JP7302402B2 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
JP7302402B2
JP7302402B2 JP2019167267A JP2019167267A JP7302402B2 JP 7302402 B2 JP7302402 B2 JP 7302402B2 JP 2019167267 A JP2019167267 A JP 2019167267A JP 2019167267 A JP2019167267 A JP 2019167267A JP 7302402 B2 JP7302402 B2 JP 7302402B2
Authority
JP
Japan
Prior art keywords
electrode
positive electrode
storage device
expanded graphite
electricity storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019167267A
Other languages
English (en)
Other versions
JP2021044209A (ja
Inventor
秀亮 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019167267A priority Critical patent/JP7302402B2/ja
Publication of JP2021044209A publication Critical patent/JP2021044209A/ja
Application granted granted Critical
Publication of JP7302402B2 publication Critical patent/JP7302402B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本明細書では、蓄電デバイスを開示する。
従来、この種の蓄電デバイスとしては、例えば、ニッケル複合酸化物を含む正極活物質とリン酸鉄リチウムを含む正極活物質と膨張黒鉛とを造粒した粒子からなる正極を用いたものが提案されている(例えば、特許文献1参照)。この非水電解質二次電池では、低SOCでの出力特性にすぐれたものとなるとしている。また、蓄電デバイスとしては、微細多孔性炭素系物質と炭素層をその表面に形成したリチウム複合化合物の正極活物質とを有する正極を備えたリチウム二次電池が提案されている(例えば、特許文献2参照)。このリチウム二次電池では、正極の導電性を向上させて優れた出力特性を得ることができるとしている。また、正極合材層に導電材としてカーボン粒子と平均細孔径が0.2~0.5μmの膨張化黒鉛を含むものが提案されている(例えば、特許文献3参照)。このリチウム二次電池では、電池抵抗を低減するとともに、過充電時に迅速に正極でガス発生剤が分解して電流遮断機構を作動して電池の安全を担保することが可能であるとしている。また、密度3.5~4g/cm3の正極合材層で、平均粒子径が18μm~25μm、および3~7μmの2種類の正極活物質を含み、導電材として、カーボンブラックと膨張黒鉛とが7:3~3:7の配合比率で含有し、膨張黒鉛の平均粒子径が1~5μmである非水電解質二次電池が提案されている(例えば、特許文献4参照)。この非水電解質二次電池では、サイクル特性に優れた電池を提供することができるとしている。
特開2015-220123号公報 特開2011-238586号公報 特開2014-86228号公報 特開2012-146590号公報
しかしながら、特許文献1、2では、正極活物質粒子自体に炭素材料を複合化することで、主に電子伝導性を向上させて出力特性の向上を図っているものの、電極を高密度化した際には活物質の割れなどが生じて耐久性が低下する可能性があった。また、特許文献3では、過充電時の電流遮断弁作動の安定化を図るため、正極導電材として電解液が含浸する細孔を有する膨張黒鉛粒子を利用しているが、エネルギー密度や入出力特性を高めることは検討されていなかった。また、特許文献4の非水電解質二次電池では、正極合材中にカーボンブラックと膨張黒鉛を導電材として加えることで、正極活物質の粒子割れを抑制して高密度化を可能としており、導電材の割合を低減しても十分な導電性がえられるとしている。しかしながら、電池の高エネルギー密度化による合材内のリチウムイオンの拡散抵抗増大による入出力低下については検討されていなかった。このように、蓄電デバイスのエネルギー密度及び入出力特性を両立してより高めることは、十分検討されていなかった。
本開示は、このような課題に鑑みなされたものであり、エネルギー密度及び入出力特性を両立してより高めることができる蓄電デバイスを提供することを主目的とする。
上述した目的を達成するために鋭意研究したところ、本発明者らは、柱状の第1電極を結束して電極構造体とする際に、摺動材を含む電極合材として圧縮することによって、活物質の密度をより高めてよりエネルギー密度を高めることができ、且つ柱状の構造によって、入出力特性をより向上することができることを見いだし、本明細書で開示する発明を完成するに至った。
即ち、本明細書で開示する蓄電デバイスは、
所定方向に所定間隔で配列された第1活物質を含む複数の柱状の第1電極と、
第2活物質と導電材と平均粒径が10μm未満である摺動材とを含み前記第1電極の周囲に存在する第2電極と、
イオン伝導性及び絶縁性を有し前記第1電極と前記第2電極との間に介在する分離膜と、
を備えたものである。
本開示は、エネルギー密度及び入出力特性を両立してより高めることができる。このような効果が得られる理由は、以下のように推察される。例えば、柱状の第1電極を用いると、外周面からキャリアイオンのアクセスが可能であり、入出力特性をより高めることができる。また、柱状の第1電極の周囲に存在する第2電極の合材に平均粒径が10μm未満である摺動材を含むことにより、第2電極を高密度化することが可能となり、高エネルギー密度の電池を得ることができるものと推察される。また、柱状の第1電極の周囲に第2電極が存在する構造において、プレスなどで第2電極合材を高密度化する際には、一般的な平板電極と異なり立体的にプレスをする必要があり、一般的なプレスでは、所望の合材密度に達するのは困難であった。また、さらに過度の圧力でプレスすると柱状電極の破断やその周囲の分離膜の導電率低下を引き起こすことがあった。そこで、第2電極合材に摺動材を添加することで、プレス時の圧力分散を促し、均一に高密度化を図るものとした。このため、エネルギー密度及び入出力特性を両立してより高めることができるものと推察された。
蓄電デバイス10の一例を示す模式図。 蓄電デバイス10Bの一例を示す模式図。 実験例1,7のSEM画像。 膨張黒鉛のX線回折測定結果。 実験例1のX線回折測定結果。
(蓄電デバイス)
実施形態で説明する本開示の蓄電デバイスは、第1電極と、第2電極と、分離膜とを備える。第1電極は、所定方向に所定間隔で配列された第1活物質を含む複数の柱状体である。第2電極は、第2活物質と導電材と平均粒径が10μm未満である摺動材とを含み第1電極の周囲に存在するものである。分離膜は、イオン伝導性及び絶縁性を有し第1電極と第2電極との間に介在するものである。ここで、この蓄電デバイスは、例えば、電気二重層キャパシタやハイブリッドキャパシタ、疑似電気二重層キャパシタ、リチウム二次電池、リチウムイオン電池などとしてもよい。また、第1電極は負極であり、第2電極は正極であることが好ましいが、第1電極は正極であり、第2電極は負極であるものとしてもよい。また、「柱状」とは、屈曲しない太さのもののほか、屈曲可能な繊維状の太さのものも含むものとする。この第1電極は、柱状であればよく、その断面は円形であってもよいし、多角形であってもよい。また、第2電極は、第1電極の周りに存在するものとしてもよいし、第1電極の間の空間に充填されているものとしてもよい。また、この蓄電デバイスは、分離膜を介して正極と隣り合う状態で複数の負極が結束された構造を有するものとしてもよい。この蓄電デバイスは、第1電極、第2電極及び分離膜のうち1以上に電解液を含むものとしてもよい。また、正極及び負極には、集電線などの集電部材が埋設されているものとしてもよいし、この集電部材を備えないものとしてもよい。ここでは、説明の便宜のため、第1電極を負極とし、第2電極を正極とし、リチウムイオンをキャリアとするリチウムイオン二次電池をその主たる一例として以下説明する。
次に、本実施形態で開示する蓄電デバイスについて図面を用いて説明する。図1は、蓄電デバイス10の一例を示す模式図である。図2は、蓄電デバイス10Bの一例を示す模式図である。蓄電デバイス10は、図1に示すように、第1電極としての負極11と、負極集電体12と、分離膜15と、第2電極としての正極16と、正極集電体17と、を備えている。この蓄電デバイス10は、柱状の負極活物質からなる負極11と、負極11の周りに分離膜15を介して形成された正極活物質層からなる正極16とを備えている。この蓄電デバイス10は、分離膜15及び正極16を介した状態で複数の負極11が結束された構造を有する。また、この蓄電デバイス10では、50本以上の負極11が結束された構造を有しているものとしてもよい。蓄電デバイス10Bは、柱状の負極11と、負極11の表面に形成された分離膜15と、負極11の間に分離膜15を介して正極16が充填された構造を有する。
負極11は、活物質を含む柱状の物質である。この蓄電デバイス10では、複数の柱状の負極が所定方向に配列されている。負極11は、端面以外の外周が分離膜15を介して正極16に対向している。例えば、負極11は、セル全体の負極容量の1/nの容量を有し、n個が負極集電体12に並列接続されているものとしてもよい。この負極11は、長手方向に垂直な断面の直径Dが10μm以上であることが好ましく、15μm以上であることがより好ましく、30μm以上であるものとしてもよい。また、負極11の直径Dは、800μm以下であることが好ましく、500μm以下であることがより好ましく、400μm以下であるものとしてもよい。この直径Dが10μm以上では、電極構造体としての強度を担保することができ安定した充放電ができる。また、この直径Dが800μm以下ではキャリアのイオンの移動距離が長くなりすぎず、高出力性能が得られる。また、この直径Dが10~500μmの範囲では、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲では、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。この柱状体の長手方向の長さは、蓄電デバイスの用途などに応じて適宜定めることができ、例えば、20mm以上200mm以下の範囲などとしてもよい。柱状体の長さが20mm以上では、電池容量をより高めることができ好ましく、200mm以下では、負極の電気抵抗をより低減することができ好ましい。この負極は、負極活物質としての炭素材料を含むものとしてもよい。炭素材料としては、例えば、グラファイト類や、コークス類、ガラス状炭素類、難黒鉛化性炭素類、熱分解炭素類のうち1以上が挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が好ましい。また、グラファイト構造を有する炭素繊維としてもよい。このような炭素繊維は、例えば、繊維方向である長手方向に結晶が配向したものが好ましい。また、長手方向(繊維方向)に直交する方向に断面視したときに結晶が中心から外周面側に放射状に配向したものであることが好ましい。あるいは、柱状の負極は、キャリアのイオンを吸蔵放出可能な複合酸化物を柱状体に成形したものとしてもよい。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。この負極は、その表面の少なくとも一部に導電成分が形成されているものとしてもよい。この導電成分により、導電性をより高めることができる。この導電成分は、導電性の高い材料であれば特に限定されないが、例えば、金属としてもよい。
負極集電体12は、導電性を有する部材であり、負極11の端面が電気的に接続されている。負極集電体12には、50本以上の負極11が並列接続されている。この負極集電体12は、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化(還元)性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。負極集電体12の形状は、複数の負極11が接続できるものであれば特に限定されず、例えば、板状、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。
分離膜15は、キャリアであるイオン(例えばリチウムイオン)のイオン伝導性を有し負極11と正極16とを絶縁するものである。分離膜15は、正極16と対向する負極11の外周面の全体に形成されており、負極11と正極16との短絡を防止している。この分離膜15は、例えば、樹脂を含む原料溶液から自立膜を作製し、負極11の表面をこの自立膜で被覆させることにより形成されてもよいし、原料溶液へ負極11を浸漬させてその表面にコートすることにより形成されるものとしてもよい。この分離膜15の樹脂としては、例えば、ポリフッ化ビニリデン(PVdF)や、PVdFとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)、ポリメタクリル酸メチル(PMMA)、及びPMMAとアクリルポリマーとの共重合体などが挙げられる。例えば、PVdFとHFPとの共重合体では、電解液の一部がこの膜を膨潤ゲル化し、イオン伝導膜となる。この分離膜15の厚さLは、例えば、2μm以上であることが好ましく、5μm以上であることがより好ましく、8μm以上であるものとしてもよい。厚さLが2μm以上では、絶縁性を確保する上で好ましい。特に、分離膜15の厚さが2μm以上であれば、作製しやすい。また、分離膜15の厚さLは、15μm以下であることが好ましく、10μm以下であることがより好ましい。厚さLが15μm以下では、イオン伝導性の低下を抑制できる点や、セルに占める体積をより低減する上で好ましい。厚さLが2~15μmの範囲では、イオン伝導性及び絶縁性が好適である。
分離膜15は、キャリアであるイオンを伝導する電解液を含むものとしてもよい。この電解液は、例えば、非水系溶媒などが挙げられる。電解液の溶媒としては、例えば、非水電解液の溶媒などが挙げられる。この溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル-n-ブチルカーボネート、メチル-t-ブチルカーボネート、ジ-i-プロピルカーボネート、t-ブチル-i-プロピルカーボネートなどの鎖状カーボネート類、γ-ブチルラクトン、γ-バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3-ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。この電解液には、蓄電デバイス10のキャリアであるイオンを含む支持塩を溶解したものとしてもよい。支持塩としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。
正極16は、正極活物質と導電材と、摺動材とを含み、負極11の外周に分離膜15を介して形成されている。正極16は、蓄電デバイス10の作製時において、柱状の負極11を内包し断面の外形を六角形状とするものとしてもよい(図1参照)。この形状であれば、正極活物質が外周に形成された負極11を結束すると、正極16が負極11の間に充填されやすく好ましい。この正極16は、複数の負極11の間に存在するものとすればよく、図1に示すように、外形が六角形状であることに限定されない。正極16は、導電材を含み、それ自体に導電性を有するものとし、集電部材などは省略されているものとしてもよい。正極16は、その端面が正極集電体17に直接接続されているものとしてもよいし、側面全体に正極集電体が接続されるものとしてもよい。この正極16は、例えば、負極11の外周に分離膜15を形成したのち、その外周に正極16の原料を塗布して形成されたものとしてもよい。
正極16は、例えば、正極活物質と、導電材と、摺動材と、必要に応じて結着剤とを混合し成形したものとしてもよい。正極活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。正極活物質としては、例えば、リチウムと遷移金属とを有する化合物、例えば、リチウムと遷移金属元素とを含む酸化物や、リチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi(1-x)MnO2(0≦x≦1など、以下同じ)やLi(1-x)Mn24などとするリチウムマンガン複合酸化物、基本組成式をLi(1-x)CoO2などとするリチウムコバルト複合酸化物、基本組成式をLi(1-x)NiO2などとするリチウムニッケル複合酸化物、基本組成式をLi(1-x)CoaNibMnc2(a>0、b>0、c>0、a+b+c=1)、Li(1-x)CoaNibMnc4(0<a<1、0<b<1、1≦c<2、a+b+c=2)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV23などとするリチウムバナジウム複合酸化物、基本組成式をV25などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo1/3Ni1/3Mn1/32やLiNi0.4Co0.3Mn0.32などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。
摺動材は、例えば、圧力の付与によってその材料自体が摺動するものである。この摺動材は、例えば、積層構造を有し、積層された部位が滑ることにより摺動性を有するものとしてもよい。この摺動材は、摺動性を有するものとすれば、無機材料としてもよいし、炭素材料としてもよいし、樹脂材料としてもよい。このうち、導電性を有する炭素材料が摺動材としてより好ましい。この摺動材は、例えば、膨張黒鉛粒子であることが好ましい。膨張黒鉛粒子は、例えば、黒鉛に硫酸などのイオンを挿入した黒鉛層間化合物を形成したあと、熱処理で層間成分をガス化することで黒鉛層間を剥離させた材料である。この膨張黒鉛粒子は、黒鉛に比べて層間の結合が弱くなっており、層間が滑ることで摺動材として機能することが可能である。摺動材の平均粒径は10μm未満であるが、8μm以下が好ましく、7.5μm以下がより好ましく、7μm以下が更に好ましい。また、この平均粒径は、0.5μm以上がより好ましく、1μm以上がより好ましく、2μm以上が更に好ましい。摺動材の平均粒径がこの範囲では、より良好な摺動性を発揮でき好ましい。この摺動材は、粉砕処理により粒径が調整されているものとしてもよい。粉砕方法としては、ボールミルや遊星ミル、乳鉢粉砕などが挙げられる。粉砕時間を調整することによって、粒度を調整することができる。この摺動材の粒径は、例えば、走査型電子顕微鏡により得られたSEM画像に含まれる各粒子の長辺を計測し、これをその粒子の粒径として加算し、粒子数で除算して得られた平均値とする。
摺動材は、正極合材の全体に対して、0.5質量%以上5質量%以下の範囲で含まれることが好ましい。摺動材の配合量がこの範囲では、より良好な摺動性を発揮でき好ましい。この配合量は、4質量%以下や3質量%以下としてもよく、1質量%以上、2質量%以上としてもよい。この摺動材は、導電材と摺動材との全体100質量部に対して15質量部以上92質量部以下の範囲が好ましく、30質量部以上50質量部以下の範囲がより好ましい。この範囲では、導電性と摺動性とを両立することができ、好ましい。
正極に含まれる導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。正極や負極に用いられる導電材は、例えば、粒子状導電材と繊維状導電材とを含むことが好ましい。粒子状導電材Pに対する繊維状導電材Fとの質量での配合比F/Pは、例えば、1/2~1/5の範囲が好ましい。結着材は、活物質粒子や導電材粒子を繋ぎ止めて所定の形状を保つ役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。
正極16において、正極活物質の含有量は、より多いことが好ましく、正極16の質量全体に対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。導電材の含有量は、正極16の全体の質量に対して0質量%以上20質量%以下の範囲であることが好ましく、0質量%以上10質量%以下の範囲であることがより好ましい。このような範囲では、電池容量の低下を抑制し、導電性を十分に付与することができる。また、結着材の含有量は、正極16の質量全体に対して0.1質量%以上5質量%以下の範囲であることが好ましく、0.2質量%以上3質量%以下の範囲であることがより好ましい。また、正極活物質は、例えば、タップ密度が2.4g/cm3以上であることが好ましい。このタップ密度は、4.0g/cm3以下であることが好ましい。タップ密度がこの範囲では、正極合材層の密度をより高めることができ好ましい。なお、タップ密度は、メスシリンダーに嵩体積が60%以上となるよう試料を入れ、ストロークを2cm、タッピング回数を500回とする所定のタッピング処理を行い得られた値とする。また、正極16は、正極活物質と導電材と摺動材と結着材とを含む正極合材層の密度が2.5g/cm3以上であることが好ましく、3.0g/cm3以上であることがより好ましい。正極合材層の密度がより高いほど蓄電デバイスのエネルギー密度をより高めることができ好ましい。この密度は、作製の容易性から4.0g/cm3以下であることが好ましい。
正極集電体17は、導電性を有する部材であり、正極16に電気的に接続されている。正極集電体17には、50本以上の正極16の端面が並列接続されている。この正極集電体17は、負極集電体12で説明したいずれかの部材とするものとしてもよい。
この蓄電デバイス10において、放電容量は、より大きいことが好ましいが、0.16mAh以上であることが好ましく、0.17mAh以上がより好ましく、0.18mAh以上が更に好ましい。このときの蓄電デバイス10の体積エネルギー密度は、より高いことがより好ましく、例えば、650Wh/L以上であることが好ましく、830Wh/L以上であることがより好ましく、900Wh/L以上であることが更に好ましい。この蓄電デバイス10において、正極活物質の容量に対する負極活物質の容量の比である正負極容量比(負極容量/正極容量)は、1.0以上1.5以下の範囲とすることが好ましく、より好ましくは1.2以下の範囲である。正極の形成厚さは、負極の直径及び正負極容量比に応じて適宜設定されるが、例えば、5μm以上50μm以下の範囲としてもよい。正極の形成厚さは、例えば、負極上に形成された部分のうち最大の厚さをいうものとする。
以上詳述した蓄電デバイス10では、エネルギー密度及び入出力特性を両立してより高めることができる。このような効果が得られる理由は、以下のように推察される。例えば、柱状の負極11(第1電極)を用いると、外周面からキャリアイオンのアクセスが可能であり、入出力特性をより高めることができる。また、柱状の負極11の周囲に存在する正極16(第2電極)の合材に平均粒径が10μm未満である摺動材を含むことにより、正極16を高密度化することが可能となり、高エネルギー密度の電池を得ることができるものと推察される。また、柱状の負極11の周囲に正極16が存在する構造において、プレスなどで正極16を高密度化する際には、一般的な平板電極と異なり立体的にプレスをする必要があり、一般的なプレスでは、所望の合材密度に達するのは困難であった。また、さらに過度の圧力でプレスすると柱状電極の破断やその周囲の分離膜の導電率低下を引き起こすことがあった。そこで、正極合材に摺動材を添加することで、プレス時の圧力分散を促し、均一に高密度化を図るものとした。このため、エネルギー密度及び入出力特性を両立してより高めることができるものと推察された。
特に、正極16において、摺動材として膨張黒鉛を用いると、導電材としても機能するので導電性を向上する効果も期待できる。また、エネルギー密度を高めるには正極合材中の正極活物質を3.0g/cm3以上まで高密度化することが好ましいが、これにより正極合材内の電解液量が少なくなるためイオン伝導性が低下して入出力(特に出力特性)が低下することがある。これに対して、摺動材として膨張黒鉛を添加した正極合材においては、膨張黒鉛の拡大した層間に電解液が含まれて、イオン伝導性の低下を抑制する効果が発現されるものと推察される。
なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
例えば、上述した実施形態では、蓄電デバイス10において、負極や正極は、集電部材を内包しないものについて説明したが、特にこれに限定されず、各電極は、集電線などの集電部材を埋設していてもよい。
また、上述した実施形態では、蓄電デバイスのキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリ金属イオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、正極活物質は、キャリアのイオンを含むものとすればよい。また、電解液を非水系電解液としたが、水溶液系電解液としてもよい。
上述した実施形態では、柱状の負極は、円柱形状である例を説明したが、特にこれに限定されず、四角柱や六角柱などの形状としてもよい。
上述した実施形態では、正極活物質を遷移金属複合酸化物としたが、特に限定されず、例えば、キャパシタに用いられる炭素材料としてもよい。炭素材料としては、特に限定されるものではないが、例えば、活性炭類、コークス類、ガラス状炭素類、黒鉛類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維類、カーボンナノチューブ類、ポリアセン類などが挙げられる。このうち、高比表面積を示す活性炭類が好ましい。炭素材料としての活性炭は、比表面積が1000m2/g以上であることが好ましく、1500m2/g以上であることがより好ましい。比表面積が1000m2/g以上では、放電容量をより高めることができる。この活性炭の比表面積は、作製の容易性から3000m2/g以下であることが好ましく、2000m2/g以下であることがより好ましい。なお、正極では、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を吸着・脱離して蓄電するものと考えられるが、さらに、イオン伝導媒体に含まれるアニオン及びカチオンの少なくとも一方を挿入・脱離して蓄電するものとしてもよい。
以下には、上述した蓄電デバイスを具体的に作製した例を実験例として説明する。実験例1~6が本開示の実施例に相当し、実験例7~9が比較例に相当する。
(実験例1)
(蓄電デバイスの作製)
直径160μm、長さ6.0cmの柱状体の負極としてのカーボンロッドに対し、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVdF-HFP)をN-メチルピロリドン(NMP)に溶解させた溶液をディップ法で被覆、乾燥することで、7μmの膜厚でカーボンロッドの表面に分離膜としてのポリマー膜を均一塗布した。次に、正極活物質(LiNi0.5Co0.2Mn0.32)と、導電材としてのアセチレンブラック(デンカ社製HS-100)と、導電材としての気相成長炭素繊維(昭和電工製VGCF)と、摺動材としての膨張黒鉛と、結着材としてのポリフッ化ビニリデン(クレハ製PVdF7305)とを質量比で90:3:1:2:4となるよう配合したものにN-メチルピロリドンを加えて正極合材ペーストとした。正極活物質は、タップ回数500回、ストローク2cmとしたタップ密度が2.4g/cm3であった。膨張黒鉛は、伊藤黒鉛工業製EC300をミルで破砕して、平均粒径5μmにしたものを用いた。なお、膨張黒鉛の平均粒径は、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-3600N)により得られたSEM画像に含まれる各粒子の長辺を計測し、これをその粒子の粒径として加算し、粒子数で除算して得られた平均値とした。上記のポリマー被覆カーボンロッドに対して正極スラリーをディップコートして、カーボンロッド単位長さあたりの正極合材の目付量で0.35mg/cmとなるように正極合材層を形成した。このように作製したカーボンロッド/ポリマー膜/正極合材層の電極構造体の23本を積層して、静水圧プレスを用いてプレスすることで正極合材層を所定密度(3.0g/cm3)に調整した。上記の電極構造体の両端をAgペーストを介してNiタブに接続し、更に正極合材層とAl箔を介してAlタブを接続して、Alラミネートセルに挿入した。このラミネートセルに非水電解液を注液して封止することにより得られた試験セルを実験例1とした。非水電解液には、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を体積比で30/40/30で混合した混合溶媒に、LiPF6を1Mの濃度で溶解させたものを用いた。
(実験例2~6)
ミルで破砕して平均粒径7μmに調整した膨張黒鉛を用いた以外は実験例1と同様に作製したものを実験例2の蓄電デバイスとした。ミルで破砕して平均粒径2μmに調整した膨張黒鉛を用いた以外は実験例1と同様に作製したものを実験例3の蓄電デバイスとした。ミルで破砕して平均粒径0.5μmに調整した膨張黒鉛を用いた以外は実験例1と同様に作製したものを実験例4の蓄電デバイスとした。膨張黒鉛も導電材に含めてトータルの導電材の量を6質量%に固定し、アセチレンブラックとVGCFとの質量比を3:1に固定し、膨張黒鉛の添加割合を1質量%とした以外は、実験例1と同様に作製したものを実験例5の蓄電デバイスとした。膨張黒鉛も導電材に含めてトータルの導電材の量を6質量%に固定し、アセチレンブラックとVGCFとの質量比を3:1に固定し、膨張黒鉛の添加割合を5質量%とした以外は、実験例1と同様に作製したものを実験例6の蓄電デバイスとした。
(実験例7~9)
膨張黒鉛も導電材に含めてトータルの導電材の量を6質量%に固定し、アセチレンブラックとVGCFとの質量比を3:1に固定し、膨張黒鉛の添加割合を0質量%とした以外は、実験例1と同様に作製したものを実験例7の蓄電デバイスとした。ミルで破砕して平均粒径10μmに調整した膨張黒鉛を用いた以外は実験例1と同様に作製したものを実験例8の蓄電デバイスとした。ミルで破砕して膨張黒鉛の平均粒径10μmに調整し、膨張黒鉛も導電材に含めてトータルの導電材の量を6質量%に固定し、アセチレンブラックとVGCFとの質量比を3:1に固定し、膨張黒鉛の添加割合を6質量%とした以外は実験例1と同様に作製したものを実験例9の蓄電デバイスとした。実験例9では、膨張黒鉛を導電材100%とした。
(電極のSEM観察)
上記作製した蓄電デバイスの正極を走査型電子顕微鏡(SEM)を用いて観察した。SEM観察では、上記作製した蓄電電池をグローブボックス内で分解し、正極を溶媒(ジメチルカーボネート)で洗浄、乾燥したあと、走査型電子顕微鏡(日立ハイテクノロジーズ社製S-3600N)を用い、ポリマー膜の表面を観察した。SEM観察は、1000~5000倍の条件で行った。
(X線回折測定)
上記作製した蓄電デバイスの正極をX線回折測定した。測定は放射線としてCuKα線(波長1.54051Å)を使用し、サンプル角度(θ)を固定して検出器の角度(2θ)を動かすXRD測定装置(リガク製、Ultima IV)を用いて行った。X線の単色化にはグラファイトの単結晶モノクロメーターを用い、印加電圧を40kV、電流30mAに設定して測定を行った。また、測定は5°/分の走査速度、2θ=10°~50°の角度範囲で記録した。また、002回折ピークと100回折ピークとの強度比I002/100から、膨張黒鉛の配向性について考察した。測定は、粉砕前の膨張黒鉛自体に対しても行った。
(IV抵抗測定)
上記作製した評価セルのコンディショニング充放電を行ったのち、IV測定を実施して電流-電圧の傾きより抵抗値を得た。コンディショニング充放電は、終止電圧を2.5~4.1V、電流値を0.1C、試験温度を25℃として実施した。測定結果は、実験例7を100として相対的に規格化した値とした。
(充放電評価)
上記作製した評価セルを用い、60℃の温度環境下、定電流で4.1Vまで充電する処理と定電流で2.5Vまで放電する処理とを2Cレートで充放電するサイクルを100回行った。充放電サイクル維持率を(100サイクル目の容量)/(1サイクル目の容量)×100%の式より求めた。
(結果と考察)
表1に、実験例1~9の膨張黒鉛の添加量(質量%)、平均粒径(μm)、配向性、IV抵抗、充放電サイクルの容量維持率(%)をまとめて示した。図3は、実験例1(図3B),実験例7(図3A)のSEM画像である。図4は、膨張黒鉛のX線回折測定結果である。図5は、実験例1のX線回折測定結果である。図3に示すように、膨張黒鉛を添加しない実験例7では、正極活物質がアセチレンブラックとVGCFにより導電ネットワークとつながっている構造が観察された。一方、膨張黒鉛が添加されている実験例1では、膨張黒鉛が正極活物質を取り囲むように分布しており、プレスによる高密度化時の正極活物質の最密充填化を促進しているものと推察された。また、電極外部から観察したSEM画像からは、膨張黒鉛が所定方向(この画像では横向き)に分布しているように見えることから、柱状の負極に対して平行方向に配向していることが予想された。
また、X線回折測定では、図4に示すように、膨張黒鉛では、2θ=26.5°近傍に002回折ピークを示し、2θ=42.3°近傍に面内方向の規則性に由来する100回折ピークを示した。一方、実験例1では、垂直方向で評価したX線回折図形においては、図5に示すように、100回折ピークが消失することから、膨張黒鉛粒子が横方向に配向していることが示唆された。また、合材密度を2g/cm3と3g/cm3としたものを測定したところ、そのどちらも配向したが、高密度にした方が26.5°の002回折ピーク強度が増加したことから、高いプレス圧で成形したものの方が摺動材が摺動して配向度が増すことが明らかとなった。また、膨張黒鉛では、002回折ピークと100回折ピークの強度比I002/100により、配向性を評価することができる。サンプル角度(θ)を固定して検出器の角度(2θ)を動かすXRD測定では、この強度比I002/100が高いほど膨張黒鉛が横方向に配向していることを示す。膨張黒鉛を添加した実験例1~6、7、8では、002回折ピークが確認された上で、100回折ピークが見られないとの結果であり、全て膨張黒鉛粉体よりも強度比I002/100が高くなったことから、膨張黒鉛が正極合材内で配向していることが示唆された。
また、表1に示すように、正極合材に膨張黒鉛を添加した実験例1~6では、膨張黒鉛を添加しない実験例7に比して、IV抵抗およびサイクル容量維持率を向上させることができることがわかった。これは、カーボンロッド負極/ポリマー膜/正極合材層の電極構造体の23本を積層プレスして高密度化する際に、摺動材である膨張黒鉛が添加されていることにより、正極活物質の二次粒子の割れや正極活物質の密度ムラ、導電ムラを防ぐことができるためであると推察された。一方、添加する膨張黒鉛が導電材の全てである実験例9では、正極合材内の導電ネットワークが足りなくなるために抵抗および容量維持率が低下した。このため、膨張黒鉛以外の他の導電材(アセチレンブラックやVGCF)などと組み合わせることも重要であることがわかった。また、膨張黒鉛の平均粒径が7μmよりも大きい実験例8では、容量維持率が低下したことから、摺動材の粒径が大きすぎると、摺動効果が低下することがわかった。この摺動材は、平均粒径が10μm未満であることが好ましく、8μm以下であることが好ましいと推察された。
Figure 0007302402000001
なお、本開示は上述した実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
10,10B 蓄電デバイス、11 負極、12 負極集電体、15 分離膜、16 正極、17 正極集電体、21 摺動材。

Claims (8)

  1. 所定方向に所定間隔で配列された第1活物質を含む複数の柱状の第1電極と、
    第2活物質と導電材と平均粒径が10μm未満である摺動材とを含み前記第1電極の周囲に存在する第2電極と、
    イオン伝導性及び絶縁性を有し前記第1電極と前記第2電極との間に介在する分離膜と、
    を備えた蓄電デバイス。
  2. 前記第2電極は、前記摺動材として膨張黒鉛粒子を含む、請求項1に記載の蓄電デバイス。
  3. 前記第2電極は、前記摺動材を0.5質量%以上5質量%以下の範囲で含む、請求項1又は2に記載の蓄電デバイス。
  4. 前記第2電極は、平均粒径が7μm以下である摺動材を含む、請求項1~3のいずれか1項に記載の蓄電デバイス。
  5. 前記第2電極は、前記第2活物質と前記導電材と前記摺動材とを含む合材層の密度が3.0g/cm3以上である、請求項1~4のいずれか1項に記載の蓄電デバイス。
  6. 前記第2活物質は、タップ密度が2.4g/cm3以上である、請求項1~5のいずれか1項に記載の蓄電デバイス。
  7. 前記第2電極は、前記導電材として粒状炭素と繊維状炭素とを含む、請求項1~6のいずれか1項に記載の蓄電デバイス。
  8. 前記第2電極は、前記摺動材として膨張黒鉛粒子を含み、該膨張黒鉛粒子が前記柱状の第1電極に対して平行方向に配向している、請求項1~7のいずれか1項に記載の蓄電デバイス。
JP2019167267A 2019-09-13 2019-09-13 蓄電デバイス Active JP7302402B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019167267A JP7302402B2 (ja) 2019-09-13 2019-09-13 蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019167267A JP7302402B2 (ja) 2019-09-13 2019-09-13 蓄電デバイス

Publications (2)

Publication Number Publication Date
JP2021044209A JP2021044209A (ja) 2021-03-18
JP7302402B2 true JP7302402B2 (ja) 2023-07-04

Family

ID=74864249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019167267A Active JP7302402B2 (ja) 2019-09-13 2019-09-13 蓄電デバイス

Country Status (1)

Country Link
JP (1) JP7302402B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146590A (ja) 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2013182757A (ja) 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015220123A (ja) 2014-05-19 2015-12-07 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP2018152230A (ja) 2017-03-13 2018-09-27 株式会社豊田中央研究所 二次電池及びその製造方法
JP2019135701A (ja) 2018-02-05 2019-08-15 株式会社豊田中央研究所 二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493988B2 (ja) * 1997-12-15 2004-02-03 株式会社日立製作所 リチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146590A (ja) 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2013182757A (ja) 2012-03-01 2013-09-12 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015220123A (ja) 2014-05-19 2015-12-07 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
JP2018152230A (ja) 2017-03-13 2018-09-27 株式会社豊田中央研究所 二次電池及びその製造方法
JP2019135701A (ja) 2018-02-05 2019-08-15 株式会社豊田中央研究所 二次電池

Also Published As

Publication number Publication date
JP2021044209A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5997383B2 (ja) 多層の活物質層を含むリチウム二次電池
JP6672278B2 (ja) リチウム二次電池用正極活物質、この製造方法及びこれを含むリチウム二次電池
KR102301470B1 (ko) 비수 전해질 이차 전지
KR101833615B1 (ko) 음극 활물질 및 이를 포함하는 음극
WO2012001845A1 (ja) 非水電解質二次電池用負極およびその製造方法
KR102419885B1 (ko) 비수 전해질 이차 전지용 정극, 비수 전해질 이차 전지 및 그 시스템
WO2012018035A1 (ja) 非水二次電池用負極および非水二次電池
JP6919488B2 (ja) 二次電池及びその製造方法
KR20010072967A (ko) 비수 전해액 이차 전지, 그의 제조법 및 탄소 재료 조성물
WO2012001844A1 (ja) 非水電解質二次電池用負極およびその製造方法
JP7107808B2 (ja) 活物質および電池
JP7322776B2 (ja) リチウムイオン二次電池
JP2009245940A (ja) 非水電解質二次電池
JP6697377B2 (ja) リチウムイオン二次電池
KR20220049483A (ko) 이차 전지용 양극 및 상기 양극을 포함하는 이차 전지
JP2023077491A (ja) リチウム複合酸化物、蓄電デバイス及びリチウム複合酸化物の製造方法
JP2023542195A (ja) 二次電池用の正極及びそれを含む二次電池
JP7234853B2 (ja) 電極構造体、二次電池及び電極構造体の製造方法
JP7340780B2 (ja) 角形非水電解質二次電池
JP7243377B2 (ja) 評価方法、蓄電デバイス用電極及び蓄電デバイス
JP7215439B2 (ja) 蓄電デバイス及び蓄電デバイスモジュール
JP7302402B2 (ja) 蓄電デバイス
JP7111119B2 (ja) 蓄電デバイス
CN115769398A (zh) 锂离子二次电池用负极
JP6991876B2 (ja) 二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150