JP7143730B2 - 半導体モジュールとその製造方法 - Google Patents

半導体モジュールとその製造方法 Download PDF

Info

Publication number
JP7143730B2
JP7143730B2 JP2018211717A JP2018211717A JP7143730B2 JP 7143730 B2 JP7143730 B2 JP 7143730B2 JP 2018211717 A JP2018211717 A JP 2018211717A JP 2018211717 A JP2018211717 A JP 2018211717A JP 7143730 B2 JP7143730 B2 JP 7143730B2
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor device
range
carbide semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018211717A
Other languages
English (en)
Other versions
JP2020077827A (ja
Inventor
賢昌 永田
成雅 副島
奏 浦上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018211717A priority Critical patent/JP7143730B2/ja
Publication of JP2020077827A publication Critical patent/JP2020077827A/ja
Application granted granted Critical
Publication of JP7143730B2 publication Critical patent/JP7143730B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本明細書が開示する技術は、半導体モジュールとその製造方法に関する。
炭化珪素基板を有する炭化珪素半導体装置の開発が進められている。炭化珪素は、ワイドバンドギャップを有しており、半導体装置の低いオン抵抗と高いオフ耐圧を両立し得る半導体材料として知られている。
特許文献1は、炭化珪素半導体装置が搭載された半導体モジュールを開示する。この半導体モジュールに搭載される炭化珪素半導体装置は、炭化珪素基板の下面に下面電極が設けられており、炭化珪素基板の上面に上面電極が設けられている。リードフレームが炭化珪素半導体装置の下面電極に下側はんだ層を介して接合しており、導体ブロックが炭化珪素半導体装置の上面電極に上側はんだ層を介して接合している。このように、特許文献1に開示される半導体モジュールは、リードフレームと炭化珪素半導体装置と導体ブロックが積層して構成されており、両面冷却構造の半導体モジュールとして構成されている。
特開2017-112280号公報
この半導体モジュールを積層方向から見たときに、炭化珪素半導体装置はリードフレームよりも内側に位置しており、導体ブロックは炭化珪素半導体装置よりも内側に位置している。このため、リードフレームと炭化珪素半導体装置の間にある下側はんだ層は、積層方向から見たときに、炭化珪素半導体装置の形状に概ね一致する。また、炭化珪素半導体装置と導体ブロックの間にある上側はんだ層は、積層方向から見たときに、導体ブロックの形状に概ね一致する。したがって、積層方向から見たときに、下側はんだ層と上側はんだ層の形状は一致しておらず、下側はんだ層が上側はんだ層よりも面方向に広がった形態を有している。
本発明者らの研究によると、このような半導体モジュールについて、以下の2つのことが分かってきた。
(1)本発明者らの研究によると、炭化珪素半導体装置に断続的な通電が行われ、半導体モジュール内で温度変動が繰り返されると(冷熱サイクル)、下側はんだ層を構成するはんだの面方向における流動と上側はんだ層を構成するはんだの面方向における流動が異なることにより、炭化珪素半導体装置が湾曲することが分かってきた。はんだが流動することにより、下側はんだ層におけるはんだ量の疎密部分の位置と上側はんだ層におけるはんだ量の疎密部分の位置が積層方向に不一致となり、炭化珪素半導体装置が湾曲することが分かってきた。なお、このような現象は、炭化珪素半導体装置が採用され、従来よりも高温域での使用が可能となった結果、初めて観測されたものである。このような湾曲による変形量が大きくなると、炭化珪素半導体装置の破損が発生する可能性がある。このような炭化珪素半導体装置の破損を抑えるためには、炭化珪素基板の抗折強度を高めることが肝要である。
(2)下面電極と炭化珪素基板のオーミック性を改善するために、下面電極を形成するための電極材料層の全体にレーザ光を照射してシンタリングし、電極材料層と炭化珪素基板を反応させることが考えられる。本発明者らの研究によると、電極材料層の単位面積当たりに照射されるレーザ光の照射エネルギー密度が大きいと、完成した下面電極と炭化珪素基板が良好に接合し、下面電極と炭化珪素基板の良好なオーミック性によって炭化珪素半導体装置のオン抵抗が低下するものの、炭化珪素基板の抗折強度が低下することが分かってきた。一方、電極材料層の単位面積当たりに照射されるレーザ光の照射エネルギー密度が小さいと、炭化珪素基板の抗折強度が高く維持されるものの、完成した下面電極と炭化珪素基板のオーミック性が悪化して炭化珪素半導体装置のオン抵抗が増加することが分かってきた。即ち、本発明者らの研究によると、電極材料層の全体にレーザ光を照射した場合、電極材料層の単位面積当たりに照射されるレーザ光の照射エネルギー密度に関して、炭化珪素半導体装置のオン抵抗と炭化珪素基板の抗折強度の間にトレードオフ関係が存在することが分かってきた。この現象の理由の詳細については分からないものの、レーザアニールによる炭化珪素基板の応力の増大及び/又は結晶欠陥の増加などが影響しているものと推察される。
本願明細書は、上記(1)及び(2)の新規な知見に基づいて想起された半導体モジュールであって、低いオン抵抗を示すとともに破損が抑えられた炭化珪素半導体装置を備えた半導体モジュールを提供する。
本明細書が開示する半導体モジュールの製造方法は、炭化珪素基板を有する炭化珪素半導体装置であって、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている、炭化珪素半導体装置と、前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合するリードフレームと、前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合する導体ブロックと、を備えており、前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置している、半導体モジュールを製造するときに採用することができる。この半導体モジュールの製造方法は、前記炭化珪素基板の前記下面に電極材料層を成膜する電極材料層成膜工程と、前記電極材料層にレーザ光を照射するレーザアニール工程と、を有することができる。前記電極材料層は、前記電極材料層の中心を含む第1範囲と、前記第1範囲の周囲であって前記電極材料層の前記中心を取り囲む第2範囲と、を有している。前記レーザアニール工程は、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなるように実施される。
上記製造方法で製造される半導体モジュールによると、前記第1範囲における良好なオーミック性によって前記炭化珪素半導体装置が低いオン抵抗を示すとともに、前記第2範囲において前記炭化珪素基板の抗折強度を高めることができ、前記炭化珪素半導体装置の破損が抑えられる。
本明細書が開示する炭化珪素半導体装置は、炭化珪素基板を有する炭化珪素半導体装置であって、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている、炭化珪素半導体装置と、前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合するリードフレームと、前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合する導体ブロックと、を備えることができる。前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置している。前記下面電極は、前記下面電極の中心を含む第1範囲と、前記第1範囲の周囲であって前記下面電極の前記中心を取り囲む第2範囲と、を有している。前記下面電極と前記炭化珪素基板の反応層の厚みが、前記第1範囲よりも前記第2範囲で薄い。
上記半導体モジュールによると、前記第1範囲における良好なオーミック性によって前記炭化珪素半導体装置が低いオン抵抗を示すとともに、前記第2範囲において前記炭化珪素基板の抗折強度を高めることができ、前記炭化珪素半導体装置の破損が抑えられる。
本実施形態の半導体モジュールの構成を模式的に示す要部断面図。 本実施形態の炭化珪素半導体装置の構成を模式的に示す断面図であり、図3のII-II線における断面図。 本実施形態の炭化珪素半導体装置の平面図。 本実施形態の炭化珪素半導体装置の底面図。 冷熱サイクルにおける半導体モジュールの炭化珪素半導体装置の様子を説明する図。 炭化珪素半導体装置を製造する方法の一工程を示す断面図である。 炭化珪素半導体装置を製造する方法の一工程を示す断面図である。 炭化珪素半導体装置を製造する方法の一工程を示す断面図である。 炭化珪素半導体装置を製造する他の方法の一工程を示す断面図である。 炭化珪素半導体装置を製造する他の方法の一工程を示す断面図である。
図1~図4を参照し、本実施形態の半導体モジュール100について説明する。図1に示されるように、半導体モジュール100は、下側リードフレーム32と、炭化珪素半導体装置10と、導体ブロック34と、上側リードフレーム36と、封止体52とを備えている。下側リードフレーム32と炭化珪素半導体装置10と導体ブロック34と上側リードフレーム36が積層しており、これらを封止体52が封止している。このように、半導体モジュール100は、両面冷却構造の半導体モジュールとして構成されている。
図2に示されるように、炭化珪素半導体装置10は、炭化珪素基板12と、炭化珪素基板12の上面12aに設けられた上面電極14と、炭化珪素基板12の下面12bに設けられた下面電極20とを備えている。炭化珪素半導体装置10は、いわゆるパワー半導体素子であり、炭化珪素基板12の内部に例えばIGBT(Insulated Gate Bipolar Transistor)又はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)といったスイッチング素子の構造が形成されている。なお、炭化珪素基板12の内部には、スイッチング素子の構造に加えて、又は代えて、pn接合型ダイオードやショットキーバリアダイオードといったダイオードの構造が形成されていてもよい。炭化珪素基板12の内部構造については特に限定されない。
上面電極14と下面電極20の各々は、例えば金属材料といった導体で構成されている。上面電極14は、炭化珪素基板12の上面12aにオーミック接触している。下面電極20も、炭化珪素基板12の下面12bにオーミック接触している。上面電極14と下面電極20の各々の具体的な構成は特に限定されない。上面電極14と下面電極20の各々は、モリブテン、ニッケル、チタン、アルミニウム、金又はその他の金属材料や、それらの金属材料の少なくとも一つを含む合金を用いて構成することができる。一例ではあるが、後述する製造方法でも説明するように、本実施形態における下面電極20は、モリブテンとニッケルが積層した電極材料層をレーザアニールした後に、チタンと金を積層させた多層構造を有している。
炭化珪素半導体装置10は、絶縁膜16と保護膜18とをさらに備えている。絶縁膜16と保護膜18は、炭化珪素基板12の上面12aのうちの周縁側に設けられている。絶縁膜16は、酸化シリコンといった絶縁材料で構成されており、炭化珪素基板12の周縁に沿って枠状に延びている。保護膜18は、エポキシ樹脂といった樹脂材料で構成されており、絶縁膜16上に位置するとともに、炭化珪素基板12の周縁に沿って枠状に延びている。なお、本技術の適用に関して絶縁膜16と保護膜18は必ずしも必要とされない。
図2及び図4に示されるように、下面電極20は、下面電極20の中心CTを含む第1範囲20A、第1範囲20Aの周囲であって下面電極20の中心CTを取り囲む第2範囲20B、及び、第2範囲20Bの周囲であって下面電極20の中心CTを取り囲む第3範囲20Cに区画されている。換言すると、下面電極20のうちの第2範囲20Bとして区画された範囲よりも内側が第1範囲20Aであり、その範囲よりも外側が第3範囲20Cである。下面電極20の第1範囲20Aは円形状であり、下面電極20の第2範囲20Bはリング状である。ここでいう下面電極20の中心CTとは、半導体モジュール100の積層方向から見たとき(以下、「平面視したとき」という)の下面電極20の中心を意味する。一例ではあるが、本実施形態の炭化珪素半導体装置10では、下面電極20が炭化珪素基板12の下面12bの全体に設けられているので、下面電極20の中心CTは炭化珪素半導体装置10の中心に一致する。したがって、以下では、中心CTを炭化珪素半導体装置10の中心と記載することもある。第2範囲20Bとして区画されたリングの中心は、下面電極20の中心CTに一致している。
ここで、上記した下面電極20の第2範囲20Bは、必ずしもリング状に区画される必要はない。他の実施形態として、下面電極20の第2範囲20Bは、長円、楕円又はその他の閉曲線に沿って延びるように区画されてもよい。あるいは、下面電極20の第2範囲20Bは、四角形、六角形又はその他の多角形に沿って延びるように設けられてもよい。これらの例示に限られず、下面電極20の第2範囲20Bは、下面電極20の中心CTを取り囲む閉じた経路に沿って、断続的又は連続的に設けられていればよい。そして、この閉じた経路は、曲線のみで構成されてもよいし、直線のみで構成されてもよいし、曲線と直線との組み合わせによって構成されてもよい。
下面電極20の第2範囲20Bは、下面電極20と炭化珪素基板12のオーミック性を改善するために実施されるレーザアニール工程において、照射されるレーザ光の照射エネルギー密度が第1範囲20A及び第3範囲20Cよりも低くなるように調整された領域である。これにより、第2範囲20Bにおける下面電極20と炭化珪素基板12の接合層の厚さが、第1範囲20A及び第3範囲の各々における下面電極20と炭化珪素基板12の接合層の厚さよりも薄くなる。なお、ここでいう「接合層の厚さが薄い」には、接合層が存在しない場合も含む。また、接合層とは、下面電極20のうちのレーザアニールによってシリサイド化した領域をいう。
図6~図8を参照し、炭化珪素半導体装置10の下面電極20を形成する工程を説明する。まず、図6に示されるように、表面構造(各種半導体領域、各種電極など)が形成された炭化珪素基板12を準備する。表面構造を製造する方法については、既知の製造方法を適宜採用することができる。
次に、図7に示されるように、スパッタ技術を利用して、炭化珪素基板12の下面12bにモリブテンとニッケルが積層した電極材料層120を成膜する電極材料層成膜工程を実施する。電極材料層120の厚みは、例えば50~300nmである。電極材料層120は、最終的に下面電極20となるものであり、下面電極20と同様に、第1範囲20Aと第2範囲20Bと第3範囲20Cに区画されている。
次に、図8に示されるように、電極材料層120に対してレーザ光72を照射するレーザアニール工程を実施する。照射するレーザとしては、特に限定されるものではないが、例えばYAGレーザ、エキシマレーザなどが用いられてもよい。このレーザアニール工程では、電極材料層120の第1範囲20Aと第3範囲20Cにレーザ光72を照射し、電極材料層120の第2範囲20Bにレーザ光72を照射しないように実施される。第1範囲20Aと第3範囲20Cに照射されるレーザ光72の照射エネルギー密度については、例えば1.5~4.0J/cm2に調整されている。第2範囲20Bに照射されるレーザ光72の照射エネルギー密度が第1範囲20Aと第3範囲20Cに照射されるレーザ光72の照射エネルギー密度よりも小さい範囲内であれば、必要に応じて、第2範囲20Bにレーザ光72を照射してもよい。いずれの場合も、このレーザアニール工程では、電極材料層120と炭化珪素基板12の界面の温度が、第1範囲20A及び第3範囲20Cよりも第2範囲20Bで低くなるように実施される。レーザアニール工程の後に、表面にチタンと金を成膜して下面電極20を完成させる。
レーザアニール工程を実施すると、電極材料層120と炭化珪素基板12が反応し、電極材料層120の一部がシリサイド化する。完成した下面電極20のうちのシリサイド化した領域を反応層という。上記のレーザアニール工程では、下面電極20の第2範囲20Bに形成される反応層の厚みが、下面電極20の第1範囲20Aと第3範囲20Cに形成される反応層の厚みよりも薄くなる。
このように、第1範囲20Aと第3範囲20Cでは、完成した下面電極20と炭化珪素基板12が良好にオーミック接触することができる。一方、第2範囲20Bでは、完成した下面電極20と炭化珪素基板12のオーミック性は良好でないものの、本発明者らの研究によると、下面電極20と炭化珪素基板12の反応が抑えられることにより、レーザアニール工程を実施した前後においても、この部分の炭化珪素半導体装置10の抗折強度が維持されている。これらの工程を経て、上記した炭化珪素半導体装置10の下面電極20を形成することができる。
図1に戻る。半導体モジュール100では、炭化珪素半導体装置10の下面電極20が下側はんだ層42を介して下側リードフレーム32に接合しており、炭化珪素半導体装置10の上面電極14が上側はんだ層44を介して導体ブロック34に接合している。さらに、半導体モジュール100では、導体ブロック34と上側リードフレーム36が、はんだ層46を介して接合している。下側リードフレーム32は、封止体52の下面52bにおいて外部に露出している。上側リードフレーム36も、封止体52の上面52aにおいて外部に露出している。下側リードフレーム32と上側リードフレーム36の各々は、半導体モジュール100の電気回路の一部を構成するだけでなく、炭化珪素半導体装置10の熱を外部へ放出する放熱板としても機能する。このように、半導体モジュール100は、封止体52の上面52aと下面52bのそれぞれに放熱板が露出する両面冷却構造を有している。
下側はんだ層42は、炭化珪素半導体装置10の下面電極20の全体に塗布して形成されており、下側リードフレーム32と炭化珪素半導体装置10の間に位置してこれらを接合している。上側はんだ層44は、炭化珪素半導体装置10の上面電極14の全体に塗布して形成されており、炭化珪素半導体装置10と導体ブロック34の間に位置してこれらを接合している。したがって、平面視したときの下側はんだ層42の形状は、炭化珪素半導体装置10の下面電極20の形状(あるいは、炭化珪素半導体装置10の形状)に一致する。また、平面視したときの上側はんだ層44の形状は、炭化珪素半導体装置10の上面電極14(あるいは、導体ブロック34の形状)に一致する。
図1及び図3に示されるように、平面視したとき、炭化珪素半導体装置10は下側リードフレーム32よりも内側に位置しており、導体ブロック34(即ち、炭化珪素半導体装置10の上面電極14の位置に相当する)は炭化珪素半導体装置10よりも内側に位置している。このため、平面視したときに、下側はんだ層42と上側はんだ層44の形状は一致しておらず、下側はんだ層42が上側はんだ層44よりも面方向に広がった形態を有している。
半導体モジュール100では、炭化珪素半導体装置10へ断続的な通電が行われると、半導体モジュール100の温度が繰り返し変動する(冷熱サイクル)。この温度変動に伴い、半導体モジュール100の各構成要素は、それぞれ膨張と収縮とを繰り返す。このとき、半導体モジュール100の各構成要素は、互いに異なる線膨張係数を有するので、半導体モジュール100内に生じる応力分布は一様とならず、炭化珪素半導体装置10にも局所的に高い応力が生じ得る。半導体モジュール100では、下側リードフレーム32と導体ブロック34と上側リードフレーム36の線膨張係数はいずれも、炭化珪素基板12の炭化珪素の線膨張係数よりも大きい。例えば、下側リードフレーム32と導体ブロック34と上側リードフレーム36の各々の材料には銅が用いられており、その線膨張係数は17.7[ppm/℃]である。一方、炭化珪素基板12の炭化珪素の線膨張係数は、5.1[ppm/℃]である。
図5に、半導体モジュール100の温度が繰り返し変動するときの、炭化珪素半導体装置10の様子を示す。
下側リードフレーム32と導体ブロック34は、線膨張係数が大きいので、半導体モジュール100が昇温する時に面方向に膨張し、半導体モジュール100が降温する時に面方向に収縮することを繰り返す。一方、炭化珪素半導体装置10の炭化珪素基板12は、線膨張係数が小さいので、面方向の膨張及び収縮は小さい。このような冷熱サイクルの結果、下側はんだ層42を構成するはんだは、炭化珪素半導体装置10の中心CT及び周縁に凝集して密となり、それらの間で粗となるように流動する。一方、上側はんだ層44を構成するはんだは、導体ブロック34の周縁で密となり、炭化珪素半導体装置10の中心CTで粗となるように流動する。このように、下側はんだ層42を構成するはんだのはんだ量の疎密部分の位置と上側はんだ層44を構成するはんだのはんだ量の疎密部分の位置が積層方向において不一致となる。
炭化珪素半導体装置10の中心CTでは、下側はんだ層42を構成するはんだのはんだ量が密であり、上側はんだ層44を構成するはんだのはんだ量が粗である。さらに、炭化珪素半導体装置10の中心CTの周囲では、下側はんだ層42を構成するはんだのはんだ量が粗であり、上側はんだ層44を構成するはんだのはんだ量が密である。これにより、炭化珪素半導体装置10は、その中心CTにおいて上側に向けて凸状に変形し、その周囲において下側に向けて凸状に変形する。この下側に向けて凸状に変形する部分は、炭化珪素半導体装置10の中心CTの周囲を取り囲むように概ねリング状である。この下側に向けて凸状に変形する部分は、引っ張り方向に変形量が大きくなっており、引張応力が加わっている。炭化珪素基板12の材料である炭化珪素は、ヤング率の大きい材料であり、この下側に向けて凸状に変形する部分において破損が生じる可能性がある。本実施形態の炭化珪素半導体装置10では、その下側に向けて凸状に変形する変形量が最大となる位置に対応して、下面電極20の第2範囲20Bが区画されている。なお、炭化珪素半導体装置10の下側に向けて凸状に変形する変形量が最大となる位置は、各構成要素の材料及び寸法によって変動するが、その位置については、冷熱サイクル試験の結果、又は、シミュレーションによって把握することが可能である。
上記したように、炭化珪素半導体装置10では、下面電極20が第1範囲20Aと第2範囲20Bと第3範囲20Cに区画されている。下面電極20の第1範囲20Aは、アクティブ領域(炭化珪素基板12の表面にゲート構造が形成されている領域)であって電流密度が最も高い領域に対応する。上記製造方法で説明したように、炭化珪素半導体装置10では、この第1範囲20Aにおいて、下面電極20を形成するための電極材料層120の単位面積当たりに照射されるレーザ光の照射エネルギー密度が大きく調整されており、これにより、電極材料層120と炭化珪素基板12の界面の温度が十分に高くなり、電極材料層120と炭化珪素基板12の反応が十分に進行し、完成した下面電極20と炭化珪素基板12が良好にオーミック接触している。したがって、炭化珪素半導体装置10は、低いオン抵抗を示すことができる。
下面電極20の第2範囲20Bは、炭化珪素半導体装置10が下側に向けて凸状に変形する変形量が最大となる位置を含む領域に対応する。上記製造方法で説明したように、炭化珪素半導体装置10では、この第2範囲20Bにおいて、下面電極20を形成するための電極材料層120の単位面積当たりに照射されるレーザ光の照射エネルギー密度が小さく調整されており、これにより、電極材料層120と炭化珪素基板12の界面の温度が低く、電極材料層120と炭化珪素基板12の反応が十分に進行していない。本発明者らの研究によると、この第2範囲20Bにおいて、レーザアニール前後において、炭化珪素半導体装置10の抗折強度が高く維持されている。したがって、炭化珪素半導体装置10は、半導体モジュール100の温度が繰り返し変動したとしても、その破損が抑えられている。
下面電極20の第3範囲20Cは、炭化珪素半導体装置10の変形量が小さい領域である。この第3範囲20Cにおいて、下面電極20を形成するための電極材料層120の単位面積当たりに照射されるレーザ光の照射エネルギー密度が大きく調整されており、これにより、電極材料層120と炭化珪素基板12の界面の温度が十分に高くなり、電極材料層120と炭化珪素基板12の反応が十分に進行し、完成した下面電極20と炭化珪素基板12が良好にオーミック接触している。したがって、炭化珪素半導体装置10は、低いオン抵抗を示すことができる。
上記したように、炭化珪素半導体装置10では、少なくとも第1範囲20Aと第2範囲20Bにおいて、電極材料層120の単位面積当たりに照射されるレーザ光の照射エネルギー密度が調整されることにより、第1範囲20Aにおける良好なオーミック性によって炭化珪素半導体装置10が低いオン抵抗を示すとともに、第2範囲20Bにおいて炭化珪素基板12の抗折強度を高めることができ、炭化珪素半導体装置10の破損が抑えられている。
なお、炭化珪素半導体装置10では、下面電極20の第2範囲20Bが、炭化珪素半導体装置10が下側に向けて凸状に変形する変形量が最大となる位置を含むように区画されていたが、この例に限らない。下面電極20の中心CTを含む位置に第1範囲を区画し、その第1範囲20Aの周囲であって下面電極20の中心CTを取り囲む位置に第2範囲20Bを区画することにより、炭化珪素半導体装置10が低いオン抵抗を示すとともに、炭化珪素半導体装置10の破損が抑えられる。下面電極20の第2範囲20Bが、炭化珪素半導体装置10が下側に向けて凸状に変形する変形量が最大となる位置を含むように区画されていると、炭化珪素半導体装置10の破損が顕著に抑えられる。第1範囲20Aと第2範囲20Bと第3範囲20Cの位置及び形状については、炭化珪素半導体装置10に所望される特性に応じて適宜に設定することができる。
上記で説明した製造方法では、下面電極20を形成するときに、電極材料層120の単位面積当たりに照射されるレーザ光の照射エネルギー密度を調整していた。この例に代えて、図9に示されるように、電極材料層成膜工程において、電極材料層120の厚みが第1範囲20A及び第3範囲20Cよりも第2範囲20Bで厚くなるように電極材料層120を形成してもよい。第2範囲20Bの厚みは、第1範囲20A及び第3範囲20Cの厚みよりも数十nmだけ厚く調整されている。この例によると、レーザアニール工程において、レーザ光の照射エネルギー密度を電極材料層120の全体に対して同一にしても、電極材料層120と炭化珪素基板12の界面の温度が、第1範囲20A及び第3範囲20Cよりも第2範囲20Bで低くなる。この製造方法によっても、上記した炭化珪素半導体装置10を製造することができる。なお、レーザアニール工程の後に、エッチング技術を利用して、第2範囲20Bにおける突出した部分を除去してもよい。
また、上記例に代えて、図10に示されるように、下面電極形成工程とレーザアニール工程の間に、第2範囲20Bに対応する電極材料層120上にマスク層62を成膜するマスク層形成工程を実施してもよい。マスク層62の材料は、レーザアニール工程において、電極材料層120の第2範囲20Bに到達する照射エネルギーが低下される限りにおいて、特に限定されるものではない。マスク層62の材料には、レーザ光に対する吸収率が電極材料層120よりも小さい材料、熱容量が大きい材料、熱伝導率が小さい材料が用いられるのが望ましい。例えば、マスク層62の材料には、モリブデン、ニッケル、チタン、アルミニウム、鉄、シリコン、炭素又はそれらを含む材料が用いられる。この例によると、レーザアニール工程において、レーザ光の照射エネルギー密度を電極材料層120の全体に対して同一にしても、電極材料層120と炭化珪素基板12の界面の温度が、第1範囲20A及び第3範囲20Cよりも第2範囲20Bで低くなる。この製造方法によっても、上記した炭化珪素半導体装置10を製造することができる。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
本明細書が開示する半導体モジュールの製造方法は、炭化珪素半導体装置とリードフレームと導体ブロックを備えた半導体モジュールに適用可能である。前記炭化珪素半導体装置は、炭化珪素基板を有しており、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている。前記炭化珪素半導体装置の種類は特に限定されるものではなく、例えばMOSFET、IGBT、又は、ダイオードであってもよい。前記リードフレームは、前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合している。前記導体ブロックは、前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合している。前記リードフレームと前記導体ブロックの材料の線膨張係数はいずれも、炭化珪素の線膨張係数よりも大きくてもよい。前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置している。この半導体モジュールの製造方法は、前記炭化珪素基板の前記下面に電極材料層を成膜する電極材料層成膜工程と、前記電極材料層にレーザ光を照射するレーザアニール工程と、を有することができる。前記電極材料層は、前記電極材料層の中心を含む第1範囲と、前記第1範囲の周囲であって前記電極材料層の前記中心を取り囲む第2範囲と、を有することができる。前記第1範囲と前記第2範囲の位置及び形状は、炭化珪素半導体装置に求められる特性に応じて適宜に設定可能である。前記レーザアニール工程は、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなるように実施される。
上記半導体モジュールの製造方法において、前記レーザアニール工程では、前記第2範囲に前記レーザ光を照射しないように実施されてもよい。この製造方法によると、前記レーザアニール工程において、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなることができる。
上記半導体モジュールの製造方法は、前記電極材料層成膜工程と前記レーザアニール工程の間に、前記第2範囲に対応する前記電極材料層上にマスク層を形成するマスク層形成工程と、をさらに備えていてもよい。前記マスク層を形成しておくことで、前記レーザアニール工程において、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなることができる。
上記半導体モジュールの製造方法において、前記電極材料層成膜工程では、前記電極材料層の厚みが前記第1範囲よりも前記第2範囲で厚くなるように前記電極材料層を形成してもよい。この製造方法によると、前記レーザアニール工程において、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなることができる。
上記半導体モジュールの製造方法において前記第2範囲は、冷熱サイクルによって前記炭化珪素半導体装置が下側に向けて凸状に変形する変形量が最大となる位置を含んでもよい。この場合、前記第1範囲が円形状であり、前記第2範囲がリング状であってもよい。これによると、炭化珪素半導体装置の破損が顕著に抑えられる。
本明細書が開示する半導体モジュールは、炭化珪素半導体装置とリードフレームと導体ブロックを備えることができる。前記炭化珪素半導体装置は、炭化珪素基板を有しており、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている。前記炭化珪素半導体装置の種類は特に限定されるものではなく、例えばMOSFET、IGBT、又は、ダイオードであってもよい。前記リードフレームは、前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合している。前記導体ブロックは、前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合している。前記リードフレームと前記導体ブロックの材料の線膨張係数はいずれも、炭化珪素の線膨張係数よりも大きくてもよい。前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置している。前記下面電極は、前記下面電極の中心を含む第1範囲と、前記第1範囲の周囲であって前記下面電極の前記中心を取り囲む第2範囲と、を有することができる。前記第1範囲と前記第2範囲の位置及び形状は、炭化珪素半導体装置に求められる特性に応じて適宜に設定可能である。前記下面電極と前記炭化珪素基板の反応層の厚みが、前記第1範囲よりも前記第2範囲で薄い。
上記半導体モジュールにおいて、前記第2範囲は、冷熱サイクルによって前記炭化珪素半導体装置が下側に向けて凸状に変形する変形量が最大となる位置を含んでもよい。この場合、前記第1範囲が円形状であり、前記第2範囲がリング状であってもよい。これによると、炭化珪素半導体装置の破損が顕著に抑えられる。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10 :炭化珪素半導体装置
12 :炭化珪素基板
14 :上面電極
20 :下面電極
20A :第1範囲
20B :第2範囲
20C :第3範囲
32 :下側リードフレーム
34 :導体ブロック
36 :上側リードフレーム
42 :下側はんだ層
44 :上側はんだ層
100 :半導体モジュール

Claims (7)

  1. 炭化珪素基板を有する炭化珪素半導体装置であって、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている、炭化珪素半導体装置と、
    前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合するリードフレームと、
    前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合する導体ブロックと、を備えており、
    前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置している、半導体モジュールの製造方法であって、
    前記炭化珪素基板の前記下面に電極材料層を成膜する電極材料層成膜工程と、
    前記電極材料層にレーザ光を照射するレーザアニール工程と、を有しており、
    前記電極材料層は、前記電極材料層の中心を含む第1範囲と、前記第1範囲の周囲であって前記電極材料層の前記中心を取り囲む第2範囲と、を有しており、
    前記レーザアニール工程は、前記電極材料層と前記炭化珪素基板の界面の温度が、前記第1範囲よりも前記第2範囲で低くなるように実施され、
    前記第2範囲は、冷熱サイクルによって前記炭化珪素半導体装置が下側に向けて凸状に変形する変形量が最大となる位置を含む、半導体モジュールの製造方法。
  2. 前記レーザアニール工程では、前記第2範囲に前記レーザ光を照射しないように実施される、請求項1に記載の半導体モジュールの製造方法。
  3. 前記電極材料層成膜工程と前記レーザアニール工程の間に、前記第2範囲に対応する前記電極材料層上にマスク層を形成するマスク層形成工程と、をさらに備えている、請求項1又は2に記載の半導体モジュールの製造方法。
  4. 前記電極材料層成膜工程では、前記電極材料層の厚みが前記第1範囲よりも前記第2範囲で厚くなるように前記電極材料層を形成する、請求項1に記載の半導体モジュールの製造方法。
  5. 前記第1範囲が円形状であり、前記第2範囲がリング状である、請求項1~4のいずれか一項に記載の半導体モジュールの製造方法。
  6. 炭化珪素基板を有する炭化珪素半導体装置であって、前記炭化珪素基板の下面に下面電極が設けられており、前記炭化珪素基板の上面に上面電極が設けられている、炭化珪素半導体装置と、
    前記炭化珪素半導体装置の前記下面電極に下側はんだ層を介して接合するリードフレームと、
    前記炭化珪素半導体装置の前記上面電極に上側はんだ層を介して接合する導体ブロックと、を備えており、
    前記リードフレームと前記炭化珪素半導体装置と前記導体ブロックの積層方向から見たときに、前記炭化珪素半導体装置は前記リードフレームよりも内側に位置しており、前記導体ブロックは前記炭化珪素半導体装置よりも内側に位置しており、
    前記下面電極は、前記下面電極の中心を含む第1範囲と、前記第1範囲の周囲であって前記下面電極の前記中心を取り囲む第2範囲と、を有しており、
    前記下面電極と前記炭化珪素基板の反応層の厚みが、前記第1範囲よりも前記第2範囲で薄く、
    前記第2範囲は、冷熱サイクルによって前記炭化珪素半導体装置が下側に向けて凸状に変形する変形量が最大となる位置を含む、半導体モジュール。
  7. 前記第1範囲が円形状であり、前記第2範囲がリング状である、請求項6に記載の半導体モジュール。
JP2018211717A 2018-11-09 2018-11-09 半導体モジュールとその製造方法 Active JP7143730B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018211717A JP7143730B2 (ja) 2018-11-09 2018-11-09 半導体モジュールとその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018211717A JP7143730B2 (ja) 2018-11-09 2018-11-09 半導体モジュールとその製造方法

Publications (2)

Publication Number Publication Date
JP2020077827A JP2020077827A (ja) 2020-05-21
JP7143730B2 true JP7143730B2 (ja) 2022-09-29

Family

ID=70725197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018211717A Active JP7143730B2 (ja) 2018-11-09 2018-11-09 半導体モジュールとその製造方法

Country Status (1)

Country Link
JP (1) JP7143730B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534143A (ja) 2003-08-14 2007-11-22 クリー インコーポレイテッド 金属−炭化珪素オーミックコンタクトの局所的アニーリングおよびそのようにして形成された素子
JP2011054698A (ja) 2009-09-01 2011-03-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2013016707A (ja) 2011-07-05 2013-01-24 Hitachi Ltd 半導体装置の製造方法
JP2017063145A (ja) 2015-09-25 2017-03-30 三菱電機株式会社 炭化珪素半導体装置及びその製造方法
JP2017112280A (ja) 2015-12-17 2017-06-22 トヨタ自動車株式会社 半導体モジュール
JP2017224694A (ja) 2016-06-15 2017-12-21 三菱電機株式会社 炭化珪素半導体装置およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534143A (ja) 2003-08-14 2007-11-22 クリー インコーポレイテッド 金属−炭化珪素オーミックコンタクトの局所的アニーリングおよびそのようにして形成された素子
JP2011054698A (ja) 2009-09-01 2011-03-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2013016707A (ja) 2011-07-05 2013-01-24 Hitachi Ltd 半導体装置の製造方法
JP2017063145A (ja) 2015-09-25 2017-03-30 三菱電機株式会社 炭化珪素半導体装置及びその製造方法
JP2017112280A (ja) 2015-12-17 2017-06-22 トヨタ自動車株式会社 半導体モジュール
JP2017224694A (ja) 2016-06-15 2017-12-21 三菱電機株式会社 炭化珪素半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP2020077827A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
US20240063164A1 (en) Power semiconductor apparatus and fabrication method for the same
US10381244B2 (en) Power module and fabrication method for the same
JP5542567B2 (ja) 半導体装置
JP2019016738A (ja) 半導体装置
JP2016058466A (ja) 炭化珪素半導体装置
JP6399738B2 (ja) 半導体装置
JP2014053384A (ja) 半導体装置およびその製造方法
JP2015233035A (ja) 半導体装置
JP2007201247A (ja) 高耐圧半導体装置
JP6643481B2 (ja) 半導体モジュールおよび半導体モジュールの製造方法
JP7143730B2 (ja) 半導体モジュールとその製造方法
US20210104449A1 (en) Power Semiconductor Package with Highly Reliable Chip Topside
JPWO2020105476A1 (ja) 半導体装置
JP7172846B2 (ja) 半導体装置
JP2017220663A (ja) 電子部品パッケージおよびその製造方法
JP2020027878A (ja) 半導体装置
JP2015164167A (ja) 回路基板、その製造方法、および電子装置
JP2019057594A (ja) 半導体素子
JP7298679B2 (ja) 炭化珪素半導体装置
JP7127471B2 (ja) 半導体モジュール
JP7495225B2 (ja) 半導体装置
JP2020115532A (ja) 半導体モジュール
JP7017098B2 (ja) 半導体装置
JP2022163881A (ja) 半導体モジュール
JP2023061445A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R151 Written notification of patent or utility model registration

Ref document number: 7143730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151