WO2023176929A1 - 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム - Google Patents

非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム Download PDF

Info

Publication number
WO2023176929A1
WO2023176929A1 PCT/JP2023/010328 JP2023010328W WO2023176929A1 WO 2023176929 A1 WO2023176929 A1 WO 2023176929A1 JP 2023010328 W JP2023010328 W JP 2023010328W WO 2023176929 A1 WO2023176929 A1 WO 2023176929A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
mass
conductive
Prior art date
Application number
PCT/JP2023/010328
Other languages
English (en)
French (fr)
Inventor
輝 吉川
太郎 桃崎
裕一 佐飛
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023176929A1 publication Critical patent/WO2023176929A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials

Definitions

  • the present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, a battery module, and a battery system using the same.
  • a non-aqueous electrolyte secondary battery generally includes a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (hereinafter also referred to as a "separator") installed between the positive electrode and the negative electrode.
  • a positive electrode for a nonaqueous electrolyte secondary battery one in which a composition consisting of a positive electrode active material containing lithium ions, a conductive agent, and a binder is fixed to the surface of a metal foil that is a current collector is known. ing.
  • positive electrode active materials containing lithium ions lithium transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate, and lithium phosphate compounds such as lithium iron phosphate have been put into practical use.
  • Patent Document 1 proposes a nonaqueous electrolyte secondary battery having a positive electrode containing spherical LiNiO 2 particles obtained by a specific manufacturing method. According to the invention of Patent Document 1, the battery capacity is improved.
  • non-aqueous electrolyte secondary batteries are required to have improved cycle characteristics.
  • the present invention provides a positive electrode for a non-aqueous electrolyte secondary battery that can improve the cycle characteristics of the non-aqueous electrolyte secondary battery.
  • a positive electrode comprising a positive electrode current collector metal body and a composite material laminate present on at least one surface of the positive electrode current collector metal body,
  • the composite material laminate includes a positive electrode active material layer and a conductive layer, the conductive layer is present between the positive electrode current collector metal body and the positive electrode active material layer, and the conductive layer is present between the positive electrode current collector metal body and the positive electrode active material layer.
  • the conductive layer includes conductive carbon
  • the positive electrode active material layer includes one or more positive electrode active material particles, At least a portion of the positive electrode active material particles have a core of the positive electrode active material and an active material coating portion that covers at least a portion of the surface of the core,
  • the active material coating portion includes conductive carbon,
  • the total amount of conductive carbon in the composite material laminate is 0.5 to 3.0% by mass, 0.7 to 2.9% by mass, and 0.9 to 2% by mass based on the total mass of the composite material laminate.
  • a positive electrode for a non-aqueous electrolyte secondary battery wherein the composite material laminate has a volumetric capacity density of 330 to 400 mAh/cm 3 , 340 to 390 mAh/cm 3 , or 350 to 380 mAh/cm 3 .
  • the positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (wherein 0 ⁇ x ⁇ 1, M is Co, Ni, Mn, Al, Ti, or Zr).
  • the positive electrode for a non-aqueous electrolyte secondary battery according to ⁇ 1> comprising: ⁇ 3>
  • the volume density of the composite material laminate is 2.2 to 2.7 g/cm 3 , 2.25 to 2.60 g/cm 3 , or 2.30 to 2.50 g/cm 3 , ⁇ 1> or
  • a positive electrode comprising a positive electrode current collector metal body and a composite material laminate present on at least one surface of the positive electrode current collector metal body,
  • the composite material laminate includes a positive electrode active material layer, and a conductive layer that exists between the positive electrode current collector metal body and the positive electrode active material layer and covers at least a portion of the positive electrode current collector metal body.
  • the conductive layer includes conductive carbon
  • the positive electrode active material layer includes one or more positive electrode active material particles, At least a portion of the positive electrode active material particles have a core of the positive electrode active material and an active material coating portion that covers at least a portion of the surface of the core,
  • the active material coating portion includes conductive carbon
  • the total amount of conductive carbon in the composite material laminate is 0.5 to 2.6% by mass with respect to the total mass of the composite material laminate,
  • the volume capacity density of the composite material laminate is 330 to 345 mAh/cm 3
  • ⁇ 5> The positive electrode for a non-aqueous electrolyte secondary battery according to any one of ⁇ 1> to ⁇ 4>, a negative electrode, and a non-aqueous electrolyte present between the positive electrode for a non-aqueous electrolyte secondary battery and the negative electrode.
  • a non-aqueous electrolyte secondary battery A non-aqueous electrolyte secondary battery.
  • a battery module or a battery system comprising a plurality of non-aqueous electrolyte secondary batteries according to ⁇ 5>.
  • the cycle characteristics of a nonaqueous electrolyte secondary battery can be improved.
  • FIG. 1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 2 is a cross-sectional view of a coin cell used in a method for measuring volumetric capacity density.
  • 1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the positive electrode for a non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of the non-aqueous electrolyte secondary battery of the present invention. Note that FIGS. 1 to 3 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one.
  • the positive electrode for a non-aqueous electrolyte secondary battery (hereinafter sometimes referred to as "positive electrode”) of the present embodiment includes a positive electrode current collector metal body and a composite material laminate.
  • the non-aqueous electrolyte secondary battery of this embodiment includes a positive electrode, a negative electrode, and a non-aqueous electrolyte present between the positive electrode and the negative electrode.
  • the positive electrode 1 of this embodiment includes a positive electrode current collector metal body 14 and a composite material laminate 16.
  • the composite material laminate 16 is present on both sides of the positive electrode current collector metal body 14 .
  • the composite material laminate 16 may be present only on one side of the positive electrode current collector metal body 14. That is, the composite material laminate 16 exists on at least one surface of the positive electrode current collector metal body 14 .
  • the composite material laminate 16 includes a positive electrode active material layer 12 and a conductive layer 15.
  • the conductive layer 15 exists between the positive electrode current collector metal body 14 and the positive electrode active material layer 12 .
  • the conductive layer 15 covers at least a portion of the surface of the positive electrode current collector metal body 14 .
  • the conductive layer 15 is a conductive coating layer that covers part or all of the surface of the positive electrode current collector metal body 14 .
  • the conductive layer 15 is present on both sides of the positive electrode current collector metal body 14, but the conductive layer 15 may be present only on one side of the positive electrode current collector metal body 14.
  • the positive electrode current collector metal body 14 and the conductive layer 15 may be collectively referred to as the positive electrode current collector 11.
  • a conductive layer 15 and a positive electrode active material layer 12 are arranged in order from the positive electrode current collector metal body 14.
  • the positive electrode active material layer 12 includes one or more positive electrode active material particles. It is preferable that the positive electrode active material layer 12 further contains a binder.
  • the positive electrode active material layer 12 may further contain a conductive additive.
  • the term "conductive additive" refers to a conductive material having a granular or fibrous shape that is mixed with positive electrode active material particles when forming a positive electrode active material layer, and which is mixed with positive electrode active material particles when forming a positive electrode active material layer. Refers to a conductive material that is present in the positive electrode active material layer in a connected manner. The conductive aid exists independently of the positive electrode active material particles.
  • the positive electrode active material layer 12 may further contain a dispersant.
  • the content of the positive electrode active material particles is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass.
  • the thickness of the positive electrode active material layer is preferably 30 to 500 ⁇ m, more preferably 40 to 400 ⁇ m, and particularly preferably 50 to 300 ⁇ m.
  • the thickness of the positive electrode active material layer is at least the lower limit of the above range, the energy density of a battery incorporating the positive electrode tends to be high, and when it is below the upper limit of the above range, the peel strength of the positive electrode active material layer is high; Peeling can be suppressed during charging and discharging.
  • the thickness of the positive electrode active material layer is the total thickness of the two layers located on both sides.
  • the positive electrode active material particles contain a positive electrode active material. At least some of the positive electrode active material particles are coated particles. In the coated particles, a coating portion (hereinafter sometimes referred to as “active material coating portion”) containing a conductive material is present on the surface of the positive electrode active material particle.
  • active material coating portion is formed in advance on the surface of the positive electrode active material particles, and is present on the surface of the positive electrode active material particles in the positive electrode active material layer. That is, the active material coating portion in this specification is not newly formed in a step after the step of preparing the composition for producing a positive electrode.
  • the active material coating portion is not easily lost in the steps after the preparation stage of the composition for producing the positive electrode.
  • the active material coating portion still covers the surface of the positive electrode active material.
  • the active material coating part will not cover the surface of the positive electrode active material. Covered.
  • the active material coating portion preferably exists on 50% or more, preferably 70% or more, and preferably 90% or more of the entire outer surface area of the positive electrode active material particles. That is, the coated particles have a core that is a positive electrode active material and an active material coating that covers the surface of the core, and the area of the active material coating with respect to the surface area of the core, that is, the coverage ratio is 50%. It is preferably at least 70%, more preferably at least 90%, even more preferably at least 90%.
  • the upper limit of the coverage is not particularly limited, but is preferably 94% or less, more preferably 97% or less, and even more preferably 100% or less.
  • the coverage is preferably 50 to 94%, more preferably 70 to 97%, even more preferably 90 to 100%.
  • Examples of methods for producing coated particles include vapor deposition methods and sintering methods.
  • Examples of the sintering method include a method in which a composition for producing an active material containing positive electrode active material particles and an organic substance is fired at 500 to 1000° C. for 1 to 100 hours under atmospheric pressure.
  • organic substances added to the composition for producing active materials include salicylic acid, catechol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, hexahydroxybenzene, benzoic acid, phthalic acid, terephthalic acid, phenylalanine, water-dispersible phenolic resin, Examples include sucrose, glucose lactose, malic acid citric acid, allyl alcohol propargyl alcohol, ascorbic acid, polyvinyl alcohol, and the like. A mixture of a plurality of types among these may be used, or an organic substance other than the above may be used.
  • the impact sintering coating method is performed, for example, by the following procedure.
  • a burner is ignited using a mixture of fuel hydrocarbon and oxygen, and the mixture is ignited in a combustion chamber to generate a flame.
  • the flame temperature is lowered by reducing the amount of oxygen to the fuel to be less than the equivalent amount for complete combustion.
  • a powder supply nozzle is installed behind the frame, and a solid-liquid-gas three-phase mixture consisting of a solution of the organic material to be coated dissolved in a solvent and combustion gas is injected from the powder supply nozzle.
  • the temperature of the injected fine powder is lowered, and the injected fine powder is accelerated below the transformation temperature, sublimation temperature, or evaporation temperature of the powder material, and is instantaneously sintered by impact. , coating particles of positive electrode active material.
  • the vapor deposition method include vapor deposition methods such as physical vapor deposition and chemical vapor deposition, and liquid deposition methods such as plating.
  • the coverage rate can be measured by the following method. First, particles in the positive electrode active material layer are analyzed by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. Specifically, the outer periphery of the positive electrode active material particles in the TEM image is subjected to elemental analysis using EDX. Elemental analysis is performed on carbon to identify the carbon that coats the positive electrode active material particles. A portion where the carbon coating portion has a thickness of 1 nm or more is defined as the coating portion, and the ratio of the coating portion to the entire circumference of the observed positive electrode active material particles is determined, and this can be taken as the coverage rate.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the measurement can be performed on, for example, 10 positive electrode active material particles, and the average value of these can be taken as the coverage.
  • the active material coating portion has a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm, and is formed directly on the surface of the particle (hereinafter sometimes referred to as “core portion”) composed only of the positive electrode active material. This is the layer of This thickness can be confirmed by TEM-EDX used for measuring the coverage ratio described above.
  • the coverage rate can also be measured using TEM-EDX, which uses particle elemental mapping of the positive electrode active material particles using elements unique to the positive electrode active material and elements unique to the conductive material contained in the active material coating. It can be calculated.
  • the thickness of the active material coating is determined by determining the ratio of the coating area to the entire circumference of the observed positive electrode active material particles, with the area having a thickness of 1 nm or more using an element specific to the conductive material as the coating area. , coverage rate.
  • the measurement can be performed on, for example, 10 positive electrode active material particles, and the average value of these can be taken as the coverage.
  • the coverage rate of the coated particles of this embodiment is particularly preferably 100%. Note that this coverage rate is an average value for all the positive electrode active material particles present in the positive electrode active material layer, and as long as this average value is greater than or equal to the above lower limit, the positive electrode active material particles that do not have an active material coating part This does not exclude the presence of trace amounts of.
  • positive electrode active material particles without an active material coating hereinafter sometimes referred to as “single particles"
  • the amount thereof is equal to the amount of positive electrode active material present in the positive electrode active material layer. It is preferably 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less, based on the total amount of particles.
  • the lower limit of the amount of single particles relative to the total amount of positive electrode active material particles is not particularly limited, but may be 0.1% by mass or more, and 0.2% by mass or more. It may be 0.3% by mass or more.
  • the amount of the single particles relative to the total amount of positive electrode active material particles is preferably 0.3 to 30% by mass or more, more preferably 0.2 to 20% by mass or more, More preferably 0.1 to 10% by mass or more. In one embodiment, it is preferred that no single particles are present in the positive electrode active material layer.
  • the conductive material of the active material coating portion contains carbon (that is, conductive carbon).
  • the conductive material may be a conductive material consisting only of carbon, or may be a conductive organic compound containing carbon and an element other than carbon. Examples of other elements include nitrogen, hydrogen, and oxygen.
  • the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less. It is more preferable that the conductive material constituting the active material coating portion consists only of carbon.
  • the content of the conductive material is preferably 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, and 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, with respect to the total mass of the positive electrode active material particles having the active material coating portion. More preferably 7 to 2.5% by mass. If the amount is too large, the conductive material may peel off from the surface of the positive electrode active material particles and remain as independent conductive aid particles, which is not preferable.
  • Conductive particles that do not contribute to the conductive path become the starting point of self-discharge of the battery or cause undesirable side reactions.
  • the positive electrode active material particles preferably include a compound having an olivine crystal structure.
  • the compound having an olivine crystal structure is preferably a compound represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as "general formula (I)").
  • general formula (I) 0 ⁇ x ⁇ 1.
  • M is Co, Ni, Mn, Al, Ti or Zr.
  • a small amount of Fe and M can also be replaced with other elements to the extent that the physical properties do not change. Even if the compound represented by the general formula (I) contains trace amounts of metal impurities, the effects of the present invention are not impaired.
  • the compound represented by the general formula (I) is preferably lithium iron phosphate (hereinafter sometimes referred to as "lithium iron phosphate") represented by LiFePO4 .
  • lithium iron phosphate particles (hereinafter sometimes referred to as "coated lithium iron phosphate particles") in which at least a portion of the surface is coated with an active material containing a conductive material are more preferable. It is more preferable that the entire surface of the lithium iron phosphate particles be coated with a conductive material from the viewpoint of better battery capacity and cycle characteristics.
  • the coated lithium iron phosphate particles can be produced by a known method. For example, lithium iron phosphate powder is produced using the method described in Japanese Patent No.
  • the powder is prepared using the method described in GS Yuasa Technical Report, June 2008, Vol. 5, No. 1, pp. 27-31, etc.
  • the method can be used to coat at least a portion of the surface of the lithium iron phosphate powder with carbon. Specifically, first, iron oxalate dihydrate, ammonium dihydrogen phosphate, and lithium carbonate are measured in a specific molar ratio, and these are ground and mixed under an inert atmosphere. Next, lithium iron phosphate powder is produced by heat-treating the obtained mixture in a nitrogen atmosphere.
  • the lithium iron phosphate powder is placed in a rotary kiln and heat-treated while supplying methanol vapor using nitrogen as a carrier gas, thereby obtaining lithium iron phosphate particles whose surfaces are at least partially coated with carbon.
  • the particle size of the lithium iron phosphate particles can be adjusted by changing the grinding time in the grinding process.
  • the amount of carbon coating the lithium iron phosphate particles can be adjusted by adjusting the heating time, temperature, etc. in the step of heat treatment while supplying methanol vapor. It is desirable to remove uncoated carbon particles through subsequent steps such as classification and washing.
  • the positive electrode active material particles may include one or more other positive electrode active material particles containing a positive electrode active material other than a compound having an olivine crystal structure.
  • the other positive electrode active material is preferably a lithium transition metal composite oxide.
  • Examples include non-stoichiometric compounds in which part of is replaced with a metal element.
  • the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn, and Ge.
  • the active material coating portion may be present on at least a portion of the surface of another positive electrode active material particle.
  • the content of the compound having an olivine crystal structure is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more with respect to the total mass of the positive electrode active material particles. It may be 100% by mass.
  • the content of the compound having an olivine crystal structure is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and even more preferably 90 to 100% by mass with respect to the total mass of the positive electrode active material particles.
  • the total mass of the positive electrode active material particles also includes the mass of the active material coating portion.
  • the content of coated lithium iron phosphate particles is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass of the positive electrode active material particles. is even more preferable. It may be 100% by mass.
  • the content of coated lithium iron phosphate particles is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and 90 to 100% by mass, based on the total mass of the positive electrode active material particles. 100% by mass is more preferred.
  • the thickness of the active material coating portion of the positive electrode active material particles is preferably 1 to 100 nm.
  • the thickness of the active material coating portion of the positive electrode active material particles can be measured by a method of measuring the thickness of the active material coating portion in a transmission electron microscope (TEM) image of the positive electrode active material particles.
  • the thickness of the active material coating portion present on the surface of the positive electrode active material particles may not be uniform. It is preferable that an active material coating portion with a thickness of 1 nm or more exists on at least a portion of the surface of the positive electrode active material particles, and the maximum thickness of the active material coating portion is 100 nm or less.
  • the average particle diameter of the positive electrode active material particles is preferably 0.1 to 20.0 ⁇ m, more preferably 0.5 to 15.0 ⁇ m. When using two or more types of positive electrode active material particles, the average particle diameter of each may be within the above range. When the positive electrode active material particles have an active material coating portion, the average particle diameter of the positive electrode active material particles also includes the thickness of the active material coating portion. When the average particle diameter is equal to or larger than the lower limit of the above range, the composition for producing a positive electrode tends to have better dispersibility, and aggregates tend to be less likely to occur. On the other hand, if it is below the upper limit of the above range, the specific surface area will be appropriately large, making it easy to ensure an area for reaction during charging and discharging.
  • the average particle diameter of the positive electrode active material particles in this specification is a volume-based median diameter measured using a particle size distribution analyzer based on a laser diffraction/scattering method.
  • the binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinyl. Examples include acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, and polyimide. One type of binder may be used, or two or more types may be used in combination. The content of the binder is preferably 1.0% by mass or less, more preferably 0.8% by mass or less with respect to the total mass of the positive electrode active material layer.
  • the lower limit of the binder content is preferably 0.1% by mass or more, and 0.3% by mass or more based on the total mass of the positive electrode active material layer. More preferred.
  • the content of the binder is preferably 0.1 to 1.0% by mass, more preferably 0.3 to 0.8% by mass.
  • Examples of the conductive additive included in the positive electrode active material layer 12 include carbon materials such as graphite, graphene, hard carbon, Ketjen black, acetylene black, and carbon nanotubes. One type of conductive aid may be used, or two or more types may be used in combination.
  • the content of the conductive additive in the positive electrode active material layer 12 is preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and further preferably 1 part by mass or less, based on 100 parts by mass of the total mass of the positive electrode active material.
  • Conductive additive particles that do not contribute to the conductive path become the starting point of self-discharge of the battery or cause undesirable side reactions.
  • the lower limit of the content of the conductive additive is determined as appropriate depending on the type of conductive additive, and for example, It is considered to be more than 0.1% by mass.
  • the content of the conductive additive is preferably more than 0.1% by mass and 2.5% by mass or less based on the total mass of the positive electrode active material layer 12, and 0. It is more preferably more than .1% by mass and not more than 2.3% by mass, and even more preferably more than 0.1% by mass and not more than 2.0% by mass.
  • the expression that the positive electrode active material layer 12 "does not contain a conductive additive" means that it does not substantially contain it, and does not exclude that it contains it to the extent that it does not affect the effects of the present invention. For example, if the content of the conductive additive is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer 12, it can be determined that the conductive additive is not substantially contained.
  • the carbon material used for the conductive aid is bulkier and has a lower apparent density than the conductive carbon that constitutes the active material coating and the conductive carbon that constitutes the conductive layer 15 described below. Therefore, if the amount of carbon contained in the positive electrode active material layer 12 is the same, the volume of the positive electrode active material layer 12 becomes smaller as the amount of the conductive additive in the positive electrode active material layer 12 is smaller. When the volume of the positive electrode active material layer 12 becomes smaller, the volume of the composite material laminate 16 becomes smaller, and the capacity per unit volume (hereinafter sometimes referred to as "volume capacity density") increases. When the volume capacity density increases, the resistance within the composite material laminate 16 decreases, and the cycle characteristics improve.
  • the dispersant contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, and polyvinyl formal.
  • the dispersant may be used alone or in combination of two or more.
  • the dispersant contributes to improving the dispersibility of particles in the positive electrode active material layer.
  • the content of the dispersant is preferably 0.5% by mass or less, more preferably 0.2% by mass or less with respect to the total mass of the positive electrode active material layer.
  • the lower limit of the content of the dispersant is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total mass of the positive electrode active material layer.
  • the content of the dispersant is preferably 0.01 to 0.5% by mass, more preferably 0.05 to 0.2% by mass.
  • the conductive layer 15 is a layer containing carbon (conductive carbon).
  • the conductive layer 15 covers at least a portion of the surface of the positive electrode current collector metal body 14 .
  • the conductive layer 15 is provided on at least a portion of the surface of the composite material laminate 16 facing the positive electrode current collector metal body 14 .
  • "at least a portion of the surface” means 10% to 100%, preferably 30% to 100%, more preferably 50% to 100% of the surface area of the positive electrode current collector metal body.
  • the conductive material in the conductive layer 15 only needs to contain conductive carbon. It is preferable that the conductive material in the conductive layer 15 consists only of carbon.
  • the conductive layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. Examples of the binding material in the conductive layer 15 include those similar to the binding material in the positive electrode active material layer 12.
  • the content of conductive carbon in the conductive layer 15 is preferably 50 to 90% by mass, more preferably 55 to 85% by mass, and even more preferably 60 to 90% by mass, based on the total mass of the conductive layer 15.
  • a composition containing a conductive material, a binder, and a solvent is coated on the surface of the positive electrode current collector metal body 14 using a known coating method such as a gravure method. , a method of removing the solvent by drying can be exemplified.
  • the thickness of the conductive layer 15 is preferably 0.1 to 4.0 ⁇ m, more preferably 0.2 to 3.0 ⁇ m, and even more preferably 0.3 to 2.0 ⁇ m.
  • the thickness of the conductive layer can be measured by a method of measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of a cross section of the conductive layer.
  • the thickness of the conductive layer does not have to be uniform. It is preferable that a conductive layer with a thickness of 0.1 ⁇ m or more is present on at least a portion of the surface of the positive electrode current collector metal body 14, and that the maximum thickness of the conductive layer is 4.0 ⁇ m or less.
  • the positive electrode current collector metal body 14 is made of a metal material. Examples of the metal material include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
  • the positive electrode current collector metal body 14 is a foil made of a metal material, that is, a metal foil, and may include an oxide film formed on the surface.
  • the thickness of the positive electrode current collector metal body 14 is, for example, preferably 8 to 40 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the thickness of the positive electrode current collector metal body 14 can be measured using a micrometer. An example of a measuring device is Mitutoyo's product name "MDH-25M.”
  • the positive electrode active material layer 12 and the conductive layer 15 contain conductive carbon. That is, the composite material laminate 16 contains conductive carbon.
  • the content of conductive carbon is preferably 0.5% by mass or more and less than 3.0% by mass, more preferably 1.0 to 2.8% by mass, and 1.2% by mass. More preferably 2.6% by mass.
  • the content of conductive carbon in the positive electrode active material layer 12 is at least the lower limit of the above range, the amount is sufficient to form a conductive path in the positive electrode active material layer 12, and the cycle characteristics can be further improved.
  • the content of conductive carbon in the positive electrode active material layer 12 is below the above upper limit, the volume capacity density can be increased and the cycle characteristics can be further improved.
  • the content of conductive carbon with respect to the total mass of the positive electrode active material layer can be calculated from the conductive carbon content and blending amount contained in the positive electrode active material particles and the conductive additive.
  • the content of conductive carbon with respect to the total mass of the positive electrode active material layer 12 is determined using a dried material, for example, a powder, which is obtained by peeling off the positive electrode active material layer 12 from the positive electrode and vacuum-drying it in a 120°C environment, as shown below. It can also be measured by the method for measuring conductive carbon content. For example, the outermost surface of the positive electrode active material layer, several micrometers in depth, can be peeled off with a spatula or the like, dried under vacuum at 120° C., and used as the object to be measured.
  • the content of conductive carbon measured by the following ⁇ Measurement method for conductive carbon content ⁇ includes carbon in the active material coating and carbon in the conductive agent, and carbon in the binder and dispersant. It does not contain any of the carbon in it.
  • the content of conductive carbon with respect to the total mass of the composite material laminate 16, that is, the total amount of conductive carbon in the positive electrode active material layer 12 and conductive carbon in the conductive layer 15 is 0.5 to 3.0% by mass. It is preferably 0.7 to 2.9% by mass, more preferably 0.9 to 2.8% by mass, and even more preferably 1.2 to 2.7% by mass.
  • the content of conductive carbon in the composite material laminate 16 is at least the lower limit of the above range, the amount is sufficient to form a conductive path in the composite material laminate 16, and the cycle characteristics can be improved.
  • the content of conductive carbon in the composite material laminate 16 is at most the above upper limit, the volume capacity density can be increased, the output can be increased, and the cycle characteristics can be improved.
  • the content of conductive carbon with respect to the total mass of the composite material laminate 16 is determined by peeling off only the positive electrode current collector metal body 14 from the positive electrode and drying the remaining part under vacuum in a 120° C. environment, using a dried product, for example, a powder, as the measurement target. , it can be measured by the following ⁇ Measurement method of conductive carbon content>>.
  • the content of conductive carbon in the composite material laminate 16 can be determined by infiltrating pure water into the composite material laminate 16, then peeling off the positive electrode current collector metal body 14 with a spatula, etc., and drying the remaining part under vacuum in a 120°C environment. can be used as the object to be measured.
  • the conductive carbon content measured using the method for measuring conductive carbon content below includes carbon in the active material coating, carbon in the conductive aid, and carbon in the conductive layer. Contains neither carbon in the material nor carbon in the dispersant.
  • ⁇ Measurement method for conductive carbon content [Measurement method A]
  • the object to be measured is mixed uniformly, a sample (mass w1) is weighed, and a thermogravimetric differential thermal analysis (TG-DTA) measurement is performed according to the following steps A1 and A2 to obtain a TG curve.
  • the following first weight loss amount M1 (unit: mass %) and second weight loss amount M2 (unit: mass %) are determined from the obtained TG curve.
  • the content of conductive carbon (unit: mass %) is obtained by subtracting M1 from M2.
  • Step A2 Immediately after step A1, the temperature was lowered from 600°C at a rate of 10°C/min, and after being held at 200°C for 10 minutes, the measurement gas was completely replaced with oxygen from argon, and an oxygen stream of 100 mL/min was added.
  • the second weight loss amount M2 ( Unit: mass %).
  • M2 (w1-w3)/w1 ⁇ 100...(a2)
  • [Measurement method B] Mix the measurement object uniformly, weigh 0.0001 mg of the sample accurately, burn the sample under the following combustion conditions, quantify the generated carbon dioxide with a CHN elemental analyzer, and calculate the total carbon content M3 ( Unit: mass%). Further, the first weight loss amount M1 is determined by the procedure of step A1 of the measuring method A. The conductive carbon content (unit: mass %) is obtained by subtracting M1 from M3.
  • Combustion conditions Combustion furnace: 1150°C Reduction furnace: 850°C Helium flow rate: 200mL/min Oxygen flow rate: 25-30mL/min
  • the binder is polyvinylidene fluoride (PVDF: the molecular weight of the monomer (CH 2 CF 2 ) is 64), the content of fluoride ions (F - ) measured by combustion ion chromatography using the tubular combustion method ( (unit: mass %), the atomic weight of fluorine (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF using the following formula.
  • PVDF polyvinylidene fluoride
  • Confirm that the binder is polyvinylidene fluoride by checking the absorption derived from the C-F bond using the Fourier transform infrared spectrum of the sample or the liquid extracted from the sample with N,N-dimethylformamide solvent. I can do it. Similarly, it can be confirmed by nuclear magnetic resonance spectroscopy ( 19 F-NMR) measurement of fluorine nuclei.
  • the binder content (unit: mass %) and carbon content (unit: mass %) corresponding to the molecular weight can be determined to determine the origin of the binder.
  • the carbon amount M4 can be calculated.
  • the conductive carbon content (unit: mass %) can be obtained by subtracting M4 from M3 and further subtracting the amount of carbon derived from the dispersant.
  • the conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is a conductive aid can be distinguished by the following analysis method. For example, when particles in a positive electrode active material layer are analyzed by electron energy loss spectroscopy in a transmission electron microscope (TEM-EELS), particles with a carbon-derived peak around 290 eV only near the particle surface are positive electrode active materials. Particles in which carbon-derived peaks exist even inside the particles can be determined to be conductive additives.
  • “near the particle surface” means a region having a depth of, for example, up to 100 nm from the particle surface, and "inside the particle” means a region inside the vicinity of the particle surface.
  • Another method is to perform mapping analysis of particles in the positive electrode active material layer by Raman spectroscopy, and particles in which the peaks of carbon-derived G-band and D-band and oxide crystals derived from the positive electrode active material are simultaneously observed are Particles that are positive electrode active materials and in which only G-band and D-band were observed can be determined to be conductive additives.
  • Another method is to observe the cross section of the positive electrode active material layer using a scanning spread resistance microscope, and if there is a part on the particle surface with lower resistance than the inside of the particle, the part with lower resistance is the active material. It can be determined that it is conductive carbon present in the coating. A portion that exists independently other than such particles and has a low resistance can be determined to be a conductive aid.
  • trace amounts of carbon that can be considered as impurities and trace amounts of carbon that are unintentionally peeled off from the surface of the positive electrode active material during manufacturing are not determined to be conductive additives. Using these methods, it can be confirmed whether or not a conductive additive made of a carbon material is included in the positive electrode active material layer.
  • the volume density of the composite material laminate 16 is preferably 2.2 to 2.7 g/cm 3 , more preferably 2.22 to 2.60 g/cm 3 , even more preferably 2.24 to 2.50 g/cm 3 . If the volume density of the composite material laminate 16 is equal to or higher than the above lower limit, the volume capacity density can be increased and the cycle characteristics can be improved. If the volume density of the composite material laminate 16 is below the above-mentioned upper limit, pressing with excessive pressure is not required when manufacturing the positive electrode 1. Therefore, deformation or damage of the positive electrode can be further suppressed by pressing.
  • the volume density of the composite material laminate 16 can be adjusted by a combination of the particle diameter of the positive electrode active material particles, the composition of the positive electrode active material layer 12, the thickness of the conductive layer 15, the pressure during pressurization during positive electrode manufacture, and the like.
  • the volume density of the composite material laminate 16 can be measured, for example, by the following measuring method.
  • the thicknesses of the positive electrode 1 and the positive electrode current collector metal body 14 are each measured using a microgauge, and the thickness of the composite material laminate 16 is calculated from the difference.
  • the thickness of the positive electrode 1 and the positive electrode current collector metal body 14 is an average value of values measured at five or more arbitrary points.
  • the mass of a measurement sample obtained by punching out the positive electrode 1 to have a predetermined area is measured, and the mass of the positive electrode current collector metal body 14 measured in advance is subtracted to calculate the mass of the composite material laminate 16.
  • the volume density of the positive electrode active material layer 12 is calculated based on the following formula (1).
  • the volume capacity density of the composite material laminate 16 is 330 to 400 mAh/cm 3 , preferably 340 to 390 mAh/cm 3 , and more preferably 350 to 380 mAh/cm 3 . If the volume capacity density of the composite material laminate 16 is equal to or higher than the lower limit value, the energy density can be increased and the output can be increased. If the volume capacity density of the composite material laminate 16 is equal to or less than the above upper limit value, cycle characteristics can be improved.
  • the volume capacity density of the composite material laminate 16 can be adjusted by a combination of the volume density of the composite material laminate 16, the composition of the positive electrode active material layer 12, the thickness of the conductive layer 15, the pressure during pressurization during positive electrode manufacture, etc. can.
  • the volumetric capacity density of the composite material laminate 16 can be measured, for example, using the coin cell 100 shown in FIG. 2 by the following measuring method.
  • the coin cell 100 includes a battery case 101, a sealing plate 106, a gasket 105, a positive electrode 102, a separator 104, a negative electrode 103, and a non-aqueous electrolyte 108.
  • Battery case 101 has a cup shape with an opening at the top end.
  • the sealing plate 106 is caulked to the battery case 101 via a gasket 105 made of an insulating material to close the opening of the battery case 101.
  • the positive electrode 102, the negative electrode 103, and the separator 104 are located inside the battery case 101.
  • the positive electrode 102 and the negative electrode 103 face each other with a separator 104 in between.
  • Non-aqueous electrolyte 108 is filled in an internal space surrounded by battery case 101 and sealing plate 106 .
  • a method for manufacturing the coin cell 100 will be described below.
  • a circular positive electrode 102 with a diameter of 14 mm, that is, a size of ⁇ 14 is obtained.
  • the positive electrode to be evaluated has a composite material laminate 16 on both sides, pure water is infiltrated into one side and the composite material laminate 16 is peeled off. 102 (sometimes referred to as "positive electrode").
  • the positive electrode to be evaluated has the composite material laminate 16 on only one side, this is referred to as the single-sided positive electrode 102.
  • the mass of the single-sided positive electrode 102 is measured.
  • the value obtained by subtracting the mass of the positive electrode current collector metal body 14 of ⁇ 14 size from the measured mass of the single-sided positive electrode 102 is defined as mass A, that is, the mass of the composite material laminate 16.
  • the mass of the positive electrode current collector metal body 14 of ⁇ 14 size is determined by peeling off the composite material laminate 16 on both sides of the single-sided positive electrode 102 and measuring the mass.
  • a 2016 type coin cell is manufactured using the single-sided positive electrode 102.
  • a gasket 105 is installed inside the battery case 101.
  • a single-sided positive electrode 102 is installed in a 2016 type case 101, which is a battery case in which a gasket 105 is installed.
  • the composite material laminate 16 is placed above.
  • a sufficient amount of non-aqueous electrolyte 108, for example 50 to 100 ⁇ L, to permeate the single-sided positive electrode 102 is dropped.
  • the nonaqueous electrolyte 108 is a liquid obtained by dissolving lithium hexafluorophosphate as an electrolyte in a mixed solvent of 3 parts by volume of ethylene carbonate and 7 parts by volume of diethyl carbonate at a concentration of 1 mol/liter.
  • a separator 104 made of polyethylene is punched into a circle with a diameter of 18 mm, that is, a size of ⁇ 18, and a separator 104 with a thickness of 30 ⁇ m is installed on the composite material laminate 16 of the single-sided positive electrode 102, and an amount that sufficiently penetrates into the separator 104 is set. For example, 50 to 100 ⁇ L of electrolyte solution is dropped.
  • a negative electrode 103 is formed by punching out a Li metal foil into a circle with a diameter of 16 mm, that is, a size of ⁇ 16. The negative electrode 103 is placed on the separator 104 with the negative electrode 103 facing the single-sided positive electrode 102 via the separator 104 .
  • a sealing plate 106 is placed over the opening of the battery case 101, and the sealing plate 106 is caulked to the battery case 101 via the gasket 105 to seal it.
  • the electric capacity (mAh/g) is measured using the coin cell 100.
  • the coin cell 100 is connected to a charging/discharging device, and constant current charging is performed at a current value of 0.1 mA until the potential (VvsLi/Li + ) reaches 3.8V. Thereafter, the potential is maintained at 3.8 V, and constant voltage charging is performed until the current value reaches 0.01 mA, resulting in a fully charged state. After a 30-minute rest period when the battery is fully charged, discharging is performed at a current value of 0.1 mA until the potential reaches 2.0V.
  • the electric capacity obtained during discharge was divided by the mass A to obtain the mass capacity density (mAh/g).
  • the obtained mass capacity density is multiplied by the volume density (g/cm 3 ) determined by the above equation (1) to obtain the volume capacity density (mAh/cm 3 ).
  • the method for manufacturing the positive electrode 1 of the present embodiment includes a composition preparation step of preparing a positive electrode manufacturing composition containing positive electrode active material particles, and a coating step of coating the positive electrode manufacturing composition onto the positive electrode current collector 11. and has.
  • a positive electrode manufacturing composition containing positive electrode active material particles and a solvent is applied onto the conductive layer 15 of the positive electrode current collector 11, dried, and the solvent is removed to form the positive electrode active material layer 12.
  • a composite material laminate 16 which is a laminate of the conductive layer 15 and the positive electrode active material layer 12, is provided on the positive electrode current collector metal body 14 to form the positive electrode 1.
  • the composition for producing a positive electrode may include a conductive additive.
  • the composition for producing a positive electrode may include a binder.
  • the composition for producing a positive electrode may also contain a dispersant.
  • the positive electrode current collector 11 may be manufactured by forming a conductive layer 15 on one or both sides of the positive electrode current collector metal body 14, or may be purchased from the market.
  • the thickness of the positive electrode active material layer 12 can be adjusted by sandwiching a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 between two flat jigs and applying pressure uniformly in the thickness direction. . For example, a method of applying pressure using a roll press machine can be used.
  • the solvent of the composition for producing a positive electrode is preferably a non-aqueous solvent.
  • examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol, linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide, and ketones such as acetone.
  • the solvent may be used alone or in combination of two or more.
  • a non-aqueous electrolyte secondary battery 10 of this embodiment shown in FIG. 3 includes a positive electrode 1 for a non-aqueous electrolyte secondary battery of this embodiment, a negative electrode 3, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte secondary battery 10 may further include a separator 2.
  • Reference numeral 5 in the figure is an exterior body.
  • the positive electrode 1 includes a plate-shaped positive electrode current collector 11 and positive electrode active material layers 12 provided on both surfaces thereof.
  • the positive electrode active material layer 12 exists on a part of the surface of the positive electrode current collector 11 .
  • the edge of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist.
  • the conductive layer 15 may or may not be present on the surface of the positive electrode current collector exposed portion 13 . That is, the positive electrode current collector metal body 14 may be exposed.
  • a terminal tab (not shown) is electrically connected to an arbitrary location on the positive electrode current collector exposed portion 13 .
  • the negative electrode 3 includes a plate-shaped negative electrode current collector 31 and negative electrode active material layers 32 provided on both surfaces thereof.
  • the negative electrode active material layer 32 exists on a part of the surface of the negative electrode current collector 31 .
  • the edge of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist.
  • a terminal tab (not shown) is electrically connected to an arbitrary location on the negative electrode current collector exposed portion 33 .
  • the shapes of the positive electrode 1, negative electrode 3, and separator 2 are not particularly limited. For example, it may have a rectangular shape in plan view.
  • FIG. 3 typically shows a structure in which negative electrode/separator/positive electrode/separator/negative electrode are laminated in this order, the number of electrodes can be changed as appropriate.
  • One or more positive electrodes 1 may be used, and any number of positive electrodes 1 may be used depending on the desired battery capacity.
  • the number of negative electrodes 3 and separators 2 is one more than the number of positive electrodes 1, and the negative electrodes 3 and separators 2 are stacked so that the outermost layer is the negative electrode 3.
  • Negative electrode active material layer 32 contains a negative electrode active material.
  • the negative electrode active material layer 32 may further include a binder.
  • the negative electrode active material layer 32 may further contain a conductive additive.
  • the shape of the negative electrode active material is preferably particulate.
  • the negative electrode 3 is prepared by preparing a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent, coating this on the negative electrode current collector 31, drying it, and removing the solvent to form the negative electrode active material. It can be manufactured by a method of forming layer 32.
  • the composition for producing a negative electrode may also contain a conductive additive.
  • Examples of the negative electrode active material and conductive aid include carbon materials such as natural graphite and artificial graphite, lithium titanate, silicon, silicon monoxide, and silicon oxide.
  • Examples of the carbon material include graphite, graphene, hard carbon, Ketjen black, acetylene black, and carbon nanotubes.
  • the negative electrode active material and the conductive aid may be used alone or in combination of two or more.
  • the binder in the negative electrode manufacturing composition includes polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-propylene hexafluoride copolymer, styrene-butadiene rubber, polyvinyl alcohol, polyethylene oxide, polyethylene glycol. , carboxymethylcellulose, polyacrylonitrile, polyimide, etc.
  • the binder may be used alone or in combination of two or more.
  • the solvent in the composition for producing a negative electrode include water and organic solvents.
  • organic solvents examples include alcohols such as methanol, ethanol, 1-propanol and 2-propanol, linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide, and ketones such as acetone.
  • the solvent may be used alone or in combination of two or more.
  • the total content of the negative electrode active material and the conductive additive is preferably 80.0 to 99.9% by mass, more preferably 85.0 to 98.0% by mass.
  • a separator 2 is placed between the negative electrode 3 and the positive electrode 1 to prevent short circuits and the like.
  • the separator 2 may hold a non-aqueous electrolyte, which will be described later.
  • the separator 2 is not particularly limited, and examples include porous polymer membranes, nonwoven fabrics, and glass fibers.
  • An insulating layer may be provided on one or both surfaces of separator 2.
  • the insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with a binder for an insulating layer.
  • the thickness of the separator 2 is, for example, 5 to 50 ⁇ m.
  • Separator 2 may contain at least one of a plasticizer, an antioxidant, and a flame retardant.
  • antioxidants include phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenol antioxidants, and polyphenol antioxidants, hindered amine antioxidants, and phosphorus antioxidants.
  • examples include sulfur-based antioxidants, benzotriazole-based antioxidants, benzophenone-based antioxidants, triazine-based antioxidants, and salicylic acid ester-based antioxidants. Among these, phenolic antioxidants and phosphorus antioxidants are preferred.
  • the non-aqueous electrolyte fills the space between the positive electrode 1 and the negative electrode 3.
  • known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors, and the like.
  • the nonaqueous electrolyte used to manufacture the nonaqueous electrolyte secondary battery 10 includes an organic solvent, an electrolyte, and additives.
  • the non-aqueous electrolyte secondary battery 10 after manufacture, particularly after initial charging, contains an organic solvent and an electrolyte, and may also contain residues or traces derived from additives.
  • the organic solvent has resistance to high voltage.
  • polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, or mixtures of two or more of these polar solvents.
  • the electrolyte is not particularly limited, and includes, for example, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium trifluoroacetate, lithium bis(fluorosulfonyl)imide, and lithium bis(trifluoromethanesulfonyl).
  • a salt containing lithium such as imide, or a mixture of two or more of these salts.
  • Examples of the additive include compound A containing one or both of a sulfur atom and a nitrogen atom.
  • the additives may be used alone or in combination of two or more.
  • Examples of Compound A include lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethanesulfonyl)imide.
  • Examples of the method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment include a method in which a positive electrode, a separator, a negative electrode, a non-aqueous electrolyte, an exterior body, and the like are assembled by a known method to obtain a non-aqueous electrolyte secondary battery.
  • An example of the method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment will be described. For example, an electrode laminate in which positive electrodes 1 and negative electrodes 3 are alternately laminated with separators 2 in between is produced. The electrode laminate is enclosed in an exterior body 5 such as an aluminum laminate bag. Next, a non-aqueous electrolyte is injected into the exterior body 5, and the exterior body 5 is sealed to form a non-aqueous electrolyte secondary battery.
  • the positive electrode of this embodiment has a positive electrode current collector metal body and a composite material laminate, the composite material laminate has a conductive layer and a positive electrode active material layer containing positive electrode active material particles, and the conductive layer has a conductive layer.
  • the positive electrode active material particles include carbon, and the positive electrode active material particles have an active material coating portion containing conductive carbon, and the content of conductive carbon in the composite material laminate and the volume capacity density of the composite material laminate are within specific ranges.
  • the non-aqueous electrolyte secondary battery of this embodiment can be used as a lithium ion secondary battery for industrial use, consumer use, automobile use, residential use, and various other uses.
  • the usage form of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited.
  • it can be used in a battery module configured by connecting a plurality of nonaqueous electrolyte secondary batteries in series or in parallel, and a battery system including a plurality of electrically connected battery modules and a battery control system.
  • Examples of battery systems include battery packs, stationary storage battery systems, automobile power storage battery systems, automobile auxiliary equipment storage battery systems, and emergency power storage battery systems.
  • cycle capacity retention rate> Using a cell manufactured to have a rated capacity of 1 Ah, the cycle capacity retention rate was evaluated using the following steps (1) to (6). Note that the evaluation was performed at room temperature (25° C.). (1) The obtained cell is charged at a 0.2C rate, that is, at a constant current of 200mA, with a final voltage of 3.6V, and then at a constant voltage and a final current of 0.05C rate, that is, 20mA. I charged it with. (2) Discharge to confirm capacity was performed at a constant current at a rate of 0.2C with a final voltage of 2.5V.
  • the discharge capacity at this time was defined as a reference capacity, and the reference capacity was defined as a current value at a 1C rate (that is, 1000 mA).
  • (3) After charging the cell at a 3.0C rate, that is, at a constant current of 3000mA with a final voltage of 3.8V, pause for 10 seconds, and from this state, at a 3.0C rate and a final voltage of 2.0V. Discharge was performed and paused for 10 seconds.
  • the cycle test in (3) was repeated 1000 times.
  • the same capacity confirmation as in (2) was carried out.
  • the cycle capacity maintenance rate was evaluated under extremely high load conditions of 3.0C rate. That is, this is a condition in which the cycle capacity retention rate is more likely to decrease than the cycle capacity retention rate evaluated under conditions such as a 0.5C rate or a 1.0C rate.
  • a negative electrode was manufactured by the following method. 100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent, A composition for producing a negative electrode with a solid content of 50% by mass was obtained. The obtained composition for producing a negative electrode was applied onto both sides of a copper foil having a thickness of 8 ⁇ m, vacuum dried at 100° C., and then pressed under a load of 2 kN to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to form a negative electrode.
  • a positive electrode current collector was manufactured by the following method.
  • a slurry was obtained by mixing 100 parts by mass of carbon black, 40 parts by mass of polyvinylidene fluoride as a binder, and N-methylpyrrolidone as a solvent.
  • the amount of N-methylpyrrolidone used was the amount necessary for coating the slurry.
  • the obtained slurry was applied to a 15 ⁇ m thick aluminum foil, that is, on both the front and back sides of the positive electrode current collector metal body, using a gravure method so that the total thickness of the conductive layers on both sides of the positive electrode current collector metal body after drying was 2 ⁇ m. After coating, drying and removing the solvent, a positive electrode current collector was obtained.
  • the conductive layers on both sides were formed so that the coating amount and thickness were equal to each other.
  • the column "Presence or absence of conductive layer" in the table was set to "Presence”.
  • presence or absence of conductive layer is "absent” in the table, only a positive electrode current collector without a conductive layer, that is, a positive electrode current collector metal body was used.
  • Carbon black or carbon nanotubes were used as the conductive aid. Carbon black and carbon nanotubes have impurities below the quantitative limit and can be considered to have a carbon content of 100% by mass.
  • Polyvinylidene fluoride was used as a binder. N-methylpyrrolidone was used as a solvent.
  • a positive electrode active material layer was formed by the following method. Positive electrode active material particles, a conductive additive (the amount shown in the table), 1% by mass of a binder, and N-methylpyrrolidone as a solvent were mixed in a mixer to obtain a composition for manufacturing a positive electrode. However, the total amount of the positive electrode active material particles, the conductive additive, and the binder was 100% by mass. The blending amount of the solvent was the amount necessary for coating the positive electrode manufacturing composition. In each example, the amount of the conductive additive was as described in the table. The obtained composition for producing a positive electrode was applied onto both surfaces of a positive electrode current collector, and after preliminary drying, vacuum drying was performed in a 120° C.
  • the total coating amount of the positive electrode manufacturing composition on both sides of the positive electrode current collector was 20 mg/cm 2 .
  • the positive electrode active material layers on both sides were formed so that the coating amount and thickness were equal to each other.
  • the obtained laminate was pressed under pressure to obtain a positive electrode sheet.
  • the volume density of the composite material laminate was adjusted by the press pressure of the pressure press.
  • a composite material laminate which is a laminate of a conductive layer and a positive electrode active material layer, was formed on the positive electrode current collector metal body.
  • the obtained positive electrode sheet was punched out to form a positive electrode.
  • the conductive carbon content, volume density, and volume capacity density of the composite material laminate were measured, and the results are shown in the table.
  • a non-aqueous electrolyte secondary battery having the configuration shown in FIG. 3 was manufactured by the following method. Hexafluorophosphoric acid was added as an electrolyte to a solvent in which ethylene carbonate (hereinafter referred to as "EC") and diethyl carbonate (hereinafter referred to as "DEC”) were mixed at a volume ratio of EC:DEC of 3:7.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte was prepared by dissolving lithium at a concentration of 1 mol/liter.
  • the positive electrode 1 and the negative electrode 3 of each example were alternately laminated with the separator 2 in between to produce an electrode laminate in which the negative electrode 3 was the outermost layer.
  • a polyolefin film with a thickness of 15 ⁇ m was used as a separator.
  • the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2.
  • Terminal tabs are electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are laminated with an aluminum laminate film so that the terminal tabs protrude to the outside.
  • the body was sandwiched and the three sides were laminated and sealed. Subsequently, a non-aqueous electrolyte was injected from one side left unsealed, and vacuum-sealed to produce each example of a non-aqueous electrolyte secondary battery, that is, a laminate cell.
  • the cycle retention rate (3C) was 84% or more.
  • the cycle retention rate (3C) of Examples 1 to 4 which did not contain a conductive aid, was 87% or more.
  • the cycle retention rate (3C) of Example 1 which did not contain a conductive aid and contained a large amount of conductive carbon was 94%. That is, even after 1000 cycles of charging and discharging under the high rate condition of 3.0 C rate, the capacity decrease was sufficiently suppressed, and extremely excellent cycle characteristics were achieved.
  • Comparative Examples 1 and 3 in which the content of conductive carbon in the composite material laminate is 6.5% by mass and the volume capacity density is 309.8 to 319.9 mAh/ cm3 , have a cycle maintenance rate (3C) was 59-65%.
  • Comparative Example 2 in which the content of conductive carbon in the composite material laminate was 2.5% by mass, had a cycle retention rate (3C) of 23%.
  • Comparative Example 4 in which the composite material laminate had a volume capacity density of 298.3 Ah/cm 3 , had a cycle retention rate (3C) of 79%.
  • Comparative Example 5 in which the composite material laminate had a volume capacity density of 420.0 Ah/cm 3 , had a cycle retention rate (3C) of 31%.
  • the cycle maintenance rate (1C) of Example 1 was 99%, and the cycle maintenance rate (1C) of Comparative Example 2 was 97%. Under the low rate condition of 1.0C rate, the cycle characteristics of both were significantly affected. There was no difference. That is, in the present invention, it was found that even after 1000 cycles of charging and discharging under a high rate condition of 3.0 C rate, the decrease in capacity was sufficiently suppressed, and extremely excellent cycle characteristics were achieved. From these results, it was confirmed that the cycle maintenance rate could be improved by applying the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、正極集電金属体(14)と、正極集電金属体(14)の少なくとも一方の面に存在する合材積層体(16)とを有する正極であって、合材積層体(16)は、正極活物質層(12)と、導電層(15)と、を有し、導電層(15)は、正極集電金属体(14)と正極活物質層(12)との間に存在し、正極集電金属体(14)の少なくとも一部を覆い、導電層(15)は、導電性炭素を含み、正極活物質層(12)は、1つ以上の正極活物質粒子を含み、正極活物質粒子の少なくとも一部は、正極活物質の芯部と、芯部の表面の少なくとも一部を覆う活物質被覆部とを有し、活物質被覆部は、導電性炭素を含み、合材積層体(16)中の導電性炭素の総量は、合材積層体(16)の総質量に対して0.5~3.0質量%であり、合材積層体(16)における体積容量密度は、330~400mAh/cm3である正極(1)に関する。

Description

非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
 本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。
 本願は、2022年3月16日に、日本に出願された特願2022-041372号に基づき優先権を主張し、その内容をここに援用する。
 非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(以下、「セパレータ」とも称する)により構成される。
 非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材からなる組成物を、集電体である金属箔の表面に固着させたものが知られている。
 リチウムイオンを含む正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム及びマンガン酸リチウム等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム等のリチウムリン酸化合物が実用化されている。
 特許文献1には、特定の製法で得られる球状LiNiO粒子を含有する正極を有する非水電解質二次電池が提案されている。特許文献1の発明によれば、電池容量の向上が図られている。
特許第3434873号公報
 しかしながら、非水電解質二次電池には、サイクル特性の向上が求められている。
 本発明は、非水電解質二次電池のサイクル特性を高められる非水電解質二次電池用正極を提供する。
 本発明は以下の態様を有する。
<1>
 正極集電金属体と、前記正極集電金属体の少なくとも一方の面に存在する合材積層体とを有する正極であり、
 前記合材積層体は、正極活物質層と、導電層と、を有し、前記導電層は、前記正極集電金属体と前記正極活物質層との間に存在し、前記正極集電金属体の少なくとも一部を覆い、
 前記導電層は、導電性炭素を含み、
 前記正極活物質層は、1つ以上の正極活物質粒子を含み、
 前記正極活物質粒子の少なくとも一部は、正極活物質の芯部と、前記芯部の表面の少なくとも一部を覆う活物質被覆部とを有し、
 前記活物質被覆部は、導電性炭素を含み、
 前記合材積層体中の導電性炭素の総量は、前記合材積層体の総質量に対して0.5~3.0質量%、0.7~2.9質量%、0.9~2.6質量%、又は1.2~2.3質量%であり、
 前記合材積層体における体積容量密度は、330~400mAh/cm、340~390mAh/cm、又は350~380mAh/cmである、非水電解質二次電池用正極。
<2>
 前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、<1>に記載の非水電解質二次電池用正極。
<3>
 前記合材積層体の体積密度は、2.2~2.7g/cm、2.25~2.60g/cm、又は2.30~2.50g/cmである、<1>又は<2>に記載の非水電解質二次電池用正極。
<4>
 正極集電金属体と、前記正極集電金属体の少なくとも一方の面に存在する合材積層体とを有する正極であり、
 前記合材積層体は、正極活物質層と、前記正極集電金属体と前記正極活物質層との間に存在し、前記正極集電金属体の少なくとも一部を覆う導電層と、を有し、
 前記導電層は、導電性炭素を含み、
 前記正極活物質層は、1つ以上の正極活物質粒子を含み、
 前記正極活物質粒子の少なくとも一部は、正極活物質の芯部と、前記芯部の表面の少なくとも一部を覆う活物質被覆部とを有し、
 前記活物質被覆部は、導電性炭素を含み、
 前記合材積層体中の導電性炭素の総量は、前記合材積層体の総質量に対して0.5~2.6質量%であり、
 前記合材積層体における体積容量密度は、330~345mAh/cmであり、
 前記合材積層体の体積密度は、2.20g/cm以上、2.30g/cm未満である、非水電解質二次電池用正極。
<5>
 <1>~<4>のいずれかに記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質と、を備える、非水電解質二次電池。
<6>
 <5>に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
 本発明によれば、非水電解質二次電池のサイクル特性を高められる。
本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。 体積容量密度の測定方法に用いるコインセルの断面図である。 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。
 本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
 図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図である。図3は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
 なお、図1~3は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
 本実施形態の非水電解質二次電池用正極(以下、「正極」と称することもある。)は、正極集電金属体と合材積層体とを備える。
 本実施形態の非水電解質二次電池は、正極、負極、及び正極と負極との間に存在する非水電解液を備える。
 以下、実施形態を挙げて本発明を説明する。
(非水電解質二次電池用正極)
 本実施形態の正極1は、正極集電金属体14と、合材積層体16とを有する。
 図1において、合材積層体16は、正極集電金属体14の両面に存在している。但し、合材積層体16は、正極集電金属体14の片面にのみ存在していてもよい。すなわち、合材積層体16は、正極集電金属体14の少なくとも一方の面に存在する。
 合材積層体16は、正極活物質層12と、導電層15とを有する。導電層15は、正極集電金属体14と正極活物質層12との間に存在している。導電層15は、正極集電金属体14の表面の少なくとも一部を覆っている。導電層15は、正極集電金属体14の表面の一部又は全部を覆う導電性の被覆層である。図1において、導電層15は、正極集電金属体14の両面に存在しているが、導電層15が正極集電金属体14の片面のみに存在していてもよい。
 本明細書において、正極集電金属体14と導電層15とを合わせて、正極集電体11ということがある。
<合材積層体>
 合材積層体16は、正極集電金属体14から順に、導電層15と正極活物質層12とが位置するものである。
≪正極活物質層≫
 正極活物質層12は、1つ以上の正極活物質粒子を含む。
 正極活物質層12は、さらに結着材を含むことが好ましい。
 正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状又は繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。導電助剤は、正極活物質粒子とは独立して存在する。
 正極活物質層12は、さらに分散剤を含んでもよい。
 正極活物質層12の総質量に対して、正極活物質粒子の含有量は、80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
 正極活物質層の厚みは30~500μmであることが好ましく、40~400μmであることがより好ましく、50~300μmであることが特に好ましい。正極活物質層の厚みが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、正極活物質層の剥離強度が高く、充放電時に剥がれを抑制できる。正極活物質層の厚みは、正極集電体の両面上に正極活物質層が存在する場合、両面に位置する2層の合計の厚みとなる。
[正極活物質粒子]
 正極活物質粒子は、正極活物質を含む。正極活物質粒子の少なくとも一部は、被覆粒子である。
 被覆粒子において、正極活物質粒子の表面には、導電材料を含む被覆部(以下、「活物質被覆部」と称することもある。)が存在する。正極活物質粒子は、活物質被覆部を有することで、電池容量、サイクル特性をより高められる。
 例えば、活物質被覆部は、予め正極活物質粒子の表面に形成されており、かつ正極活物質層中において、正極活物質粒子の表面に存在する。即ち、本明細書における活物質被覆部は、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で容易に欠落するものではない。
 例えば、正極製造用組成物を調製する際に、被覆粒子を溶媒と共にミキサー等で混合しても、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極から正極活物質層を剥がし、これを溶媒に投入して正極活物質層中の結着材を溶媒に溶解させた場合にも、活物質被覆部は正極活物質の表面を被覆している。また、仮に、正極活物質層中の粒子の粒度分布をレーザー回折・散乱法により測定する際に、凝集した粒子をほぐす操作を行った場合にも活物質被覆部は正極活物質の表面を被覆している。
 活物質被覆部は、正極活物質粒子の外表面全体の面積の50%以上に存在することが好ましく、70%以上に存在することが好ましく、90%以上に存在することが好ましい。
 すなわち、被覆粒子は、正極活物質である芯部と、前記芯部の表面を覆う活物質被覆部とを有し、芯部の表面積に対する活物質被覆部の面積、つまり被覆率は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。被覆率の上限値は特に限定されないが、例えば、94%以下が好ましく、97%以下がより好ましく、100%以下がさらに好ましい。被覆率は50~94%が好ましく、70~97%がより好ましく、90~100%がさらに好ましい。
 被覆粒子の製造方法としては、例えば、蒸着法及び焼結法等が挙げられる。
 焼結法としては、正極活物質の粒子と有機物とを含む活物質製造用組成物を、大気圧下、500~1000℃、1~100時間で焼成する方法が挙げられる。活物質製造用組成物に添加する有機物としては例として、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂、スクロース、グルコースラクトース、リンゴ酸クエン酸、アリルアルコールプロパルギルアルコール、アスコルビン酸、ポリビニルアルコール等が挙げられる。この中から複数種を混ぜて用いても良いし、この中以外の有機物を用いても良い。この焼結法によれば、活物質製造用組成物を焼成することで、有機物中の炭素を正極活物質の表面に焼結して、活物質被覆部を形成する。
 また、他の焼結法としては、いわゆる衝撃焼結被覆法が挙げられる。
 衝撃焼結被覆法は、例えば、以下の手順で行われる。衝撃焼結被覆装置において燃料の炭化水素と酸素の混合ガスを用いてバーナに点火し燃焼室で燃焼させてフレームを発生させる。その際、酸素量を燃料に対して完全燃焼の当量以下にしてフレーム温度を下げる。フレームの後方に粉末供給用ノズルを設置し、被覆する有機物を溶媒に溶かした溶液と燃焼ガスからなる固体―液体―気体三相混合物を粉末供給ノズルから噴射させる。室温に保持された燃焼ガス量を増すことで、噴射微粉末の温度を下げて、粉末材料の変態温度、昇華温度、又は蒸発温度以下で噴射微粉末を加速し、衝撃により瞬時焼結させて、正極活物質の粒子を被覆する。
 蒸着法としては、物理気相成長法及び化学気相成長法等の気相堆積法並びにメッキ等の液相堆積法等が挙げられる。
 前記被覆率は次の様な方法により測定することができる。まず、正極活物質層中の粒子を、透過型電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)により分析する。具体的には、TEM画像における正極活物質粒子の外周部をEDXで元素分析する。
 元素分析は、炭素について行い、正極活物質粒子を被覆している炭素を特定する。炭素の被覆部が1nm以上の厚さである箇所を被覆部分とし、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、これを被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値を被覆率とすることができる。
 また、前記活物質被覆部は、正極活物質のみから構成される粒子(以下、「芯部」と称することもある。)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層である。この厚みは、上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
 被覆率の測定は、他にもTEM-EDXで正極活物質粒子に対して、正極活物質に固有の元素と活物質被覆部に含まれる導電材料に固有の元素を用いた粒子の元素マッピングにより算出することができる。上記と同様に、活物質被覆部の厚みは導電材料に固有の元素で1nm以上の厚さである箇所を被覆部分として、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値を被覆率とすることができる。
 本実施形態の被覆粒子の被覆率は、100%が特に好ましい。
 なお、この被覆率は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子(以下、「単粒子」と称することもある)が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。単粒子が正極活物質層中に存在する場合、正極活物質粒子全体の量に対する単粒子の量の下限値は、特に限定されないが、0.1質量%以上でもよく、0.2質量%以上でもよく、0.3質量%以上でもよい。単粒子が正極活物質層中に存在する場合、正極活物質粒子全体の量に対する単粒子の量は、0.3~30質量%以上が好ましく、0.2~20質量%以上がより好ましく、0.1~10質量%以上がさらに好ましい。一実施形態においては、単粒子が正極活物質層中に存在しないことが好ましい。
 活物質被覆部の導電材料は、炭素(つまり導電性炭素)を含む。導電材料は、炭素のみからなる導電材料でもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。
 活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
 活物質被覆部を有する正極活物質粒子の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。多すぎる場合は、正極活物質粒子の表面から導電材料が剥がれ、独立した導電助剤粒子として残留する可能性があるため、好ましくない。
 導電パスに寄与しない導電性粒子は、電池の自己放電の起点や好ましくない副反応などの原因となる。
 正極活物質粒子は、オリビン型結晶構造を有する化合物を含むことが好ましい。
 オリビン型結晶構造を有する化合物は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物が好ましい。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
 一般式(I)で表される化合物は、LiFePOで表されるリン酸鉄リチウム(以下、「リン酸鉄リチウム」と称することもある)が好ましい。
 正極活物質粒子として、表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム粒子(以下、「被覆リン酸鉄リチウム粒子」と称することもある。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウム粒子の表面全体が導電材料で被覆されていることがさらに好ましい。
 被覆リン酸鉄リチウム粒子は公知の方法で製造できる。
 例えば、特許第5098146号公報に記載の方法を用いてリン酸鉄リチウム粉末を作製し、GS Yuasa Technical Report、2008年6月、第5巻、第1号、第27~31頁等に記載の方法を用いて、リン酸鉄リチウム粉末の表面の少なくとも一部を炭素で被覆できる。
 具体的には、まず、シュウ酸鉄二水和物、リン酸二水素アンモニウム、及び炭酸リチウムを、特定のモル比で計り、これらを不活性雰囲気下で粉砕及び混合する。次に、得られた混合物を窒素雰囲気下で加熱処理することによってリン酸鉄リチウム粉末を作製する。
 次いで、リン酸鉄リチウム粉末をロータリーキルンに入れ、窒素をキャリアガスとしたメタノール蒸気を供給しながら加熱処理することによって、表面の少なくとも一部を炭素で被覆したリン酸鉄リチウム粒子を得る。
 例えば、粉砕工程における粉砕時間によってリン酸鉄リチウム粒子の粒子径を調整できる。メタノール蒸気を供給しながら加熱処理する工程における加熱時間及び温度等によって、リン酸鉄リチウム粒子を被覆する炭素の量を調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
 正極活物質粒子は、オリビン型結晶構造を有する化合物以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
 他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム、コバルトマンガン酸リチウム、クロム酸マンガンリチウム、バナジウムニッケル酸リチウム、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
 他の正極活物質粒子の表面の少なくとも一部に、前記活物質被覆部が存在してもよい。
 正極活物質粒子の総質量に対して、オリビン型結晶構造を有する化合物の含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。正極活物質粒子の総質量に対して、オリビン型結晶構造を有する化合物の含有量は、50~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。活物質被覆部を有する場合、正極活物質粒子の総質量は、活物質被覆部の質量も含む。
 被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。
 正極活物質粒子の活物質被覆部の厚さは、1~100nmが好ましい。
 正極活物質粒子の活物質被覆部の厚さは、正極活物質粒子の透過型電子顕微鏡(TEM)像における活物質被覆部の厚さを計測する方法で測定できる。正極活物質粒子の表面に存在する活物質被覆部の厚さは均一でなくてもよい。正極活物質粒子の表面の少なくとも一部に厚さ1nm以上の活物質被覆部が存在し、活物質被覆部の厚さの最大値が100nm以下であることが好ましい。
 正極活物質粒子の平均粒子径は、0.1~20.0μmが好ましく、0.5~15.0μmがより好ましい。正極活物質粒子を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。活物質被覆部を有する場合、正極活物質粒子の平均粒子径は、活物質被覆部の厚さも含む。
 前記平均粒子径が上記範囲の下限値以上であると、正極製造用組成物における分散性が良くなりやすく、また、凝集物が発生し難くなりやすい。一方、上記範囲の上限値以下であると比表面積が適度に大きくなり、充放電で反応する面積を確保しやすい。その結果、電池として抵抗が低くなり、入出力特性が低下し難くなる。
 本明細書における正極活物質粒子の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
[結着材]
 正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、及びポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
 正極活物質層の総質量に対して、結着材の含有量は1.0質量%以下が好ましく、0.8質量%以下がより好ましい。
 正極活物質層が結着材を含有する場合、結着材の含有量の下限値は、正極活物質層の総質量に対して0.1質量%以上が好ましく、0.3質量%以上がより好ましい。正極活物質層が結着材を含有する場合、結着材の含有量は、0.1~1.0質量%が好ましく、0.3~0.8質量%がより好ましい。
[導電助剤]
 正極活物質層12に含まれる導電助剤としては、例えば、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、及びカーボンナノチューブ等の炭素材料が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
 正極活物質層12における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、4質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、正極活物質層内で導電パスに寄与しない、独立した導電助剤粒子が存在しない状態が望ましい。
 導電パスに寄与しない導電助剤粒子は、電池の自己放電の起点や好ましくない副反応などの原因となる。
 正極活物質層12に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層12の総質量に対して0.1質量%超とされる。正極活物質層12に導電助剤を配合する場合、導電助剤の含有量は、正極活物質層12の総質量に対して0.1質量%超、2.5質量%以下が好ましく、0.1質量%超、2.3質量%以下がより好ましく、0.1質量%超、2.0質量%以下がさらに好ましい。
 なお、正極活物質層12が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層12の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
 導電助剤に用いられる炭素材料は、活物質被覆部を構成する導電性炭素、後述する導電層15を構成する導電性炭素に比べて嵩高く、みかけ密度が低い。このため、正極活物質層12に含まれる炭素量が同じであれば、正極活物質層12中の導電助剤が少ないほど、正極活物質層12の体積が小さくなる。正極活物質層12の体積が小さくなれば、合材積層体16の体積が小さくなり、単位体積当たりの容量(以下、「体積容量密度」と称することもある)が高まる。体積容量密度が高まると、合材積層体16内での抵抗が低くなり、サイクル特性が高まる。
[分散剤]
 正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルブチラール、及びポリビニルホルマール等が挙げられる。分散剤は、1種でもよく、2種以上を併用してもよい。
 分散剤は正極活物質層における粒子の分散性向上に寄与する。一方、分散剤の含有量が多すぎると抵抗が増大しやすい。
 正極活物質層の総質量に対して、分散剤の含有量は0.5質量%以下が好ましく、0.2質量%以下がより好ましい。
 正極活物質層が分散剤を含有する場合、分散剤の含有量の下限値は、正極活物質層の総質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましい。正極活物質層が分散剤を含有する場合、分散剤の含有量は0.01~0.5質量%が好ましく、0.05~0.2質量%がより好ましい。
≪導電層≫
 導電層15は、炭素(導電性炭素)を含む層である。導電層15は、正極集電金属体14の表面の少なくとも一部を覆う。換言すれば、導電層15は、合材積層体16における正極集電金属体14に向く面の少なくとも一部に設けられている。
 ここで、「表面の少なくとも一部」とは、正極集電金属体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
 導電層15中の導電材料は、導電性炭素を含んでいればよい。導電層15中の導電材料は、炭素のみからなることが好ましい。
 導電層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。導電層15中の結着材は、正極活物質層12の結着材と同様のものを例示できる。
 導電層15中の導電性炭素の含有量は、導電層15の総質量に対して、50~90質量%が好ましく、55~85質量%がより好ましく、60~90質量%がさらに好ましい。
 導電層15を設ける方法としては、例えば、導電材料、結着材、及び溶媒を含む組成物を、グラビア法等の公知の塗工方法を用いて正極集電金属体14の表面に塗工し、乾燥して溶媒を除去する方法を例示できる。
 導電層15の厚さは、0.1~4.0μmが好ましく、0.2~3.0μmがより好ましく、0.3~2.0μmがさらに好ましい。
 導電層の厚さは、導電層の断面の透過型電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。導電層の厚さは均一でなくてもよい。正極集電金属体14の表面の少なくとも一部に厚さ0.1μm以上の導電層が存在し、導電層の厚さの最大値が4.0μm以下であることが好ましい。
<正極集電金属体>
 正極集電金属体14は、金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、及びステンレス鋼等の導電性を有する金属が例示できる。
 正極集電金属体14は、金属材料からなる箔、つまり金属箔であり、表面に形成される酸化膜を含んでいてもよい。
 正極集電金属体14の厚さは、例えば8~40μmが好ましく、10~25μmがより好ましい。
 正極集電金属体14の厚さは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製品名「MDH-25M」が挙げられる。
<導電性炭素含有量>
 本実施形態において、正極活物質層12及び導電層15は、導電性炭素を含む。すなわち、合材積層体16は、導電性炭素を含む。
 正極活物質層12の総質量に対して、導電性炭素の含有量は0.5質量%以上3.0質量%未満が好ましく、1.0~2.8質量%がより好ましく、1.2~2.6質量%がさらに好ましい。
 正極活物質層12中の導電性炭素の含有量が、上記範囲の下限値以上であると正極活物質層12での導電パス形成に十分な量となり、サイクル特性をより高められる。正極活物質層12中の導電性炭素の含有量が上記上限値以下であると、体積容量密度を高めて、サイクル特性をより高められる。
 正極活物質層の総質量に対する導電性炭素の含有量は、正極活物質粒子及び導電助剤に含まれる導電性炭素含有量と配合量から算出できる。
 また、正極活物質層12の総質量に対する導電性炭素の含有量は、正極から正極活物質層12を剥がして120℃環境で真空乾燥した乾燥物、例えば粉体を測定対象物として、下記≪導電性炭素含有量の測定方法≫でも測定できる。
 例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がし、120℃で真空乾燥させて測定対象物とすることができる。
 下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素とを含み、結着材中の炭素及び分散剤中の炭素のいずれをも含まない。
 合材積層体16の総質量に対する導電性炭素の含有量、すなわち、正極活物質層12中の導電性炭素と導電層15中の導電性炭素の総量は0.5~3.0質量%であり、0.7~2.9質量%が好ましく、0.9~2.8質量%がより好ましく、1.2~2.7質量%がさらに好ましい。
 合材積層体16中の導電性炭素の含有量が、上記範囲の下限値以上であると合材積層体16での導電パス形成に十分な量となり、サイクル特性を高められる。合材積層体16中の導電性炭素の含有量が上記上限値以下であると、体積容量密度を高めて、出力を高め、サイクル特性を高められる。
 合材積層体16の総質量に対する導電性炭素の含有量は、正極から正極集電金属体14のみを剥がし、残部を120℃の環境で真空乾燥した乾燥物、例えば粉体を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
 例えば、合材積層体16の導電性炭素の含有量は、純水を合材積層体16に浸透させ、次いでスパチュラ等で正極集電金属体14を剥がし、残部を120℃環境で真空乾燥させて測定対象物とすることができる。
 下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素と、導電層中の炭素とを含み、結着材中の炭素及び分散剤中の炭素のいずれをも含まない。
≪導電性炭素含有量の測定方法≫
[測定方法A]
 測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示差熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
 工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
  M1=(w1-w2)/w1×100 …(a1)
 工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
  M2=(w1-w3)/w1×100 …(a2)
[測定方法B]
 測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
 [燃焼条件]
 燃焼炉:1150℃
 還元炉:850℃
 ヘリウム流量:200mL/分
 酸素流量:25~30mL/分
[測定方法C]
 上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
 結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
 PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
 PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
 結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド溶媒により抽出した液体のフーリエ変換赤外スペクトルで、C-F結合由来の吸収を確認する方法で確かめることができる。同様にフッ素核の核磁気共鳴分光(19F-NMR)測定でも確かめることができる。
 結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
 分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
 これらの手法は下記複数の公知文献に記載されている。
 東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
 東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
≪導電性炭素の分析方法≫
 正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
 例えば、正極活物質層中の粒子を透過型電子顕微鏡における電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、例えば100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
 他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は正極活物質であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
 さらに他の方法としては、広がり抵抗顕微鏡(Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
 なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
 これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<体積密度>
 合材積層体16の体積密度は、2.2~2.7g/cmが好ましく、2.22~2.60g/cmがより好ましく、2.24~2.50g/cmがさらに好ましい。合材積層体16の体積密度が上記下限値以上であれば、体積容量密度を高めて、サイクル特性を高められる。合材積層体16の体積密度が上記上限値以下であれば、正極1を製造する際に過度な圧力でのプレスを要しない。このため、プレスによって、正極の変形又は破損をより抑制できる。
 合材積層体16の体積密度は、正極活物質粒子の粒子径、正極活物質層12の組成、導電層15の厚さ、正極製造時の加圧時の圧力等の組み合わせにより、調節できる。
 合材積層体16の体積密度は、例えば、以下の測定方法により測定できる。
 正極1及び正極集電金属体14の厚さをそれぞれマイクロゲージで測定し、これらの差から合材積層体16の厚みを算出する。正極1及び正極集電金属体14の厚さは、それぞれ任意の5点以上で測定した値の平均値とする。
 正極1を所定の面積となるように打ち抜いた測定試料の質量を測定し、予め測定した正極集電金属体14の質量を差し引いて、合材積層体16の質量を算出する。
 下記式(1)に基づいて、正極活物質層12の体積密度を算出する。
 体積密度(単位:g/cm)=合材積層体の質量(単位:g)/[(合材積層体の厚み(単位:cm)×測定試料の面積(単位:cm)]・・・(1)
<体積容量密度>
 合材積層体16の体積容量密度は、330~400mAh/cmであり、340~390mAh/cmが好ましく、350~380mAh/cmがより好ましい。合材積層体16の体積容量密度が上記下限値以上であれば、エネルギー密度を高めて、出力を高められる。合材積層体16の体積容量密度が上記上限値以下であれば、サイクル特性を高められる。
 合材積層体16の体積容量密度は、合材積層体16の体積密度、正極活物質層12の組成、導電層15の厚さ、正極製造時の加圧時の圧力等の組み合わせにより、調節できる。
 合材積層体16の体積容量密度は、例えば、図2に示すコインセル100を用い、以下の測定方法により測定できる。
 コインセル100は、電池ケース101と、封口板106と、ガスケット105と、正極102と、セパレータ104と、負極103と、非水電解液108と、を備える。
 電池ケース101は、上端に開口部を有するカップ形状である。封口板106は、絶縁材で構成されたガスケット105を介して、電池ケース101にかしめられて、電池ケース101の開口部を塞いでいる。
 正極102と負極103とセパレータ104とは、電池ケース101内に位置している。正極102と負極103とは、セパレータ104を介して対向している。非水電解液108は、電池ケース101と封口板106とで囲まれた内部空間に充填されている。
 コインセル100の製造方法を以下に説明する。
 直径14mmの円形、すなわちφ14サイズの正極102を得る。評価対象の正極が両面に合材積層体16を有する場合には、片面に純水を浸透させて合材積層体16を剥がし、片面のみに合材積層体16を有する正極(以下、「片面正極」と称することがある。)102とする。評価対象の正極が、片面のみに合材積層体16を有する場合には、これを片面正極102とする。
 片面正極102の質量を測定する。測定された片面正極102の質量から、φ14サイズの正極集電金属体14の質量を減じた値を質量A、すなわち合材積層体16の質量とする。正極集電金属体14のφ14サイズの質量は、片面正極102の両面の合材積層体16を剥がし、その質量を測定することで求められる。
 片面正極102を用いて、2016型コインセルを作製する。
 電池ケース101内にガスケット105を設置する。
 ガスケット105を設置した電池ケースである2016型ケース101内に、片面正極102を設置する。この際、合材積層体16を上方とする。片面正極102に対し、十分に浸透する量、例えば50~100μLの非水電解液108を滴下する。非水電解液108は、エチレンカーボネート3体積部とジエチルカーボネート7体積部とを混合した溶媒に、ヘキサフルオロリン酸リチウムを電解質として1モル/リットルの濃度で溶解した液体である。
 直径18mmの円形、すなわちφ18サイズに打ち抜いた材質がポリエチレンであり、厚さが30μmのセパレータ104を片面正極102の合材積層体16上に設置し、セパレータ104に対して、十分に浸透する量、例えば50~100μLの電解液を滴下する。Li金属箔を直径16mmの円形、すなわちφ16サイズに打ち抜いて、負極103とする。セパレータ104を介して、負極103を片面正極102に対向させて、負極103をセパレータ104上に載置する。
 電池ケース101の開口部に封口板106を被せ、ガスケット105を介して、封口板106を電池ケース101にかしめて、封止する。こうしてコインセル100を用いて電気容量(mAh/g)を測定する。
 コインセル100を充放電装置と接続し、電流値を0.1mAとし、電位(VvsLi/Li)が3.8Vとなるまで定電流充電を行う。その後、電位を3.8Vで維持し、電流値が0.01mAとなるまで定電圧充電を行い、満充電状態とする。満充電状態となった30分間の休止時間経過後に、電流値0.1mAにて、電位2.0Vとなるまで放電を行う。放電の際に得られた電気容量を質量Aで除して、質量容量密度(mAh/g)を得た。得られた質量容量密度に、上記(1)式で求められる体積密度(g/cm)を乗じて、体積容量密度(mAh/cm)を得る。
<正極の製造方法>
 本実施形態の正極1の製造方法は、正極活物質粒子を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程とを有する。
 例えば、正極活物質粒子及び溶媒を含む正極製造用組成物を、正極集電体11の導電層15上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する。これにより、導電層15と正極活物質層12との積層物である合材積層体16を、正極集電金属体14上に設けて、正極1とする。
 正極製造用組成物は、導電助剤を含んでもよい。正極製造用組成物は、結着材を含んでもよい。正極製造用組成物は、分散剤を含んでもよい。
 正極集電体11は、例えば、正極集電金属体14の片面又は両面に導電層15を形成して、製造したものでもよいし、市場から購入したものでもよい。
 正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
 正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール及び2-プロパノール等のアルコール、N-メチルピロリドン及びN,N-ジメチルホルムアミド等の鎖状又は環状アミド、アセトン等のケトンが例示できる。溶媒は、1種でもよく2種以上を併用してもよい。
(非水電解質二次電池)
 図3に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解液とを備える。非水電解質二次電池10は、さらにセパレータ2を備えてもよい。図中符号5は、外装体である。
 本実施形態において、正極1は、板状の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は、正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の表面には、導電層15が存在していてもよいし、導電層15が存在しなくてもよい。すなわち、正極集電金属体14が露出していてもよい。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
 負極3は、板状の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は、負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
 正極1、負極3およびセパレータ2の形状は、特に限定されない。例えば平面視矩形状でもよい。
 図3では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
<負極>
 負極活物質層32は、負極活物質を含む。負極活物質層32は、さらに結着材を含んでもよい。負極活物質層32は、さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
 負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は、導電助剤を含んでもよい。
 負極活物質及び導電助剤としては、例えば、天然黒鉛や人造黒鉛などの炭素材料、チタン酸リチウム、シリコン、及び一酸化シリコン、シリコン酸化物等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、及びカーボンナノチューブ等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。
 負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
 負極製造用組成物中の結着材としては、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-六フッ化プロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、ポリイミド等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
 負極製造用組成物中の溶媒としては、水及び有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール及び2-プロパノール等のアルコール、N-メチルピロリドン及びN,N-ジメチルホルムアミド等の鎖状又は環状アミド、アセトン等のケトンが例示できる。溶媒は、1種でもよく2種以上を併用してもよい。
 負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。
<セパレータ>
 セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解液を保持してもよい。
 セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、及びガラスファイバー等が例示できる。
 セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
 セパレータ2の厚さは、例えば、5~50μmとされる。
 セパレータ2は、可塑剤、酸化防止剤及び難燃剤の少なくとも1つを含んでもよい。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤及びポリフェノール系酸化防止剤等のフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ベンゾトリアゾール系酸化防止剤、ベンゾフェノン系酸化防止剤、トリアジン系酸化防止剤、及びサルチル酸エステル系酸化防止剤等が例示できる。この中でフェノール系酸化防止剤及びリン系酸化防止剤が好ましい。
<非水電解液>
 非水電解液は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、及び電気二重層キャパシタ等において公知の非水電解液を使用できる。
 非水電解質二次電池10の製造に用いる非水電解液は、有機溶媒と電解質と添加剤を含む。
 製造後、特に初期充電後の非水電解質二次電池10は、有機溶媒と電解質を含み、さらに添加剤に由来する残留物又は痕跡を含んでもよい。
 有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、及びメチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。
 電解質は、特に限定されず、例えば過塩素酸リチウム、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、へキサフルオロヒ酸リチウム、トリフルオロ酢酸リチウム、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメタンスルホニル)イミド等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。
 添加剤としては、硫黄原子及び窒素原子の一方又は両方を含む化合物Aが挙げられる。添加剤は、1種単独でもよいし、2種以上の組み合わせでもよい。
 化合物Aの例としては、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメタンスルホニル)イミドが挙げられる。
<非水電解質二次電池の製造方法>
 本実施形態の非水電解質二次電池の製造方法は、正極、セパレータ、負極、非水電解液、及び外装体等を公知の方法で組み立て、非水電解質二次電池を得る方法が挙げられる。
 本実施形態の非水電解質二次電池の製造方法の一例について説明する。例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製する。電極積層体をアルミラミネート袋等の外装体5に封入する。次いで、非水電解液を外装体5に注入し、外装体5を密閉して、非水電解質二次電池とする。
 本実施形態の正極は、正極集電金属体と合材積層体とを有し、合材積層体は導電層と正極活物質粒子を含む正極活物質層とを有し、導電層は導電性炭素を含み、正極活物質粒子は導電性炭素を含む活物質被覆部を有し、合材積層体中の導電性炭素の含有量及び合材積層体の体積容量密度が特定の範囲である。このような正極であることにより、エネルギー密度を高め、抵抗を低めて、サイクル特性を高められる。
 本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、及び各種用途のリチウムイオン二次電池として使用できる。
 本実施形態の非水電解質二次電池の使用形態は、特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、及び電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
 電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、及び非常電源用蓄電池システム等が挙げられる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(評価方法)
<サイクル特性:サイクル容量維持率>
 定格容量が1Ahとなるように作製したセルを用いてサイクル容量維持率の評価を下記(1)~(6)の手順で行った。なお、評価は常温(25℃)下で実施した。
(1)得られたセルに対して、0.2Cレート、すなわち、200mAで一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて終止電流0.05Cレート、すなわち、20mAで充電を行った。
(2)容量確認のための放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときの放電容量を基準容量とし、基準容量を1Cレートの電流値とした(すなわち、1000mAとした)。
(3)セルの3.0Cレート、すなわち、3000mAで一定電流にて終止電圧3.8Vで充電を行った後、10秒間休止し、この状態から3.0Cレートにて終止電圧2.0Vで放電を行い、10秒間休止した。
(4)(3)のサイクル試験を1000回繰り返した。
(5)(1)と同様の充電を実施した後に、(2)と同じ容量確認を実施した。
(6)(5)で測定された容量確認での放電容量をサイクル試験前の基準容量で除して百分率とする事で、1000サイクル後の容量維持率、すなわち表1におけるサイクル容量維持率(3C)とした。
 また、上記3.0Cレートに代えて、1.0Cレート、すなわち1000mAで上記(1)~(6)を行い、表1におけるサイクル容量維持率(1C)とした。
 サイクル容量維持率は、3.0Cレートという極めて高負荷な条件で評価している。すなわち、0.5Cレートや1.0Cレートというような条件で評価したサイクル容量維持率と比べ、サイクル容量維持率が低下しやすい条件である。
 例えば、非特許文献(Energies 2019, 12(23), 4507 Electrochemical Impedance Spectroscopy on the Performance Degradation of LiFePO4/Graphite Lithium-Ion Battery Due to Charge-Discharge Cycling under Different C-Rates、https://mdpi-res.com/d_attachment/energies/energies-12-04507/article_deploy/energies-12-04507.pdf?version=1574846791)には、1000サイクルでの最も激しい劣化は5Cレートよりも2Cレートと記載されており、2.0~3.0Cレート程度の場合、サイクル容量維持率が低下しやすい条件であることが知られている。
(使用材料)
<負極>
 以下の方法により、負極を製造した。
 負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
 得られた負極製造用組成物を、厚さ8μmの銅箔の両面上にそれぞれ塗工し、100℃で真空乾燥した後、2kNの荷重で加圧プレスして負極シートを得た。得られた負極シートを打ち抜き、負極とした。
<正極集電体>
 以下の方法により、正極集電体を製造した。
 カーボンブラック100質量部と、結着材であるポリフッ化ビニリデン40質量部と、溶媒であるN-メチルピロリドンとを混合してスラリーを得た。N-メチルピロリドンの使用量はスラリーを塗工するのに必要な量とした。
 得られたスラリーを厚さ15μmのアルミニウム箔、つまり正極集電金属体の表裏両面に、乾燥後の正極集電金属体の両面の導電層の厚さの合計が2μmとなるように、グラビア法で塗工し、乾燥し溶媒を除去して正極集電体とした。両面それぞれの導電層は、塗工量及び厚みが互いに均等になるように形成した。得られた正極集電体を用いた例については、表中の「導電層の有無」の欄を「あり」とした。
 なお、表中の「導電層の有無」のが「なし」の例は、導電層を設けていない正極集電体、すなわち、正極集電金属体のみを用いた。
<正極活物質粒子>
 正極活物質粒子として、リン酸鉄リチウムからなる芯部と炭素からなる活物質被覆部とを有する被覆粒子(以下「LFP被覆粒子」と称する。)を用いた。
≪正極活物質粒子の仕様≫
・平均粒子径:1.0μm。
・炭素含有量:表中に記載。
・被覆率:90%以上となるように調製されたもの。
<その他>
 導電助剤として、カーボンブラック又はカーボンナノチューブを用いた。カーボンブラック及びカーボンナノチューブは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。
 結着材として、ポリフッ化ビニリデンを用いた。
 溶媒として、N-メチルピロリドンを用いた。
<実施例1~5、比較例1~5>
 以下の方法で正極活物質層を形成した。
 正極活物質粒子、導電助剤(表中の配合量)、結着材1質量%及び溶媒であるN-メチルピロリドンをミキサーにて混合して正極製造用組成物を得た。但し、正極活物質粒子、導電助剤及び結着材の合計量を100質量%とした。溶媒の配合量は、正極製造用組成物を塗工するのに必要な量とした。各例において、導電助剤の配合量は、表中に記載の通りとした。
 得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した。正極集電体の両面の正極製造用組成物の塗工量の合計は20mg/cmとした。両面それぞれの正極活物質層は、塗工量及び厚みが互いに均等になるように形成した。得られた積層物を加圧プレスして正極シートを得た。
 加圧プレスのプレス圧によって、合材積層体の体積密度を調節した。得られた正極シートには、導電層と正極活物質層との積層物である合材積層体が正極集電金属体上に形成された。
 得られた正極シートを打ち抜き、正極とした。
 得られた正極について、合材積層体の導電性炭素の含有量、体積密度及び体積容量密度を測定し、その結果を表中に示す。
 以下の方法で、図3に示す構成の非水電解質二次電池を製造した。
 エチレンカーボネート(以下、「EC」と称する)とジエチルカーボネート(以下、「DEC」と称する)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてヘキサフルオロリン酸リチウムを1モル/リットルとなるように溶解して、非水電解液を調製した。
 各例の正極1と負極3とを、セパレータ2を介して交互に積層し、最外層が負極3である電極積層体を作製した。セパレータとしては、厚さ15μmのポリオレフィンフィルムを用いた。
 電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
 電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
 続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して、各例の非水電解質二次電池、つまりラミネートセルを製造した。
 得られた非水電解質二次電池について、サイクル維持率を測定し、その結果を表中に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明を適用した実施例1~5は、サイクル維持率(3C)が84%以上であった。中でも導電助剤を含まない実施例1~4のサイクル維持率(3C)は、87%以上であった。さらに、導電助剤を含まず、導電性炭素の含有量が多い実施例1のサイクル維持率(3C)は、94%であった。即ち、3.0Cレートという高レート条件下で1000サイクルもの充放電を繰り返しても容量低下が十分に抑制されており、極めて優れたサイクル特性が達成された。
 合材積層体中の導電性炭素の含有量が6.5質量%であり、体積容量密度が309.8~319.9mAh/cmである比較例1、3は、サイクル維持率(3C)が59~65%であった。
 合材積層体中の導電性炭素の含有量が2.5質量%である比較例2は、サイクル維持率(3C)が23%であった。
 合材積層体の体積容量密度が298.3Ah/cmである比較例4は、サイクル維持率(3C)が79%であった。
 合材積層体の体積容量密度が420.0Ah/cmである比較例5は、サイクル維持率(3C)が31%であった。
 なお、実施例1のサイクル維持率(1C)は99%であり、比較例2のサイクル維持率(1C)は97%であり、1.0Cレートという低レート条件下では両者のサイクル特性に大きな違いはなかった。すなわち、本願発明においては、3.0Cレートという高レート条件下で1000サイクルもの充放電を繰り返しても容量低下が十分に抑制されており、極めて優れたサイクル特性が達成されたことがわかった。
 これらの結果から、本発明を適用することで、サイクル維持率の向上を図れることを確認できた。
 1、102 正極
 2、104 セパレータ
 3、103 負極
 4、108 非水電解液
 5 外装体
 10 二次電池
 11 正極集電体
 12 正極活物質層
 13 正極集電体露出部
 14 正極集電金属体
 15 導電層
 16 合材積層体
 31 負極集電体
 32 負極活物質層
 33 負極集電体露出部
 101 電池ケース
 105 ガスケット
 106 封口板
 

Claims (5)

  1.  正極集電金属体と、前記正極集電金属体の少なくとも一方の面に存在する合材積層体とを有する正極であり、
     前記合材積層体は、正極活物質層と、導電層と、を有し、前記導電層は、前記正極集電金属体と前記正極活物質層との間に存在し、前記正極集電金属体の少なくとも一部を覆い、
     前記導電層は、導電性炭素を含み、
     前記正極活物質層は、1つ以上の正極活物質粒子を含み、
     前記正極活物質粒子の少なくとも一部は、正極活物質の芯部と、前記芯部の表面の少なくとも一部を覆う活物質被覆部とを有し、
     前記活物質被覆部は、導電性炭素を含み、
     前記合材積層体中の導電性炭素の総量は、前記合材積層体の総質量に対して0.5~3.0質量%であり、
     前記合材積層体における体積容量密度は、330~400mAh/cmである、非水電解質二次電池用正極。
  2.  前記正極活物質は、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含む、請求項1に記載の非水電解質二次電池用正極。
  3.  前記合材積層体の体積密度は、2.2~2.7g/cmである、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  請求項1~3のいずれか一項に記載の非水電解質二次電池用正極と、負極と、前記非水電解質二次電池用正極と前記負極との間に存在する非水電解質と、を備える、非水電解質二次電池。
  5.  請求項4に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
PCT/JP2023/010328 2022-03-16 2023-03-16 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム WO2023176929A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-041372 2022-03-16
JP2022041372 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176929A1 true WO2023176929A1 (ja) 2023-09-21

Family

ID=88023434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010328 WO2023176929A1 (ja) 2022-03-16 2023-03-16 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Country Status (1)

Country Link
WO (1) WO2023176929A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005739A1 (ja) * 2011-07-06 2013-01-10 昭和電工株式会社 リチウム二次電池用電極、リチウム二次電池及びリチウム二次電池用電極の製造方法
JP2014017199A (ja) * 2012-07-11 2014-01-30 Sharp Corp リチウム二次電池用電極およびその製造方法並びにリチウム二次電池およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005739A1 (ja) * 2011-07-06 2013-01-10 昭和電工株式会社 リチウム二次電池用電極、リチウム二次電池及びリチウム二次電池用電極の製造方法
JP2014017199A (ja) * 2012-07-11 2014-01-30 Sharp Corp リチウム二次電池用電極およびその製造方法並びにリチウム二次電池およびその製造方法

Similar Documents

Publication Publication Date Title
WO2024048656A1 (ja) 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023176895A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7138228B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7197670B2 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023176929A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023182271A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024048653A1 (ja) 非水電解質二次電池、電池モジュール、及び電池システム
WO2023176892A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7183464B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7149437B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024048735A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023176904A1 (ja) 非水電解質二次電池、電池モジュール、及び電池システム
WO2023182239A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024048784A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、および電池システム
WO2024053606A1 (ja) 非水電解質二次電池、電池モジュール、および電池システム
JP7181372B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023249066A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
WO2024009988A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
WO2022196815A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
JP2023141406A (ja) 非水電解質二次電池用正極の製造方法、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、正極製造用組成物
JP2023140733A (ja) 非水電解質二次電池の正極製造用組成物、非水電解質二次電池用正極、非水電解質二次電池、電池モジュール及び電池システム、並びに非水電解質二次電池用正極の製造方法
JP2023029333A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023141411A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023141414A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770882

Country of ref document: EP

Kind code of ref document: A1