JP7138228B1 - 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム - Google Patents

非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム Download PDF

Info

Publication number
JP7138228B1
JP7138228B1 JP2021197238A JP2021197238A JP7138228B1 JP 7138228 B1 JP7138228 B1 JP 7138228B1 JP 2021197238 A JP2021197238 A JP 2021197238A JP 2021197238 A JP2021197238 A JP 2021197238A JP 7138228 B1 JP7138228 B1 JP 7138228B1
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021197238A
Other languages
English (en)
Other versions
JP2023029166A (ja
Inventor
輝 吉川
裕一 佐飛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2021197238A priority Critical patent/JP7138228B1/ja
Application granted granted Critical
Publication of JP7138228B1 publication Critical patent/JP7138228B1/ja
Publication of JP2023029166A publication Critical patent/JP2023029166A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】非水電解質二次電池の耐熱性を向上できる非水電解質二次電池用正極を提供する。【解決手段】集電体11と、集電体11上に存在する、正極活物質粒子を含む正極活物質層12を有し、正極活物質層12の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計が0.0~5.0%である、非水電解質二次電池用正極1。【選択図】図1

Description

本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。
非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、金属箔(集電体)の表面に固着させたものが知られている。
リチウムイオンを含む正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム(LiFePO)等のリチウムリン酸化合物が実用化されている。
特許文献1では、正極活物質の特性を評価する指標として、正極活物質の二次粒子の拡がり抵抗値に着目し、正極活物質の組成や製造条件を変えて前記拡がり抵抗値が異なる正極活物質を製造した例が記載されている。
特許文献2は、導電助剤として薄片状のグラフェンを用いることによって二次電池の出力特性及びエネルギー密度を向上させた実施例が記載されている。薄片状のグラフェンを用いた実施例は、正極断面を拡がり抵抗値に基づいてマッピングしたときの、特定の抵抗値以下の部分のアスペクト比が、粉末状の導電助剤を用いた比較例に比べて大きくなることが示されている。
国際公開第2017/208894号 国際公開第2018/168059号
非水電解質二次電池の用途拡大の観点から、高温環境下でも電池特性を良好に維持できる耐熱性が求められる。
本発明は、非水電解質二次電池の耐熱性を向上できる非水電解質二次電池用正極を提供する。
本発明は以下の態様を有する。
[1] 集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層を有し、前記正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計が0.0~5.0%である、非水電解質二次電池用正極。
[2] 前記拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度より、抵抗値6.0~9.0(logΩ)の平均頻度が大きい、[1]の非水電解質二次電池用正極。
[3] 前記正極活物質層が導電助剤を含む、[1]又は[2]の非水電解質二次電池用正極。
[4] 前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、[3]の非水電解質二次電池用正極。
[5] 前記正極活物質層が導電助剤を含まず、前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、[1]又は[2]の非水電解質二次電池用正極。
[6] 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、[3]~[5]のいずれかの非水電解質二次電池用正極。
[7] 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、[1]~[6]のいずれかの非水電解質二次電池用正極。
[8] 前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、[1]~[7]のいずれかの非水電解質二次電池用正極。
[9] [1]~[8]のいずれかの非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
[10] [9]に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
本発明によれば、非水電解質二次電池の耐熱性を向上できる非水電解質二次電池用正極が得られる。
本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。 拡がり抵抗値分布の測定結果を示すマッピング画像である。 拡がり抵抗値分布の測定結果を示すマッピング画像である。 拡がり抵抗値分布の測定結果を示すグラフである。
本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図であり、図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
<非水電解質二次電池用正極>
本実施形態の非水電解質二次電池用正極(単に「正極」ともいう。)1は、集電体(以下「正極集電体」という。)11と正極活物質層12を有する。
正極活物質層12は正極集電体11の少なくとも一面上に存在する。正極集電体11の両面上に正極活物質層12が存在してもよい。
図1の例において、正極集電体11は、正極活物質層12側の表面に集電体被覆層15が存在する。すなわち、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。正極集電体本体14のみを正極集電体11としてもよい。
[正極活物質層]
正極活物質層12は正極活物質粒子を含む。
正極活物質層12は、さらに結着材を含むことが好ましい。
正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。
正極活物質層12は、さらに分散剤を含んでもよい。
正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
正極活物質層の厚み(正極集電体の両面上に正極活物質層が存在する場合、両面の合計)は30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚みが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。
[正極活物質粒子]
正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在することが好ましい。電池容量、サイクル特性により優れる点から、正極活物質粒子の表面全体が導電材料で被覆されていることがより好ましい。
ここで、「正極活物質粒子の表面の少なくとも一部」とは、活物質被覆部が、正極活物質粒子の外表面全体の面積の50%以上、好ましくは70%以上、より好ましくは90%以上を覆っていることを意味する。なお、この割合(%)は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。
活物質被覆部の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
活物質被覆部を有する正極活物質粒子の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は正極活物質粒子の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。
正極活物質粒子は、オリビン型結晶構造を有する化合物を含むことが好ましい。
オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
正極活物質粒子として、表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム粒子(以下「被覆リン酸鉄リチウム粒子」ともいう。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウム粒子の表面全体が導電材料で被覆されていることがさらに好ましい。
被覆リン酸鉄リチウム粒子は公知の方法で製造できる。
例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粒子を得る。
例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粒子の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粒子を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム(LiMn)、コバルトマンガン酸リチウム(LiMnCoO)、クロム酸マンガンリチウム(LiMnCrO)、バナジウムニッケル酸リチウム(LiNiVO)、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム(LiCoVO)、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
他の正極活物質粒子の表面の少なくとも一部に、前記活物質被覆部が存在してもよい。
正極活物質粒子の総質量(活物質被覆部を有する場合は活物質被覆部の質量も含む)に対して、オリビン型結晶構造を有する化合物の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。
正極活物質粒子の活物質被覆部の厚さは、1~100nmが好ましい。
正極活物質粒子の活物質被覆部の厚さは、正極活物質粒子の透過電子顕微鏡(TEM)像における活物質被覆部の厚さを計測する方法で測定できる。正極活物質粒子の表面に存在する活物質被覆部の厚さは均一でなくてもよい。正極活物質粒子の表面の少なくとも一部に厚さ1nm以上の活物質被覆部が存在し、活物質被覆部の厚さの最大値が100nm以下であることが好ましい。
正極活物質として用いる粒子(即ち、正極活物質として用いる粉体)の平均粒子径(活物質被覆部を有する場合は活物質被覆部の厚さも含む)は、例えば0.1~20.0μmが好ましく、0.2~10.0μmがより好ましい。正極活物質を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
本明細書における正極活物質の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
[結着材]
正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
正極活物質層12における結着材の含有量は、例えば、正極活物質層12の総質量に対して、4.0質量%以下が好ましく、2.0質量%以下がより好ましい。結着材の含有量が上記上限値以下であれば、正極活物質層12において、リチウムイオンの伝導に寄与しない物質の割合が少なくなり、電池特性のさらなる向上を図れる。
正極活物質層12が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層12の総質量に対して0.1質量%以上が好ましく、0.5質量%以上がより好ましい。
[導電助剤]
正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば独立した炭素粒子)が存在しない状態が望ましい。
正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
[分散剤]
正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルホルマール(PVF)等が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
[正極集電体本体]
正極集電体本体14は金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の導電性を有する金属が例示できる。
正極集電体本体14の厚みは、例えば8~40μmが好ましく、10~25μmがより好ましい。
正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
[集電体被覆層]
正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在することが好ましい。集電体被覆層15は導電材料を含む。
ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含むスラリーを、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
集電体被覆層15の厚さは、0.1~4.0μmが好ましい。
集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さ0.1μm以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が4.0μm以下であることが好ましい。
[正極活物質層の拡がり抵抗値分布]
本実施形態において、正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計は0.0~5.0%であり、0.0~4.0%が好ましく、0.0~3.0%がより好ましく、0.0~2.0%がさらに好ましい。
本明細書における正極活物質層の拡がり抵抗値分布は、正極活物質層の断面を測定対象とし、走査型拡がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)を用いて、下記≪拡がり抵抗値分布の測定方法≫で測定する。
≪拡がり抵抗値分布の測定方法≫
SSRMは、測定対象物にバイアス電圧を印加し、表面を導電性探針で走査し、探針直下の抵抗値(拡がり抵抗値)の分布を二次元的に計測する。
拡がり抵抗値分布の測定は、SSRMを用い、DCバイアス電圧+2.0V、スキャンサイズ60μm×60μm、測定点の数(データ点数)1024×1024の条件で行い、横軸を拡がり抵抗値、縦軸を頻度とする度数分布のグラフ(拡がり抵抗値分布)を得る。
縦軸の頻度は、抵抗値が4.0logΩ(1×10Ω)以上、12.5logΩ(1×1012.5Ω)以下である頻度(測定点の数)の合計を100%とするときの相対頻度(単位:%、単に「頻度」ともいう)とする。
拡がり抵抗値分布において、抵抗値が4.0~6.0(logΩ)である頻度の合計が5.0%以下であると、非水電解質二次電池の耐熱性の向上効果に優れる。
正極活物質層の断面において、抵抗値が4.0~6.0(logΩ)と低い部分が存在すると、非水電解質二次電池が高温に曝されたときに、そこが活性点となって正極と電解液との副反応が生じやすいと考えられる。
抵抗値が4.0~6.0(logΩ)の頻度合計は、例えば、独立した導電助剤粒子(例えば独立した炭素粒子)を少なくすることによって低減できる。
拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度Aは、抵抗値4.0~6.0(logΩ)の範囲のグラフを平らに均したときの頻度(%)である。具体的に、平均頻度Aは、抵抗値4.0~6.0(logΩ)の範囲に存在する各測定点の抵抗値の総和を、測定点の数で割ることによって算出される。
拡がり抵抗値分布において、抵抗値6.0~9.0(logΩ)の平均頻度Bは、抵抗値6.0~9.0(logΩ)の範囲のグラフを平らに均したときの頻度(%)である。具体的に、平均頻度Bは、抵抗値6.0~9.0(logΩ)の範囲に存在する各測定点の抵抗値の総和を、測定点の数で割ることによって算出される。
本実施形態において、平均頻度Aより平均頻度Bが大きいこと(A<B)が好ましい。A<Bであると、非水電解質二次電池の耐熱性の向上効果に優れる。また非水電解質二次電池の十分な出力が得られやすい。
平均頻度Bは、例えば0.05~0.5%が好ましく、0.1~0.4%がより好ましく、0.15~0.35%がさらに好ましい。平均頻度Bは、例えば、活物質被覆部として存在する導電材料を多くすることによって増大できる。
A<Bであるとき、B-Aの差は0%超が好ましく、0.05%以上がより好ましく、0.20%以上がさらに好ましい。
[導電性炭素含有量]
本実施形態において、正極活物質層12が導電性炭素を含むことが好ましい。正極活物質層が導電性炭素を含む態様としては、下記態様1~3が挙げられる。
態様1:正極活物質層が導電助剤を含み、導電助剤が導電性炭素を含む態様。
態様2:正極活物質層が導電助剤を含み、かつ正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料及び前記導電助剤の一方又は両方が導電性炭素を含む態様。
態様3:正極活物質層が導電助剤を含まず、正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在し、前記活物質被覆部の導電材料が導電性炭素を含む態様。
非水電解質二次電池の耐熱性の向上効果に優れる点では態様3がより好ましい。
正極活物質層の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.3~2.5質量%がさらに好ましい。
正極活物質層中の導電性炭素の含有量が上記範囲の下限値以上であると良好な導電パス形成と低抵抗な特性に優れ、上限値以下であると孤立する導電性炭素が少なく、反応活性点が少ない正極活物質層が形成できる。
正極活物質層の総質量に対する導電性炭素の含有量は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(粉体)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含む。結着材中の炭素は含まれない。分散剤中の炭素は含まれない。
≪導電性炭素含有量の測定方法≫
[測定方法A]
測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示唆熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
M1=(w1-w2)/w1×100 …(a1)
工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
M2=(w1-w3)/w1×100 …(a2)
[測定方法B]
測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
[燃焼条件]
燃焼炉:1150℃
還元炉:850℃
ヘリウム流量:200mL/分
酸素流量:25~30mL/分
[測定方法C]
上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド(DMF)溶媒により抽出した液体をフーリエ変換赤外スペクトル(FT-IR)測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様に19F-NMR測定でも確かめることができる。
結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
これらの手法は下記複数の公知文献に記載されている。
東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
≪導電性炭素の分析方法≫
正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
さらに他の方法としては、拡がり抵抗顕微鏡(SSRM:Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
[正極活物質層の体積密度]
本実施形態において、正極活物質層12の体積密度は2.20~2.70g/cmが好ましく、2.25~2.50g/cmがより好ましい。
正極活物質層の体積密度は、例えば以下の測定方法により測定できる。
正極1及び正極集電体11の厚みをそれぞれマイクロゲージで測定し、これらの差から正極活物質層12の厚みを算出する。正極1及び正極集電体11の厚みは、それぞれ任意の5点以上で測定した値の平均値とする。正極集電体11の厚みとして、後述の正極集電体露出部13の厚みを用いてよい。
正極1を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電体11の質量を差し引いて、正極活物質層12の質量を算出する。
下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚み(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
<正極の製造方法>
本実施形態の正極1の製造方法は、正極活物質を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程を有する。
例えば、正極活物質及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極1を製造できる。正極製造用組成物は導電助剤を含んでもよい。正極製造用組成物は結着材を含んでもよい。製造用組成物は分散剤を含んでもよい。
正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;アセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。
<非水電解質二次電池>
図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解質とを備える。さらにセパレータ2を備えてもよい。図中符号5は外装体である。
本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
本実施形態の非水電解質二次電池10は、例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製し、電極積層体をアルミラミネート袋等の外装体(筐体)5に封入し、非水電解質(図示せず)を注入して密閉する方法で製造できる。
図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
[負極]
負極活物質層32は負極活物質を含む。さらに結着材を含んでもよい。さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は導電助剤を含んでもよい。
負極活物質及び導電助剤としては、例えば炭素材料、チタン酸リチウム(LTO)、シリコン、一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ(CNT)等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。
負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
負極製造用組成物中の結着材としては、ポリアクリル酸(PAA)、ポリアクリル酸リチウム(PAALi)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデン-六フッ化プロピレン共重合体(PVDF-HFP)、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、カルボキシメチルセルロース(CMC)、ポリアクリルニトリル(PAN)、ポリイミド(PI)等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
負極製造用組成物中の溶媒としては、水、有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)等の鎖状又は環状アミド;アセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。
[セパレータ]
セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解質を保持してもよい。
セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、ガラスファイバー等が例示できる。
セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
セパレータ2は、各種可塑剤、酸化防止剤、難燃剤を含んでもよい。
酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、ポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;サルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、リン系酸化防止剤が好ましい。
[非水電解質]
非水電解質は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、電気二重層キャパシタ等において公知の非水電解質を使用できる。
非水電解質として、有機溶媒に電解質塩を溶解した非水電解液が好ましい。
有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。
電解質塩は、特に限定されず、例えばLiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOF)、LiN(SOCF、Li(SOCFCF、LiN(COCF、LiN(COCFCF等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。
本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
後述の実施例に示されるように、本発明によれば非水電解質二次電池の耐熱性を向上できる。例えば、80℃、20日間の貯蔵前後の1C出力試験において、50%以上、好ましくは60%以上の出力維持率を達成できる。
したがって、従来は非水電解質二次電池を使用することが困難であった高温環境においても、非水電解質二次電池を使用しやすくなる。例えば、車両のエンジンルーム内で使用される鉛蓄電池の代替品としての、非水電解質二次電池の提供が可能となる。
以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<測定方法>
[拡がり抵抗値分布]
正極活物質層の厚さ方向に平行な断面を測定対象とし、SSRMを用い、下記の条件で拡がり抵抗値分布を測定した。
(使用装置)Bruker社製、製品名:NanoScopeV DimensionIcon、Glovebox。
(試料の調製)正極シートから切り出した試験片をエポキシ樹脂で包埋した後、ブロードイオンビーム加工により切断して断面を作製し、不活性雰囲気下で測定装置内に導入した。
(測定条件)
走査モード:コンタクトモードと拡がり抵抗の同時測定。
探針(Tip):ダイヤモンドコートシリコンカンチレバー(DDESP 10)。
測定環境:室温、高純度Arガス雰囲気中(HO=0.1ppm、O=0.1ppm)。
印加電圧:DCバイアス電圧=+2.0V。
スキャンサイズ:60μm×60μm。
測定点の数(データ点数):1024×1024。
[体積密度の測定方法]
マイクロゲージを用いて正極シートの厚み及び正極集電体露出部の厚みを測定した。それぞれ任意の5点で測定して平均値を求めた。正極シートの厚みから正極集電体露出部の厚みを差し引いて正極活物質層の厚みを算出した。
正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備した。
各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体の質量を差し引くことにより、測定試料中の正極活物質層の質量を算出した。各測定値の平均値から前記式(1)に基づいて、正極活物質層の体積密度を算出した。
<評価方法>
[耐熱性の評価:出力維持率の測定]
(1)非水電解質二次電池(初期状態)について、下記の方法で初期出力可能な電力(単位:Wh)を測定した。
定格容量が1.5Ahとなるように非水電解質二次電池(セル)を作製した。得られたセルに対し、25℃環境下で、0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として充電を行った。
次いで、25℃環境下で、放電を1.0Cレート(すなわち、1500mA)で一定電流にて終止電圧3.0Vで行った。このときの放電電力を初期状態で出力可能な電力(以下、「初期出力」ともいう)E1とした。
(2)次いで、25℃環境下で、セルの0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として満充電状態への調整を行った。
(3)前記(1)の測定、および前記(2)の満充電への調整を終えた非水電解質二次電池を、80℃の雰囲気中に20日間貯蔵した。
(4)前記(3)の貯蔵を終えた後、下記の方法で貯蔵後出力可能な電力(単位:Wh)を測定した。
まず、25℃環境下で、放電を0.2Cレート(すなわち、300mA)で一定電流にて終止電圧2.5Vで行った。
次いで、25℃環境下で、充電を0.2Cレート(すなわち、300mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/10を終止電流(すなわち、30mA)として充電を行った。
次いで、25℃環境下で、放電を1.0Cレート(すなわち、1500mA)で一定電流にて終止電圧3.0Vで行った。このときの放電電力を貯蔵後の状態で出力可能な電力(以下、「貯蔵後出力」ともいう)E2とした。
(5)前記(1)で得た初期出力E1に対する、前記(4)で得た貯蔵後出力E2の割合を下記式により求め、出力維持率(単位:%)とした。
出力維持率=(E2/E1)×100
<製造例1:負極の製造>
負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
得られた負極製造用組成物を、銅箔(厚さ8μm)の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<製造例2:集電体被覆層を有する集電体の製造]
カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドン(NMP)とを混合してスラリーを得た。NMPの使用量はスラリーを塗工するのに必要な量とした。
得られたスラリーを厚さ15μmのアルミニウム箔(正極集電体本体)の表裏両面に、乾燥後の集電体被覆層の厚さ(両面合計)が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの集電体被覆層は、塗工量及び厚みが互いに均等になるように形成した。
<例1~5>
例1~3は実施例、例4、5は比較例である。
正極活物質粒子として、下記の2種の活物質被覆部を有するリン酸鉄リチウム粒子(以下「カーボンコート活物質」ともいう。)を用いた。
カーボンコート活物質(1):平均粒子径1μm、炭素含有量1.5質量%。
カーボンコート活物質(2):平均粒子径10μm、炭素含有量2.5質量%。
カーボンコート活物質(1)、(2)のいずれも、活物質被覆部の厚さは1~100nmの範囲内であった。
導電助剤としてカーボンブラック(CB)又はカーボンナノチューブ(CNT)を用いた。CB及びCNTは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。
結着材としてポリフッ化ビニリデン(PVDF)を用いた。
溶媒としてN-メチルピロリドン(NMP)を用いた。
正極集電体として、製造例2で得た集電体被覆層を有するアルミニウム箔を用いた。
以下の方法で正極活物質層を形成した。
表1に示す配合の正極活物質粒子、導電助剤、結着材及び溶媒(NMP)をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。なお、表中における正極活物質粒子、導電助剤及び結着材の配合量は、溶媒以外の合計(即ち、正極活物質粒子、導電助剤及び結着材の合計量)を100質量%とするときの割合である。
得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。得られた積層物を加圧プレスして正極シートを得た。塗工量(両面合計)、正極活物質層の厚み(両面合計)、及び体積密度を表1に示す。両面それぞれの正極活物質層は、塗工量及び厚みが互いに均等になるように形成した。
得られた正極シートを打ち抜き、正極とした。
得られた正極シートについて、上記の方法で正極活物質層の断面の拡がり抵抗値分布を測定し、表2に示す各項目の値を求めた。また正極活物質層の総質量に対する導電性炭素含有量を求めた。結果を表2に示す。
図3は、例1の拡がり抵抗値分布の測定結果を示したマッピング画像であり、図4は、例4のマッピング画像である。図5は例1、3の拡がり抵抗値分布を表すグラフであり、横軸は拡がり抵抗値(単位:logΩ)を表し、縦軸は抵抗値4.0~12.5(logΩ)の頻度合計を100%としたときの相対頻度(単位:%)を表す。
カーボンコート活物質の炭素含有量と配合量、及び導電助剤の炭素含有量と配合量に基づいて、正極活物質層の総質量に対する導電性炭素の含有量を算出した。上記≪導電性炭素含有量の測定方法≫に記載の方法を用いて確認することも可能である。
以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてLiPFを1モル/リットルとなるように溶解して、非水電解液を調製した。
本例で得た正極と、製造例1で得た負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、ポリオレフィンフィルム(厚さ15μm)を用いた。
電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
上記の方法で、高温貯蔵前後の出力維持率を測定し耐熱性を評価した。結果を表2に示す。
Figure 0007138228000002
Figure 0007138228000003
表2の結果に示されるように、正極活物質層の断面において抵抗値が4.0~6.0(logΩ)である部分が5.0%以下と少ない例1~3は、高温環境に貯蔵されても出力維持率が高く、耐熱性が良好であった。高温下で劣化反応しやすい低抵抗な部分が正極活物質層中にほとんど存在しないため、抵抗の増大が生じ難かったと考えられる。
例1と例3を比べると、導電助剤を含まない例1の方が、抵抗値4.0~6.0(logΩ)の頻度合計が少なく、出力維持率がより高かった。
例2は、例1において導電助剤の添加量を増やさずに、導電性炭素の含有量を増大させた例である。例1に比べて抵抗値4.0~6.0(logΩ)の頻度合計がより少なく、抵抗値6.0~9.0(logΩ)の平均頻度Bがより多くなり、出力維持率がさらに向上した。
一方、抵抗値4.0~6.0(logΩ)の頻度合計が5.0%を超える例4、5は、例1~3と比べて高温環境に貯蔵されたときの出力維持率が顕著に低く、耐熱性が劣った。図4のマッピング画像からわかるように、例4の正極活物質層中には低抵抗な部分が局所的に点在している。このような低抵抗な部分が高温環境下において活性点となって劣化反応が生じたと考えられる。
1 正極
2 セパレータ
3 負極
5 外装体
10 二次電池
11 集電体(正極集電体)
12 正極活物質層
13 正極集電体露出部
14 正極集電体本体
15 集電体被覆層

Claims (10)

  1. 集電体と、前記集電体上に存在する、正極活物質粒子を含む正極活物質層を有し、
    前記正極活物質層の拡がり抵抗値分布において、抵抗値4.0~12.5(logΩ)の頻度合計を100%とするとき、抵抗値4.0~6.0(logΩ)の頻度合計が0.0~5.0%である、非水電解質二次電池用正極(但し、正極活物質層が、LiMn 0.7 Fe 0.3 PO であるリチウム含有化合物の表面にカーボンコート層が形成された正極活物質の97.6質量%と、直径1.6μm±0.4μm、長さ5μm以上であるカーボンナノチューブの0.4質量%と、結着剤の2質量%とからなり、正極活物質中のカーボンコート層が正極活物質層の総質量に対して1.4質量%であるものを除く)
  2. 前記拡がり抵抗値分布において、抵抗値4.0~6.0(logΩ)の平均頻度より、抵抗値6.0~9.0(logΩ)の平均頻度が大きい、請求項1に記載の非水電解質二次電池用正極。
  3. 前記正極活物質層が導電助剤を含む、請求項1又は2に記載の非水電解質二次電池用正極。
  4. 前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、請求項3に記載の非水電解質二次電池用正極。
  5. 前記正極活物質層が導電助剤を含まず、前記正極活物質粒子の表面の少なくとも一部に、導電材料を含む活物質被覆部が存在する、請求項1又は2に記載の非水電解質二次電池用正極。
  6. 前記正極活物質層が導電性炭素を含み、前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5質量%以上3.0質量%未満である、請求項3~5のいずれか一項に記載の非水電解質二次電池用正極。
  7. 前記正極活物質粒子が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1~6のいずれか一項に記載の非水電解質二次電池用正極。
  8. 前記集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在する、請求項1~7のいずれか一項に記載の非水電解質二次電池用正極。
  9. 請求項1~8のいずれか一項に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
  10. 請求項9に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
JP2021197238A 2021-08-18 2021-12-03 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム Active JP7138228B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021197238A JP7138228B1 (ja) 2021-08-18 2021-12-03 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021133447 2021-08-18
JP2021197238A JP7138228B1 (ja) 2021-08-18 2021-12-03 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021133447 Division 2021-03-19 2021-08-18

Publications (2)

Publication Number Publication Date
JP7138228B1 true JP7138228B1 (ja) 2022-09-15
JP2023029166A JP2023029166A (ja) 2023-03-03

Family

ID=87760940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021197238A Active JP7138228B1 (ja) 2021-08-18 2021-12-03 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Country Status (1)

Country Link
JP (1) JP7138228B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071255A1 (ja) * 2022-09-28 2024-04-04 積水化学工業株式会社 非水電解質二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142097A (ja) 2001-09-05 2003-05-16 Samsung Sdi Co Ltd 電池用活物質およびその製造方法
JP2007173134A (ja) 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極用材料、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2013030292A (ja) 2011-07-27 2013-02-07 Idemitsu Kosan Co Ltd オリビン系正極活物質及びその製造方法
JP2018041710A (ja) 2016-08-31 2018-03-15 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
CN107946566A (zh) 2017-11-16 2018-04-20 贝特瑞(天津)纳米材料制造有限公司 一种复合LiFePO4‑LiMPO4正极材料及其制备方法
JP2018109577A (ja) 2017-01-05 2018-07-12 国立研究開発法人産業技術総合研究所 分析装置
JP2018163871A (ja) 2017-03-24 2018-10-18 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の評価法
JP2020074261A (ja) 2017-03-07 2020-05-14 昭和電工株式会社 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
JP2020155223A (ja) 2019-03-18 2020-09-24 株式会社Abri リチウムイオン二次電池用正極材料、リチウムイオン二次電池、リチウムイオン二次電池用正極の製造方法、及びリチウムイオン二次電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102202773B1 (ko) * 2018-11-26 2021-01-15 울산과학기술원 생체분자-카본 수계 바인더를 포함하는 양극 슬러리 및 이를 포함하는 리튬이차전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142097A (ja) 2001-09-05 2003-05-16 Samsung Sdi Co Ltd 電池用活物質およびその製造方法
JP2007173134A (ja) 2005-12-26 2007-07-05 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極用材料、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2013030292A (ja) 2011-07-27 2013-02-07 Idemitsu Kosan Co Ltd オリビン系正極活物質及びその製造方法
JP2018041710A (ja) 2016-08-31 2018-03-15 積水化学工業株式会社 活物質−炭素材料複合体、非水電解質二次電池用正極、非水電解質二次電池及び炭素材料
JP2018109577A (ja) 2017-01-05 2018-07-12 国立研究開発法人産業技術総合研究所 分析装置
JP2020074261A (ja) 2017-03-07 2020-05-14 昭和電工株式会社 蓄電デバイス用集電体、その製造方法、およびその製造に用いる塗工液
JP2018163871A (ja) 2017-03-24 2018-10-18 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質の評価法
CN107946566A (zh) 2017-11-16 2018-04-20 贝特瑞(天津)纳米材料制造有限公司 一种复合LiFePO4‑LiMPO4正极材料及其制备方法
JP2020155223A (ja) 2019-03-18 2020-09-24 株式会社Abri リチウムイオン二次電池用正極材料、リチウムイオン二次電池、リチウムイオン二次電池用正極の製造方法、及びリチウムイオン二次電池の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071255A1 (ja) * 2022-09-28 2024-04-04 積水化学工業株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JP2023029166A (ja) 2023-03-03

Similar Documents

Publication Publication Date Title
US20230115482A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
WO2024048656A1 (ja) 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2022144809A (ja) 非水電解質二次電池用正極
WO2023176895A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7138228B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2022145471A (ja) 非水電解質二次電池用正極、非水電解質二次電池、電池モジュール、および電池システム
JP7181372B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7157863B2 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7197670B2 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7149437B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7193671B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
WO2024009988A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
JP7183464B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023029333A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7149436B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7323690B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7212130B2 (ja) 折り曲げ使用可能な非水電解質二次電池用の正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023176929A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
US20230178731A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP2023140733A (ja) 非水電解質二次電池の正極製造用組成物、非水電解質二次電池用正極、非水電解質二次電池、電池モジュール及び電池システム、並びに非水電解質二次電池用正極の製造方法
JP2023141411A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023141406A (ja) 非水電解質二次電池用正極の製造方法、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、正極製造用組成物
JP2023141414A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2022144968A (ja) 非水電解質二次電池用正極の評価方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R150 Certificate of patent or registration of utility model

Ref document number: 7138228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150