2016-02-04 Epcos Ag SAW-Bauelement mit reduziertem Temperaturgang und Verfahren zur Herstellung
JPWO2007004661A1 (ja) 2005-06-30 2009-01-29 エプソントヨコム株式会社 弾性表面波デバイス
JP2007028538A (ja) 2005-07-21 2007-02-01 Tdk Corp 弾性表面波装置
CN101401208A (zh) 2006-03-15 2009-04-01 皇家飞利浦电子股份有限公司 用于辐射检测的半导体器件
US8115365B2 (en) 2008-04-15 2012-02-14 Ngk Insulators, Ltd. Surface acoustic wave devices
US8035464B1 (en) 2009-03-05 2011-10-11 Triquint Semiconductor, Inc. Bonded wafer SAW filters and methods
WO2010125873A1 (ja) * 2009-04-28 2010-11-04 京セラ株式会社 弾性波装置及びその製造方法
US8456257B1 (en) 2009-11-12 2013-06-04 Triquint Semiconductor, Inc. Bulk acoustic wave devices and method for spurious mode suppression
JP5562441B2 (ja) 2010-12-28 2014-07-30 京セラ株式会社 弾性波素子およびそれを用いた弾性波装置
WO2013002033A1 (ja) 2011-06-28 2013-01-03 京セラ株式会社 弾性波素子およびそれを用いた弾性波装置
WO2013031617A1 (ja) 2011-08-26 2013-03-07 株式会社村田製作所 圧電デバイス、および、圧電デバイスの製造方法
JP5797979B2 (ja) 2011-08-31 2015-10-21 太陽誘電株式会社 弾性波デバイス
JP5811276B2 (ja) * 2012-05-17 2015-11-11 株式会社村田製作所 弾性表面波装置
KR101511001B1 (ko) 2012-11-14 2015-04-10 엔지케이 인슐레이터 엘티디 복합 기판
WO2014148648A1 (ja) * 2013-03-21 2014-09-25 日本碍子株式会社 弾性波素子用複合基板および弾性波素子
US10574203B2 (en) 2015-07-28 2020-02-25 Qorvo Us, Inc. Bonded wafers and surface acoustic wave devices using same
US10084427B2 (en) * 2016-01-28 2018-09-25 Qorvo Us, Inc. Surface acoustic wave device having a piezoelectric layer on a quartz substrate and methods of manufacturing thereof
US10128814B2 (en) 2016-01-28 2018-11-13 Qorvo Us, Inc. Guided surface acoustic wave device providing spurious mode rejection
US11095266B2 (en) 2016-10-07 2021-08-17 Qorvo Us, Inc. Slanted apodization for acoustic wave devices
US10924086B2 (en) 2016-10-14 2021-02-16 Qorvo Us, Inc. Surface acoustic wave (SAW) device with antireflective structure
US10848121B2 (en) 2016-10-14 2020-11-24 Qorvo Us, Inc. Guided SAW device
US10924085B2 (en) 2016-10-17 2021-02-16 Qorvo Us, Inc. Guided acoustic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095941A1 (en) 2001-05-21 2002-11-28 Microtechnology Centre Management Limited Surface acoustic wave device
JP2004526977A (ja) 2001-05-21 2004-09-02 マイクロテクノロジー・センター・マネージメント・リミテッド 表面弾性波センサ
JP2006319679A (ja) 2005-05-12 2006-11-24 Shin Etsu Chem Co Ltd 複合圧電基板
WO2012086639A1 (ja) 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
JP2015109574A (ja) 2013-12-05 2015-06-11 株式会社村田製作所 縦結合共振子型弾性表面波フィルタおよび通信機

Also Published As

Publication number Publication date
US20170222622A1 (en) 2017-08-03
US10454447B2 (en) 2019-10-22
US10084427B2 (en) 2018-09-25
JP2021108495A (ja) 2021-07-29
JP2019507546A (ja) 2019-03-14
JP6877447B2 (ja) 2021-05-26
WO2017132183A1 (en) 2017-08-03
US20180337654A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP7317068B2 (ja) 石英基板上に圧電層を含む弾性表面波デバイス及びその製造方法
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
US11742826B2 (en) Quartz orientation for guided SAW devices
JP4419961B2 (ja) 弾性境界波装置
JP4657002B2 (ja) 複合圧電基板
US5446330A (en) Surface acoustic wave device having a lamination structure
KR102519924B1 (ko) 탄탈산리튬 단결정 기판 및 이것의 접합 기판과 이 제조법 및 이 기판을 사용한 탄성 표면파 디바이스
JP7292327B2 (ja) 弾性表面波素子、弾性表面波素子デバイスおよび接合基板の製造方法
CN111697943B (zh) 一种高频高耦合系数压电薄膜体声波谐振器
JP6646058B2 (ja) 接合基板及びその製造方法とこの接合基板を用いた弾性表面波デバイス
KR20180038369A (ko) 복합 기판의 제조 방법
Nakahata et al. SAW devices on diamond
EP1940021A1 (en) Elastic surface wave device, module device, oscillation circuit, and elastic surface wave device fabrication method
US8610518B1 (en) Elastic guided wave coupling resonator filter and associated manufacturing
TW202044757A (zh) 高次模式彈性表面波裝置
CN112152587A (zh) 用于表面声波器件的复合基板及其制造方法
CN112929004A (zh) 声波谐振器、滤波器、多路复用器和晶片
WO2024077955A1 (zh) 一种多传输零点的声表面波滤波器及信号处理电路
JP2000278088A (ja) 弾性表面波デバイス
JP4245103B2 (ja) 弾性表面波素子
JP2003273691A (ja) 表面弾性波素子
Sato et al. Temperature stable SAW devices using directly bonded LiTaO/sub 3//glass substrates
CN111727565A (zh) 弹性波元件
JP2014176076A (ja) 弾性表面波・擬似弾性表面波・弾性境界波を用いた弾性表面波基板とその基板を用いた弾性表面波機能素子
Grigorievski et al. P3I-6 Interface Leaky Longitudinal Waves in Lithium Niobate and Lithium Tantalate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R150 Certificate of patent or registration of utility model

Ref document number: 7317068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150