JP2021051967A - リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 - Google Patents
リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 Download PDFInfo
- Publication number
- JP2021051967A JP2021051967A JP2019175384A JP2019175384A JP2021051967A JP 2021051967 A JP2021051967 A JP 2021051967A JP 2019175384 A JP2019175384 A JP 2019175384A JP 2019175384 A JP2019175384 A JP 2019175384A JP 2021051967 A JP2021051967 A JP 2021051967A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- lithium ion
- ion polymer
- polymer battery
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
リチウムイオン二次電池の負極材料の負極活物質としては、一般に炭素系材料またはリチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物が用いられる。そのようなLi含有金属酸化物としては、例えば、チタン酸リチウム(Li4Ti5O12)が挙げられる。
ここで、イオン導電性ポリマーとは、ポリエチレンオキシド、変性ポリエチレンオキシド等の配位性ポリマーにリチウム塩を溶解させたものである。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
本実施形態のリチウムイオンポリマー電池用正極材料(以下、単に「正極材料」と言うことがある。)は、一般式LixAyDzPO4(但し、AはCo、Mn、Ni、Fe、CuおよびCrからなる群から選択される少なくとも1種、DはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、ScおよびYからなる群から選択される少なくとも1種、0.9<x<1.1、0<y≦1、0≦z<1、0.9<y+z<1.1)で表わされる中心粒子と、該中心粒子の表面を被覆する炭素質被膜とを含む活物質粒子であって、活物質粒子と、導電助剤と、イオン導電性ポリマーとの混合比が質量比で66:4:30である混合物を、溶媒に溶解してなり、総固形分量が40質量%のペーストのせん断速度が4.0[1/s]のときの粘度が5000mPa・s以下である。
粉体抵抗値が100Ω・cm以下であると、正極材料、および電極集電体上に形成された正極合剤層の電子伝導性を向上させることができる。
粉体抵抗値は、正極材料を50MPaの圧力で成形した試料から測定することができ、具体的には、実施例に記載の方法により測定することができる。
正極材料の平均一次粒子径が10nm以上であると、正極材料の比表面積が増えることで必要になる炭素の質量の増加を抑制し、リチウムイオンポリマー電池の充放電容量が低減することを抑制できる。一方、正極材料の平均一次粒子径が400nm以下であると、正極材料内でのリチウムイオンの移動または電子の移動にかかる時間が長くなることを抑制できる。これにより、リチウムイオンポリマー電池の内部抵抗が増加して出力特性が悪化することを抑制できる。
BET比表面積が5m2/g以上であると、正極材料の粗大化を抑制して、その粒子内におけるリチウムイオンの拡散速度を速くすることができる。これにより、リチウムイオンポリマー電池の電池特性を改善することができる。一方、BET比表面積が25m2/g以下であると、本実施形態のリチウムイオンポリマー電池用正極材料を含む正極内の正極密度を高くすることができる。そのため、高エネルギー密度を有するリチウムイオンポリマー電池を提供することができる。
炭素量が0.1質量部以上であると、リチウムイオンポリマー電池の高速充放電レートにおける放電容量が高くなり、充分な充放電レート性能を実現することができる。一方、炭素量が10質量部以下であると、正極材料の単位質量当たりのリチウムイオンポリマー電池の電池容量が必要以上に低下することを抑制できる。
本実施形態のリチウムイオンポリマー電池用正極材料において、粗粒のピーク(極大)形状を表わす曲線が囲む面積(粗粒側のピーク面積)と微粒のピーク(極大)形状を表わす曲線が囲む面積(微粒側のピーク面積)との和に対する、粗粒のピーク(極大)形状を表わす曲線が囲む面積の比(粗粒比)は、35%以上かつ65%以下であることが好ましく、40%以上かつ60%以下であることがより好ましい。
粒度分布の粗粒比は、レーザー回折散乱式粒度分布測定装置等を用いて測定することができ、二峰性を示す粒度分布の粗粒側のピーク面積と微粒側のピーク面積から算出できる。
メディアン径が0.50μm以上であると、過剰な解砕による電子伝導性の低下を防ぐことができる。一方、メディアン径が0.80μm以下であると、リチウムイオン二次電池用正極材料を含む正極を作製する際に、正極活物質(中心粒子)を密に詰め込むことが可能になり、単位体積当たりのエネルギー密度が向上する。
メディアン径とは、粒度分布における積算%の分布曲線が50%の横軸と交差するポイントの粒子径である。
粒度分布の微粒の極大値が0.15μm以上かつ0.35μm以下であると、中心粒子の一次粒子の表面を被覆する炭素質被膜の剥離が抑制された正極材料の電子伝導性が向上する。
粒度分布の粗粒の極大値が0.80μm以上かつ1.20μm以下であると、リチウムイオンポリマー電池用正極材料を含む正極を作製する際に、正極材料を密に詰め込むことが可能となり、正極の単位体積当たりのエネルギー密度が向上する。
リチウムイオンポリマー電池用正極材料の色度b*は、中心粒子における炭素質被膜の被覆の度合いを示す指標である。
色度b*が1.9以上であると、リチウムイオンポリマー電池用正極材料を含む正極を作製する際に、正極活物質(中心粒子)を密に詰め込むことが可能になり、単位体積当たりのエネルギー密度が向上する。一方、色度b*が2.3以下であると、リチウムイオンポリマー電池用正極材料において、炭素質被膜に覆われていない中心粒子の露出度を単位体積当たりのエネルギー密度を高めるために充分な範囲とすることができ、過剰な解砕による電子伝導性の低下を防ぐことができる。
炭素担持量割合が0.05質量・g/m2以上であると、リチウムイオンポリマー電池の高速充放電レートにおける放電容量が高くなり、充分な充放電レート性能を実現することができる。一方、炭素担持量割合が0.15質量・g/m2以下であると、正極材料の単位質量当たりのリチウムイオンポリマー電池の電池容量が必要以上に低下することを抑制できる。
本実施形態のリチウムイオンポリマー電池用正極材料を構成する中心粒子は、一般式LixAyDzPO4(但し、AはCo、Mn、Ni、Fe、CuおよびCrからなる群から選択される少なくとも1種、DはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、ScおよびYからなる群から選択される少なくとも1種、0.9<x<1.1、0<y≦1、0≦z<1、0.9<y+z<1.1)で表わされる正極活物質からなる。
中心粒子の一次粒子の平均一次粒子径が5nm以上であると、中心粒子の一次粒子の表面を炭素質被膜で充分に被覆することができる。そして、リチウムイオンポリマー電池の高速充放電における放電容量を高くし、充分な充放電性能を実現することができる。一方、中心粒子の一次粒子の平均一次粒子径が800nm以下であると、中心粒子の一次粒子の内部抵抗を小さくすることができる。そして、リチウムイオンポリマー電池の高速充放電における放電容量を高くすることができる。
炭素質被膜は、中心粒子の表面を被覆する。
中心粒子の表面を炭素質被膜で被覆することにより、リチウムイオンポリマー電池用正極材料の電子伝導性を向上させることができる。
炭素質被膜の厚さが0.2nm以上であると、炭素質被膜の厚さが薄すぎるために所望の抵抗値を有する膜を形成できなくなることを抑制できる。そして、リチウムイオンポリマー電池用正極材料としての導電性を確保することができる。一方、炭素質被膜の厚さが10nm以下であると、リチウムイオンポリマー電池用正極材料の単位質量当たりの電池容量が低下することを抑制できる。
ここで、炭素質被膜の炭素分によって計算される、炭素質被膜の密度を上記の範囲に限定した理由は、炭素質被膜の炭素分によって計算される、炭素質被膜の密度が0.3g/cm3以上であれば、炭素質被膜が充分な電子伝導性を示すからである。一方、炭素質被膜の密度が1.5g/cm3以下であれば、炭素質被膜中に含まれる層状構造からなる黒鉛の微結晶が少量であるため、リチウムイオンが炭素質被膜中を拡散する際に黒鉛の微結晶による立体障害が生じない。これにより、リチウムイオン移動抵抗が高くなることがない。その結果、リチウムイオンポリマー電池の内部抵抗が上昇することがなく、リチウムイオンポリマー電池の高速充放電レートにおける電圧低下が生じない。
本実施形態のリチウムイオンポリマー電池用正極材料は、凝集体からなる活物質粒子を解砕することにより製造することができる。
本実施形態における活物質粒子の製造方法は、例えば、中心粒子および中心粒子の前駆体の製造工程と、中心粒子および中心粒子の前駆体からなる群から選択される少なくとも1種の中心粒子原料、炭素質被膜前駆体である有機化合物および水を混合し、スラリーを調製するスラリー調製工程と、スラリーを乾燥し、得られた乾燥物を非酸化性雰囲気下にて焼成する焼成工程と、を有する。
一般式LixAyDzPO4(但し、AはCo、Mn、Ni、Fe、CuおよびCrからなる群から選択される少なくとも1種、DはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、ScおよびYからなる群から選択される少なくとも1種、0.9<x<1.1、0<y≦1、0≦z<1、0.9<y+z<1.1)で表わされる化合物(中心粒子)の製造方法としては、固相法、液相法、気相法等の従来の方法が用いられる。このような方法で得られたLixAyDzPO4としては、例えば、粒子状のもの(以下、「LixAyDzPO4粒子」と言うことがある。)が挙げられる。
この水熱合成には耐圧密閉容器を用いることが好ましい。
スラリー調製工程により、中心粒子間に、炭素質被膜の前駆体である有機化合物が介在し、それらが均一に混合するため、中心粒子の表面を有機化合物でムラなく被覆することができる。
さらに、焼成工程により、中心粒子の表面を被覆する有機化合物が炭化することにより、炭素質被膜が均一に被覆された中心粒子を含む活物質粒子(正極材料)が得られる。
これらの原料を水に溶解または分散させる際には、分散剤を加えることもできる。
中心粒子原料と、有機化合物とを、水に溶解または分散させる方法としては、水に中心粒子原料を分散させ、水に有機化合物を溶解または分散させる方法であれば、特に限定されない。このような方法としては、例えば、遊星ボールミル、振動ボールミル、ビーズミル、ペイントシェーカーおよびアトライタ等の媒体粒子を高速で攪拌する媒体攪拌型分散装置を用いる方法が好ましい。
次いで、スラリー調製工程で調製したスラリーを、高温雰囲気中、例えば、70℃以上かつ250℃以下の大気中に噴霧し、乾燥させる。
次いで、得られた乾燥物を、非酸化性雰囲気下、好ましくは500℃以上かつ1000℃以下、より好ましくは600℃以上かつ1000℃以下の温度にて、0.1時間以上かつ40時間以下焼成する。
次いで、この凝集体からなる活物質粒子の少なくとも一部を解砕する。ここで、「凝集体からなる活物質粒子の少なくとも一部を解砕する」とは、凝集体の少なくとも一部が解砕されていればよく、凝集体全てが解砕されている必要はない。
本実施形態では、活物質粒子(中心粒子、一次粒子)へのダメージを抑える上で、ジェットミルを解砕に用いることが好ましい。
また、ジェットミルへの凝集体の供給速度を50g/時間〜1500g/時間、空気圧を0.3MPa〜0.7MPaとすることが好ましい。解砕強度はジェットミルへ投入する凝集体の供給速度を変動させることで自由に調整することができる。また、解砕強度を調整することにより、リチウムイオンポリマー電池用正極材料の粒度分布の粗粒比を調整することができる。ここで、解砕強度が強い場合には、粗粒比が小さい値となり、リチウムイオンポリマー電池用正極材料において、炭素質被膜に覆われていない中心粒子の露出度が高くなる。なお、解砕強度とは、例えば、ジェットミルを用いる場合、前記の空気圧を固定した際の凝集体の供給速度(g/時間)のことであり、供給速度が遅いほど解砕強度は強く、供給速度が速いほど解砕強度は弱くなる。
本実施形態のリチウムイオンポリマー電池用正極(以下、単に「正極」と言うことがある。)は、本実施形態のリチウムイオンポリマー電池用正極材料を含む。より詳細には、本実施形態の正極は、金属箔からなる電極集電体と、その電極集電体上に形成された正極合剤層と、を備え、正極合剤層が、本実施形態のリチウムイオンポリマー電池用正極材料を含有するものである。すなわち、本実施形態の正極は、本実施形態のリチウムイオンポリマー電池用正極材料を用いて、電極集電体の一主面に正極合剤層が形成されてなるものである。
本実施形態のリチウムイオンポリマー電池用正極の製造方法は、本実施形態のリチウムイオンポリマー電池用正極材料を用いて、電極集電体の一主面に正極合剤層を形成できる方法であれば特に限定されない。本実施形態の正極の製造方法としては、例えば、以下の方法が挙げられる。
まず、本実施形態のリチウムイオンポリマー電池用正極材料と、イオン導電性ポリマーと、溶媒とを混合して、正極材料ペーストを調製する。この際、本実施形態における正極材料ペーストには、必要に応じて、カーボンブラック等の導電助剤および結着剤を添加してもよい。
イオン導電性ポリマーとしては、例えば、ポリエチレンオキシド、変性ポリエチレンオキシド等が好適に用いられる。
イオン導電性ポリマーの配合量が20質量部以上であると、正極活物質表面に十分なイオン導電性経路が形成され、反応に寄与しない活物質が生じることがなく、電池容量が低下することを抑制できる。一方、イオン導電性ポリマーの配合量が100質量部以下であると、イオン導電性ポリマーが無駄になることがなく、電極中の活物質割合が低くなりすぎることもないため、電池容量が低下することを抑制できる。
イオン導電性ポリマーに密着性がある場合は、結着剤を必ずしも必要とはしないが、結着剤、すなわち、バインダー樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、ポリフッ化ビニリデン(PVdF)樹脂、フッ素ゴム等が好適に用いられる。
結着剤の配合量が1質量部以上であると、正極合剤層と電極集電体との間の結着性を充分に高くすることができる。これにより、正極合剤層の圧延形成時等において正極合剤層の割れや脱落が生じることを抑制できる。また、リチウムイオンポリマー電池の充放電過程において、正極合剤層が電極集電体から剥離し、電池容量および充放電レートが低下することを抑制できる。一方、結着剤の配合量が30質量部以下であると、リチウムイオンポリマー電池用正極材料の内部抵抗が低下し、高速充放電レートにおける電池容量が低下することを抑制できる。
導電助剤としては、特に限定されないが、例えば、アセチレンブラック(AB)、ケッチェンブラック、ファーネスブラックの粒子状炭素や、気相成長炭素繊維(VGCF;Vapor Grown Carbon Fiber)およびカーボンナノチューブ等の繊維状炭素からなる群から選択される少なくとも1種が用いられる。
本実施形態のリチウムイオンポリマー電池用正極材料を含む正極材料ペーストに用いられる溶媒は、結着剤の性質に応じて適宜選択される。溶媒を適宜選択することにより、正極材料ペーストを、電極集電体等の被塗布物に対して塗布し易くすることができる。
溶媒としては、例えば、水、アルコール類、エステル類、エーテル類、ケトン類、アミド類、グリコール類等が挙げられる。
アルコール類としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等が挙げられる。
エステル類としては、例えば、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等が挙げられる。
エーテル類としては、例えば、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等が挙げられる。
ケトン類としては、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等が挙げられる。
アミド類としては、例えば、ジメチルホルムアミド、N,N−ジメチルアセトアセトアミド、N−メチル−2−ピロリドン(NMP)等が挙げられる。
グリコール類としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール等が挙げられる。
これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
正極材料ペーストにおける溶媒の含有率が上記の範囲内であると、正極形成性に優れ、かつ電池特性に優れた正極材料ペーストを得ることができる。
本実施形態のリチウムイオンポリマー電池は、正極と、負極と、ポリマー電解質と、を備え、正極が、本実施形態のリチウムイオンポリマー電池用正極である。具体的には、本実施形態のリチウムイオンポリマー電池は、正極としての本実施形態のリチウムイオンポリマー電池用正極と、負極と、ポリマー電解質とを備えてなる。
本実施形態のリチウムイオンポリマー電池では、負極、非水電解質およびセパレータは特に限定されない。
負極としては、例えば、金属Li、天然黒鉛、ハードカーボン等の炭素材料、Li合金およびLi4Ti5O12、Si(Li4.4Si)等の負極材料を含むものが挙げられる。
ポリマー電解質としては、例えば、ポリエチレンオキシドにリチウムトリフルイミド(LiFTSI)、LiPF6、LiClO4等のリチウム塩を溶解したものが挙げられる。膜の強度を高める目的で、架橋性の官能基を導入した変性ポリエチレンオキシドや低温での導電性確保(結晶化防止)の目的で官能基を導入した変性ポリエチレンオキシド等も好適に用いることができる。電極集電体との密着性を高める、温度特性を改善する、耐酸化性を向上する等を目的として、エチレンオキシドと他のモノマーとのコポリマーを用いることも可能である。
一般に用いられているように、正極の塗工、乾燥後にイオン導電性ポリマーを含む液を正極上に塗工、乾燥し、必要に応じて、イオン導電性ポリマーを架橋させることも可能である。その後、負極を貼りあわせてから、必要に応じて圧着する。
同様に負極上に、イオン導電性ポリマーを含む液を塗工し、製膜することもできる。
架橋には、一般に用いられている、熱、紫外線、電子線等の手法を好適に用いることができる。
本実施例では、正極活物質の性能を正確に評価するために、正極を作製した後、市販のイオン導電性ポリマーを用いたフィルム(厚さ60μm)とLi負極を貼り合わせることで電池を作製し、評価した。
「リチウムイオンポリマー電池用正極材料の合成」
2molのリン酸リチウム(Li3PO4)と、2molの硫酸鉄(II)(FeSO4)とに水を加え、全体量が4Lになるように混合し、均一なスラリー状の混合物を調製した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、150℃にて24時間、水熱合成し、正極活物質の沈殿物を生成した。
次いで、この沈殿物を水洗し、ケーキ状の正極活物質を得た。
次いで、この正極活物質150g(固形分換算)に、有機化合物としてのポリエチレングリコール10gとショ糖8gを加え、これらの混合物を、媒体粒子としての直径5mmのジルコニアボールを用いて、ビーズミルにて2時間、分散処理を行い、均一なスラリーを調製した。
次いで、このスラリーを200℃の大気雰囲気中に噴霧し、乾燥して、平均粒子径が8.5μmの有機物で被覆された、正極材料の造粒体を得た。
次いで、得られた造粒体を、窒素雰囲気下、680℃にて3時間焼成し、平均粒子径が8.5μmである炭素質被膜で被覆された正極活物質の造粒体を得た。
上記の凝集体を、ジェットミル装置(商品名:SJ−100、日清エンジニアリング社製)を用い、供給速度180g/時間の条件で解砕し、実施例1の正極材料1を得た。
溶媒であるN−メチル−2−ピロリジノン(NMP)に、正極材料1と、イオン導電性ポリマー(母材)としてのポリエチレンオキキシド100000(PEO100000、平均分子量100000g/mol)と、リチウム塩としてのLiTFSIと、導電助剤としてのアセチレンブラック(AB)とを、ペースト中の質量比で、正極材料1:PEO100000:LiTFSI:AB=66:24:6:4、さらにペーストの総固形分量が40質量%となるよう混合し、混練機(商品名:あわとり練太郎、シンキー社製)を用いて、公転1200rpm、自転800rpmの条件で30分混練し、正極材料ペースト(正極用)を調製した。
この正極材料ペースト(正極用)を、厚さ30μmのアルミニウム箔(電極集電体)の表面に塗布して塗膜を形成し、その塗膜を乾燥し、アルミニウム箔の表面に正極合剤層を形成した。
その後、正極合剤層を、28000N/100mmの線圧にて加圧し、実施例1の正極1を作製した。この正極を一定の大きさに切り出し、厚さと質量から密度を求めた。
次に、電池用部材1をCR2032型コインセル内に配し、実施例1のリチウムイオンポリマー電池1を作製した。
凝集体を供給速度160g/時間の条件で解砕したこと以外は実施例1と同様にして、実施例2の正極材料2を得た。
正極材料2を用いたこと以外は実施例1と同様にして、実施例2のリチウムイオンポリマー電池2を作製した。
凝集体を供給速度150g/時間の条件で解砕したこと以外は実施例1と同様にして、実施例3の正極材料3を得た。
正極材料3を用いたこと以外は実施例1と同様にして、実施例3のリチウムイオンポリマー電池3を作製した。
凝集体を供給速度130g/時間の条件で解砕したこと以外は実施例1と同様にして、実施例4の正極材料4を得た。
正極材料4を用いたこと以外は実施例1と同様にして、実施例4のリチウムイオンポリマー電池4を作製した。
凝集体を供給速度100g/時間の条件で解砕したこと以外は実施例1と同様にして、実施例5の正極材料5を得た。
正極材料5を用いたこと以外は実施例1と同様にして、実施例5のリチウムイオンポリマー電池5を作製した。
凝集体を供給速度90g/時間の条件で解砕したこと以外は実施例1と同様にして、実施例6の正極材料6を得た。
正極材料6を用いたこと以外は実施例1と同様にして、実施例6のリチウムイオンポリマー電池6を作製した。
「リチウムイオンポリマー電池用正極材料の合成」
2molのリン酸リチウム(Li3PO4)と、2molの硫酸鉄(II)(FeSO4)とに水を加え、全体量が4Lになるように混合し、均一なスラリー状の混合物を調製した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、200℃にて24時間、水熱合成し、正極活物質の沈殿物を生成した。
次いで、この沈殿物を水洗し、ケーキ状の正極活物質を得た。
次いで、この正極活物質150g(固形分換算)に、有機化合物としてのポリエチレングリコール10gとショ糖8gを加え、これらの混合物を、媒体粒子としての直径5mmのジルコニアボールを用いて、ビーズミルにて2時間、分散処理を行い、均一なスラリーを調製した。
次いで、このスラリーを200℃の大気雰囲気中に噴霧し、乾燥して、平均粒子径が8.3μmの有機物で被覆された、正極材料の造粒体を得た。
次いで、得られた造粒体を、窒素雰囲気下、680℃にて3時間焼成し、平均粒子径が8.3μmである炭素質被膜で被覆された正極活物質の造粒体を得た。
上記の凝集体をジェットミル装置(商品名:SJ−100、日清エンジニアリング社製)を用い、供給速度100g/時間の条件で解砕し、実施例7の正極材料7を得た。
正極材料7を用いたこと以外は実施例1と同様にして、実施例7のリチウムイオンポリマー電池7を作製した。
「リチウムイオンポリマー電池用正極材料の合成」
2molのリン酸リチウム(Li3PO4)と、2molの硫酸鉄(II)(FeSO4)とに水を加え、全体量が4Lになるように混合し、均一なスラリー状の混合物を調製した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、160℃にて16時間、水熱合成し、正極活物質の沈殿物を生成した。
次いで、この沈殿物を水洗し、ケーキ状の正極活物質を得た。
次いで、この正極活物質150g(固形分換算)に、有機化合物としてのポリエチレングリコール10gとショ糖8gを加え、これらの混合物を、媒体粒子としての直径5mmのジルコニアボールを用いて、ビーズミルにて2時間、分散処理を行い、均一なスラリーを調製した。
次いで、このスラリーを200℃の大気雰囲気中に噴霧し、乾燥して、平均粒子径が8.9μmの有機物で被覆された、正極材料の造粒体を得た。
次いで、得られた造粒体を、窒素雰囲気下、680℃にて3時間焼成し、平均粒子径が8.9μmである炭素質被膜で被覆された正極活物質の造粒体を得た。
上記の凝集体をジェットミル装置(日清エンジニアリング社製、商品名:SJ−100)を用い、供給速度90g/時間の条件で解砕し、実施例8の正極材料8を得た。
正極材料8を用いたこと以外は実施例1と同様にして、実施例8のリチウムイオン二次電池8を作製した。
「リチウムイオンポリマー電池用正極材料の合成」
2molのリン酸リチウム(Li3PO4)と、2molの硫酸鉄(II)(FeSO4)とに水を加え、全体量が4Lになるように混合し、均一なスラリー状の混合物を調製した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、120℃にて48時間、水熱合成し、正極活物質の沈殿物を生成した。
次いで、この沈殿物を水洗し、ケーキ状の正極活物質を得た。
次いで、この正極活物質150g(固形分換算)に、有機化合物としてのポリエチレングリコール10gとショ糖8gを加え、これらの混合物を、媒体粒子としての直径5mmのジルコニアボールを用いて、ビーズミルにて2時間、分散処理を行い、均一なスラリーを調製した。
次いで、このスラリーを200℃の大気雰囲気中に噴霧し、乾燥して、平均粒子径が91μmの有機物で被覆された、正極材料の造粒体を得た。
次いで、得られた造粒体を、窒素雰囲気下、680℃にて3時間焼成し、平均粒子径が9.1μmである炭素質被膜で被覆された正極活物質の造粒体を得た。
上記の凝集体をジェットミル装置(日清エンジニアリング社製、商品名:SJ−100)を用い、供給速度80g/時間の条件で解砕し、実施例9の正極材料9を得た。
正極材料9を用いたこと以外は実施例1と同様にして、実施例9のリチウムイオンポリマー電池9を作製した。
凝集体を供給速度280g/時間の条件で解砕したこと以外は実施例1と同様にして、比較例1の正極材料10を得た。
正極材料10を用いたこと以外は実施例1と同様にして、比較例1のリチウムイオンポリマー電池10を作製した。
凝集体を供給速度250g/時間の条件で解砕したこと以外は実施例1と同様にして、比較例2の正極材料11を得た。
正極材料11を用いたこと以外は実施例1と同様にして、比較例2のリチウムイオンポリマー次電池11を作製した。
凝集体を解砕しないこと以外は実施例1と同様にして、比較例3の正極材料12を得た。
正極材料12を用いたこと以外は実施例1と同様にして、比較例3のリチウムイオンポリマー電池12を作製した。
凝集体を解砕しないこと以外は実施例7と同様にして、比較例4の正極材料13を得た。
正極材料13を用いたこと以外は実施例1と同様にして、比較例4のリチウムイオンポリマー電池13を作製した。
凝集体を供給速度65g/時間の条件で解砕したこと以外は実施例8と同様にして、比較例5の正極材料14を得た。
正極材料14を用いたこと以外は実施例1と同様にして、比較例5のリチウムイオンポリマー電池14を作製した。
凝集体を供給速度55g/時間の条件で解砕したこと以外は実施例9と同様にして、比較例6の正極材料15を得た。
正極材料15を用いたこと以外は実施例1と同様にして、比較例6のリチウムイオンポリマー電池15を作製した。
実施例1〜実施例9および比較例1〜比較例6のリチウムイオンポリマー電池用正極材料およびリチウムイオンポリマー電池について、以下の通り、評価を行った。
リチウムイオンポリマー電池用正極材料のBET比表面積は、測定装置(商品名:HM model−1208、マウンテック社製)を用いて、一点法、相対圧0.29(P/P0)にて測定した。
リチウムイオンポリマー電池用正極材料の炭素量は、炭素硫黄分析装置(商品名:EMIA−220V、堀場製作所製)を用いて測定した。
リチウムイオンポリマー電池用正極材料の粉体抵抗値は、正極材料を金型に投入して50MPaの圧力にて成形し、低抵抗率計(商品名:Loresta−GP、三菱化学社製)を用いて、25℃にて四端子法により測定した。
リチウムイオンポリマー電池用正極材料におけるメディアン径を、以下の方法で測定した。
測定装置(商品名:LA−950V2、堀場製作所社製)を用いてメディアン径を測定した。
まず、分散液としての純水40gおよびポリビニルピロリドン(PVP)0.12g、試料粉末としてのリチウムイオンポリマー電池用正極材料0.04gを70mLマヨネーズ瓶に秤量した。このマヨネーズ瓶を手動で10回程振り混ぜて、試料粉末と分散液を馴染ませた。
次いで、この試料粉末と分散液の混合溶液を超音波ホモジナイザー(商品名:SONIFIER450、BRANSON社製)にて、Output5、パルス50%条件で2分間超音波処理をし、得られた分散溶液を用いてメディアン径を測定した。メディアン径とは、粒度分布における積算%の分布曲線が50%の横軸と交差するポイントの粒子径であるから、リチウムイオンポリマー電池用正極材料の粒度分布の測定結果を基に、メディアン径を算出した。
メディアン径は、データ取り込み回数を半導体レーザー(LD)5000回、発光ダイオード(LED)1000回として測定し、データの演算条件は下記の通りとした。
<演算条件>
(サンプル屈折率)
LD実部:1.48
LD虚部:0.45
LED実部:1.50
LED虚部:0.55
(分散媒屈折率)
LD実部:1.33
LD虚部:0.00
LED実部:1.33
LED虚部:0.00
(反復回数):15回
(粒子径基準):体積
(演算アルゴリズム):標準演算
上記のメディアン径の測定で得られたリチウムイオンポリマー電池用正極材料の粒度分布について、粗粒側のピーク面積Aと微粒側のピーク面積Bを用い、下記の式(1)から算出した。
粗粒比(%)=A/(A+B)×100・・・(1)
リチウムイオンポリマー電池用正極材料のL*a*b*表色系における色度b*は、分光式色彩計(型番:SE−2000、日本電色工業社製)とD65光源を用いた、反射光2度視野測定によって測定された。リチウムイオンポリマー電池用正極材料の色度b*を測定する際には、シャーレに斑なく測定対象の正極材料を載せて、その正極材料の色度b*を測定した。
(7)ペースト粘度
リチウムイオンポリマー電池用ペーストの粘度は、上記の方法で作製した正極材料ペーストを動的粘弾性測定装置(型番:RS−6000、サーモフィッシャーサイエンティフィック社製)を用いて、測定温度を25℃、C20/4−Ti L10のセンサーを使用し、センサーとプレートのギャップを0.14mm、せん断速度を0.01[1/s]から20[1/s]の範囲で各15秒のステップで上昇させ、せん断速度が4.0[1/s]における粘度を読み取った。
リチウムイオンポリマー電池用正極の正極密度は、加圧後の正極におけるアルミニウム電極集電体を除いた正極の体積を分母にし、正極材料の質量を分子にした際の比で算出した。
また、それぞれの部材の理論密度から予想される正極の理論密度(2.3g/cm3)から正極の気孔率を以下の式で見積もった。
気孔率=(1−正極密度/正極理論密度)×100[%]
(9)初期放電容量
リチウムイオンポリマー電池の初期放電容量を、次のように評価した。60℃環境下で、電流値0.1Cにて電池電圧が4.2Vになるまで定電流充電した後、4.2Vの定電圧で電流が0.01C相当に低下するまで充電を行った。その後、電流値0.1Cにて電池電圧が2.0Vになるまで放電したところまでを1サイクルとし、2サイクル目の容量を初期放電容量とした。凝集体が十分に解砕されていない場合、イオン導電性ポリマーが凝集体内部に侵入しないため、活物質表面と十分に接触せず、リチウムイオンの供給が不十分となり容量が低下する。また、空隙が残留するため電極の密度低下、すなわち気孔率の増加が生じる。
リチウムイオンポリマー電池の20サイクル後容量維持率は、前述の条件で、充放電を20サイクル繰り返した際、2サイクル目の放電容量を分母に、20サイクル目の放電容量を分子としたときの割合を容量維持率として評価した。正極材料の電子伝導性が充分に担保されていない場合、充放電サイクルに伴う活物質粒子の膨張収縮を繰り返すことで、正極内の電子伝導パスが不足していくので容量維持率が低下する。
実施例1〜実施例9のリチウムイオンポリマー電池用正極材料およびリチウムイオンポリマー電池の評価結果、並びに、比較例1〜比較例6のリチウムイオンポリマー電池用正極材料およびリチウムイオンポリマー電池の評価結果を表1に示す。なお、表1に示す炭素量は、正極活物質100質量部に対する、炭素質被膜を形成する炭素の量(質量部)を示す。
ここで、イオン導電性ポリマーとは、ポリエチレンオキシド、変性ポリエチレンオキシド等の配位性ポリマーにリチウム塩を溶解させたものである。
ここで、イオン導電性ポリマーとは、ポリエチレンオキシド、変性ポリエチレンオキシド等の配位性ポリマーにリチウム塩を溶解させたものである。
Claims (9)
- 一般式LixAyDzPO4(但し、AはCo、Mn、Ni、Fe、CuおよびCrからなる群から選択される少なくとも1種、DはMg、Ca、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、ScおよびYからなる群から選択される少なくとも1種、0.9<x<1.1、0<y≦1、0≦z<1、0.9<y+z<1.1)で表わされる中心粒子と、該中心粒子の表面を被覆する炭素質被膜とを含む活物質粒子であって、
前記活物質粒子と、イオン導電性ポリマーと、導電助剤との混合比が質量比で66:30:4である混合物を、溶媒に溶解してなり、総固形分量が40質量%のペーストのせん断速度が4.0[1/s]のときの粘度が5000mPa・s以下であることを特徴とするリチウムイオンポリマー電池用正極材料。 - 前記活物質粒子の粉体抵抗値が100Ω・cm以下であることを特徴とする請求項1に記載のリチウムイオンポリマー電池用正極材料。
- 前記活物質粒子のBET比表面積が5m2/g以上かつ25m2/g以下であることを特徴とする請求項1または2に記載のリチウムイオンポリマー電池用正極材料。
- 前記炭素質被膜を形成する炭素量が、前記中心粒子100質量部に対して0.1質量部以上かつ10質量部以下であることを特徴とする請求項1〜3のいずれか1項に記載のリチウムイオンポリマー電池用正極材料。
- 前記活物質粒子の粒度分布の粗粒比が35%以上かつ65%以下であることを特徴とする請求項1〜4のいずれか1項に記載のリチウムイオンポリマー電池用正極材料。
- 前記活物質粒子のメディアン径が0.50μm以上かつ0.80μm以下、L*a*b*表色系における色度b*が1.9以上かつ2.3以下であることを特徴とする請求項1〜5のいずれか1項に記載のリチウムイオンポリマー電池用正極材料。
- 前記活物質粒子の粒度分布の微粒の極大値が0.15μm以上かつ0.35μm以下、前記活物質粒子の粒度分布の粗粒の極大値が0.80μm以上かつ1.20μm以下であることを特徴とする請求項1〜6のいずれか1項に記載のリチウムイオンポリマー電池用正極材料。
- 電極集電体と、該電極集電体上に形成された正極合剤層と、を備えたリチウムイオンポリマー電池用正極であって、
前記正極合剤層は、請求項1〜7のいずれか1項に記載のリチウムイオンポリマー電池用正極材料を含有することを特徴とするリチウムイオンポリマー電池用正極。 - 請求項8に記載のリチウムイオンポリマー電池用正極を備えたことを特徴とするリチウムイオンポリマー電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019175384A JP6791332B1 (ja) | 2019-09-26 | 2019-09-26 | リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 |
KR1020200009911A KR20210036777A (ko) | 2019-09-26 | 2020-01-28 | 리튬 이온 폴리머 전지용 정극 재료, 리튬 이온 폴리머 전지용 정극, 리튬 이온 폴리머 전지 |
EP20157948.9A EP3799158B1 (en) | 2019-09-26 | 2020-02-18 | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
US16/799,645 US11245110B2 (en) | 2019-09-26 | 2020-02-24 | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
CA3073906A CA3073906C (en) | 2019-09-26 | 2020-02-27 | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
CN202010243182.0A CN112563495B (zh) | 2019-09-26 | 2020-03-31 | 锂离子聚合物电池用正极材料、锂离子聚合物电池用正极、锂离子聚合物电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019175384A JP6791332B1 (ja) | 2019-09-26 | 2019-09-26 | リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6791332B1 JP6791332B1 (ja) | 2020-11-25 |
JP2021051967A true JP2021051967A (ja) | 2021-04-01 |
Family
ID=69701079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019175384A Active JP6791332B1 (ja) | 2019-09-26 | 2019-09-26 | リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11245110B2 (ja) |
EP (1) | EP3799158B1 (ja) |
JP (1) | JP6791332B1 (ja) |
KR (1) | KR20210036777A (ja) |
CN (1) | CN112563495B (ja) |
CA (1) | CA3073906C (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023074216A1 (ja) * | 2021-10-27 | 2023-05-04 | 三菱ケミカル株式会社 | 粒子及びその製造方法と、二次電池及びその製造方法 |
JP7323690B1 (ja) | 2022-09-02 | 2023-08-08 | 積水化学工業株式会社 | 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113264550B (zh) * | 2021-05-18 | 2023-04-07 | 攀枝花学院 | 钛酸锂负极材料的制备方法 |
US20240186501A1 (en) * | 2021-06-02 | 2024-06-06 | Lg Energy Solution, Ltd. | Pre-Dispersion for Positive Electrode and Positive Electrode Slurry for Lithium Secondary Battery Containing the Same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183287A (ja) * | 2003-12-22 | 2005-07-07 | Nissan Motor Co Ltd | 固体電解質電池の製造方法 |
JP2007280687A (ja) * | 2006-04-04 | 2007-10-25 | Nissan Motor Co Ltd | 電池用電極 |
JP2009016265A (ja) * | 2007-07-06 | 2009-01-22 | Showa Denko Kk | リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法 |
JP2018056036A (ja) * | 2016-09-30 | 2018-04-05 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
JP2018163746A (ja) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
JP2019061932A (ja) * | 2017-09-28 | 2019-04-18 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293936B2 (ja) | 2007-05-21 | 2013-09-18 | 戸田工業株式会社 | 非水電解質二次電池用オリビン型複合酸化物及びその製造方法、並びに二次電池 |
CN102473914B (zh) | 2009-07-31 | 2015-12-02 | 户田工业株式会社 | 非水电解质二次电池用正极活性物质和非水电解质二次电池 |
JP2012104290A (ja) | 2010-11-08 | 2012-05-31 | Sony Corp | 非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池 |
WO2015093904A1 (ko) * | 2013-12-19 | 2015-06-25 | 주식회사 엘지화학 | 전극 활물질 슬러리의 제조방법 및 그 방법에 의해 제조된 전극 활물질 슬러리 |
JP7149092B2 (ja) | 2018-03-29 | 2022-10-06 | サトーホールディングス株式会社 | 情報処理システム、情報処理方法、サーバ、及び、プログラム |
JP6497462B1 (ja) | 2018-03-30 | 2019-04-10 | 住友大阪セメント株式会社 | リチウムイオン電池用電極材料及びリチウムイオン電池 |
-
2019
- 2019-09-26 JP JP2019175384A patent/JP6791332B1/ja active Active
-
2020
- 2020-01-28 KR KR1020200009911A patent/KR20210036777A/ko unknown
- 2020-02-18 EP EP20157948.9A patent/EP3799158B1/en active Active
- 2020-02-24 US US16/799,645 patent/US11245110B2/en active Active
- 2020-02-27 CA CA3073906A patent/CA3073906C/en active Active
- 2020-03-31 CN CN202010243182.0A patent/CN112563495B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183287A (ja) * | 2003-12-22 | 2005-07-07 | Nissan Motor Co Ltd | 固体電解質電池の製造方法 |
JP2007280687A (ja) * | 2006-04-04 | 2007-10-25 | Nissan Motor Co Ltd | 電池用電極 |
JP2009016265A (ja) * | 2007-07-06 | 2009-01-22 | Showa Denko Kk | リチウム系電池用電極、リチウム系電池用電極の製造方法、リチウム系電池、及びリチウム系電池の製造方法 |
JP2018056036A (ja) * | 2016-09-30 | 2018-04-05 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
JP2018163746A (ja) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
JP2019061932A (ja) * | 2017-09-28 | 2019-04-18 | 住友大阪セメント株式会社 | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023074216A1 (ja) * | 2021-10-27 | 2023-05-04 | 三菱ケミカル株式会社 | 粒子及びその製造方法と、二次電池及びその製造方法 |
JP7323690B1 (ja) | 2022-09-02 | 2023-08-08 | 積水化学工業株式会社 | 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム |
WO2024048735A1 (ja) * | 2022-09-02 | 2024-03-07 | 積水化学工業株式会社 | 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム |
JP2024035528A (ja) * | 2022-09-02 | 2024-03-14 | 積水化学工業株式会社 | 非水電解質二次電池用正極、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム |
Also Published As
Publication number | Publication date |
---|---|
EP3799158B1 (en) | 2024-08-14 |
US20210098779A1 (en) | 2021-04-01 |
JP6791332B1 (ja) | 2020-11-25 |
EP3799158A1 (en) | 2021-03-31 |
CN112563495B (zh) | 2024-09-20 |
US11245110B2 (en) | 2022-02-08 |
CN112563495A (zh) | 2021-03-26 |
CA3073906C (en) | 2022-08-09 |
KR20210036777A (ko) | 2021-04-05 |
CA3073906A1 (en) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6791332B1 (ja) | リチウムイオンポリマー電池用正極材料ペースト、リチウムイオンポリマー電池用正極、リチウムイオンポリマー電池 | |
JP6424934B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
JP6288338B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
JP6210144B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
US20190097230A1 (en) | Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP6319498B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
JP6264407B2 (ja) | リチウムイオン二次電池 | |
JP6849124B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
JP2019067596A (ja) | リチウムイオン二次電池用電極材料の製造方法 | |
JP6954399B2 (ja) | リチウムイオンポリマー電池およびその製造方法 | |
JP6543827B2 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池、リチウムイオン二次電池用正極材料の評価方法 | |
JP2021157920A (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191031 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191107 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200811 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201019 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6791332 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |