WO2024048735A1 - 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム - Google Patents

非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム Download PDF

Info

Publication number
WO2024048735A1
WO2024048735A1 PCT/JP2023/031861 JP2023031861W WO2024048735A1 WO 2024048735 A1 WO2024048735 A1 WO 2024048735A1 JP 2023031861 W JP2023031861 W JP 2023031861W WO 2024048735 A1 WO2024048735 A1 WO 2024048735A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
material layer
current collector
Prior art date
Application number
PCT/JP2023/031861
Other languages
English (en)
French (fr)
Inventor
太郎 桃崎
輝 吉川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2024048735A1 publication Critical patent/WO2024048735A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, a battery module, and a battery system using the same.
  • a non-aqueous electrolyte secondary battery generally includes a positive electrode, a non-aqueous electrolyte, a negative electrode, and a separation membrane (separator) installed between the positive electrode and the negative electrode.
  • a positive electrode of a nonaqueous electrolyte secondary battery a positive electrode active material layer consisting of a composition containing a positive electrode active material containing lithium ions, a conductive agent, and a binder is fixed to the surface of a metal foil that is a current collector. What caused it is known.
  • positive electrode active materials containing lithium ions lithium transition metal composite oxides such as lithium cobalt oxide, lithium nickel oxide, and lithium manganate, and lithium phosphate compounds such as lithium iron phosphate have been put into practical use.
  • Patent Document 1 discloses that a current collector coating layer containing a conductive agent is provided on the surface of the current collector body, a positive electrode active material layer is provided thereon, and nickel cobalt lithium manganate (NCM) is used as the positive electrode active material.
  • NCM nickel cobalt lithium manganate
  • the difference between the surface roughness of the current collector body and the surface roughness of the current collector coating layer was set to 0.1 ⁇ m or more, and the porosity of the positive electrode active material layer was increased to 43 to 64%. An example is described in which the cycle characteristics were improved by doing so.
  • Positive electrode active materials with an olivine-type crystal structure such as lithium iron phosphate
  • oxide-based active materials such as NCM.
  • battery characteristics tend to be inadequate.
  • non-aqueous electrolyte secondary batteries it is known that the adhesion between the current collector and the positive electrode active material layer affects the battery characteristics. The adhesion between the current collector and the positive electrode active material layer in an electrolyte secondary battery has not been studied. Furthermore, it is desirable for non-aqueous electrolyte secondary batteries that the battery characteristics do not easily deteriorate even in high-temperature environments.
  • the present invention provides a positive electrode for non-aqueous electrolyte secondary batteries in which the positive electrode active material is a compound having an olivine crystal structure, and has good adhesion between the current collector and the positive electrode active material layer, and has good high-temperature deterioration resistance.
  • the purpose is to provide.
  • a positive electrode current collector and a positive electrode active material layer present on the positive electrode current collector A current collector coating layer containing a conductive material is present on at least a part of the surface of the positive electrode active material layer side of the positive electrode current collector,
  • the positive electrode active material layer includes a positive electrode active material and conductive carbon,
  • the positive electrode active material layer includes positive electrode active material particles, and the positive electrode active material particles include coated particles having a core portion that is the positive electrode active material and an active material coating portion containing conductive carbon
  • the positive electrode active material is a compound represented by the general formula LiFe x M (1-x) PO 4 (wherein 0 ⁇ x ⁇ 1, M is Co, Ni, Mn, Al, Ti, or Zr).
  • the porosity of the positive electrode active material layer is 40% or less, 39% or less, 38% or less, 25 to 40%, 30 to 39%, or 35 to 38%,
  • the content of the conductive carbon is 0.5 to 3.5% by mass, 1.0 to 3.0% by mass, 1.2 to 2.8% by mass with respect to the total mass of the positive electrode active material layer, or
  • the porosity of the positive electrode active material layer is 30 to 39%, and the content of the conductive carbon is 1.0 to 2.0% by mass with respect to the total mass of the positive electrode active material layer.
  • the positive electrode active material is a compound having an olivine crystal structure
  • the non-aqueous electrolyte secondary battery has good adhesion between the current collector and the positive electrode active material layer and has good high-temperature deterioration resistance. A positive electrode for use is obtained.
  • FIG. 1 is a cross-sectional view schematically showing an example of a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention.
  • 1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery according to the present invention.
  • FIG. 3 is a process diagram for explaining a method for measuring peel strength of a positive electrode active material layer.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the positive electrode for a non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the non-aqueous electrolyte secondary battery of the present invention. Note that FIGS. 1 and 2 are schematic diagrams for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one. The present invention will be described below with reference to embodiments.
  • the non-aqueous electrolyte secondary battery of this embodiment includes a positive electrode 1 (hereinafter also referred to as "positive electrode for non-aqueous electrolyte secondary battery"), a negative electrode 3, and a space between the positive electrode 1 and the negative electrode 3.
  • a non-aqueous electrolyte 4 is provided.
  • the positive electrode 1 of this embodiment includes a current collector (hereinafter referred to as "positive electrode current collector") 11 and a positive electrode active material layer 12.
  • the positive electrode active material layer 12 of this embodiment exists on both surfaces of the positive electrode current collector 11.
  • the positive electrode active material layer 12 may be present only on one surface of the positive electrode current collector 11.
  • the positive electrode current collector 11 includes a positive electrode current collector main body 14 and a current collector coating layer 15 that covers the surface of the positive electrode current collector main body 14 on the positive electrode active material layer 12 side.
  • Current collector coating layer 15 includes a conductive material. However, in the present invention, it is sufficient that the current collector coating layer 15 is present on at least a portion of the surface of the positive electrode current collector 11 on the positive electrode active material layer 12 side.
  • the positive electrode active material layer 12 includes a positive electrode active material and conductive carbon. It is preferable that the positive electrode active material layer 12 includes positive electrode active material particles, which are particles containing a positive electrode active material. The positive electrode active material particles preferably include coated particles having a core portion that is a positive electrode active material and an active material coating portion containing conductive carbon. It is preferable that the positive electrode active material layer 12 further contains a binder. The positive electrode active material layer 12 may further contain a conductive additive.
  • the term "conductive additive" refers to a conductive material having a granular or fibrous shape that is mixed with positive electrode active material particles when forming a positive electrode active material layer, Refers to a conductive material that exists in the positive electrode active material layer in the form of a connection.
  • the conductive aid contains conductive carbon.
  • the conductive aid exists independently of the positive electrode active material particles.
  • the positive electrode active material layer 12 may further contain a dispersant.
  • the content of the positive electrode active material particles is preferably 80.0 to 99.9% by mass, more preferably 90 to 99.5% by mass.
  • the thickness of the positive electrode active material layer (when positive electrode active material layers are present on both sides of the positive electrode current collector, the total thickness of the two layers located on both sides) is preferably 20 to 500 ⁇ m, and 25 to 300 ⁇ m. The thickness is more preferably 30 to 200 ⁇ m.
  • the thickness of the positive electrode active material layer is at least the lower limit of the above range, the energy density of a battery incorporating the positive electrode tends to be high, and when it is at most the upper limit of the above range, the electrode has an excellent effect of reducing internal resistance.
  • the positive electrode active material particles contain a positive electrode active material. It is preferable that at least some of the positive electrode active material particles are coated particles having a core portion made of the positive electrode active material and an active material coating portion containing conductive carbon. In the coated particles, a coating portion (hereinafter also referred to as “active material coating portion”) containing a conductive material is present on the surface of the positive electrode active material particle. Since the positive electrode active material particles have an active material coating portion, battery capacity and cycle characteristics are further improved. For example, the active material coating portion is formed in advance on the surface of the positive electrode active material particles, and is present on the surface of the positive electrode active material particles in the positive electrode active material layer.
  • the active material coating portion in this specification is not newly formed in a step after the step of preparing the composition for producing a positive electrode.
  • the active material coating portion is not easily lost in the steps after the preparation stage of the composition for producing the positive electrode.
  • the active material coating portion still covers the surface of the positive electrode active material particles.
  • the active material coating part will be removed from the surface of the positive electrode active material particles. is covered.
  • the active material coating part will not cover the surface of the positive electrode active material particles. Covered.
  • the active material coating portion preferably exists on 50% or more, preferably 70% or more, and preferably 90% or more of the entire outer surface area of the positive electrode active material particles. That is, the coated particles have a core that is a positive electrode active material and an active material coating that covers the surface of the core, and the area (coverage rate) of the active material coating with respect to the surface area of the core is 50%. It is preferably at least 70%, more preferably at least 90%, even more preferably at least 90%.
  • Examples of the method for producing the coated particles include a sintering method and a vapor deposition method.
  • Examples of the sintering method include a method in which a composition for producing an active material (for example, a slurry) containing particles of a positive electrode active material and an organic substance is fired at 500 to 1000° C. for 1 to 100 hours under atmospheric pressure.
  • Organic substances added to the composition for producing active materials include salicylic acid, catechol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, hexahydroxybenzene, benzoic acid, phthalic acid, terephthalic acid, phenylalanine, water-dispersible phenolic resin, sucrose,
  • sugars such as glucose and lactose
  • carboxylic acids such as malic acid and citric acid
  • unsaturated monohydric alcohols such as allyl alcohol and propargyl alcohol, ascorbic acid, and polyvinyl alcohol.
  • the impact sintering coating method is performed, for example, by the following procedure.
  • a burner is ignited using a mixture of fuel hydrocarbon and oxygen, and the mixture is ignited in a combustion chamber to generate a flame.
  • the flame temperature is lowered by reducing the amount of oxygen to the fuel to be less than the equivalent amount for complete combustion.
  • a powder supply nozzle is installed at the rear of the frame, and a solid-liquid-gas three-phase mixture consisting of the organic substance to be coated, a solvent dissolved therein, and combustion gas is injected from the powder supply nozzle.
  • the temperature of the injected fine powder is lowered, and the injected fine powder is accelerated below the transformation temperature, sublimation temperature, or evaporation temperature of the powder material, causing instantaneous sintering by impact. , coating particles of positive electrode active material.
  • the vapor deposition method include vapor deposition methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), and liquid deposition methods such as plating.
  • the coverage rate can be measured by the following method. First, particles in the positive electrode active material layer are analyzed by energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. Specifically, the outer periphery of the positive electrode active material particles in the TEM image is subjected to elemental analysis using EDX. Elemental analysis is performed on carbon to identify the carbon that coats the positive electrode active material particles. A portion where the carbon coating portion has a thickness of 1 nm or more is defined as the coating portion, and the ratio of the coating portion to the entire circumference of the observed positive electrode active material particles is determined, and this can be taken as the coverage rate.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the measurement can be performed on, for example, 10 positive electrode active material particles, and the average value of these can be taken as the coverage.
  • the active material coating portion is a layer having a thickness of 1 nm to 100 nm, preferably 5 nm to 50 nm, formed directly on the surface of the particle (core portion) composed only of the positive electrode active material. This thickness can be confirmed by TEM-EDX used for measuring the coverage ratio described above.
  • the coverage ratio of the coated particles (the area of the active material coated portion relative to the surface area of the core portion) is particularly preferably 100%. Note that this coverage rate is an average value for all the positive electrode active material particles present in the positive electrode active material layer, and as long as this average value is greater than or equal to the above lower limit, the positive electrode active material particles that do not have an active material coating part This does not exclude the presence of trace amounts of.
  • the amount thereof is preferably relative to the total amount of positive electrode active material particles present in the positive electrode active material layer. is 30% by mass or less, more preferably 20% by mass or less, particularly preferably 10% by mass or less. In one embodiment, it is preferred that no single particles are present in the positive electrode active material layer.
  • the conductive material constituting the active material covering portion contains carbon (conductive carbon).
  • the conductive material may be made of only carbon, or may be a conductive organic compound containing carbon and an element other than carbon. Examples of other elements include nitrogen, hydrogen, and oxygen.
  • the content of other elements is preferably 10 atomic % or less, more preferably 5 atomic % or less. It is more preferable that the conductive material constituting the active material coating portion consists only of carbon.
  • the content of the conductive material is preferably 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, and 0.1 to 4.0% by mass, more preferably 0.5 to 3.0% by mass, with respect to the total mass of the positive electrode active material particles having the active material coating portion. More preferably 7 to 2.5% by mass. When it is below the upper limit of the above range, the conductive material is difficult to peel off from the surface of the positive electrode active material particles and is difficult to remain as independent conductive aid particles.
  • Conductive particles that do not contribute to the conductive path become the starting point of self-discharge of the battery or cause undesirable side reactions.
  • the active material coating portion is made of carbon, it is preferably amorphous carbon.
  • the method for producing positive electrode active material particles having amorphous carbon as an active material coating is not particularly limited, and any known method can be used.
  • a method is to add graphitizable resin or non-graphitizable resin, naphthalene, coal tar, binder pitch, etc. as a carbon precursor to the particles of the positive electrode active material, and then heat-treat the particles at 600 to 1300°C. Can be mentioned.
  • the particles of the positive electrode active material are brought into a fluidized state, and a chemical vapor deposition process is performed at a heat treatment temperature of 600 to 1300°C using a hydrocarbon compound such as methanol, ethanol, benzene or toluene as a chemical vapor deposition carbon source,
  • a hydrocarbon compound such as methanol, ethanol, benzene or toluene
  • Examples include a method of forming a carbon film on the surface of particles of a positive electrode active material. In the active material coated portion formed by these methods, most of the carbon constituting the active material coated portion is amorphous.
  • the active material coating is formed using carbon nanotubes, graphene, etc., which have high conductivity and high crystallinity, instead of amorphous carbon, the resistance of the active material coating will be too low, making it difficult to perform charge/discharge cycles. When this is done, side reactions with the electrolyte increase and the life characteristics of the battery tend to deteriorate. In other words, when the active material coating part is made of amorphous carbon, the resistance of the active material coating part does not become too low, suppressing side reactions with the electrolyte during charge/discharge cycles, and extending the life of the battery. Characteristics can be easily improved.
  • the abundance ratio of amorphous carbon is preferably higher than the abundance ratio of crystalline carbon.
  • the positive electrode active material particles include a compound (I) represented by the general formula LiFe x M (1-x) PO 4 (hereinafter also referred to as "general formula (I)").
  • Compound (I) is a compound having an olivine crystal structure. In general formula (I), 0 ⁇ x ⁇ 1.
  • M is Co, Ni, Mn, Al, Ti or Zr.
  • a small amount of Fe and M can also be replaced with other elements to the extent that the physical properties do not change. Even if the compound (I) represented by the general formula (I) contains a trace amount of metal impurity, the effects of the present invention are not impaired.
  • the compound (I) represented by the general formula (I) is preferably lithium iron phosphate (hereinafter also simply referred to as "lithium iron phosphate”) represented by LiFePO 4 .
  • lithium iron phosphate particles (hereinafter also referred to as "coated lithium iron phosphate particles") in which at least part of the surface is coated with an active material containing a conductive material are more preferable. It is more preferable that the entire surface of the lithium iron phosphate particles be coated with a conductive material from the viewpoint of better battery capacity and cycle characteristics.
  • the coated lithium iron phosphate particles can be produced by a known method.
  • the active material coating portion of the coated lithium iron phosphate particles is preferably composed of low-crystalline carbon in which the abundance ratio of amorphous carbon is higher than the abundance ratio of crystalline carbon.
  • the manufacturing method for obtaining lithium iron phosphate particles coated with low crystallinity carbon examples include a method of adding the carbon precursor to lithium iron phosphate particles and heat-treating the particles, A method of forming a carbon film on the surface by performing a chemical vapor deposition treatment using the chemical vapor deposition carbon source while flowing the iron lithium particles is exemplified.
  • the particle size of the iron phosphate particles can be adjusted by adjusting the grinding time in the grinding step.
  • the amount of carbon coating the lithium iron phosphate powder can be adjusted by adjusting the temperature and time of the carbon coating treatment. It is desirable to remove uncoated carbon particles through subsequent steps such as classification and washing.
  • the positive electrode active material particles may contain one or more other positive electrode active material particles containing a positive electrode active material other than the compound (I) represented by the general formula (I).
  • the other positive electrode active material is preferably a lithium transition metal composite oxide.
  • Examples include non-stoichiometric compounds in which part of is replaced with a metal element.
  • the metal element include one or more selected from the group consisting of Mn, Mg, Ni, Co, Cu, Zn, and Ge.
  • the active material coating portion may be present on at least a portion of the surface of another positive electrode active material particle.
  • the content of the compound represented by the general formula (I) with respect to the total mass of the positive electrode active material particles is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more. It may be 100% by mass.
  • the content of the compound represented by the general formula (I) is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and 90 to 100% by mass with respect to the total mass of the positive electrode active material particles. More preferred.
  • the content of coated lithium iron phosphate particles is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more with respect to the total mass of the positive electrode active material particles. is even more preferable. It may be 100% by mass.
  • the content of coated lithium iron phosphate particles is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and 90 to 100% by mass, based on the total mass of the positive electrode active material particles. 100% by mass is more preferred.
  • the thickness of the active material coating portion of the positive electrode active material particles is preferably 1 to 100 nm.
  • the thickness of the active material coating portion of the positive electrode active material particles can be measured by a method of measuring the thickness of the active material coating portion in a transmission electron microscope (TEM) image of the positive electrode active material particles.
  • the thickness of the active material coating portion present on the surface of the positive electrode active material particles may not be uniform. It is preferable that an active material coating portion with a thickness of 1 nm or more exists on at least a portion of the surface of the positive electrode active material particles, and the maximum thickness of the active material coating portion is 100 nm or less.
  • the average particle diameter of the positive electrode active material particles is preferably 0.1 to 20.0 ⁇ m, more preferably 0.5 to 15.0 ⁇ m.
  • the average particle diameter of each may be within the above range.
  • the average particle diameter is equal to or larger than the lower limit of the above range, the composition for producing a positive electrode tends to have better dispersibility, and aggregates tend to be less likely to occur.
  • the specific surface area will be appropriately large, making it easy to ensure an area for reaction during charging and discharging.
  • the average particle diameter of the positive electrode active material particles in this specification is a volume-based median diameter measured using a particle size distribution analyzer based on a laser diffraction/scattering method.
  • the binder contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyvinyl alcohol, and polyvinyl. Examples include acetal, polyethylene oxide, polyethylene glycol, carboxymethyl cellulose, polyacrylonitrile, and polyimide. One type of binder may be used, or two or more types may be used in combination. Preferably, the binder contains polyvinylidene fluoride.
  • the content of the binder is preferably 0.1 to 4.0% by mass, and 0.3 to 3.0% by mass based on the total mass of the positive electrode active material layer. It is more preferably 0.5% to 2.0% by mass, and even more preferably 0.5 to 2.0% by mass.
  • the content of the binder is at least the lower limit of the above range, the positive electrode active material is sufficiently bound and the mechanical strength of the positive electrode is obtained. If it is below the upper limit, the proportion of substances that do not contribute to ion conduction will be reduced, and the internal resistance of the electrode can be reduced.
  • Conductivity aid As the conductive agent contained in the positive electrode active material layer 12, a known conductive agent can be used. Examples of the conductive aid containing conductive carbon include graphite, graphene, hard carbon, Ketjenblack, acetylene black, and carbon nanotubes. One type of conductive aid may be used, or two or more types may be used in combination.
  • the content of the conductive aid in the positive electrode active material layer is, for example, preferably less than 3 parts by mass, more preferably less than 2 parts by mass, and even more preferably 1 part by mass or less, based on 100 parts by mass of the total mass of the positive electrode active material.
  • the conductive agent is not contained, and it is desirable that there be no independent conductive agent particles (for example, independent carbon particles).
  • the content of the conductive support agent is at most the above upper limit, a positive electrode active material layer with few reactive active sites can be formed.
  • the lower limit of the content of the conductive support agent is appropriately determined depending on the type of the conductive support agent, and is, for example, 0.0% relative to the total mass of the positive electrode active material layer. It is considered to be more than 1% by mass.
  • the expression that the positive electrode active material layer "does not contain a conductive additive" means that it does not substantially contain it, and does not exclude that it contains it to the extent that it does not affect the effects of the present invention. For example, if the content of the conductive additive is 0.1% by mass or less with respect to the total mass of the positive electrode active material layer, it can be determined that the conductive additive is not substantially contained.
  • Conductive additive particles that do not contribute to the conductive path become a source of self-discharge in the battery and cause undesirable side reactions.
  • the dispersant contained in the positive electrode active material layer 12 is an organic substance, and examples thereof include polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, and polyvinyl formal. One type of dispersant may be used, or two or more types may be used in combination.
  • the dispersant contributes to improving the dispersibility of particles in the positive electrode active material layer. On the other hand, if the content of the dispersant is too large, the internal resistance of the electrode tends to increase.
  • the content of the dispersant is preferably 0.5% by mass or less, more preferably 0.2% by mass or less with respect to the total mass of the positive electrode active material layer.
  • the lower limit of the content of the dispersant is preferably 0.01% by mass or more, more preferably 0.05% by mass or more based on the total mass of the positive electrode active material layer.
  • the content of the dispersant is preferably 0.01 to 0.5% by mass, more preferably 0.05 to 0.2% by mass.
  • the positive electrode current collector body 14 is made of a metal material. Examples of the metal material include conductive metals such as copper, aluminum, titanium, nickel, and stainless steel.
  • the positive electrode current collector body 14 is a foil (metal foil) made of a metal material, and may include an oxide film formed on the surface.
  • the thickness of the positive electrode current collector body 14 is, for example, preferably 8 to 40 ⁇ m, more preferably 10 to 25 ⁇ m.
  • the thickness of the positive electrode current collector main body 14 and the thickness of the positive electrode current collector 11 can be measured using a micrometer. An example of a measuring device is the product name "MDH-25M" manufactured by Mitutoyo Corporation.
  • a current collector coating layer 15 is present on at least a portion of the surface of the positive electrode current collector body 14 .
  • Current collector coating layer 15 includes a conductive material.
  • “at least a portion of the surface” means 10% to 100%, preferably 30% to 100%, more preferably 50% to 100% of the surface area of the positive electrode current collector body.
  • the conductive material in the current collector coating layer 15 preferably contains carbon (conductive carbon). A conductive material consisting only of carbon is more preferable.
  • the current collector coating layer 15 is preferably a coating layer containing carbon particles such as carbon black and a binder. Examples of the binding material for the current collector coating layer 15 include those similar to those for the positive electrode active material layer 12.
  • the positive electrode current collector 11 in which the surface of the positive electrode current collector main body 14 is coated with a current collector coating layer 15 is prepared by, for example, applying a composition for a current collector coating layer containing a conductive material, a binder, and a solvent using a gravure method. It can be manufactured by coating the surface of the positive electrode current collector body 14 using a known coating method such as, and drying to remove the solvent.
  • the thickness of the current collector coating layer 15 is preferably 0.01 to 7.0 ⁇ m, more preferably 0.1 to 5.0 ⁇ m, and even more preferably 0.2 to 2.0 ⁇ m. Within the above range, a uniform coating layer without cracks or pinholes can be formed, and an increase in battery weight due to film thickness and internal resistance of the electrode can be reduced.
  • the thickness of the current collector coating layer can be measured by a method of measuring the thickness of the coating layer in a transmission electron microscope (TEM) image or a scanning electron microscope (SEM) image of a cross section of the current collector coating layer. The thickness of the current collector coating layer does not have to be uniform.
  • a current collector coating layer whose thickness is equal to or greater than the lower limit of the range is present on at least a portion of the surface of the positive electrode current collector body 14, and the maximum thickness of the current collector coating layer is equal to or less than the upper limit of the range. It is preferable that When the current collector coating layer 15 is present on both sides of the positive electrode current collector main body 14, the average value of both may be within the above range.
  • the positive electrode active material layer 12 contains conductive carbon.
  • the content of conductive carbon is 0.5 to 3.5% by mass, preferably 1.0 to 3.0% by mass, and 1.0 to 2.8% by mass with respect to the total mass of the positive electrode active material layer. %, more preferably 1.0 to less than 2.5% by weight, and particularly preferably 1.0 to 2.0% by weight.
  • the content of conductive carbon in the positive electrode active material layer is at least the lower limit of the above range, good conductive path formation and low resistance properties are achieved. If it is below the upper limit, there will be less isolated conductive carbon, and a positive electrode active material layer with fewer reactive active sites can be formed.
  • the content of conductive carbon with respect to the total mass of the positive electrode active material layer can be calculated based on the carbon content and amount of the active material and the carbon content and amount of the conductive additive. Alternatively, it can be measured using the following ⁇ Measurement method for conductive carbon content ⁇ using a dried product (the dried product is a powder) obtained by peeling off the positive electrode active material layer from the positive electrode and vacuum-drying it in a 120°C environment (the dried product is a powder). .
  • a powder obtained by peeling off the outermost surface of the positive electrode active material layer at a depth of several micrometers using a spatula or the like can be vacuum-dried in a 120° C. environment and used as a measurement target.
  • the content of conductive carbon measured by the following ⁇ Measurement method for conductive carbon content ⁇ includes carbon in the active material coating and carbon in the conductive agent, carbon in the binder, and carbon in the dispersant. does not contain carbon.
  • ⁇ Measurement method for conductive carbon content [Measurement method A]
  • the object to be measured is mixed uniformly, a sample (mass w1) is weighed, and a thermogravimetric differential thermal analysis (TG-DTA) measurement is performed according to the following steps A1 and A2 to obtain a TG curve.
  • the following first weight loss amount M1 (unit: mass %) and second weight loss amount M2 (unit: mass %) are determined from the obtained TG curve.
  • the content of conductive carbon (unit: mass %) is obtained by subtracting M1 from M2.
  • Step A2 Immediately after step A1, the temperature was lowered from 600°C at a rate of 10°C/min, and after being held at 200°C for 10 minutes, the measurement gas was completely replaced with oxygen from argon, and an oxygen stream of 100 mL/min was added.
  • the second weight loss amount M2 ( Unit: mass %).
  • M2 (w1-w3)/w1 ⁇ 100...(a2)
  • [Measurement method B] Mix the measurement object uniformly, weigh 0.0001 mg of the sample accurately, burn the sample under the following combustion conditions, quantify the generated carbon dioxide with a CHN elemental analyzer, and calculate the total carbon content M3 ( Unit: mass%). Further, the first weight loss amount M1 is determined by the procedure of step A1 of the measurement method A. The content of conductive carbon (unit: mass %) is obtained by subtracting M1 from M3.
  • Combustion conditions Combustion furnace: 1150°C Reduction furnace: 850°C Helium flow rate: 200mL/min Oxygen flow rate: 25-30mL/min
  • the binder is polyvinylidene fluoride (PVDF: the molecular weight of the monomer (CH 2 CF 2 ) is 64), the content of fluoride ions (F - ) measured by combustion ion chromatography using the tubular combustion method ( (unit: mass %), the atomic weight of fluorine (19) of the monomer constituting PVDF, and the atomic weight (12) of carbon constituting PVDF using the following formula.
  • PVDF polyvinylidene fluoride
  • the fact that the binder is polyvinylidene fluoride can be confirmed by measuring the Fourier transform infrared spectrum of the sample or the liquid extracted from the sample with N,N-dimethylformamide solvent and confirming the absorption derived from the C-F bond. be able to. Similarly, it can be confirmed by nuclear magnetic resonance spectroscopy ( 19 F-NMR) measurement of fluorine nuclei.
  • the binder content (unit: mass %) and carbon content (unit: mass %) corresponding to the molecular weight can be determined to determine the origin of the binder.
  • the carbon amount M4 can be calculated.
  • the conductive carbon content (unit: mass %) can be obtained by subtracting M4 from M3 and further subtracting the amount of carbon derived from the dispersant.
  • the conductive carbon that constitutes the active material coating portion of the positive electrode active material and the conductive carbon that is a conductive aid can be distinguished by the following analysis method.
  • TEM-EELS transmission electron microscopy electron energy loss spectroscopy
  • particles in which a carbon-derived peak around 290 eV exists only near the particle surface are positive electrode active materials
  • Particles in which carbon-derived peaks exist even inside the particles can be determined to be conductive aids.
  • “near the particle surface” means a region up to a depth of approximately 100 nm from the particle surface
  • inside the particle means a region inside the vicinity of the particle surface.
  • Another method is to perform mapping analysis of particles in the positive electrode active material layer by Raman spectroscopy, and particles in which the peaks of carbon-derived G-band and D-band and oxide crystals derived from the positive electrode active material are simultaneously observed are Particles that are positive electrode active material particles that are the coated particles and in which only G-band and D-band are observed can be determined to be conductive additives.
  • Another method is to observe the cross section of the positive electrode active material layer using a scanning spread resistance microscope, and if there is a part on the particle surface with lower resistance than the inside of the particle, the part with lower resistance is the active material. It can be determined that it is conductive carbon present in the coating. A portion that exists independently other than such particles and has a low resistance can be determined to be a conductive aid.
  • trace amounts of carbon that can be considered as impurities and trace amounts of carbon that are unintentionally peeled off from the surface of the positive electrode active material during manufacturing are not determined to be conductive additives. Using these methods, it can be confirmed whether or not a conductive additive made of a carbon material is included in the positive electrode active material layer.
  • the method for manufacturing the positive electrode 1 of the present embodiment includes a composition preparation step of preparing a positive electrode manufacturing composition containing a positive electrode active material, and a coating step of coating the positive electrode manufacturing composition onto the positive electrode current collector 11.
  • the positive electrode 1 can be manufactured by a method in which a positive electrode manufacturing composition containing a positive electrode active material and a solvent is applied onto the positive electrode current collector 11, dried, and the solvent is removed to form the positive electrode active material layer 12.
  • the composition for producing a positive electrode may include a conductive additive.
  • the composition for producing a positive electrode may include a binder.
  • the composition for producing a positive electrode may also contain a dispersant.
  • the thickness of the positive electrode active material layer 12 can be adjusted by sandwiching a laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11 between two flat jigs and applying pressure uniformly in the thickness direction.
  • a method of applying pressure using a roll press machine can be used.
  • the pressing force (press pressure) when pressing the laminate is, for example, preferably a linear pressure of 0.6 to 2.5 kN/m, more preferably 1.0 to 2.4 kN/m.
  • the solvent of the composition for producing a positive electrode is preferably a non-aqueous solvent.
  • examples include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone.
  • One type of solvent may be used, or two or more types may be used in combination.
  • a non-aqueous electrolyte secondary battery 10 of this embodiment shown in FIG. 2 includes a positive electrode 1 for a non-aqueous electrolyte secondary battery of this embodiment, a negative electrode 3, and a non-aqueous electrolyte 4.
  • the non-aqueous electrolyte secondary battery 10 may further include a separator 2.
  • Reference numeral 5 in the figure is an exterior body.
  • the positive electrode 1 includes a plate-like (sheet-like) positive electrode current collector 11 and positive electrode active material layers 12 provided on both surfaces of the positive electrode current collector 11 .
  • the positive electrode active material layer 12 exists on a part of the surface of the positive electrode current collector 11 .
  • the edge of the surface of the positive electrode current collector 11 is a positive electrode current collector exposed portion 13 where the positive electrode active material layer 12 does not exist.
  • the current collector coating layer 15 may be present on the surface of the positive electrode current collector exposed portion 13, or the current collector coating layer 15 may not be present. That is, the positive electrode current collector main body 14 may be exposed.
  • a terminal tab (not shown) is electrically connected to an arbitrary location on the positive electrode current collector exposed portion 13 .
  • the negative electrode 3 includes a plate-like (sheet-like) negative electrode current collector 31 and negative electrode active material layers 32 provided on both surfaces thereof.
  • the negative electrode active material layer 32 exists on a part of the surface of the negative electrode current collector 31 .
  • the edge of the surface of the negative electrode current collector 31 is a negative electrode current collector exposed portion 33 where the negative electrode active material layer 32 does not exist.
  • a terminal tab (not shown) is electrically connected to an arbitrary location on the negative electrode current collector exposed portion 33 .
  • the shapes of the positive electrode 1, negative electrode 3, and separator 2 are not particularly limited. For example, it may have a rectangular shape in plan view.
  • FIG. 2 typically shows a structure in which negative electrode/separator/positive electrode/separator/negative electrode are laminated in this order, the number of electrodes can be changed as appropriate.
  • One or more positive electrodes 1 may be used, and any number of positive electrodes 1 may be used depending on the desired battery capacity.
  • the number of negative electrodes 3 and separators 2 is one more than the number of positive electrodes 1, and the negative electrodes 3 and separators 2 are stacked so that the outermost layer is the negative electrode 3.
  • Negative electrode active material layer 32 contains a negative electrode active material.
  • the negative electrode active material layer 32 may further include a binder.
  • the negative electrode active material layer 32 may further contain a conductive additive.
  • the shape of the negative electrode active material is preferably particulate.
  • the negative electrode 3 is prepared by preparing a negative electrode manufacturing composition containing a negative electrode active material, a binder, and a solvent, coating this on the negative electrode current collector 31, drying it, and removing the solvent to form the negative electrode active material. It can be manufactured by a method of forming layer 32.
  • the composition for producing a negative electrode may also contain a conductive additive.
  • Examples of the negative electrode active material and conductive aid include carbon materials, lithium titanate, silicon, and silicon monoxide.
  • Examples of the carbon material include graphite, graphene, hard carbon, Ketjen black, acetylene black, and carbon nanotubes.
  • the negative electrode active material and the conductive aid may be used alone or in combination of two or more.
  • the binder in the negative electrode manufacturing composition includes polyacrylic acid, lithium polyacrylate, polyvinylidene fluoride, polyvinylidene fluoride-propylene hexafluoride copolymer, styrene-butadiene rubber, polyvinyl alcohol, polyethylene oxide, polyethylene glycol. , carboxymethyl cellulose, polyacrylonitrile, and polyimide.
  • the binder may be used alone or in combination of two or more.
  • the solvent in the composition for producing a negative electrode include water and organic solvents.
  • organic solvents examples include alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; linear or cyclic amides such as N-methylpyrrolidone and N,N-dimethylformamide; and ketones such as acetone.
  • the solvent may be used alone or in combination of two or more.
  • the total content of the negative electrode active material and the conductive additive is preferably 80.0 to 99.9% by mass, more preferably 85.0 to 98.0% by mass.
  • a separator 2 is placed between the negative electrode 3 and the positive electrode 1 to prevent short circuits and the like.
  • the separator 2 may hold a non-aqueous electrolyte 4, which will be described later.
  • the separator 2 is not particularly limited, and examples include porous polymer membranes, nonwoven fabrics, and glass fibers.
  • An insulating layer may be provided on one or both surfaces of separator 2.
  • the insulating layer is preferably a layer having a porous structure in which insulating fine particles are bound with a binder for an insulating layer.
  • the thickness of the separator 2 is, for example, 5 to 30 ⁇ m.
  • the separator 2 may contain at least one of various plasticizers, antioxidants, and flame retardants.
  • antioxidants phenolic antioxidants such as hindered phenolic antioxidants, monophenolic antioxidants, bisphenol antioxidants, and polyphenol antioxidants; hindered amine antioxidants; phosphorus oxidation Examples include inhibitors; sulfur-based antioxidants; benzotriazole-based antioxidants; benzophenone-based antioxidants; triazine-based antioxidants; and salicylic acid ester-based antioxidants. Phenolic antioxidants and phosphorus antioxidants are preferred.
  • Non-aqueous electrolyte (non-aqueous electrolyte)
  • the non-aqueous electrolyte 4 fills the space between the positive electrode 1 and the negative electrode 3.
  • known nonaqueous electrolytes can be used in lithium ion secondary batteries, electric double layer capacitors, and the like.
  • the non-aqueous electrolyte used to manufacture the non-aqueous electrolyte secondary battery 10 contains an organic solvent and an electrolyte. It may further contain additives.
  • the non-aqueous electrolyte secondary battery 10 after manufacture contains an organic solvent and an electrolyte salt, and may also contain residues or traces derived from additives.
  • the organic solvent preferably has resistance to high voltage.
  • polar solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, or mixtures of two or more of these polar solvents.
  • the electrolyte is not particularly limited, and includes, for example, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium trifluoroacetate, lithium bis(fluorosulfonyl)imide, and lithium bis(trifluoromethanesulfonyl).
  • a salt containing lithium such as imide, or a mixture of two or more of these salts.
  • the additive examples include compounds containing one or both of a sulfur atom and a nitrogen atom.
  • the additives may be used alone or in combination of two or more.
  • Examples of the method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment include a method in which a positive electrode, a separator, a negative electrode, a non-aqueous electrolyte, an exterior body, and the like are assembled by a known method to obtain a non-aqueous electrolyte secondary battery.
  • An example of the method for manufacturing the non-aqueous electrolyte secondary battery of this embodiment will be described. For example, an electrode laminate in which positive electrodes 1 and negative electrodes 3 are alternately laminated with separators 2 in between is produced. The electrode laminate is enclosed in an exterior body 5 such as an aluminum laminate bag. Next, the non-aqueous electrolyte 4 is injected into the exterior body, and the exterior body 5 is sealed to form a non-aqueous electrolyte secondary battery.
  • the positive electrode active material layer 12 is a porous layer, and its porosity (hereinafter referred to as "porosity”, “porosity” or “porosity”) is 40% or less, and 39% or less. is preferable, and 38% or less is more preferable.
  • porosity is 40% or less, and 39% or less. is preferable, and 38% or less is more preferable.
  • the adhesion between the current collector coating layer and the positive electrode active material layer is excellent.
  • the adhesion can be increased so that the interface between the current collector coating layer and the positive electrode active material layer does not peel off and cohesive failure of the positive electrode active material layer occurs.
  • the lower limit of the porosity of the positive electrode active material layer is not particularly limited, but from the viewpoint of ionic conduction, it is preferably 25% or more, more preferably 30% or more, and even more preferably 35% or more. preferable.
  • the upper limit value and lower limit value can be arbitrarily combined.
  • the porosity of the positive electrode active material is preferably 25 to 40%, more preferably 30 to 29%, and even more preferably 35 to 38%. Further, the porosity may be 30 to 39%.
  • the porosity means "the percentage occupied by the volume of voids per unit volume of the positive electrode active material layer.”
  • the porosity in this specification is a value measured by the following measurement method. [Method of measuring porosity]
  • the porosity is obtained from the volume density of the electrode, the weight ratio of the electrode components, and the true density.
  • the porosity of a positive electrode active material layer made of a positive electrode active material, a conductive additive, and a binder is determined by the following formula (b1).
  • Porosity (%) (1-volume density of positive electrode/true density of positive electrode active material layer) x 100...(b1)
  • the true density of the positive electrode active material layer is calculated by the following formula (b2).
  • Density of positive electrode active material layer 100/(positive electrode active material ratio/true density of active material + conductive aid ratio/true density of conductive aid + ratio of binder/true density of binder)...(b2) When a dispersant is included, the ratio of dispersant/true density of dispersant is added to the true density of the positive electrode active material layer.
  • the volume density of the positive electrode is a value measured by the following measurement method.
  • the thickness of the positive electrode sheet and the thickness of the positive electrode current collector exposed portion 13 are measured using a micro gauge. Measure at five arbitrary points and find the average value.
  • Five measurement samples are prepared by punching out circular positive electrode sheets with a diameter of 16 mm.
  • the mass of each measurement sample is weighed using a precision balance, and the mass of the cathode active material layer 12 in the measurement sample is calculated by subtracting the previously measured mass of the cathode current collector 11 from the measurement result.
  • the volume density of the positive electrode active material layer is calculated from the average value of each measured value based on the following formula (b3).
  • the porosity of the positive electrode active material layer 12 is determined by, for example, the pressing force (press pressure) when pressing the laminate in which the positive electrode active material layer 12 is formed on the positive electrode current collector 11, the particle size of the positive electrode active material particles, the positive electrode It can be adjusted by adjusting the content of the positive electrode active material particles, the content of the conductive additive, and the content of the binder in the active material layer 12. The higher the press pressure, the smaller the porosity tends to be.
  • the peel strength (180° peel strength) of the positive electrode active material layer measured in the peel test described below can be used.
  • the peel strength of the positive electrode active material layer is preferably 10 to 1,000 mN/cm, more preferably 20 to 500 mN/cm, and even more preferably 30 to 300 mN/cm.
  • the nonaqueous electrolyte secondary battery of this embodiment can be used as a lithium ion secondary battery for various uses such as industrial use, consumer use, automobile use, and residential use.
  • the usage form of the non-aqueous electrolyte secondary battery of this embodiment is not particularly limited.
  • it can be used in a battery module configured by connecting a plurality of non-aqueous electrolyte secondary batteries in series or in parallel, a battery system including a plurality of electrically connected battery modules and a battery control system, and the like.
  • Examples of battery systems include battery packs, stationary storage battery systems, automotive power storage battery systems, automotive auxiliary storage battery systems, emergency power storage battery systems, and the like.
  • FIG. 3 is a process diagram of a method for measuring the peel strength of a positive electrode active material layer. Steps (S1) to (S7) shown in FIG. 3 will be explained in order.
  • FIG. 3 is a schematic diagram for explaining the configuration in an easy-to-understand manner, and the dimensional ratio of each component may differ from the actual one.
  • S1 First, a rectangular double-sided tape 50 with a width of 25 mm and a length of 120 mm is prepared. The double-sided tape 50 has release papers 50b and 50c laminated on both sides of an adhesive layer 50a. As the double-sided tape 50, Nitto Denko's product name "No.
  • the positive electrode sheet 60 is cut out along the outer edge of the adhesive body 55, and the adhesive body 55 and the positive electrode sheet 60 are pressed together by a method of reciprocating the pressure roller twice in the length direction to obtain a composite body 65.
  • S6 The outer surface of the composite body 65 on the adhesive body 55 side is brought into contact with one surface of the stainless steel plate 70, and the other end 65b on the opposite side from the bending position 51 is fixed to the stainless steel plate 70 with a mending tape 80.
  • mending tape 80 3M company product name "Scotch tape mending tape 18 mm x 30 small rolls 810-1-18D" was used.
  • the length of the mending tape 80 is approximately 30 mm, the distance A from the end of the stainless steel plate 70 to the other end 65b of the composite 65 is approximately 5 mm, and the distance A from the end 80a of the mending tape 80 to the other end of the composite 65 is approximately 5 mm.
  • the distance B to the portion 65b is 5 mm.
  • the other end 80b of the mending tape 80 is attached to the other surface of the stainless steel plate 70. (S7) At the end of the composite body 65 on the bending position 51 side, the positive electrode sheet 60 is slowly peeled off from the adhesive body 55 in parallel to the length direction.
  • the end portion 60a of the positive electrode sheet 60 that is not fixed with the mending tape 80 (hereinafter referred to as “separation end”) is slowly peeled off to the extent that it protrudes from the stainless steel plate 70.
  • the stainless steel plate 70 to which the composite body 65 was fixed was placed in a tensile tester (not shown) (Shimadzu product name "EZ-LX"), the end of the adhesive body 55 on the bending position 51 side was fixed, and the positive electrode
  • the peel strength is measured by pulling the peeled end 60a of the sheet 60 in the direction opposite to the bending position 51 (180° direction with respect to the bending position 51) at a pulling speed of 60 mm/min, a test force of 50000 mN, and a stroke of 70 mm.
  • the average value of the peel strength at a stroke of 20 to 50 mm is defined as the peel strength of the positive electrode active material layer 12. (S8) After the peel test, the peeled state was observed.
  • the case where the interface between the positive electrode active material layer 12 and the positive electrode current collector 11 that is in close contact with the adhesive layer 50a, that is, the interface between the positive electrode active material layer 12 and the current collector coating layer peels off is referred to as " It was judged as "interfacial peeling”.
  • a case where the positive electrode active material layer 12 that is in close contact with the adhesive layer 50a is broken is determined to be "cohesive failure.”
  • the discharge capacity at this time was defined as a reference capacity, and the reference capacity was defined as a current value at a 1C rate (that is, 1,000 mA).
  • the cell was left standing in a 25°C environment for 2 hours, and discharge was performed at a constant current at a rate of 0.2C with a final voltage of 2.5V.
  • the capacity retention rate (unit: %) was calculated by dividing the discharge capacity after storage at 75°C measured in (4) above by the discharge capacity measured in (3) above and making it a percentage. . (6) The above steps (3) to (5) were repeated until the capacity retention rate became less than 80%, and the capacity retention rate and number of days were plotted to determine the number of days in which the capacity retention rate was less than 80%. The greater the number of days, the better the cell's resistance to high temperature deterioration.
  • LFP coated particles coated particles having a core made of lithium iron phosphate and a coated part made of low crystalline carbon were used.
  • LFP (1) LFP-coated particles having an average particle diameter of 1.2 ⁇ m, a carbon content of 1.1% by mass, and a coating species of low-crystalline carbon.
  • LFP (2) LFP-coated particles with an average particle diameter of 1.1 ⁇ m, a carbon content of 1.1% by mass, and a coating species of low-crystalline carbon.
  • LFP (3) LFP-coated particles having an average particle diameter of 10.0 ⁇ m, a carbon content of 1.5% by mass, and a coating species of low crystalline carbon.
  • LFP (4) LFP-coated particles having an average particle diameter of 11.0 ⁇ m, a carbon content of 2.0% by mass, and a coating species of low-crystalline carbon.
  • LFP (5) LFP-coated particles having an average particle diameter of 15.0 ⁇ m, a carbon content of 2.5% by mass, and a coating species of low-crystalline carbon. Note that the true density of lithium iron phosphate is 3.55 g/cm 3 . The true density of the coating portion is 1.7 g/cm 3 .
  • Carbon black (CB) was used as a conductive aid.
  • CB has impurities below the quantitative limit and can be considered to have a carbon content of 100% by mass.
  • the true density of CB is 2.3 g/cm 3 .
  • Polyvinylidene fluoride (PVDF) was used as a binder.
  • the true density of PVDF is 1.78 g/cm 3 .
  • NMP N-methylpyrrolidone
  • ⁇ Negative electrode production example 1 Manufacture of negative electrode> 100 parts by mass of artificial graphite as a negative electrode active material, 1.5 parts by mass of styrene-butadiene rubber as a binder, 1.5 parts by mass of carboxymethyl cellulose Na as a thickener, and water as a solvent, A composition for producing a negative electrode with a solid content of 50% by mass was obtained. The obtained composition for producing a negative electrode was applied onto both sides of a copper foil having a thickness of 8 ⁇ m, and vacuum dried at 100° C. to form a negative electrode active material layer. The coating amount of the negative electrode manufacturing composition (total of both the front and back surfaces) was 20 mg/cm 2 .
  • the negative electrode active material layers on both sides were formed so that the coating amount and thickness were equal to each other. After coating, pressure pressing was performed at a linear pressure of 2 kN/m to obtain a negative electrode sheet. The obtained negative electrode sheet was punched out to form a negative electrode.
  • a positive electrode current collector was prepared by covering both the front and back surfaces of the positive electrode current collector body with a current collector coating layer in the following manner.
  • An aluminum foil with a thickness of 15 ⁇ m was used as the main body of the positive electrode current collector.
  • a slurry was obtained by mixing carbon black, a binder, conductive carbon, and pure water as a solvent. The amount of pure water used was the amount necessary to coat the slurry.
  • the resulting slurry was coated on both sides of the positive electrode current collector body using a gravure method, dried, and the solvent was removed to form a current collector coating layer to obtain a positive electrode current collector.
  • Examples 1 to 7 and 13 are examples, and Examples 8 to 12, 14 and 15 are comparative examples.
  • a positive electrode active material layer was formed by the following method.
  • a composition for producing a positive electrode was obtained by mixing positive electrode active material particles, a conductive aid, a binder, and a solvent in a mixer as shown in Table 1. The amount of solvent used was the amount necessary for coating the composition for producing a positive electrode.
  • the obtained composition for producing a positive electrode was applied onto both sides of a positive electrode current collector, and after preliminary drying, vacuum drying was performed in a 120°C environment to form a positive electrode active material layer, and then the press pressure shown in Table 1 was applied. (linear pressure) to obtain a positive electrode sheet.
  • the coating amount of the positive electrode manufacturing composition (total of both the front and back surfaces) was 20.0 mg/cm 2 .
  • the positive electrode active material layers on both sides were formed so that the coating amount and thickness were equal to each other.
  • the conductive carbon content with respect to the total mass of the positive electrode active material layer was determined. The results are shown in Table 1. The content of conductive carbon relative to the total mass of the positive electrode active material layer was calculated based on the carbon content and amount of the positive electrode active material particles and the carbon content and amount of the conductive additive. It is also possible to confirm using the method described in the above ⁇ Method for Measuring Conductive Carbon Content>>.
  • the obtained positive electrode sheet was punched out to form a positive electrode.
  • a non-aqueous electrolyte secondary battery having the configuration shown in FIG. 2 was manufactured by the following method. Lithium hexafluorophosphate was dissolved as an electrolyte in a solvent containing ethylene carbonate (EC) and diethyl carbonate (DEC) mixed at a volume ratio of EC:DEC of 3:7 at a concentration of 1 mol/liter. A non-aqueous electrolyte was prepared. The positive electrodes and negative electrodes obtained in each of the above examples were alternately laminated with separators interposed therebetween to produce an electrode laminate in which the outermost layer was the negative electrode.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a polyolefin film with a thickness of 15 ⁇ m was used as the separator.
  • the separator 2 and the positive electrode 1 were laminated, and then the negative electrode 3 was laminated on the separator 2.
  • Terminal tabs are electrically connected to each of the positive electrode current collector exposed portion 13 and the negative electrode current collector exposed portion 33 of the electrode laminate, and the electrodes are laminated with an aluminum laminate film so that the terminal tabs protrude to the outside.
  • the body was sandwiched and the three sides were laminated and sealed.
  • a non-aqueous electrolyte was injected from one side left unsealed, and vacuum-sealed to produce a non-aqueous electrolyte secondary battery (laminate cell).
  • the obtained laminate cell was evaluated for high temperature deterioration resistance by the method described above. The results are shown in Table 1.
  • the positive electrode for a secondary battery had high peel strength, cohesive failure of the positive electrode active material layer occurred in a peel test, and was also excellent in high-temperature deterioration resistance. Cohesive failure of the positive electrode active material layer means that the adhesive force at the interface between the current collector coating layer and the positive electrode active material layer is high.
  • the positive electrodes for non-aqueous electrolyte secondary batteries of Examples 8 to 11 in which the porosity of the positive electrode active material layer exceeds 40% have low peel strength, and the interface between the current collector coating layer and the positive electrode active material layer is Peeling occurred. Further, when the porosity exceeds 40%, the number of reaction points increases even with the same amount of conductive carbon, so high-temperature deterioration tends to progress. In Examples 12, 14, and 15, even if the porosity was 40% or less, when the amount of conductive carbon exceeded 3.5%, the high temperature deterioration resistance of the secondary battery was poor. This means that the number of reaction points has increased due to the conductive additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

正極集電体(11)と、正極集電体(11)上に存在する正極活物質層(12)を有し、正極集電体(11)の、正極活物質層(12)側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在し、正極活物質層(12)は正極活物質及び導電性炭素を含み、正極活物質が、一般式LiFe(1-x)POで表される化合物を含み、正極活物質層(12)の空隙率が40%以下であり、正極活物質層(12)の総質量に対して導電性炭素の含有量が0.5~3.5質量%である、非水電解質二次電池用正極。

Description

非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
 本発明は、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システムに関する。
 本願は、2022年9月2日に、日本に出願された特願2022-140042号に基づき優先権を主張し、その内容をここに援用する。
 非水電解質二次電池は、一般的に、正極、非水電解質、負極、及び正極と負極との間に設置される分離膜(セパレータ)により構成される。
 非水電解質二次電池の正極としては、リチウムイオンを含む正極活物質、導電助剤、及び結着材を含む組成物からなる正極活物質層を、集電体である金属箔の表面に固着させたものが知られている。
 リチウムイオンを含む正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、及びマンガン酸リチウム等のリチウム遷移金属複合酸化物や、リン酸鉄リチウム等のリチウムリン酸化合物が実用化されている。
 特許文献1には、集電体本体の表面に導電剤を含む集電体被覆層を設け、その上に正極活物質層を設け、正極活物質としてニッケル・コバルト・マンガン酸リチウム(NCM)用いたリチウムイオン二次電池用正極において、集電体本体の表面粗さと集電体被覆層の表面粗さとの差を0.1μm以上とし、正極活物質層の空隙率を43~64%に大きくすることにより、サイクル特性を高めた例が記載されている。
国際公開第2018/180742号
 リン酸鉄リチウム等のオリビン型結晶構造を有する正極活物質は、リンと酸素の強固な共有結合により高温時の酸素放出がないため、NCM等の酸化物系活物質に比べて安全性が高いが、リチウムイオンの拡散性、電子伝導性が低いため電池特性が不十分になりやすい。
 非水電解質二次電池において、集電体と正極活物質層との密着性が電池特性に影響を与えることは知られているが、正極活物質がオリビン型結晶構造を有する化合物である非水電解質二次電池における集電体と正極活物質層の密着性については検討されていない。
 また、非水電解質二次電池にあっては、高温環境でも電池特性が劣化し難いことが望まれる。
 本発明は、正極活物質がオリビン型結晶構造を有する化合物であり、集電体と正極活物質層との密着性が良好であるとともに、高温劣化耐性が良好な非水電解質二次電池用正極の提供を目的とする。
 本発明は以下の態様を有する。
[1] 正極集電体と、前記正極集電体上に存在する正極活物質層を有し、
 前記正極集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在し、
 前記正極活物質層は正極活物質及び導電性炭素を含み、
 前記正極活物質層は正極活物質粒子を含み、前記正極活物質粒子は、前記正極活物質である芯部と、導電性炭素を含む活物質被覆部とを有する被覆粒子を含み、
 前記正極活物質が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含み、
 前記正極活物質層の空隙率が40%以下、39%以下、38%以下、25~40%、30~39%、又は35~38%であり、
 前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5~3.5質量%、1.0~3.0質量%、1.2~2.8質量%、又は1.5~2.5質量%である、非水電解質二次電池用正極。
[1-1]前記正極活物質層の空隙率が30~39%であり、前記正極活物質層の総質量に対して前記導電性炭素の含有量が1.0~2.0質量%である、[1]に記載の非水電解質二次電池用正極。
[1-2]前記正極活物質層の総質量に対して前記導電性炭素の含有量が1.0~2.0質量%である、[1]又は[1-1]に記載の非水電解質二次電池用正極。
[2] 前記正極活物質層は結着材を含み、前記結着材はポリフッ化ビニリデンを含む、[1]~[1-2]のいずれかに記載の非水電解質二次電池用正極。
[3] 前記[1]~[1-2]及び[2]のいずれかに記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
[4] 前記[3]に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
 本発明によれば、正極活物質がオリビン型結晶構造を有する化合物であり、集電体と正極活物質層との密着性が良好であるとともに、高温劣化耐性が良好な非水電解質二次電池用正極が得られる。
本発明に係る非水電解質二次電池用正極の一例を模式的に示す断面図である。 本発明に係る非水電解質二次電池の一例を模式的に示す断面図である。 正極活物質層の剥離強度の測定方法を説明するための工程図である。
 本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載した数値を下限値及び上限値として含むことを意味する。
 図1は、本発明の非水電解質二次電池用正極の一実施形態を示す模式断面図である。図2は本発明の非水電解質二次電池の一実施形態を示す模式断面図である。
 なお、図1、2は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
 以下、実施形態を挙げて本発明を説明する。
 図2に示すように、本実施形態の非水電解質二次電池は、正極1(以下「非水電解質二次電池用正極」ともいう。)、負極3、及び正極1と負極3との間に存在する非水電解液4を備える。
<非水電解質二次電池用正極>
 図1に示すように、本実施形態の正極1は、集電体(以下「正極集電体」という。)11と正極活物質層12を有する。
 本実施形態の正極活物質層12は正極集電体11の両面上に存在する。ただし、本発明において、正極集電体11の一方の面にのみ、正極活物質層12が存在してもよい。
 図1の例において、正極集電体11は、正極集電体本体14と、正極集電体本体14の正極活物質層12側の表面を被覆する集電体被覆層15とを有する。集電体被覆層15は導電材料を含む。ただし、本発明においては、正極集電体11の、正極活物質層12側の表面の少なくとも一部に集電体被覆層15が存在すればよい。
[正極活物質層]
 正極活物質層12は正極活物質及び導電性炭素を含む。
 正極活物質層12は、正極活物質を含む粒子である正極活物質粒子を含むことが好ましい。正極活物質粒子は、正極活物質である芯部と、導電性炭素を含む活物質被覆部とを有する被覆粒子を含むことが好ましい。
 正極活物質層12は、さらに結着材を含むことが好ましい。
 正極活物質層12は、さらに導電助剤を含んでもよい。本明細書において、「導電助剤」という用語は、正極活物質層を形成するにあたって正極活物質粒子と混合する、粒状、又は繊維状などの形状を有する導電材料であって、正極活物質粒子を繋ぐ形で正極活物質層中に存在させる導電材料を指す。導電助剤は導電性炭素を含むことが好ましい。導電助剤は、正極活物質粒子とは独立して存在する。
 正極活物質層12は、さらに分散剤を含んでもよい。
 正極活物質層12の総質量に対して、正極活物質粒子の含有量は80.0~99.9質量%が好ましく、90~99.5質量%がより好ましい。
 正極活物質層の厚み(正極集電体の両面上に正極活物質層が存在する場合、両面に位置する2層の合計の厚み)は20~500μmであることが好ましく、25~300μmであることがより好ましく、30~200μmであることが特に好ましい。正極活物質層の厚みが上記範囲の下限値以上であると、正極を組み込んだ電池のエネルギー密度が高くなりやすく、上記範囲の上限値以下であると、電極の内部抵抗低減効果に優れる。
[正極活物質粒子]
 正極活物質粒子は、正極活物質を含む。正極活物質粒子の少なくとも一部は、前記正極活物質である芯部と、導電性炭素を含む活物質被覆部とを有する被覆粒子であることが好ましい。
 被覆粒子において、正極活物質粒子の表面には、導電材料を含む被覆部(以下、「活物質被覆部」ともいう。)が存在する。正極活物質粒子は、活物質被覆部を有することで、電池容量、サイクル特性がより高められる。
 例えば、活物質被覆部は、予め正極活物質粒子の表面に形成されており、かつ正極活物質層中において、正極活物質粒子の表面に存在する。即ち、本明細書における活物質被覆部は、正極製造用組成物の調製段階以降の工程で新たに形成されるものではない。加えて、活物質被覆部は、正極製造用組成物の調製段階以降の工程で容易に欠落するものではない。
 例えば、正極製造用組成物を調製する際に、被覆粒子を溶媒と共にミキサー等で混合しても、活物質被覆部は正極活物質粒子の表面を被覆している。また、仮に、正極から正極活物質層を剥がし、これを溶媒に投入して正極活物質層中の結着材を溶媒に溶解させた場合にも、活物質被覆部は正極活物質粒子の表面を被覆している。また、仮に、正極活物質層中の粒子の粒度分布をレーザー回折・散乱法により測定する際に、凝集した粒子をほぐす操作を行った場合にも活物質被覆部は正極活物質粒子の表面を被覆している。
 活物質被覆部は、正極活物質粒子の外表面全体の面積の50%以上に存在することが好ましく、70%以上に存在することが好ましく、90%以上に存在することが好ましい。
 すなわち、被覆粒子は、正極活物質である芯部と、前記芯部の表面を覆う活物質被覆部とを有し、芯部の表面積に対する活物質被覆部の面積(被覆率)は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。
 被覆粒子の製造方法としては、例えば、焼結法、蒸着法等が挙げられる。
 焼結法としては、正極活物質の粒子と有機物とを含む活物質製造用組成物(例えば、スラリー)を、大気圧下、500~1000℃、1~100時間で焼成する方法が挙げられる。活物質製造用組成物に添加する有機物としては、サリチル酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール、フロログルシノール、ヘキサヒドロキシベンゼン、安息香酸、フタル酸、テレフタル酸、フェニルアラニン、水分散型フェノール樹脂、スクロース、グルコース、及びラクトース等の糖類、リンゴ酸、及びクエン酸などのカルボン酸、アリルアルコール、及びプロパルギルアルコール等の不飽和一価アルコール、アスコルビン酸、並びにポリビニルアルコール等が挙げられる。この焼結法によれば、活物質製造用組成物を焼成することで、有機物中の炭素を正極活物質の表面に焼結して、活物質被覆部を形成する。
 また、他の焼結法としては、いわゆる衝撃焼結被覆法が挙げられる。
 衝撃焼結被覆法は、例えば、以下の手順で行われる。衝撃焼結被覆装置において燃料の炭化水素と酸素の混合ガスを用いてバーナに点火し燃焼室で燃焼させてフレームを発生させる。その際、酸素量を燃料に対して完全燃焼の当量以下にしてフレーム温度を下げる。フレームの後方に粉末供給用ノズルを設置し、被覆する有機物と溶媒を用いて溶かしたものと燃焼ガスからなる固体-液体-気体三相混合物を粉末供給ノズルから噴射させる。室温に保持された燃焼ガス量を増すことで、噴射微粉末の温度を下げて、粉末材料の変態温度、昇華温度、又は蒸発温度以下で噴射微粉末を加速し、衝撃により瞬時焼結させて、正極活物質の粒子を被覆する。
 蒸着法としては、物理気相成長法(PVD)、及び化学気相成長法(CVD)等の気相堆積法、並びにメッキ等の液相堆積法等が挙げられる。
 前記被覆率は次のような方法により測定することができる。まず、正極活物質層中の粒子を、透過電子顕微鏡を用いたエネルギー分散型X線分光法(TEM-EDX)により分析する。具体的には、TEM画像における正極活物質粒子の外周部をEDXで元素分析する。元素分析は、炭素について行い、正極活物質粒子を被覆している炭素を特定する。炭素の被覆部が1nm以上の厚さである箇所を被覆部分とし、観察した正極活物質粒子の全周に対して被覆部分の割合を求め、これを被覆率とすることができる。測定は例えば、10個の正極活物質粒子について行い、これらの平均値を被覆率とすることができる。
 また、前記活物質被覆部は、正極活物質のみから構成される粒子(芯部)の表面上に直接形成された厚み1nm~100nm、好ましくは5nm~50nmの層である。この厚みは、上述した被覆率の測定に用いるTEM-EDXによって確認することができる。
 本実施形態において、被覆粒子の被覆率(芯部の表面積に対する活物質被覆部の面積)は100%が特に好ましい。
 なお、この被覆率は、正極活物質層中に存在する正極活物質粒子全体についての平均値であり、この平均値が上記下限値以上となる限り、活物質被覆部を有しない正極活物質粒子が微量に存在することを排除するものではない。活物質被覆部を有しない正極活物質粒子(単粒子)が正極活物質層中に存在する場合、その量は、正極活物質層中に存在する正極活物質粒子全体の量に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、特に好ましくは10質量%以下である。一実施形態においては、単粒子が正極活物質層中に存在しないことが好ましい。
 活物質被覆部を構成する導電材料は、炭素(導電性炭素)を含む。該導電材料は、炭素のみでもよく、炭素と炭素以外の他の元素とを含む導電性有機化合物でもよい。他の元素としては、窒素、水素、酸素等が例示できる。前記導電性有機化合物において、他の元素は10原子%以下が好ましく、5原子%以下がより好ましい。活物質被覆部を構成する導電材料は、炭素のみからなることがさらに好ましい。
 活物質被覆部を有する正極活物質粒子の総質量に対して、導電材料の含有量は0.1~4.0質量%が好ましく、0.5~3.0質量%がより好ましく、0.7~2.5質量%がさらに好ましい。前記範囲の上限値以下であると、正極活物質粒子の表面から導電材料が剥がれにくく、独立した導電助剤粒子として残留しにくい。
 導電パスに寄与しない導電性粒子は、電池の自己放電の起点や好ましくない副反応などの原因となる。
 活物質被覆部を炭素で構成する場合、非晶質炭素であることが望ましい。
 非晶質炭素を活物質被覆部として有する正極活物質粒子を得る製造方法は、特に限定されず、公知の方法を用いることができる。例えば、正極活物質の粒子に対して、炭素前駆体として、易黒鉛化性樹脂あるいは難黒鉛化性樹脂、ナフタレン、コールタール、バインダーピッチ等を添加し、600~1300℃で熱処理をする方法が挙げられる。また、正極活物質の粒子を流動状態とし、化学蒸着炭素源としてメタノール、エタノール、ベンゼンやトルエン等の炭化水素化合物等を用い、600~1300℃の熱処理温度で化学的気相蒸着処理をし、正極活物質の粒子の表面に炭素被膜を形成させる方法が挙げられる。これらの方法により形成した活物質被覆部は、活物質被覆部を構成する炭素の大部分が非晶質である。
 活物質被覆部を非晶質の炭素ではなく、導電性が高く、結晶性も高いカーボンナノチューブ、グラフェン等を用いて形成した場合、活物質被覆部は抵抗が低くなりすぎて、充放電サイクルを行った際に電解液との副反応性が高まり電池の寿命特性が低下しやすい。すなわち、活物質被覆部を非晶質の炭素で構成すると、活物質被覆部は抵抗が低くなりすぎず、充放電サイクルを行った際に電解液との副反応性が抑制され、電池の寿命特性が向上しやすい。
 例えば、EELSスペクトル(C-Kエッジ)の形状の違いから、sp結合割合を確認することにより、活物質被覆部の炭素が結晶質であるか、非晶質であるかを判定することができる。同様にラマンスペクトルの波数1200cm-1~1800cm-1におけるピーク位置を確認することにより、活物質被覆部の炭素が結晶質であるか、非晶質であるかを判定することができる。
 活物質被覆部において、非晶質炭素の存在比率が結晶質炭素の存在比率よりも高いことが好ましい。
 正極活物質粒子は、一般式LiFe(1-x)PO(以下「一般式(I)」ともいう。)で表される化合物(I)を含む。化合物(I)はオリビン型結晶構造を有する化合物である。一般式(I)において0≦x≦1である。MはCo、Ni、Mn、Al、Ti又はZrである。物性値に変化がない程度に微小量の、FeおよびM(Co、Ni、Mn、Al、Ti又はZr)の一部を他の元素に置換することもできる。一般式(I)で表される化合物(I)は、微量の金属不純物が含まれていても本発明の効果が損なわれるものではない。
 一般式(I)で表される化合物(I)は、LiFePOで表されるリン酸鉄リチウム(以下、単に「リン酸鉄リチウム」ともいう。)が好ましい。
 正極活物質粒子として、表面の少なくとも一部に導電材料を含む活物質被覆部が存在するリン酸鉄リチウム粒子(以下「被覆リン酸鉄リチウム粒子」ともいう。)がより好ましい。電池容量、サイクル特性により優れる点から、リン酸鉄リチウム粒子の表面全体が導電材料で被覆されていることがさらに好ましい。
 被覆リン酸鉄リチウム粒子は公知の方法で製造できる。
 被覆リン酸鉄リチウム粒子の活物質被覆部は、非晶質炭素の存在比率が結晶質炭素の存在比率よりも高い、低結晶性の炭素で構成されることが好ましい。
 低結晶性の炭素を被覆したリン酸鉄リチウム粒子を得る製造方法は、特に制限はないが、例えば、リン酸鉄リチウム粒子に対して前記炭素前駆体を添加して熱処理する方法や、リン酸鉄リチウム粒子を流動させながら、前記化学蒸着炭素源を用いた化学的気相蒸着処理を施して表面に炭素被膜を形成させる方法が挙げられる。
 リン酸鉄粒子の粒子径は、粉砕工程における粉砕時間等によって調整できる。リン酸鉄リチウム粉末を被覆する炭素の量は、炭素を被覆する処理の温度や時間によって調整できる。被覆されなかった炭素粒子はその後の分級や洗浄などの工程などにより取り除くことが望ましい。
 正極活物質粒子は、前記一般式(I)で表される化合物(I)以外の他の正極活物質を含む他の正極活物質粒子を1種以上含んでもよい。
 他の正極活物質は、リチウム遷移金属複合酸化物が好ましい。例えば、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトアルミン酸リチウム(LiNiCoAl、ただしx+y+z=1)、ニッケルコバルトマンガン酸リチウム(LiNiCoMn、ただしx+y+z=1)、マンガン酸リチウム、コバルトマンガン酸リチウム、クロム酸マンガンリチウム、バナジウムニッケル酸リチウム、ニッケル置換マンガン酸リチウム(例えば、LiMn1.5Ni0.5)、及びバナジウムコバルト酸リチウム、これらの化合物の一部を金属元素で置換した非化学量論的化合物等が挙げられる。前記金属元素としては、Mn、Mg、Ni、Co、Cu、Zn及びGeからなる群から選択される1種以上が挙げられる。
 他の正極活物質粒子の表面の少なくとも一部に、前記活物質被覆部が存在してもよい。
 正極活物質粒子の総質量に対して、前記一般式(I)で表される化合物の含有量は、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。正極活物質粒子の総質量に対して、前記一般式(I)で表される化合物の含有量は、50~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。
 被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。100質量%でもよい。被覆リン酸鉄リチウム粒子を用いる場合、正極活物質粒子の総質量に対して、被覆リン酸鉄リチウム粒子の含有量は50~100質量%が好ましく、80~100質量%がより好ましく、90~100質量%がさらに好ましい。
 正極活物質粒子の活物質被覆部の厚さは、1~100nmが好ましい。
 正極活物質粒子の活物質被覆部の厚さは、正極活物質粒子の透過電子顕微鏡(TEM)像における活物質被覆部の厚さを計測する方法で測定できる。正極活物質粒子の表面に存在する活物質被覆部の厚さは均一でなくてもよい。正極活物質粒子の表面の少なくとも一部に厚さ1nm以上の活物質被覆部が存在し、活物質被覆部の厚さの最大値が100nm以下であることが好ましい。
 正極活物質粒子の平均粒子径は、0.1~20.0μmが好ましく、0.5~15.0μmがより好ましい。正極活物質粒子を2種以上用いる場合、それぞれの平均粒子径が上記の範囲内であればよい。
 前記平均粒子径が上記範囲の下限値以上であると、正極製造用組成物における分散性が良くなりやすく、また、凝集物が発生し難くなりやすい。一方、上記範囲の上限値以下であると比表面積が適度に大きくなり、充放電で反応する面積を確保しやすい。
 本明細書における正極活物質粒子の平均粒子径は、レーザー回折・散乱法による粒度分布測定器を用いて測定した体積基準のメジアン径である。
[結着材]
 正極活物質層12に含まれる結着材は有機物であり、例えば、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリビニルアセタール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、及びポリイミド等が挙げられる。結着材は1種でもよく、2種以上を併用してもよい。
 結着材がポリフッ化ビニリデンを含むことが好ましい。
 正極活物質層が結着材を含有する場合、結着材の含有量は、正極活物質層の総質量に対して0.1~4.0質量%が好ましく、0.3~3.0質量%がより好ましく、0.5~2.0質量%がさらに好ましい。結着材の含有量が上記範囲の下限値以上であると、正極活物質が充分に結着され、正極の機械的強度が得られる。上限値以下であるとイオンの伝導に寄与しない物質の割合が少なくなり、電極の内部抵抗を低減できる。
[導電助剤]
 正極活物質層12に含まれる導電助剤は、公知のものを用いることができる。
 導電性炭素を含む導電助剤としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、及びカーボンナノチューブ等が挙げられる。導電助剤は1種でもよく、2種以上を併用してもよい。
 正極活物質層における導電助剤の含有量は、例えば、正極活物質の総質量100質量部に対して、3質量部未満が好ましく、2質量部未満がより好ましく、1質量部以下がさらに好ましく、導電助剤を含まないことが特に好ましく、独立した導電助剤粒子(例えば独立した炭素粒子)が存在しない状態が望ましい。
 前記導電助剤の含有量が、上記上限値以下であると、反応活性点が少ない正極活物質層が形成できる。
 正極活物質層に導電助剤を配合する場合、導電助剤の含有量の下限値は、導電助剤の種類に応じて適宜決定され、例えば、正極活物質層の総質量に対して0.1質量%超とされる。
 なお、正極活物質層が「導電助剤を含まない」とは、実質的に含まないことを意味し、本発明の効果に影響を及ぼさない程度に含むものを排除するものではない。例えば、導電助剤の含有量が正極活物質層の総質量に対して0.1質量%以下であれば、実質的に含まれないと判断できる。
 導電パスに寄与しない導電助剤粒子は、電池の自己放電起点や好ましくない副反応などの原因となる。
[分散剤]
 正極活物質層12に含まれる分散剤は有機物であり、例えば、ポリビニルピロリドン、ポリビニルアルコール、ポリビニルブチラール、及びポリビニルホルマール等が挙げられる。分散剤は1種でもよく、2種以上を併用してもよい。
 分散剤は正極活物質層における粒子の分散性向上に寄与する。一方、分散剤の含有量が多すぎると電極の内部抵抗が増大しやすい。
 正極活物質層の総質量に対して、分散剤の含有量は0.5質量%以下が好ましく、0.2質量%以下がより好ましい。
 正極活物質層が分散剤を含有する場合、分散剤の含有量の下限値は、正極活物質層の総質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましい。正極活物質層が分散剤を含有する場合、分散剤の含有量は0.01~0.5質量%が好ましく、0.05~0.2質量%がより好ましい。
[正極集電体本体]
 正極集電体本体14は、金属材料からなる。金属材料としては、銅、アルミニウム、チタン、ニッケル、及びステンレス鋼等の導電性を有する金属が例示できる。
 正極集電体本体14は、金属材料からなる箔(金属箔)であり、表面に形成される酸化膜を含んでいてもよい。
 正極集電体本体14の厚みは、例えば8~40μmが好ましく、10~25μmがより好ましい。
 正極集電体本体14の厚み及び正極集電体11の厚みは、マイクロメータを用いて測定できる。測定器の一例としてはミツトヨ社製、製品名「MDH-25M」が挙げられる。
[集電体被覆層]
 正極集電体本体14の表面の少なくとも一部に集電体被覆層15が存在する。集電体被覆層15は導電材料を含む。
 ここで、「表面の少なくとも一部」とは、正極集電体本体の表面の面積の10%~100%、好ましくは30%~100%、より好ましくは50%~100%を意味する。
 集電体被覆層15中の導電材料は、炭素(導電性炭素)を含むことが好ましい。炭素のみからなる導電材料がより好ましい。
 集電体被覆層15は、例えばカーボンブラック等の炭素粒子と結着材を含むコーティング層が好ましい。集電体被覆層15の結着材は、正極活物質層12の結着材と同様のものを例示できる。
 正極集電体本体14の表面を集電体被覆層15で被覆した正極集電体11は、例えば、導電材料、結着材、及び溶媒を含む集電体被覆層用組成物を、グラビア法等の公知の塗工方法を用いて正極集電体本体14の表面に塗工し、乾燥して溶媒を除去する方法で製造できる。
 集電体被覆層15の厚みは、0.01~7.0μmが好ましく、0.1~5.0μmがより好ましく、0.2~2.0μmがさらに好ましい。上記範囲内であると、クラックやピンホールがない均一な被膜層を形成することができ、また膜厚に起因する電池重量の増加や、電極の内部抵抗を小さくすることができる。
 集電体被覆層の厚さは、集電体被覆層の断面の透過電子顕微鏡(TEM)像又は走査型電子顕微鏡(SEM)像における被覆層の厚さを計測する方法で測定できる。集電体被覆層の厚さは均一でなくてもよい。正極集電体本体14の表面の少なくとも一部に厚さが前記範囲の下限値以上の集電体被覆層が存在し、集電体被覆層の厚さの最大値が前記範囲の上限値以下であることが好ましい。
 正極集電体本体14の両面に集電体被覆層15が存在する場合、両者の平均値が上記の範囲内であればよい。
[導電性炭素含有量]
 本実施形態において、正極活物質層12は、導電性炭素を含む。
 正極活物質層の総質量に対して、導電性炭素の含有量は0.5~3.5質量%であり、1.0~3.0質量%が好ましく、1.0~2.8質量%がより好ましく、1.0~2.5質量%未満がさらに好ましく、1.0~2.0質量%が特に好ましい。
 正極活物質層中の導電性炭素の含有量が、上記範囲の下限値以上であると良好な導電パス形成と低抵抗な特性に優れる。上限値以下であると孤立する導電性炭素が少なく、反応活性点が少ない正極活物質層を形成できる。
 正極活物質層の総質量に対する導電性炭素の含有量は、活物質の炭素含有量と配合量、及び導電助剤の炭素含有量と配合量に基づいて算出できる。又は、正極から正極活物質層を剥がして120℃環境で真空乾燥した乾燥物(乾燥物は、粉体である)を測定対象物として、下記≪導電性炭素含有量の測定方法≫で測定できる。
 例えば、正極活物質層の最表面の、深さ数μmの部分をスパチュラ等で剥がした粉体を120℃環境で真空乾燥させて測定対象物とすることができる。
 下記≪導電性炭素含有量の測定方法≫で測定した導電性炭素の含有量は、活物質被覆部中の炭素と、導電助剤中の炭素を含み、結着材中の炭素及び分散剤中の炭素は含まれない。
≪導電性炭素含有量の測定方法≫
[測定方法A]
 測定対象物を均一に混合して試料(質量w1)を量りとり、下記の工程A1、工程A2の手順で熱重量示差熱(TG-DTA)測定を行い、TG曲線を得る。得られたTG曲線から下記第1の重量減少量M1(単位:質量%)及び第2の重量減少量M2(単位:質量%)を求める。M2からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
 工程A1:300mL/分のアルゴン気流中において、10℃/分の昇温速度で30℃から600℃まで昇温し、600℃で10分間保持したときの質量w2から、下記式(a1)により第1の重量減少量M1を求める。
  M1=(w1-w2)/w1×100 …(a1)
 工程A2:前記工程A1の直後に600℃から10℃/分の降温速度で降温し、200℃で10分間保持した後に、測定ガスをアルゴンから酸素へ完全に置換し、100mL/分の酸素気流中において、10℃/分の昇温速度で200℃から1000℃まで昇温し、1000℃にて10分間保持したときの質量w3から、下記式(a2)により第2の重量減少量M2(単位:質量%)を求める。
  M2=(w1-w3)/w1×100 …(a2)
[測定方法B]
 測定対象物を均一に混合して試料を0.0001mg精秤し、下記の燃焼条件で試料を燃焼し、発生した二酸化炭素をCHN元素分析装置により定量し、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、前記測定方法Aの工程A1の手順で第1の重量減少量M1を求める。M3からM1を減算して導電性炭素の含有量(単位:質量%)を得る。
 [燃焼条件]
 燃焼炉:1150℃
 還元炉:850℃
 ヘリウム流量:200mL/分
 酸素流量:25~30mL/分
[測定方法C]
 上記測定方法Bと同様にして、試料に含まれる全炭素量M3(単位:質量%)を測定する。また、下記の方法で結着材由来の炭素の含有量M4(単位:質量%)を求める。M3からM4を減算して導電性炭素の含有量(単位:質量%)を得る。
 結着材がポリフッ化ビニリデン(PVDF:モノマー(CHCF)の分子量64)である場合は、管状式燃焼法による燃焼イオンクロマトグラフィーにより測定されたフッ化物イオン(F)の含有量(単位:質量%)、PVDFを構成するモノマーのフッ素の原子量(19)、及びPVDFを構成する炭素の原子量(12)から以下の式で計算することができる。
 PVDFの含有量(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×64/38
 PVDF由来の炭素の含有量M4(単位:質量%)=フッ化物イオンの含有量(単位:質量%)×12/19
 結着材がポリフッ化ビニリデンであることは、試料、又は試料をN,N-ジメチルホルムアミド溶媒により抽出した液体をフーリエ変換赤外スペクトル測定し、C-F結合由来の吸収を確認する方法で確かめることができる。同様にフッ素核の核磁気共鳴分光(19F-NMR)測定でも確かめることができる。
 結着材がPVDF以外と同定された場合は、その分子量に相当する結着材の含有量(単位:質量%)および炭素の含有量(単位:質量%)を求めることで、結着材由来の炭素量M4を算出できる。
 分散剤が含まれる場合は、前記M3からM4を減算し、さらに分散剤由来の炭素量を減算して導電性炭素の含有量(単位:質量%)を得ることができる。
 これらの手法は下記複数の公知文献に記載されている。
 東レリサーチセンター The TRC News No.117 (Sep.2013)第34~37頁、[2021年2月10日検索]、インターネット<https://www.toray-research.co.jp/technical-info/trcnews/pdf/TRC117(34-37).pdf>
 東ソー分析センター 技術レポート No.T1019 2017.09.20、[2021年2月10日検索]、インターネット<http://www.tosoh-arc.co.jp/techrepo/files/tarc00522/T1719N.pdf>
≪導電性炭素の分析方法≫
 正極活物質の活物質被覆部を構成する導電性炭素と、導電助剤である導電性炭素は、以下の分析方法で区別できる。
 例えば、正極活物質層中の粒子を透過電子顕微鏡電子エネルギー損失分光法(TEM-EELS)により分析し、粒子表面近傍にのみ290eV付近の炭素由来のピークが存在する粒子は正極活物質であり、粒子内部にまで炭素由来のピークが存在する粒子は導電助剤と判定することができる。ここで「粒子表面近傍」とは、粒子表面からの深さが、約100nmまでの領域を意味し、「粒子内部」とは前記粒子表面近傍よりも内側の領域を意味する。
 他の方法としては、正極活物質層中の粒子をラマン分光によりマッピング解析し、炭素由来のG-bandとD-band、及び正極活物質由来の酸化物結晶のピークが同時に観測された粒子は前記被覆粒子である正極活物質粒子であり、G-bandとD-bandのみが観測された粒子は導電助剤と判定することができる。
 さらに他の方法としては、広がり抵抗顕微鏡(Scanning Spread Resistance Microscope)により、正極活物質層の断面を観察し、粒子表面に粒子内部より抵抗が低い部分が存在する場合、抵抗が低い部分は活物質被覆部に存在する導電性炭素であると判定できる。そのような粒子以外に独立して存在し、かつ抵抗が低い部分は導電助剤であると判定することができる。
 なお、不純物として考えられる微量な炭素や、製造時に正極活物質の表面から意図せず剥がれた微量な炭素などは、導電助剤と判定しない。
 これらの方法を用いて、炭素材料からなる導電助剤が正極活物質層に含まれるか否かを確認することができる。
<正極の製造方法>
 本実施形態の正極1の製造方法は、正極活物質を含む正極製造用組成物を調製する組成物調製工程と、正極製造用組成物を正極集電体11上に塗工する塗工工程を有する。
 例えば、正極活物質及び溶媒を含む正極製造用組成物を、正極集電体11上に塗工し、乾燥し溶媒を除去して正極活物質層12を形成する方法で正極1を製造できる。正極製造用組成物は、導電助剤を含んでもよい。正極製造用組成物は、結着材を含んでもよい。正極製造用組成物は、分散剤を含んでもよい。
 正極集電体11上に正極活物質層12を形成した積層物を、2枚の平板状冶具の間に挟み、厚み方向に均一に加圧する方法で、正極活物質層12の厚みを調整できる。例えば、ロールプレス機を用いて加圧する方法を使用できる。
 前記積層物を加圧する際の加圧力(プレス圧力)は、例えば、線圧が0.6~2.5kN/mであることが好ましく、1.0~2.4kN/mがより好ましい。
 正極製造用組成物の溶媒は非水系溶媒が好ましい。例えば、メタノール、エタノール、1-プロパノール、及び2-プロパノール等のアルコール;N-メチルピロリドン、N,N-ジメチルホルムアミド等の鎖状又は環状アミド;及びアセトン等のケトンが挙げられる。溶媒は1種でもよく、2種以上を併用してもよい。
<非水電解質二次電池>
 図2に示す本実施形態の非水電解質二次電池10は、本実施形態の非水電解質二次電池用正極1と、負極3と、非水電解液4とを備える。非水電解質二次電池10は、さらにセパレータ2を備えてもよい。図中符号5は、外装体である。
 本実施形態において、正極1は、板状(シート状)の正極集電体11と、その両面上に設けられた正極活物質層12と有する。正極活物質層12は正極集電体11の表面の一部に存在する。正極集電体11の表面の縁部は、正極活物質層12が存在しない正極集電体露出部13である。正極集電体露出部13の表面には、集電体被覆層15が存在していてもよいし、集電体被覆層15が存在しなくてもよい。すなわち、正極集電体本体14が露出していてもよい。正極集電体露出部13の任意の箇所に、図示しない端子用タブが電気的に接続する。
 本実施形態において、負極3は、板状(シート状)の負極集電体31と、その両面上に設けられた負極活物質層32とを有する。負極活物質層32は、負極集電体31の表面の一部に存在する。負極集電体31の表面の縁部は、負極活物質層32が存在しない負極集電体露出部33である。負極集電体露出部33の任意の箇所に、図示しない端子用タブが電気的に接続する。
 正極1、負極3およびセパレータ2の形状は特に限定されない。例えば平面視矩形状でもよい。
 図2では、代表的に、負極/セパレータ/正極/セパレータ/負極の順に積層した構造を示しているが、電極の数は適宜変更できる。正極1は1枚以上あればよく、得ようとする電池容量に応じて任意の数の正極1を用いることができる。負極3及びセパレータ2は、正極1の数より1枚多く用い、最外層が負極3となるように積層する。
[負極]
 負極活物質層32は、負極活物質を含む。負極活物質層32は、さらに結着材を含んでもよい。負極活物質層32は、さらに導電助剤を含んでもよい。負極活物質の形状は、粒子状が好ましい。
 負極3は、例えば、負極活物質、結着材、及び溶媒を含む負極製造用組成物を調製し、これを負極集電体31上に塗工し、乾燥し溶媒を除去して負極活物質層32を形成する方法で製造できる。負極製造用組成物は、導電助剤を含んでもよい。
 負極活物質及び導電助剤としては、例えば炭素材料、チタン酸リチウム、シリコン、及び一酸化シリコン等が挙げられる。炭素材料としては、グラファイト、グラフェン、ハードカーボン、ケッチェンブラック、アセチレンブラック、及びカーボンナノチューブ等が挙げられる。負極活物質及び導電助剤は、それぞれ1種でもよく2種以上を併用してもよい。
 負極集電体31の材料は、上記した正極集電体11の材料と同様のものを例示できる。
 負極製造用組成物中の結着材としては、ポリアクリル酸、ポリアクリル酸リチウム、ポリフッ化ビニリデン、ポリフッ化ビニリデン-六フッ化プロピレン共重合体、スチレンブタジエンゴム、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、カルボキシメチルセルロース、ポリアクリルニトリル、及びポリイミド等が例示できる。結着材は1種でもよく2種以上を併用してもよい。
 負極製造用組成物中の溶媒としては、水及び有機溶媒が例示できる。有機溶媒としては、メタノール、エタノール、1-プロパノール、及び2-プロパノール等のアルコール;N-メチルピロリドン、及びN,N-ジメチルホルムアミド等の鎖状又は環状アミド;及びアセトン等のケトンが例示できる。溶媒は1種でもよく2種以上を併用してもよい。
 負極活物質層32の総質量に対して、負極活物質及び導電助剤の合計の含有量は80.0~99.9質量%が好ましく、85.0~98.0質量%がより好ましい。
[セパレータ]
 セパレータ2を負極3と正極1との間に配置して短絡等を防止する。セパレータ2は、後述する非水電解液4を保持してもよい。
 セパレータ2としては、特に限定されず、多孔性の高分子膜、不織布、及びガラスファイバー等が例示できる。
 セパレータ2の一方又は両方の表面上に絶縁層を設けてもよい。絶縁層は、絶縁性微粒子を絶縁層用結着材で結着した多孔質構造を有する層が好ましい。
 セパレータ2の厚さは、例えば、5~30μmとされる。
 セパレータ2は、各種可塑剤、酸化防止剤、及び難燃剤の少なく一つを含んでもよい。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、モノフェノール系酸化防止剤、ビスフェノール系酸化防止剤、及びポリフェノール系酸化防止剤等のフェノール系酸化防止剤;ヒンダードアミン系酸化防止剤;リン系酸化防止剤;イオウ系酸化防止剤;ベンゾトリアゾール系酸化防止剤;ベンゾフェノン系酸化防止剤;トリアジン系酸化防止剤;及びサルチル酸エステル系酸化防止剤等が例示できる。フェノール系酸化防止剤、及びリン系酸化防止剤が好ましい。
[非水電解液(非水電解質)]
 非水電解液4は正極1と負極3との間を満たす。例えば、リチウムイオン二次電池、及び電気二重層キャパシタ等において公知の非水電解液を使用できる。
 非水電解質二次電池10の製造に用いる非水電解液は、有機溶媒と電解質とを含む。さらに添加剤を含んでもよい。
 製造後(初期充電後を意味する)の非水電解質二次電池10は、有機溶媒と電解質塩を含み、さらに添加剤に由来する残留物又は痕跡を含んでもよい。
 有機溶媒は、高電圧に対する耐性を有するものが好ましい。例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトロヒドラフラン、2-メチルテトラヒドロフラン、ジオキソラン、及びメチルアセテート等の極性溶媒、又はこれら極性溶媒の2種類以上の混合物が挙げられる。
 電解質は、特に限定されず、例えば過塩素酸リチウム、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、へキサフルオロヒ酸リチウム、トリフルオロ酢酸リチウム、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメタンスルホニル)イミド等のリチウムを含む塩、又はこれら塩の2種以上の混合物が挙げられる。
 添加剤としては、硫黄原子及び窒素原子の一方又は両方を含む化合物が挙げられる。添加剤は、1種単独でもよいし、2種以上の組み合わせでもよい。
<非水電解質二次電池の製造方法>
 本実施形態の非水電解質二次電池の製造方法は、正極、セパレータ、負極、非水電解液、及び外装体等を公知の方法で組み立て、非水電解質二次電池を得る方法が挙げられる。
 本実施形態の非水電解質二次電池の製造方法の一例について説明する。例えば、正極1と負極3を、セパレータ2を介して交互に積層した電極積層体を作製する。電極積層体をアルミラミネート袋等の外装体5に封入する。次いで、非水電解液4を外装体に注入し、外装体5を密閉して、非水電解質二次電池とする。
<正極活物質層の空隙率>
 本実施形態において、正極活物質層12は多孔質層であり、その空隙率(以下、「空孔率」、「細孔率」又は「多孔度」)は40%以下であり、39%以下が好ましく、38%以下がより好ましい。空隙率が上記上限値以下であると集電体被覆層と正極活物質層との密着力に優れる。例えば、後述の剥離試験において、集電体被覆層と正極活物質層との界面が剥離せず、正極活物質層の凝集破壊が生じるように密着力を高めることができる。集電体被覆層と正極活物質層との密着力が高まると、正極集電体と正極活物質層間の抵抗が低下し、電池特性が向上する。
 正極活物質層の空隙率の下限値は特に限定されないが、イオン伝導の点からは25%以上であることが好ましく、30%以上であることがより好ましく、さらに35%以上であることがより好ましい。
 前記上限値及び下限値は任意に組み合わせることができる。
 正極活物質の空隙率は、25~40%が好ましく、30~29%がより好ましく、35~38%がさらに好ましい。また、前記空隙率は、30~39%であってもよい。
 ここで、空隙率とは「正極活物質層の単位体積あたりの空隙の体積が占める百分率」を意味する。本明細書における空隙率は、下記の測定方法により測定した値である。
[空隙率の測定方法]
 空隙率は、電極の体積密度、電極構成成分の重量比及び真密度から得られる。
 例えば、正極活物質、導電助剤、結着材からなる正極活物質層の空隙率は下記式(b1)で求められる。
 空隙率(%)=(1-正極の体積密度/正極活物質層の真密度)×100…(b1)
 ここで、正極活物質層の真密度は、下記式(b2)で算出される。
 正極活物質層の密度=100/(正極活物質比率/活物質の真密度+導電助剤比率/導電助剤の真密度+結着材の比率/結着材の真密度)…(b2)
 分散剤を含む場合には、正極活物質層の真密度に分散剤比率/分散剤の真密度を加える。
 正極の体積密度は以下の測定方法により測定した値である。
 マイクロゲージを用いて正極シートの厚み及び正極集電体露出部13の厚みを測定する。それぞれ任意の5点で測定して平均値を求める。
 正極シートを、直径16mmの円形に打ち抜いた測定試料を5枚準備する。
 各測定試料の質量を精密天秤にて秤量し、測定結果から、予め測定した正極集電体11の質量を差し引くことにより、測定試料中の正極活物質層12の質量を算出する。各測定値の平均値から下記式(b3)に基づいて、正極活物質層の体積密度を算出する。
体積密度(単位:g/cm)=正極活物質層の質量(単位:g)/[(正極活物質層の厚み(単位:cm)×測定試料の面積(単位:cm)]・・・(b3)
 正極活物質層12の空隙率は、例えば、正極集電体11上に正極活物質層12を形成した積層物を加圧する際の加圧力(プレス圧力)、正極活物質粒子の粒子径、正極活物質層12における、正極活物質粒子の含有量、導電助剤の含有量、結着材の含有量によって調整できる。
 プレス圧力が大きいほど空隙率は小さくなる傾向がある。
 集電体被覆層と正極活物質層との密着力の指標として、後述の剥離試験で測定される正極活物質層の剥離強度(180°剥離強度)を用いることができる。正極活物質層の剥離強度は10~1,000mN/cmが好ましく、20~500mN/cmがより好ましく、30~300mN/cmがさらに好ましい。
 本実施形態の非水電解質二次電池は、産業用、民生用、自動車用、住宅用等、各種用途のリチウムイオン二次電池として使用できる。
 本実施形態の非水電解質二次電池の使用形態は特に限定されない。例えば、複数個の非水電解質二次電池を直列又は並列に接続して構成した電池モジュール、電気的に接続した複数個の電池モジュールと電池制御システムとを備える電池システム等に用いることができる。
 電池システムの例としては、電池パック、定置用蓄電池システム、自動車の動力用蓄電池システム、自動車の補機用蓄電池システム、非常電源用蓄電池システム等が挙げられる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<測定方法>
[正極活物質層の空隙率の測定方法]
 上記の方法で正極活物質層の空隙率を測定した。
[剥離試験]
 下記の方法で正極活物質層の剥離強度を測定した。
 図3は、正極活物質層の剥離強度の測定方法の工程図である。図3に示す工程(S1)~(S7)を順に説明する。図3は、その構成をわかりやすく説明するための模式図であり、各構成要素の寸法比率等は、実際とは異なる場合もある。
 (S1)先ず、幅25mm、長さ120mmの長方形の両面テープ50を準備する。両面テープ50は粘着層50aの両面に剥離紙50b、50cが積層されている。両面テープ50としては、日東電工社製品名「No.5015、25mm幅」を用いた。
 (S2)両面テープ50の片面の離型紙50cを剥がし、粘着層50aの表面(以下、「糊面」ともいう。)が露出した粘着体55とする。粘着体55において、長さ方向の一端部55aからの距離が約10mmのところに折り曲げ位置51を設ける。
 (S3)前記折り曲げ位置51より一端部55a側を、糊面と糊面とが接着するように折り曲げる。
 (S4)粘着体55の糊面と、正極シート60の正極活物質層12とが接触するように、粘着体55と正極シート60とを貼り合わせる。
 (S5)粘着体55の外縁に沿って正極シート60を切り出し、長さ方向に圧着ローラーを2往復させる方法で、粘着体55と正極シート60とを圧着させて複合体65を得る。
 (S6)ステンレス板70の一面に、複合体65の粘着体55側の外面を接触させ、折り曲げ位置51とは反対側の他端部65bを、メンディングテープ80でステンレス板70に固定する。メンディングテープ80としては、3M社製品名「スコッチテープメンディングテープ18mm×30小巻810-1-18D」を用いた。メンディングテープ80の長さは約30mmとし、ステンレス板70の端部から複合体65の他端部65bまでの距離Aは約5mm、メンディングテープ80の一端部80aから複合体65の他端部65bまでの距離Bは5mmとする。メンディングテープ80の他端部80bはステンレス板70の他面に貼り付ける。
 (S7)複合体65の折り曲げ位置51側の端部において、粘着体55から正極シート60を、長さ方向に対して平行にゆっくりと剥がす。メンディングテープ80で固定されていない正極シート60の端部(以下、「剥離端」という)60aが、ステンレス板70からはみ出す程度までゆっくりと剥がす。
 次いで、複合体65が固定されたステンレス板70を、図示しない引っ張り試験機(島津製作所製品名「EZ-LX」)に設置し、粘着体55の折り曲げ位置51側の端部を固定し、正極シート60の剥離端60aを折り曲げ位置51とは反対方向(折り曲げ位置51に対して180°方向)に、引っ張り速度60mm/分、試験力50000mN、ストローク70mmで引っ張って剥離強度を測定する。ストローク20~50mmにおける剥離強度の平均値を、正極活物質層12の剥離強度とする。
 (S8)剥離試験後に剥離状態を観察した。正極シート60のうち、粘着層50aと密着している正極活物質層12と正極集電体11との界面、すなわち正極活物質層12と集電体被覆層との界面が剥離した場合を「界面剥離」と判定する。粘着層50aと密着している正極活物質層12が破断された場合を「凝集破壊」と判定する。
<評価方法> 
[高温劣化耐性]
 定格容量が1Ahとなるように作製したセルを用いて高温劣化耐性の評価を下記(1)~(6)の手順に沿って行った。
(1)セルに対して、25℃環境下で0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/4を終止電流(すなわち、50mA)として充電を行った。
(2)25℃環境下で容量確認のための放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。このときの放電容量を基準容量とし、基準容量を1Cレートの電流値とした(すなわち、1,000mAとした)。
(3)25℃環境下でセルの0.2Cレート(すなわち、200mA)で一定電流にて終止電圧3.6Vで充電を行った後、一定電圧にて前記充電電流の1/4を終止電流(すなわち、50mA)として充電を行った。その後、75℃でセルを保管した。
(4)24時間保管後、セルを25℃環境下に2時間静置し、放電を0.2Cレートで一定電流にて終止電圧2.5Vで行った。
(5)前記(4)で測定された75℃保管後の放電容量を、前記(3)で行った放電容量で除して百分率とする事で、容量維持率(単位:%)を算出した。
(6)前記(3)から(5)を容量維持率が80%未満になるまで繰返し、容量維持率と日数をプロットして、容量維持率が80%未満となる日数を求めた。この日数が多いほど、セルの高温劣化耐性に優れる。
<使用材料>
[負極]
 下記負極製造例1で製造した負極。
[集電体]
 下記集電体製造例1で製造した、集電体被覆層を有する集電体。
[正極活物質粒子]
 正極活物質粒子として、リン酸鉄リチウムからなる芯部と低結晶性の炭素からなる被覆部を有する被覆粒子(以下「LFP被覆粒子」ともいう。)を用いた。
 LFP(1):平均粒子径1.2μm、炭素含有量1.1質量%、被覆種が低結晶性の炭素のLFP被覆粒子。
 LFP(2):平均粒子径1.1μm、炭素含有量1.1質量%、被覆種が低結晶性の炭素のLFP被覆粒子。
 LFP(3):平均粒子径10.0μm、炭素含有量1.5質量%、被覆種が低結晶性の炭素のLFP被覆粒子。
 LFP(4):平均粒子径11.0μm、炭素含有量2.0質量%、被覆種が低結晶性の炭素のLFP被覆粒子。
 LFP(5):平均粒子径15.0μm、炭素含有量2.5質量%、被覆種が低結晶性の炭素のLFP被覆粒子。
 なお、リン酸鉄リチウムの真密度は、3.55g/cmである。被覆部の真密度は、1.7g/cmである。
[その他]
 導電助剤として、カーボンブラック(CB)を用いた。CBは不純物が定量限界以下であり、炭素含有量100質量%とみなすことができる。CBの真密度は、2.3g/cmである。
 結着材として、ポリフッ化ビニリデン(PVDF)を用いた。PVDFの真密度は、1.78g/cmである。
 溶媒として、N-メチルピロリドン(NMP)を用いた。
<負極製造例1:負極の製造>
 負極活物質である人造黒鉛100質量部と、結着材であるスチレンブタジエンゴム1.5質量部と、増粘材であるカルボキシメチルセルロースNa1.5質量部と、溶媒である水とを混合し、固形分50質量%の負極製造用組成物を得た。
 得られた負極製造用組成物を、厚さ8μmの銅箔の両面上にそれぞれ塗工し、100℃で真空乾燥して負極活物質層を形成した。負極製造用組成物の塗工量(表裏両面合計)は20mg/cmとした。両面それぞれの負極活物質層は、塗工量及び厚みが互いに均等になるように形成した。塗工後に線圧を2kN/mとして加圧プレスし、負極シートを得た。
 得られた負極シートを打ち抜き、負極とした。
<集電体製造例1:(集電体被覆層あり)の製造>
 以下の方法で正極集電体本体の表裏両面を集電体被覆層で被覆して正極集電体を作製した。正極集電体本体としては厚さ15μmのアルミニウム箔を用いた。
 カーボンブラックと、結着材と、導電性炭素と、溶媒である純水とを混合してスラリーを得た。純水の使用量はスラリーを塗工するのに必要な量とした。
 得られたスラリーを正極集電体本体の両面にグラビア法で塗工し、乾燥し溶媒を除去して集電体被覆層を形成し、正極集電体を得た。
<例1~15>
 例1~7、13は実施例、例8~12、14、15は比較例である。
 以下の方法で正極活物質層を形成した。
 表1に示す配合の正極活物質粒子、導電助剤、結着材、及び溶媒をミキサーにて混合して正極製造用組成物を得た。溶媒の使用量は、正極製造用組成物を塗工するのに必要な量とした。
 得られた正極製造用組成物を、正極集電体の両面上にそれぞれ塗工し、予備乾燥後、120℃環境で真空乾燥して正極活物質層を形成した後、表1に示すプレス圧力(線圧)で加圧プレスし、正極シートを得た。正極製造用組成物の塗工量(表裏両面合計)は20.0mg/cmとした。両面それぞれの正極活物質層は、塗工量及び厚みが互いに均等になるように形成した。
 得られた正極シートについて、正極活物質層の総質量に対する導電性炭素含有量を求めた。結果を表1に示す。
 正極活物質粒子の炭素含有量と配合量、及び導電助剤の炭素含有量と配合量に基づいて、正極活物質層の総質量に対する導電性炭素の含有量を算出した。上記≪導電性炭素含有量の測定方法≫に記載の方法を用いて確認することも可能である。
 得られた正極シートを試料として、上記の方法で、空隙率の測定及び剥離試験を行った。結果を表1に示す。
 得られた正極シートを打ち抜き、正極とした。
<非水電解質二次電池の製造>
 以下の方法で、図2に示す構成の非水電解質二次電池を製造した。
 エチレンカーボネート(EC)とジエチルカーボネート(DEC)を、EC:DECの体積比が3:7となるように混合した溶媒に、電解質としてヘキサフルオロリン酸リチウムを1モル/リットルとなるように溶解して、非水電解液を調製した。
 上記の各例で得た正極と、負極とを、セパレータを介して交互に積層し、最外層が負極である電極積層体を作製した。セパレータとしては、厚さ15μmのポリオレフィンフィルムを用いた。
 電極積層体を作製する工程では、まず、セパレータ2と正極1とを積層し、その後、セパレータ2上に負極3を積層した。
 電極積層体の正極集電体露出部13及び負極集電体露出部33のそれぞれに、端子用タブを電気的に接続し、端子用タブが外部に突出するように、アルミラミネートフィルムで電極積層体を挟み、三辺をラミネート加工して封止した。
 続いて、封止せずに残した一辺から非水電解液を注入し、真空封止して非水電解質二次電池(ラミネートセル)を製造した。
 得られたラミネートセルについて、上記の方法で、高温劣化耐性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、正極活物質層の空隙率が40%以下であり、導電性炭素の含有量が0.5~3.5質量%である例1~7、13の非水電解質二次電池用正極は、剥離強度が高く、剥離試験において正極活物質層の凝集破壊が生じ、高温劣化耐性にも優れていた。正極活物質層の凝集破壊は、集電体被覆層と正極活物質層との界面の密着力が高いことを意味する。
 一方、正極活物質層の空隙率が40%を超える例8~11の非水電解質二次電池用正極は、剥離強度が低く、剥離試験において集電体被覆層と正極活物質層との界面で剥離が生じた。また、空隙率が40%を超えると、同じ導電性炭素量においても、反応点が増加することから、高温劣化が進行しやすかった。
 例12、14、15では、空隙率が40%以下であっても、導電性炭素量が3.5%を超えると、二次電池における高温劣化耐性が劣った。これは、導電助剤によって反応点が増加したことを意味する。
 1 正極
 2 セパレータ
 3 負極
 4 非水電解液
 5 外装体
 10 非水電解質二次電池
 11 正極集電体
 12 正極活物質層
 13 正極集電体露出部
 14 正極集電体本体
 15 集電体被覆層
 31 負極集電体
 32 負極活物質層
 33 負極集電体露出部
 50 両面テープ
 50a 粘着層
 50b 剥離紙
 50c 剥離紙
 51 折り曲げ位置
 55 粘着体
 55a 粘着体の一端部
 60 正極シート
 60a 正極シートの端部(剥離端)
 65 粘着体と正極シートの複合体
 65b 複合体の他端部
 70 ステンレス板
 80 メンディングテープ
 80a メンディングテープの一端部
 80b メンディングテープの他端部

Claims (4)

  1.  正極集電体と、前記正極集電体上に存在する正極活物質層を有し、
     前記正極集電体の、前記正極活物質層側の表面の少なくとも一部に、導電材料を含む集電体被覆層が存在し、
     前記正極活物質層は正極活物質及び導電性炭素を含み、
     前記正極活物質層は正極活物質粒子を含み、前記正極活物質粒子は、前記正極活物質である芯部と、導電性炭素を含む活物質被覆部とを有する被覆粒子を含み、
     前記正極活物質が、一般式LiFe(1-x)PO(式中、0≦x≦1、MはCo、Ni、Mn、Al、Ti又はZrである。)で表される化合物を含み、
     前記正極活物質層の空隙率が40%以下であり、
     前記正極活物質層の総質量に対して前記導電性炭素の含有量が0.5~3.5質量%である、非水電解質二次電池用正極。
  2.  前記正極活物質層は結着材を含み、前記結着材はポリフッ化ビニリデンを含む、請求項1に記載の非水電解質二次電池用正極。
  3.  請求項1又は2に記載の非水電解質二次電池用正極、負極、及び前記非水電解質二次電池用正極と負極との間に存在する非水電解質を備える、非水電解質二次電池。
  4.  請求項3に記載の非水電解質二次電池の複数個を備える、電池モジュール又は電池システム。
PCT/JP2023/031861 2022-09-02 2023-08-31 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム WO2024048735A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022140042A JP7323690B1 (ja) 2022-09-02 2022-09-02 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2022-140042 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024048735A1 true WO2024048735A1 (ja) 2024-03-07

Family

ID=87519424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031861 WO2024048735A1 (ja) 2022-09-02 2023-08-31 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Country Status (2)

Country Link
JP (2) JP7323690B1 (ja)
WO (1) WO2024048735A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212167A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 集電箔、電池、車両、電池使用機器及び集電箔の製造方法
JP2018026314A (ja) * 2016-08-12 2018-02-15 株式会社豊田自動織機 正極及びリチウムイオン二次電池
JP2018185892A (ja) * 2017-04-24 2018-11-22 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
JP2021051967A (ja) * 2019-09-26 2021-04-01 住友大阪セメント株式会社 リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212167A (ja) * 2009-03-12 2010-09-24 Toyota Motor Corp 集電箔、電池、車両、電池使用機器及び集電箔の製造方法
JP2018026314A (ja) * 2016-08-12 2018-02-15 株式会社豊田自動織機 正極及びリチウムイオン二次電池
JP2018185892A (ja) * 2017-04-24 2018-11-22 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
JP2021051967A (ja) * 2019-09-26 2021-04-01 住友大阪セメント株式会社 リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池

Also Published As

Publication number Publication date
JP2024035800A (ja) 2024-03-14
JP2024035528A (ja) 2024-03-14
JP7323690B1 (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7323713B2 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024048656A1 (ja) 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023176895A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7138228B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024048735A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023182239A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023249066A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
WO2023176929A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2023182271A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024009988A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、非水電解質二次電池用正極の製造方法
WO2024048653A1 (ja) 非水電解質二次電池、電池モジュール、及び電池システム
JP7149437B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP7149436B1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
WO2024005214A1 (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023140733A (ja) 非水電解質二次電池の正極製造用組成物、非水電解質二次電池用正極、非水電解質二次電池、電池モジュール及び電池システム、並びに非水電解質二次電池用正極の製造方法
JP2023141414A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2024509652A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023141411A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023141406A (ja) 非水電解質二次電池用正極の製造方法、非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム、正極製造用組成物
JP2024509651A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム
JP2023029333A (ja) 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860497

Country of ref document: EP

Kind code of ref document: A1