JP7272188B2 - 回転電機の制御装置及びプログラム - Google Patents

回転電機の制御装置及びプログラム Download PDF

Info

Publication number
JP7272188B2
JP7272188B2 JP2019160718A JP2019160718A JP7272188B2 JP 7272188 B2 JP7272188 B2 JP 7272188B2 JP 2019160718 A JP2019160718 A JP 2019160718A JP 2019160718 A JP2019160718 A JP 2019160718A JP 7272188 B2 JP7272188 B2 JP 7272188B2
Authority
JP
Japan
Prior art keywords
electric machine
conversion circuit
power conversion
switching mode
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019160718A
Other languages
English (en)
Other versions
JP2021040423A (ja
Inventor
孔亮 近藤
康明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019160718A priority Critical patent/JP7272188B2/ja
Priority to PCT/JP2020/032960 priority patent/WO2021045021A1/ja
Publication of JP2021040423A publication Critical patent/JP2021040423A/ja
Priority to US17/685,456 priority patent/US20220190710A1/en
Application granted granted Critical
Publication of JP7272188B2 publication Critical patent/JP7272188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P11/00Arrangements for controlling dynamo-electric converters
    • H02P11/04Arrangements for controlling dynamo-electric converters for controlling dynamo-electric converters having a dc output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、回転電機に電気的に接続された電力変換回路と、電力変換回路の入力側に電気的に接続されたコンデンサと、を備えるシステムに適用される回転電機の制御装置に関する。
この種のシステムにおいてコンデンサを小さくするためには、コンデンサに流れるリップル電流を低減させる必要がある。リップル電流を低減させるため、特許文献1には、回転電機に印加する無効電圧ベクトルを減らす制御を実施する制御装置が記載されている。詳しくは、この制御装置は、回転電機に印加する指令電圧ベクトルを挟んで、かつ、互いに120度の位相差を有する2種類の有効電圧ベクトルに基づいて、2相変調制御を実施する。これにより、コンデンサへの充電期間を減らすことができ、コンデンサに流れるリップル電流の低減を図っている。
特開2004-312822号公報
コンデンサに流れるリップル電流の低減効果が大きいスイッチングモードは、回転電機の動作領域に応じて変化し得る。このため、動作領域に依らず、コンデンサに流れるリップル電流の低減効果を得られる技術については、未だ改善の余地があると考えられる。
本発明は、回転電機の動作領域に依らず、コンデンサに流れるリップル電流を低減できる回転電機の制御装置を提供することを主たる目的とする。
本発明は、回転電機に電気的に接続された電力変換回路と、
前記電力変換回路の入力側に電気的に接続されたコンデンサと、を備えるシステムに適用される回転電機の制御装置において、
前記回転電機の動作領域に基づいて、前記コンデンサに流れるリップル電流を反映した前記電力変換回路のスイッチングモードを決定する決定部と、
前記電力変換回路のスイッチングモードを、前記決定部により決定されたスイッチングモードとすべく、前記電力変換回路を操作する操作部と、を備える。
本発明では、回転電機の動作領域に基づいて、コンデンサに流れるリップル電流を反映した電力変換回路のスイッチングモードが決定される。そして、電力変換回路のスイッチングモードを、決定されたスイッチングモードとすべく、電力変換回路が操作される。このため、回転電機の動作領域に依らず、コンデンサに流れるリップル電流を低減することができる。
第1実施形態に係る回転電機の制御システムの全体構成図。 制御装置の処理を示すブロック図。 d,q軸電流及びコンデンサ電流の予測処理の手順を示すフローチャート。 電圧ベクトルを示す図。 電圧ベクトル、スイッチングモード及びインバータ電流の関係を示す図。 1予測周期経過したタイミングにおける電流の予測結果の一例を示す図。 1制御周期における電流の予測結果の一例を示す図。 1制御周期における電流の予測結果の一例を示す図。 第1実施形態の変形例1に係るπ型フィルタを示す図。 π型フィルタの詳細な構成を示す図。 π型フィルタのブロック図。 インバータ電流及びコンデンサ電流の推移を示すタイムチャート。 有効電圧ベクトル期間及びコンデンサ電流の関係を示す図。 第2実施形態に係る制御装置の処理を示すブロック図。 第3実施形態に係る制御装置の処理を示すブロック図。 60度電圧ベクトルの選択態様の一例を示す図。 第4実施形態に係るセクションA~Fを示す図。 セクションA~Fに対応する120度電圧ベクトル及び1つの無効電圧ベクトルを示す図。 第4実施形態の変形例に係るセクションA~Fに対応する120度電圧ベクトル及び2つの無効電圧ベクトルを示す図。 第5実施形態に係るセクション1-A~6-Fを示す図。 セクション1-A~6-Aに対応する3つの有効電圧ベクトルを示す図。 第6実施形態に係る電圧ベクトルの選択処理の手順を示すフローチャート。 第7実施形態に係るセクション判定処理の手順を示すフローチャート。 電圧ベクトルと電流ベクトルとの位相差を示す図。 第8実施形態に係る予測周期、制御周期及び規定期間の長さを示す図。 d,q軸電流の低次高調波成分を模式的に示すタイムチャート。 第9実施形態に係るスイッチング態様の一例を示すタイムチャート。 スイッチング態様の一例を示すタイムチャート。 第10実施形態に係る電圧ベクトルの決定態様を示すタイムチャート。 第11実施形態に係る制御装置の処理を示すブロック図。 その他の実施形態に係るモデル予測制御部を示す図。 その他の実施形態に係るインバータの操作態様を示す図。
<第1実施形態>
以下、本発明に係る制御装置を具体化した第1実施形態について、図面を参照しつつ説明する。
図1に示すように、制御システムは、回転電機10及びインバータ20を備えている。回転電機10は、ブラシレスの同期機であり、本実施形態では永久磁石同期機である。回転電機10は、ロータ10aと、ステータ巻線であるU,V,W相巻線11U,11V,11Wとを備えている。
回転電機10は、インバータ20を介して直流電源としてのバッテリ30に接続されている。インバータ20は、上アームスイッチSUH,SVH,SWHと下アームスイッチSUL,SVL,SWLとの直列接続体を備えている。U相上,下アームスイッチSUH,SULの接続点には、回転電機10のU相巻線11Uの第1端が接続されている。V相上,下アームスイッチSVH,SVLの接続点には、回転電機10のV相巻線11Vの第1端が接続されている。W相上,下アームスイッチSWH,SWLの接続点には、回転電機10のW相巻線11Wの第1端が接続されている。U,V,W相巻線11U,11V,11Wの第2端は、中性点で接続されている。本実施形態において、誘導性負荷であるU,V,W相巻線11U,11V,11Wは、電気角で互いに120°ずれている。
本実施形態では、各スイッチSUH,SUL,SVH,SVL,SWH,SWLとして、電圧制御形の半導体スイッチング素子が用いられており、より具体的にはNチャネルMOSFETが用いられている。各スイッチSUH,SUL,SVH,SVL,SWH,SWLには、ボディダイオードが内蔵されている。
インバータ20は、その入力側に、インバータ20の入力電圧を平滑化するコンデンサ21を備えている。コンデンサ21の高電位側端子は、バスバー等の導電部材で構成された長尺状の高電位側電気経路31Hに接続されている。コンデンサ21の低電位側端子は、バスバー等の導電部材で構成された長尺状の低電位側電気経路31Lに接続されている。
高電位側電気経路31Hには、バッテリ30の正極端子が接続されている。また、高電位側電気経路31Hにおいて、コンデンサ21との接続点に対してバッテリ30側とは反対側には、上アームスイッチSUH~SWHのドレインが接続されている。
低電位側電気経路31Lには、バッテリ30の負極端子が接続されている。また、低電位側電気経路31Lにおいて、コンデンサ21との接続点に対してバッテリ30側とは反対側には、下アームスイッチSUL~SWLのソースが接続されている。
制御システムは、電流センサ40及び角度センサ41を備えている。電流センサ40は、回転電機10に流れる各相電流のうち、少なくとも2相分の電流を検出する。本実施形態では、インバータ20から巻線へと向かう方向の相電流検出値を正とする。角度センサ41は、例えばレゾルバ又はホール素子で構成され、回転電機10のロータの回転角度情報を出力する。
電流センサ40及び角度センサ41の出力信号は、制御システムに備えられる制御装置50に入力される。制御装置50は、マイコンを主体として構成され、回転電機10の制御量をその指令値にフィードバック制御すべく、インバータ20の各スイッチSUH~SWLをスイッチング操作する。本実施形態において、制御量は電気角速度(回転速度)であり、その指令値は指令角速度ω*である。
制御装置50は、回転電機10に印加される電圧ベクトルが、電気角速度を指令角速度ω*に制御するための指令電圧ベクトルVtrになるように、インバータ20の各スイッチSUH~SWLをスイッチング操作する。これにより、互いに120度ずれた正弦波状の相電流が各相巻線11U,11V,11Wに流れる。
ちなみに、制御装置50は、自身が備える記憶装置に記憶されたプログラムを実行することにより、各種制御機能を実現する。各種機能は、ハードウェアである電子回路によって実現されてもよいし、ハードウェア及びソフトウェアの双方によって実現されてもよい。
続いて、図2のブロック図を用いて、制御装置50の処理について詳しく説明する。なお、本実施形態では、制御装置50を構成する制御系として、制御量が電気角速度(回転速度)である速度制御系を例にして説明するがこれに限らず、例えば、制御量がトルクであるトルク(電流)制御系であってもよい。
速度偏差算出部51は、指令角速度ω*から電気角速度ωeを減算することにより、速度偏差Δωを算出する。電気角速度ωeは、電気角θeに基づいて速度算出部52により算出される。
速度制御器53は、速度偏差Δωを0にフィードバック制御するための操作量として、回転電機10の指令トルクTrq*を算出する。なお、速度制御器53におけるフィードバック制御としては、例えば比例積分制御が用いられればよい。
電流変換部54は、電気角θeと、電流センサ40により検出された相電流とに基づいて、3相固定座標系であるUVW座標系におけるU,V,W相電流を、2相回転座標系であるdq座標系におけるd軸電流Idr及びq軸電流Iqrに変換する。
指令電流設定部55は、指令トルクTrq*に基づいて、d軸指令電流Id*と、q軸指令電流Iq*とを設定する。
モデル予測制御部56は、1制御周期Tc毎に、1制御周期Tcを構成する複数の予測周期Teそれぞれで用いる電圧ベクトルを決定する。本実施形態では、説明の便宜上、1予測周期Tpは、1制御周期Tcを4等分した期間に設定されている。ただし、この設定に限らず、1予測周期Tpは、上記4等分した期間よりも短い期間に設定されていてもよい。
モデル予測制御部56は、1制御周期Tc毎に、予測した4つの電圧ベクトルそれぞれに対応するスイッチングモード(具体的には、各操作信号gUH~gWL)を出力する。以下、電圧ベクトルの決定方法について詳しく説明する。
モデル予測制御部56は、電流予測部56aを備えている。電流予測部56aは、1制御周期Tcにおける電圧ベクトルの組み合わせそれぞれにおけるd軸電流Ide(n+1)~Ide(n+4)、q軸電流Iqe(n+1)~Iqe(n+4)、及びコンデンサ21に流れる電流であるコンデンサ電流Ic(n+1)~Ic(n+4)を予測する。ここで、d軸電流を例にして説明すると、Ide(n+1)は、現在から1予測周期Tp経過したタイミングのd軸電流の予測値を示し、Ide(n+4)は、現在から4予測周期「4×Tp」経過したタイミングのd軸電流の予測値を示す。本実施形態では、4つの予測周期それぞれにおいて、6つの有効電圧ベクトル及び2つの無効電圧ベクトルが仮設定される。このため、1制御周期において、8の4乗通り(4096通り)の電圧ベクトルの組み合わせが仮設定される。
図3を用いて、電流予測部56aの処理のうち、現在から1予測周期Tp経過したタイミングにおける電流予測について説明する。この処理は、制御周期Tc毎に繰り返し実行される。
ステップS10では、変数iを0にする。
ステップS11では、第i電圧ベクトルVi、電気角θe、電気角速度ωe、及び電流変換部54により算出された現在の制御周期におけるd,q軸電流Idr(n),Iqr(n)に基づいて、電圧ベクトルを第i電圧ベクトルViに仮設定した場合において1予測周期経過したタイミングのd,q軸電流Ide(n+1),Iqe(n+1)を算出する。d,q軸電流Ide(n+1),Iqe(n+1)は、例えば、下式(eq1)を用いて算出すればよい。
Figure 0007272188000001
上式(eq1)において、Rは巻線抵抗を示し、Ld,Lqはd,q軸インダクタンスを示し、KEは逆起電圧定数を示し、ΔId,ΔIqは、1予測周期Tpにおけるd,q軸電流の変化量を示す。上式(eq1)に、d,q軸電流Idr(n),Iqr(n)、電気角速度ωe及びd,q軸電圧Vd,Vqを入力することにより、ΔId,ΔIqを算出する。そして、d,q軸電流Ide(n+1),Iqe(n+1)を、「Ide(n+1)=Idr(n)+ΔId」,「Iqe(n+1)=Iqr(n)+ΔIq」により算出すればよい。ここで、d,q軸電圧Vd,Vqは、第i電圧ベクトルVi及び電気角θeに基づいて算出されればよい。
図4に、ステップS11で仮設定される電圧ベクトルを示す。第1~第6電圧ベクトルV1~V6は有効電圧ベクトルであり、第0,第7電圧ベクトルV0,V7は無効電圧ベクトルである。図5に、各電圧ベクトルとスイッチングモードとの関係を示す。
先の図3の説明に戻り、ステップS12では、1予測周期だけ経過したタイミングにおけるバッテリ30に流れる電流である電源電流Idcを算出する。本実施形態では、下式(eq2)を用いて電源電流Idcを算出する。
Figure 0007272188000002
上式(eq2)において、d,q軸電圧Vd,Vqは、ステップS11で選択した第i電圧ベクトルVi及び電気角θeに基づいて算出されればよい。なお、電源電流Idcは、バッテリ30から放電される場合を正とする。
ステップS13では、ステップS11で仮設定した第i電圧ベクトルViが有効電圧ベクトルであるか否かを判定する。
ステップS13において有効電圧ベクトルであると判定した場合には、ステップS14に進み、1予測周期だけ経過したタイミングにおけるコンデンサ電流Ic(n+1)を「Ic(n+1)=Iinv-Idc」の関係式を用いて算出する。有効電圧ベクトルとされる期間においては、コンデンサ21から放電される。ここで、コンデンサ電流Icは、コンデンサ21から放電される場合を正とする。また、Iinvは、高電位側電気経路31Hのうちコンデンサ21との接続点よりもインバータ20側に流れる電流であるインバータ電流を示す。インバータ電流Iinvは、高電位側電気経路31Hのうちコンデンサ21との接続点からインバータ20へと流れる方向を正とする。
インバータ電流Iinvは、図5に示すように、仮設定した電圧ベクトルから定めることができる。例えば、第1電圧ベクトルV1を仮設定した場合、インバータ電流Iinvは「IU」であるため、インバータ電流Iinvとして、電流センサ40により検出されたU相電流が用いられる。また、例えば、第2電圧ベクトルV2を選択した場合、インバータ電流Iinvは「-IW」であるため、インバータ電流Iinvとして、電流センサ40により検出されたW相電流に「-1」を乗算した値が用いられる。
ステップS13において第i電圧ベクトルViが無効電圧ベクトルであると判定した場合には、ステップS15に進み、「Ic(n+1)=-Idc」の関係式を用いてコンデンサ電流Ic(n+1)を算出する。無効電圧ベクトルとされる期間においては、コンデンサ21が充電されるため、コンデンサ電流Ic(n+1)が負の値となる。
ちなみに、バッテリ30に流れる電流を検出する電源電流センサが制御システムに備えられる場合、ステップS14,S15で用いられる電源電流Idcを電源電流センサの検出値としてもよい。
ステップS16では、変数iが7であるか否かを判定する。ステップS16において否定判定した場合には、ステップS17に進み、変数iを1インクリメントし、ステップS11に移行する。一方、ステップS16において肯定判定した場合には、1予測周期だけ経過したタイミングにおける電流の予測を終了する。
図6に、現在から1予測周期Tpだけ経過したタイミングにおける8通りのd,q軸電流Ide(n+1),Iqe(n+1),コンデンサ電流Ic(n+1)の一例を示す。
その後、電流予測部56aは、1予測周期Tpだけ経過したタイミングのd,q軸電流Ide(n+1),Iqe(n+1)に基づいて、図3で説明した手法と同様の手法により、2予測周期だけ経過したタイミングにおけるd,q軸電流Ide(n+2),Iqe(n+2)を予測し、2予測周期だけ経過したタイミングのd,q軸電流Ide(n+2),Iqe(n+2)に基づいて、3予測周期だけ経過したタイミングにおけるd,q軸電流Ide(n+3),Iqe(n+3)を予測する。そして、3予測周期だけ経過したタイミングのd,q軸電流Ide(n+3),Iqe(n+3)に基づいて、4予測周期だけ経過したタイミングにおけるd,q軸電流Ide(n+4),Iqe(n+4)を予測する。コンデンサ電流Icについても、2~4予測周期経過したタイミングにおける値を予測する。図7に、1~4予測周期経過したタイミングにおける電流の予測結果の一例を示す。図7には、便宜上、1制御周期における電圧ベクトルの全ての組み合わせのうち、4つの組み合わせの予測結果を示す。
先の図2の説明に戻り、モデル予測制御部56は、評価関数算出部56bと、決定部56cとを備えている。評価関数算出部56bは、1制御周期において仮設定した電圧ベクトルの全ての組み合わせそれぞれについて、下式(eq3)に示す評価関数Jを算出する。
Figure 0007272188000003
上式(eq3)において、Widは、d軸指令電流Id*に対するd軸電流予測値の偏差の重み係数を示し、Wiqは、q軸指令電流Iq*に対するq軸電流予測値の偏差の重み係数を示す。Wicはコンデンサ電流の重み係数を示し、IcRMSは、1制御周期におけるコンデンサ電流Icの4つの予測値の実効値を示す。
決定部56cは、評価関数算出部56bで算出された各評価関数Jの中から、最も小さい評価関数を選択する。決定部56cは、選択した評価関数Jに対応する1制御周期分の4つの電圧ベクトルV(n+1)~V(n+4)を、制御に用いる電圧ベクトルとして決定する。図8に、図7に示した4つの予測結果のうち、評価関数Jが最小となる予測結果を示す。決定された4つの電圧ベクトルV(n+1)~V(n+4)が、次回の制御周期において順次用いられる。決定部56cは、4つの電圧ベクトルV(n+1)~V(n+4)それぞれに対応した操作信号gUH~gWLを生成し、各スイッチSUH~SWLに対して順次出力する。
以上詳述した本実施形態によれば、以下の効果が得られるようになる。
1制御周期Tcにおける電圧ベクトルの組み合わせが複数通りに仮設定され、仮設定されたそれぞれの場合におけるd,q軸電流及びコンデンサ電流が予測される。そして、仮設定された電圧ベクトルの組み合わせそれぞれについて、予測されたd,q軸電流とd,q軸指令電流Id*,Iq*との偏差、及びコンデンサ電流の実効値を入力パラメータとする評価関数Jが算出される。そして、算出された評価関数Jに基づいて、次回の制御周期において採用される4つの電圧ベクトルが決定される。この構成によれば、回転電機10の動作領域に依らず、コンデンサ21に流れるリップル電流を低減することができる。また、コンデンサ電流を低減できる電圧ベクトルの組み合わせを制御装置50の設計時に適合する必要がないため、制御装置50の設計する際の負荷を低減することもできる。
1制御周期Tcを複数に分割した予測周期Tpそれぞれにおいて、電圧ベクトルの組み合わせが複数通りに仮設定され、仮設定されたそれぞれの場合におけるd,q軸電流及びコンデンサ電流が予測される。これにより、スイッチングモードの切り替え周期を短くすることができ、ひいてはコンデンサ21に流れるリップル電流の低減効果を高めることができる。
<第1実施形態の変形例1>
コンデンサ電流Icの算出に用いる電源電流Idcを、図9に示すπ型フィルタの回路モデルを用いて算出してもよい。このモデルの詳細を図10に示す。図10において、Rp,Lpは各電気経路31H,31Lの寄生抵抗,寄生インダクタンス成分を示し、Rπ,Rc1,Rc2はフィルタ部のESR成分を示し、Lπはフィルタ部のインダクタンス成分を示し、C1,C2はフィルタ部の容量成分を示す。また、Iπはフィルタ部に流れる電流を示す。図10に示す回路図から、下式(eq4),(eq5)が導かれる。下式(eq4),(eq5)において、sはラプラス演算子を示す。
Figure 0007272188000004
Figure 0007272188000005
上式(eq4)は下式(eq6)に変換でき、上式(eq5)は下式(eq7)に変換できる。
Figure 0007272188000006
Figure 0007272188000007
上式(eq6),(eq7)から、図11に示すブロック図を導くことができる。このブロック図によれば、インバータ電流Iinvを入力することにより、電源電流Idcを算出することができる。なお、図11のブロック図において、Rp,Rπ,Rc1,Rc2,Lpを0にしてもよい。
<第1実施形態の変形例2>
上式(eq3)の右辺から実効値IcRMSの項を削除してもよい。この場合において、決定部56cは、1制御周期における電圧ベクトルの全ての組み合わせのうち、予測された1制御周期におけるコンデンサ電流がその許容上限値Ilimt(図6(b)参照)を超えない組み合わせを選択する。そして、決定部56cは、選択した組み合わせのうち、評価関数Jが最も小さくなる組み合わせを構成する4つの電圧ベクトルを、次回の制御周期において採用してもよい。これにより、コンデンサ電流の最大値を低減することができる。
また、この場合において、回転電機10の動作点(具体的には例えば、変調率又は相電流)に基づいて、許容上限値Ilimtを可変としてもよい。以下、図12及び図13を用いて、この構成について説明する。図12(a)はインバータ電流Iinvの推移を示し、図12(b)はコンデンサ電流Icの推移を示す。図12では、簡略化のため、回転電機10に印加される電圧ベクトルが有効電圧ベクトルとされる期間ε(0<ε<1)と無効電圧ベクトルとされる期間「1-ε」とが交互に出現することとしている。εは、インバータ20を構成する各スイッチのスイッチングパターン等で決まる。図12において、Tswはインバータ20を構成するスイッチの1スイッチング周期を示し、Iaは有効電圧ベクトルとされる期間に流れるインバータ電流Iinvの大きさを示す。
有効電圧ベクトルとされる期間においては、コンデンサ21から放電されるため、コンデンサ電流Icが正の値となる。コンデンサ21の放電電流の大きさはIb(=ε×Ia)となる。一方、無効電圧ベクトルとされる期間においては、バッテリ30から供給される電流によりコンデンサ21が充電されるため、コンデンサ電流Icが負の値となる。有効電圧ベクトルとされる期間のコンデンサ電流Icと無効電圧ベクトルとされる期間のコンデンサ電流Icとの差がコンデンサ21に流れるリップル電流の大きさIaを示す。リップル電流の実効値Icrmsは下式(eq8)で表される。
Figure 0007272188000008
上式(eq8)の右辺は、図13に示すように、ε=0.5の場合に最大値Ia/2となる。ここで、εが0.5近傍となる動作点における許容上限値Ilimtを、εが0.5から離れた値となる動作点における許容上限値Ilimtよりも大きく設定すればよい。
また、上式(eq3)の右辺から実効値IcRMSの項を削除する場合において、決定部56cは、1制御周期における電圧ベクトルの全ての組み合わせのうち、予測された1制御周期におけるコンデンサ電流の実効値が最小となる組み合わせを選択してもよい。そして、決定部56cは、選択した組み合わせのうち、評価関数Jが最も小さくなる組み合わせを構成する4つの電圧ベクトルを、次回の制御周期において採用してもよい。
<第2実施形態>
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図14に示すように、PWM制御を用いる。なお、図14において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
決定部56cは、電気角θeを用いて、決定した4つの電圧ベクトルV(n+1)~V(n+4)それぞれに対応するd,q軸指令電圧Vd*,Vq*を算出する。
電圧変換部57は、d軸指令電圧Vd*、q軸指令電圧Vq*及び電気角θeに基づいて、dq座標系におけるd,q軸指令電圧Vd*,Vq*を、UVW座標系におけるU,V,W相指令電圧VU*,VV*,VW*に変換する。本実施形態において、U,V,W相指令電圧VU*,VV*,VW*は、電気角で位相が互いに120°ずれた波形となる。
PWM変調器58は、電圧変換部57から出力されたU,V,W相指令電圧VU*,VV*,VW*とキャリア信号(三角波信号)との大小比較に基づく3相変調により、各操作信号gUH~gWLを生成する。PWM変調器58は、生成した各操作信号gUH~gWLをインバータ20の各スイッチSUH~SWLに対して出力する。
以上説明した本実施形態によれば、インバータ20を構成する各スイッチのスイッチング周波数を一定にすることができ、スイッチングに伴い発生するホワイトノイズを低減することができる。
<第2実施形態の変形例>
制御装置50は、PWM変調器58に代えて、各指令電圧VU*,VV*,VW*に基づく空間ベクトル変調(SVM)により各操作信号gUH~gWLを生成する変調器を備えていてもよい。
<第3実施形態>
以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図15に示すように、電流フィードバック制御を用いる。なお、図15において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
制御装置50は、電流制御器59を備えている。電流制御器59は、d軸指令電流Id*からd軸電流Idrを減算した値として、d軸偏差ΔIdを算出し、算出したd軸偏差ΔIdに基づいて、d軸電流Idrをd軸指令電流Id*にフィードバック制御するための操作量であるd軸指令電圧Vd*を算出する。また、電流制御器59は、q軸指令電流Iq*からq軸電流Iqrを減算した値として、q軸偏差ΔIqを算出し、算出したq軸偏差ΔIqに基づいて、q軸電流Iqrをq軸指令電流Iq*にフィードバック制御するための操作量であるq軸指令電圧Vq*を算出する。本実施形態では、電流制御器59におけるフィードバック制御として、比例積分制御が用いられている。なお、本実施形態において、電流制御器59がフィードバック演算部に相当する。
モデル予測制御部56は、電流制御器59により算出されたd,q軸指令電圧Vd*,Vq*により定まるdq座標系における指令電圧ベクトルVtrに基づいて、1制御周期における電圧ベクトルの組み合わせを仮設定する。本実施形態では、6つの有効電圧ベクトルのうち、指令電圧ベクトルVtrを挟んで、かつ、互いに60度の位相差を有する2種類の有効電圧ベクトル(以下、60度電圧ベクトル)と、2つの無効電圧ベクトルとを、仮設定する電圧ベクトルの組み合わせとして選択する。図16には、指令電圧ベクトルVtrを挟む2つの有効電圧ベクトルとして、第2,第3電圧ベクトルV2,V3が選択される例を示した。
なお、電圧ベクトルが仮設定された後、評価関数Jを算出して4つの電圧ベクトルを決定する方法は、第1実施形態と同様である。ただし、上式(eq3)の右辺の第1,第2項を削除してもよい。この場合、制御装置50の演算負荷を低減することができる。
以上説明した本実施形態によれば、仮設定する電圧ベクトルの組み合わせの数を減らすことができ、制御装置50の演算負荷を低減することができる。
<第3実施形態の変形例>
上式(eq3)の右辺の第1,第2項を残したまま評価関数Jを算出してもよい。この場合、d,q軸電流のリップルを低減することができる。
<第4実施形態>
以下、第4実施形態について、第3実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、第3実施形態と同様に、モデル予測制御部56は、電流制御器59により算出したd,q軸指令電圧Vd*,Vq*から指令電圧ベクトルVtrを定める。そして、モデル予測制御部56は、指令電圧ベクトルVtrを挟んで、かつ、互いに120度の位相差を有する2種類の有効電圧ベクトル(以下、120度電圧ベクトル)と、1つの無効電圧ベクトルとを、仮設定する電圧ベクトルの組み合わせとして選択する。120度電圧ベクトルを用いるのは、コンデンサ21に流れるリップル電流を低減するためである。
続いて、仮設定する電圧ベクトルの組み合わせの選択方法について説明する。図17に示すように、60度ずつずらされて配置された6つの基準線によって6個のセクションA~Fが区画されている。セクションAを例に説明すると、セクションAを区画する一対の基準線は、第1電圧ベクトルV1を挟んで、かつ、第1電圧ベクトルV1と30度の位相差を有している。
図18に、セクションA~Fそれぞれに対応する120度電圧ベクトル及び1つの無効電圧ベクトルを示す。モデル予測制御部56は、指令電圧ベクトルVtrが属するセクションに対応する120度電圧ベクトル及び1つの無効電圧ベクトルの組み合わせを、仮設定する電圧ベクトルの組み合わせとして選択する。図17には、指令電圧ベクトルVtrがセクションAに属する場合に選択される120度電圧ベクトルを示す。なお、リップル電流を低減するための図19に示す情報については、特開2018-196179号の図13等の記載を参照されたい。
以上説明した本実施形態によれば、コンデンサ21に流れるリップル電流を低減しつつ、仮設定する電圧ベクトルの組み合わせの数を減らすことができ、制御装置50の演算負荷を低減することができる。
ちなみに、本実施形態の構成は、変調率が所定変調率(例えば2/3)以下の領域において適用することができる。
<第4実施形態の変形例>
・例えば、指令電圧ベクトルVtrがセクションAに属する場合、120度電圧ベクトルとして第1電圧ベクトル及び第3電圧ベクトルV3が選択されてもよい。この場合であっても、第4実施形態の効果に準じた効果を得ることはできる。
・図19に示すように、仮設定される電圧ベクトルの組み合わせの中に、2つの無効電圧ベクトルが含まれていてもよい。
<第5実施形態>
以下、第5実施形態について、第4実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、第3実施形態と同様に、モデル予測制御部56は、電流制御器59により算出したd,q軸指令電圧Vd*,Vq*から指令電圧ベクトルVtrを定める。そして、モデル予測制御部56は、指令電圧ベクトルVtrを挟んで、かつ、互いに60度の位相差を有する2種類の60度電圧ベクトルを選択する。この選択処理が第1処理部に相当する。
モデル予測制御部56は、120度電圧ベクトルのうち、第1処理部により選択された有効電圧ベクトルとは異なる有効電圧ベクトルを選択する。この選択処理が第2処理部に相当する。モデル予測制御部56は、選択した3種類の有効電圧ベクトルを、電圧ベクトルの組み合わせとして選択する。
続いて、仮設定する電圧ベクトルの組み合わせの選択方法について説明する。図20に示すように、30度ずつずらされて配置された12つの基準線によって12個のセクション1-A~6-Aが区画されている。
図21に、セクション1-A~6-Aそれぞれに対応する3つの有効電圧ベクトルを示す。モデル予測制御部56は、指令電圧ベクトルVtrが属するセクションに対応する3つの有効電圧ベクトルの組み合わせを、仮設定する電圧ベクトルの組み合わせとして選択する。図20には、指令電圧ベクトルVtrがセクション1-Aに属する場合に選択される3つの有効電圧ベクトルを示す。なお、図21に示す情報については、特開2018-196179号の図9等の記載を参照されたい。
本実施形態によれば、無効電圧ベクトルが選択されないため、仮設定する電圧ベクトルの組み合わせの数を減らすことができ、制御装置50の演算負荷を低減することができる。
ちなみに、本実施形態の構成は、変調率が上記所定変調率よりも大きい領域において適用することができる。
<第6実施形態>
以下、第6実施形態について、第4,第5実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、変調率Mrに基づいて、仮設定する電圧ベクトルの組み合わせを切り替える。
図22に、モデル予測制御部56により実行される処理の手順を示す。この処理は、所定の制御周期で繰り返し実行される。
ステップS20では、変調率Mrを算出する。変調率Mrは、例えば下式(eq9)で表される。
Figure 0007272188000009
ステップS21では、変調率Mrが所定変調率Mth(例えば2/3)以下であるか否かを判定する。ステップS21において肯定判定した場合には、ステップS22に進み、仮設定する電圧ベクトルの組み合わせとして、120度電圧ベクトルと、2つの無効電圧ベクトルとを選択する。
一方、ステップS21において否定判定した場合には、ステップS23に進み、仮設定する電圧ベクトルの組み合わせとして、第1処理部により選択された60度電圧ベクトルと、120度電圧ベクトルのうち、第1処理部により選択された有効電圧ベクトルとは異なる有効電圧ベクトルとを選択する。
以上説明した本実施形態によれば、回転電機10の動作領域が変化した場合であっても、制御装置50の演算負荷を低減しつつ、コンデンサ21に流れるリップル電流を低減するための適切な電圧ベクトルの組み合わせを選択することができる。
<第7実施形態>
以下、第7実施形態について、第4~第6実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、セクションの選択方法を変更する。
図23に、モデル予測制御部56により実行されるセクション判定処理の手順を示す。この処理は、所定の制御周期で繰り返し実行される。
ステップS30では、電流制御器59により算出したd,q軸指令電圧Vd*,Vq*から指令電圧ベクトルVtrを算出する。
ステップS31では、回転電機10に流れる電流ベクトルItrを算出する。電流ベクトルItrは、電流センサ40により検出された相電流及び電気角θeに基づいて算出されればよい。
ステップS32では、ステップS30で算出した指令電圧ベクトルVtrと、ステップS31で算出した電流ベクトルItrとの位相差Δθ(図24参照)を算出する。
ステップS33では、ステップS32で算出した位相差Δθの絶対値が位相閾値θth(例えば30度)よりも大きいか否かを判定する。ステップS33において否定判定した場合には、ステップS34に進み、ステップS30で算出した指令電圧ベクトルVtrが属するセクションを選択する。選択されるセクションは、上述した図18、図19又は図21に示す各セクションのいずれかである。なお、ステップS34において、指令電圧ベクトルVtrに代えて、電流ベクトルItrが属するセクションを選択してもよい。
一方、ステップS33において肯定判定した場合には、ステップS35に進み、ステップS30で算出した指令電圧ベクトルVtrの位相を、ステップS32で算出した位相差Δθだけずらしたベクトルが属するセクションを選択する。
ステップS34又はS35の処理の完了後、ステップS36に進み、第4,第5実施形態で説明した方法と同じ方法で、選択したセクションに対応する電圧ベクトルを選択する。
以上説明した本実施形態によれば、コンデンサ21に流れるリップル電流の低減効果をより高めることができる。
<第7実施形態の変形例>
・ステップS30,S32~35を削除し、ステップS31の処理の完了後、電流ベクトルItrが属するセクションを選択してもよい。この場合、指令電圧ベクトルVtrを用いることなくセクションを選択できる。
・ステップS31の電流ベクトルItrは、d,q軸指令電流Id*,Iq*に基づいて算出されてもよい。
<第8実施形態>
以下、第8実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、モデル予測制御部56は、図25に示すように、1制御周期Tcよりも長い期間であって、d,q軸電流のN次高調波成分(Nは2以上の整数)の1周期以上に渡る規定期間TLにおいてd,q軸電流及びコンデンサ電流を予測する。具体的には、モデル予測制御部56は、図26に示すように、規定期間TLを、d,q軸電流の6次高調波成分の1周期と同じ期間に設定する。
以上説明した本実施形態によれば、d,q軸電流の低次高調波成分の変動量を低減した電圧ベクトルを選択することができる。
<第9実施形態>
以下、第9実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。第1実施形態で説明した構成により、モデル予測制御部56は、各制御周期におけるスイッチング回数が同じ(4回)になるようにインバータ20を操作する。これにより、ホワイトノイズを低減できる。
この際、モデル予測制御部56は、図27に示すように、各相のスイッチのうち、複数の相のスイッチが同時にスイッチングしないようにインバータ20を操作することができる。これにより、各相のスイッチのスイッチングに伴って発生するサージ電圧の重畳を回避することができ、サージ電圧に起因したスイッチの故障を回避することができる。
また、モデル予測制御部56は、図28に示すように、各相のスイッチのうち、複数の相のスイッチが同時にスイッチングすることを許可しつつインバータ20を操作することができる。これにより、PWM変調で実現される電圧ベクトルの組み合わせとは異なる電圧ベクトルの組み合わせを実現することができ、電圧ベクトルを設定する自由度を高めることができる。
<第10実施形態>
以下、第10実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、図29に示すように、1予測周期Tpと1制御周期Tcとが同じ期間に設定されている。モデル予測制御部56は、複数通りの電圧ベクトルそれぞれを仮設定した場合において、現在のタイミングt1から1制御周期Tcだけ経過したタイミングt2のd,q軸電流及びコンデンサ電流を予測する。そして、モデル予測制御部56は、複数通りに仮設定した電圧ベクトルそれぞれにおいて予測したd,q軸電流及びコンデンサ電流の線形外挿を行う。
モデル予測制御部56は、現在のd,q軸指令電流Id*,Iq*を中央値とした所定範囲ΔIthqを設定し、線形外挿を行ったd,q軸電流のうち、線形外挿を行ったコンデンサ電流がその許容上限値Ilimtを超えなくて、かつ、上記所定範囲ΔIthqの上限値又は下限値を跨ぐタイミングが最も遅いタイミングt3のd,q軸電流に対応する電圧ベクトルを、次回採用する電圧ベクトルとして決定する。図29に示す例では、時刻t3,t4においてスイッチングモードが切り替えられる。なお、所定範囲ΔIthqは、例えば、d,q軸指令電流Id*,Iq*の1/2以下の値に設定されればよい。
以上説明した本実施形態によれば、スイッチング回数を低減することができる。
<第11実施形態>
以下、第11実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、オンラインで予測を実施せず、オフラインでスイッチングモードを決定する。
図30に、本実施形態に係る制御装置50のブロック図を示す。なお、図30において、先の図2に示した構成と同一の構成については、便宜上、同一の符号を付している。
制御装置50は、信号生成部60を備えている。信号生成部60は、テーブル情報記憶部60aを有し、テーブル情報記憶部60aには、1制御周期Tcにおける4つの電圧ベクトルを一義的に決定するためのテーブル情報が記憶されている。テーブル情報記憶部60aは、ROM以外の非遷移的実体的記録媒体(例えば、ROM以外の不揮発性メモリ)である。テーブル情報は、回転電機10の動作領域に関する情報と関係付けられて、かつ、コンデンサ21に流れるリップル電流を最小化できる1制御周期分の4つの電圧ベクトルが規定された情報である。信号生成部60は、テーブル情報記憶部60aのテーブル情報に基づいて、4つの電圧ベクトルを決定する。
ここで、動作領域に関する情報としては、例えば、電気角θe、d,q軸指令電流Id*,Iq*、d,q軸電流Idr,Iqr、電源電流Idc及びω電気角速度e等の中から選択して定めることができる。なお、d,q軸指令電流Id*,Iq*に代えて、回転電機10の指令トルクTrq*を用いることもできる。また、d,q軸指令電流Id*,Iq*及びd,q軸電流Idr,Iqrに代えて、d,q軸偏差ΔId,ΔIqも用いることもできる。
以上説明した本実施形態によれば、電圧ベクトルを決定するための制御装置50の演算負荷を低減でき、ひいては制御装置50の演算速度を高めることができる。
<その他の実施形態>
なお、上記各実施形態は、以下のように変更して実施してもよい。
・上式(eq3)の評価関数Jに代えて、下式(eq10)に示す評価関数Jが用いられてもよい。
Figure 0007272188000010
上式(eq10)において、φ*は各相巻線11U,11V,11Wの鎖交磁束の指令値を示し、φeは、その鎖交磁束の予測値を示し、Wφは、鎖交磁束の指令値φ*に対する鎖交磁束予測値の偏差の重み係数を示す。Trq*は、指令トルクを示し、Teは、トルクの予測値を示し、Wtは、指令トルクTrq*に対するトルク予測値の偏差の重み係数を示す。図31に示す制御装置50のモデル予測制御部70は、上式(eq10)を用いて1制御周期における電圧ベクトルの組み合わせそれぞれにおける評価関数Jを算出する。その後の処理は、第1実施形態と同様である。
・図32に示すように、制御装置50は、各相において、1制御周期Tcにおける相電流の上昇期間と下降期間とが同じになるようにインバータ20を操作してもよい。これにより、ホワイトノイズを低減することができる。なお、図32には、U相電流IUr及びU相指令電流IU*を例示した。
・1予測周期Tpと1制御周期Tcとが同じ長さであってもよい。
・本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
10…回転電機、20…インバータ、21…コンデンサ、50…制御装置。

Claims (22)

  1. 回転電機(10)に電気的に接続された電力変換回路(20)と、
    前記電力変換回路の入力側に電気的に接続されたコンデンサ(21)と、を備えるシステムに適用される回転電機の制御装置(50)において、
    前記回転電機の動作領域に基づいて、前記コンデンサに流れるリップル電流を反映した前記電力変換回路のスイッチングモードを決定する決定部と、
    前記電力変換回路のスイッチングモードを、前記決定部により決定されたスイッチングモードとすべく、前記電力変換回路を操作する操作部と、
    前記電力変換回路のスイッチングモードを複数通りのそれぞれに仮設定した場合における前記回転電機の制御量及び前記コンデンサに流れる電流を予測する予測部と、を備え、
    前記決定部は、複数通りに仮設定されたスイッチングモードそれぞれについて、予測された前記制御量とその指令値との偏差、及び前記コンデンサに流れる電流を入力パラメータとする評価関数を算出し、算出した前記評価関数に基づいて、次回の制御周期において採用するスイッチングモードを決定する回転電機の制御装置。
  2. 前記決定部は、複数通りに仮設定されたスイッチングモードそれぞれにおいて予測された前記コンデンサに流れる電流のうち、その実効値が最小になるとの条件を課して、次回の制御周期において採用するスイッチングモードを決定する請求項に記載の回転電機の制御装置。
  3. 前記決定部は、複数通りに仮設定されたスイッチングモードそれぞれにおいて予測された前記コンデンサに流れる電流がその許容上限値を超えないとの条件を課して、次回の制御周期において採用するスイッチングモードを決定する請求項に記載の回転電機の制御装置。
  4. 前記決定部は、前記動作領域に基づいて、前記許容上限値を可変とする請求項に記載の回転電機の制御装置。
  5. 前記操作部は、決定されたスイッチングモードに基づいて、固定座標系において前記回転電機に印加する指令電圧を算出し、算出した前記指令電圧とキャリア信号との大小比較に基づくPWM処理により、前記電力変換回路を操作する請求項1~4のいずれか1項に記載の回転電機の制御装置。
  6. 前記制御量は、回転座標系において前記回転電機に流れる電流である請求項1~5のいずれか1項に記載の回転電機の制御装置。
  7. 前記制御量は、前記回転電機のトルク及び前記回転電機を構成する巻線の鎖交磁束である請求項1~5のいずれか1項に記載の回転電機の制御装置。
  8. 前記制御量をその指令値にフィードバック制御するための操作量として、回転座標系において前記回転電機に印加する指令電圧を算出するフィードバック演算部を備え、
    前記予測部は、算出された前記指令電圧に基づいて、仮設定するスイッチングモードを決定する請求項1~7のいずれか1項に記載の回転電機の制御装置。
  9. 前記予測部は、仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルそれぞれに対応するスイッチングモードを用いる請求項1~7のいずれか1項に記載の回転電機の制御装置。
  10. 前記予測部は、仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルのうち、前記有効電圧ベクトルのみに対応するスイッチングモードを用いる請求項1~7のいずれか1項に記載の回転電機の制御装置。
  11. 前記予測部は、
    前記回転電機に印加される指令電圧ベクトルを挟んで、かつ、互いに60度の位相差を有する2種類の有効電圧ベクトルを選択する第1処理部と、
    前記指令電圧ベクトルを挟んで、かつ、互いに120度の位相差を有する2種類の有効電圧ベクトルのうち、前記第1処理部により選択された有効電圧ベクトルとは異なる有効電圧ベクトルを選択する第2処理部と、を含み、
    仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルのうち、前記第1処理部及び前記第2処理部それぞれにより選択された3種類の有効電圧ベクトルのみに対応するスイッチングモードを用いる請求項10に記載の回転電機の制御装置。
  12. 前記予測部は、前記回転電機に印加される指令電圧ベクトルを挟んで、かつ、互いに120度の位相差を有する2種類の有効電圧ベクトルを選択し、仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルのうち、選択された2種類の有効電圧ベクトル及び少なくとも1つの無効電圧ベクトルのみに対応するスイッチングモードを用いる請求項1~7のいずれか1項に記載の回転電機の制御装置。
  13. 前記予測部は、
    前記回転電機に印加される指令電圧ベクトルを挟んで、かつ、互いに60度の位相差を有する2種類の有効電圧ベクトルを選択する第1処理部と、
    前記指令電圧ベクトルを挟んで、かつ、互いに120度の位相差を有する2種類の有効電圧ベクトルのうち、前記第1処理部により選択された有効電圧ベクトルとは異なる有効電圧ベクトルを選択する第2処理部と、を含み、
    前記回転電機の印加電圧の変調率が所定変調率以下の場合、仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルのうち、前記第1処理部及び前記第2処理部それぞれにより選択された3種類の有効電圧ベクトルのみに対応するスイッチングモードを用い、
    前記変調率が前記所定変調率を超える場合、仮設定するスイッチングモードとして、前記回転電機に印加する6つの有効電圧ベクトル及び2つの無効電圧ベクトルのうち、前記第2処理部により選択された2種類の有効電圧ベクトル及び2つの前記無効電圧ベクトルのみに対応するスイッチングモードを用いる請求項1~7のいずれか1項に記載の回転電機の制御装置。
  14. 前記予測部は、1制御周期を複数に分割した予測周期それぞれにおいて複数のスイッチングモードを仮設定し、前記各予測周期で設定したスイッチングモードの組み合わせそれぞれについて、前記制御量及び前記コンデンサに流れる電流を予測する請求項1~13のいずれか1項に記載の回転電機の制御装置。
  15. Nを2以上の整数とする場合、前記予測部は、前記制御量のN次高調波成分の1周期以上に渡る期間において前記制御量及び前記コンデンサに流れる電流を予測する請求項1~14のいずれか1項に記載の回転電機の制御装置。
  16. 回転電機(10)に電気的に接続された電力変換回路(20)と、
    前記電力変換回路の入力側に電気的に接続されたコンデンサ(21)と、を備えるシステムに適用される回転電機の制御装置(50)において、
    前記回転電機の動作領域に基づいて、前記コンデンサに流れるリップル電流を反映した前記電力変換回路のスイッチングモードを決定する決定部と、
    前記電力変換回路のスイッチングモードを、前記決定部により決定されたスイッチングモードとすべく、前記電力変換回路を操作する操作部と、
    前記電力変換回路のスイッチングモードを複数通りのそれぞれに仮設定した場合における前記回転電機の制御量及び前記コンデンサに流れる電流を予測する予測部と、を備え、
    前記決定部は、前記制御量の指令値を中間値とした所定範囲(ΔIthq)を設定し、複数通りに仮設定されたスイッチングモードそれぞれにおいて予測された前記制御量のうち、予測された前記コンデンサに流れる電流がその許容上限値を超えなくて、かつ、前記所定範囲の上限値又は下限値を跨ぐタイミングが最も遅いタイミングの制御量に対応するスイッチングモードを次回採用するスイッチングモードとして決定し、
    前記操作部は、前記電力変換回路のスイッチングモードを、前記決定部により決定されたスイッチングモードに前記最も遅いタイミングで切り替えるように、前記電力変換回路を操作する回転電機の制御装置。
  17. 前記操作部は、前記回転電機に流れる相電流が上昇する期間及び下降する期間それぞれが互いに同じになるように前記電力変換回路を操作する請求項1~16のいずれか1項に記載の回転電機の制御装置。
  18. 前記操作部は、前記電力変換回路を構成するスイッチの各制御周期におけるスイッチング回数が同じになるように前記電力変換回路を操作する請求項1~17のいずれか1項に記載の回転電機の制御装置。
  19. 前記操作部は、前記電力変換回路を構成する各相のスイッチのうち、複数の相のスイッチが同時にスイッチングしないように前記電力変換回路を操作する請求項1~18のいずれか1項に記載の回転電機の制御装置。
  20. 前記操作部は、前記電力変換回路を構成する各相のスイッチのうち、複数の相のスイッチが同時にスイッチングすることを許可しつつ前記電力変換回路を操作する請求項1~18のいずれか1項に記載の回転電機の制御装置。
  21. 回転電機(10)に電気的に接続された電力変換回路(20)と、
    前記電力変換回路の入力側に電気的に接続されたコンデンサ(21)と、
    コンピュータと、を備えるシステムに適用されるプログラムにおいて、
    前記コンピュータに、
    前記回転電機の動作領域に基づいて、前記コンデンサに流れるリップル電流を反映した前記電力変換回路のスイッチングモードを決定する決定処理と、
    前記電力変換回路のスイッチングモードを、前記決定処理により決定されたスイッチングモードとすべく、前記電力変換回路を操作する操作処理と、
    前記電力変換回路のスイッチングモードを複数通りのそれぞれに仮設定した場合における前記回転電機の制御量及び前記コンデンサに流れる電流を予測する予測処理と、を実行させ、
    前記決定処理において、複数通りに仮設定されたスイッチングモードそれぞれについて、予測された前記制御量とその指令値との偏差、及び前記コンデンサに流れる電流を入力パラメータとする評価関数を算出し、算出した前記評価関数に基づいて、次回の制御周期において採用するスイッチングモードを決定する、プログラム。
  22. 回転電機(10)に電気的に接続された電力変換回路(20)と、
    前記電力変換回路の入力側に電気的に接続されたコンデンサ(21)と、
    コンピュータと、を備えるシステムに適用されるプログラムにおいて、
    前記コンピュータに、
    前記回転電機の動作領域に基づいて、前記コンデンサに流れるリップル電流を反映した前記電力変換回路のスイッチングモードを決定する決定処理と、
    前記電力変換回路のスイッチングモードを、前記決定処理により決定されたスイッチングモードとすべく、前記電力変換回路を操作する操作処理と、
    前記電力変換回路のスイッチングモードを複数通りのそれぞれに仮設定した場合における前記回転電機の制御量及び前記コンデンサに流れる電流を予測する予測処理と、を実行させ、
    前記決定処理において、前記制御量の指令値を中間値とした所定範囲(ΔIthq)を設定し、複数通りに仮設定されたスイッチングモードそれぞれにおいて予測された前記制御量のうち、予測された前記コンデンサに流れる電流がその許容上限値を超えなくて、かつ、前記所定範囲の上限値又は下限値を跨ぐタイミングが最も遅いタイミングの制御量に対応するスイッチングモードを次回採用するスイッチングモードとして決定し、
    前記操作処理において、前記電力変換回路のスイッチングモードを、前記決定処理により決定されたスイッチングモードに前記最も遅いタイミングで切り替えるように、前記電力変換回路を操作する、プログラム。
JP2019160718A 2019-09-03 2019-09-03 回転電機の制御装置及びプログラム Active JP7272188B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019160718A JP7272188B2 (ja) 2019-09-03 2019-09-03 回転電機の制御装置及びプログラム
PCT/JP2020/032960 WO2021045021A1 (ja) 2019-09-03 2020-08-31 回転電機の制御装置
US17/685,456 US20220190710A1 (en) 2019-09-03 2022-03-03 Rotating electrical machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019160718A JP7272188B2 (ja) 2019-09-03 2019-09-03 回転電機の制御装置及びプログラム

Publications (2)

Publication Number Publication Date
JP2021040423A JP2021040423A (ja) 2021-03-11
JP7272188B2 true JP7272188B2 (ja) 2023-05-12

Family

ID=74848792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160718A Active JP7272188B2 (ja) 2019-09-03 2019-09-03 回転電機の制御装置及びプログラム

Country Status (3)

Country Link
US (1) US20220190710A1 (ja)
JP (1) JP7272188B2 (ja)
WO (1) WO2021045021A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996655B1 (ja) 2021-07-26 2022-01-17 株式会社安川電機 稼働調整システム、モータ制御システム、稼働調整方法、および稼働調整プログラム
JP7344945B2 (ja) * 2021-09-27 2023-09-14 本田技研工業株式会社 制御装置、及びモータ駆動システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116007A (ja) 2013-12-10 2015-06-22 株式会社デンソー モータ制御装置及びモータ制御方法
WO2015140867A1 (ja) 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6221958B2 (ja) * 2014-06-17 2017-11-01 株式会社デンソー 回転機の制御装置
EP3206298A4 (en) * 2014-10-08 2018-05-23 Mitsubishi Electric Corporation Power conversion device, method of controlling same, and electric power steering control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116007A (ja) 2013-12-10 2015-06-22 株式会社デンソー モータ制御装置及びモータ制御方法
WO2015140867A1 (ja) 2014-03-15 2015-09-24 三菱電機株式会社 モータ駆動制御装置、圧縮機、送風機、及び空気調和機

Also Published As

Publication number Publication date
WO2021045021A1 (ja) 2021-03-11
JP2021040423A (ja) 2021-03-11
US20220190710A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5152207B2 (ja) 多相回転機の制御装置
JP5056817B2 (ja) 回転機の制御装置
JP6390489B2 (ja) インバータの制御装置
JP2011019319A (ja) 回転機の制御装置
WO2017064756A1 (ja) 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP6848664B2 (ja) 回転電機の制御装置
US20220190710A1 (en) Rotating electrical machine control device
JP5413420B2 (ja) 回転機の制御装置
JP2014197978A (ja) 電力変換器制御装置
Stolze et al. Heuristic variable switching point predictive current control for the three-level neutral point clamped inverter
JP7354962B2 (ja) インバータの制御装置、プログラム
JP2012253943A (ja) 回転機の制御装置
JP2012147540A (ja) 回転機の制御装置
JP5672145B2 (ja) 回転機の制御装置
JP5724737B2 (ja) 回転機の制御装置
JP5678837B2 (ja) 回転機の制御装置
JP5652325B2 (ja) 回転機の制御装置
JP5857689B2 (ja) 回転機の制御装置
JP7354953B2 (ja) 電力変換装置の制御装置、プログラム
JP2020124018A (ja) 回転電機の駆動装置
JP2020061917A (ja) 回転電機の制御装置
JP7367628B2 (ja) インバータの制御装置
US20220278621A1 (en) Power conversion apparatus
JP5724733B2 (ja) 回転機の制御装置
CN111264027B (zh) 旋转电机的控制装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7272188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151