JP7120473B2 - シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両 - Google Patents

シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両 Download PDF

Info

Publication number
JP7120473B2
JP7120473B2 JP2021567064A JP2021567064A JP7120473B2 JP 7120473 B2 JP7120473 B2 JP 7120473B2 JP 2021567064 A JP2021567064 A JP 2021567064A JP 2021567064 A JP2021567064 A JP 2021567064A JP 7120473 B2 JP7120473 B2 JP 7120473B2
Authority
JP
Japan
Prior art keywords
threshold
power generation
forward range
range
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021567064A
Other languages
English (en)
Other versions
JPWO2022024373A1 (ja
Inventor
聖 星
寛子 片山
梓 小林
博康 藤田
大夢 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Publication of JPWO2022024373A1 publication Critical patent/JPWO2022024373A1/ja
Application granted granted Critical
Publication of JP7120473B2 publication Critical patent/JP7120473B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

本発明は、シリーズハイブリッド車両の制御に関する。
JP2016-43908Aには、シフトレンジによってアクセルオフ時の減速度が異なるハイブリッド車両が開示されている。上記文献では、アクセルオフ時の減速度をモータの回生による制動力で調整しており、シフトレンジ毎に異なる大きさの回生電力が設定されている。
上記文献のような構成では、減速度が大きいシフトレンジでは回生電力が大きいので、減速中にバッテリが満充電状態になりやすい。バッテリが満充電になってしまうと、それ以降は回生が制限されるので、運転者が要求する大きな減速度を実現することができなくなる。すなわち、上記文献の構成では、バッテリが満充電になる前と後とで減速度が変化して運転者に違和感を与えるおそれがある。
そこで本発明は、減速中におけるバッテリの充電率の上昇に起因する減速度の変化を抑制することを目的とする。
本発明のある態様によれば、内燃機関の動力により駆動される発電用モータで発電される電力と走行用モータで回生された電力とをバッテリに充電し、バッテリの電力を利用して走行用モータで駆動輪を駆動し、車両要求出力が発電開始閾値を超えたら内燃機関による発電を開始し、車両要求出力が発電停止閾値を下回ったら内燃機関による発電を停止し、第2前進レンジでは第1前進レンジよりも走行用モータの回生によって生じる減速度が大きくされる、シリーズハイブリッド車両の制御方法が提供される。そして、第2前進レンジが選択されている場合の発電開始閾値または発電停止閾値の少なくともいずれか一方は、それぞれ第1前進レンジが選択されている場合の発電開始閾値と発電停止閾値よりも大きい。
図1は、車両の要部を示す概略構成図である。 図2は、レンジ及びドライブモードの説明図である。 図3は、統合コントローラの処理を示すブロック図である。 図4は、エンジン始動判定のブロック図である。 図5は、エンジン停止判定のブロック図である。 図6は、始動用閾値の大小関係を示す図である。 図7は、停止用閾値の大小関係を示す図である。 図8は、Bレンジで走行している場合のタイミングチャートである。 図9は、第1変形例にかかる停止用閾値を示す図である。 図10は、第2変形例にかかる始動用閾値を示す図である。 図11は、第2変形例にかかる停止用閾値を示す図である。
以下、図面を参照して、本発明の実施形態について説明する。
図1は、車両1の要部を示す概略構成図である。車両1は、内燃機関2と、発電用モータ3と、走行用モータ4と、バッテリ5と、駆動輪6とを備える。
内燃機関2は、ガソリンエンジンまたはディーゼルエンジンのいずれでもかまわない。発電用モータ3は、内燃機関2の動力によって駆動されることで発電する。走行用モータ4は、バッテリ5の電力により駆動されて、駆動輪6を駆動する。走行用モータ4は、減速時等に駆動輪6の回転に伴って連れ回されることにより減速エネルギを電力として回生する、いわゆる回生機能も有する。バッテリ5には、発電用モータ3で発電された電力と、走行用モータ4で回生された電力とが充電される。
車両1は、第1動力伝達経路21と第2動力伝達経路22とを有する。第1動力伝達経路21は、走行用モータ4と駆動輪6との間で動力を伝達する。第2動力伝達経路22は、内燃機関2と発電用モータ3との間で動力を伝達する。第1動力伝達経路21と第2動力伝達経路22とは、互いに独立した動力伝達経路、つまり第1動力伝達経路21及び第2動力伝達経路22の一方から他方に動力が伝達されない動力伝達経路になっている。
第1動力伝達経路21は、走行用モータ4の回転軸4aに設けられた第1減速ギヤ11と、第1減速ギヤ11と噛み合う第2減速ギヤ12と、第2減速ギヤ12と同軸上に設けられてデファレンシャルギヤ14と噛み合う第3減速ギヤ13と、デファレンシャルケース15に設けられたデファレンシャルギヤ14とを有して構成される。
第2動力伝達経路22は、内燃機関2の出力軸2aに設けられた第4減速ギヤ16と、第4減速ギヤ16と噛み合う第5減速ギヤ17と、発電用モータ3の回転軸3aに設けられ、第5減速ギヤ17と噛み合う第6減速ギヤ18とを有して構成される。
第1動力伝達経路21及び第2動力伝達経路22それぞれは、動力伝達を遮断する要素を備えていない。すなわち、第1動力伝達経路21及び第2動力伝達経路22それぞれは常に動力が伝達される状態になっている。
第2動力伝達経路22は、動力伝達系23の動力伝達経路を構成する。動力伝達系23は、内燃機関2及び発電用モータ3を含み内燃機関2のモータリング時に発電用モータ3から内燃機関2に動力が伝達される構成とされる。
車両1は制御部としてのコントローラ30をさらに備える。コントローラ30は、内燃機関2の制御を行うエンジンコントローラ31、発電用モータ3の制御を行う発電用モータコントローラ32、走行用モータ4の制御を行う走行用モータコントローラ33、車両1の制御を統合する統合コントローラ34を有して構成される。
エンジンコントローラ31は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。発電用モータコントローラ32、走行用モータコントローラ33及び統合コントローラ34についても同様である。エンジンコントローラ31、発電用モータコントローラ32及び走行用モータコントローラ33は、統合コントローラ34を介してCAN規格のバスにより互いに通信可能に接続される。
コントローラ30には、内燃機関2の回転速度NEを検出するための回転速度センサ81、アクセルペダルの踏み込み量を指標するアクセル開度APOを検出するためのアクセル開度センサ82、内燃機関2の水温THWを検出するための水温センサ83、車速VSPを検出するための車速センサ84を含む各種センサ・スイッチ類からの信号が入力される。これらの信号は、直接或いはエンジンコントローラ31等の他のコントローラを介して統合コントローラ34に入力される。
車両1は、内燃機関2の動力により駆動されて発電する発電用モータ3の電力を利用して走行用モータ4で駆動輪6を駆動するシリーズハイブリッド車両を構成する。
図2は、レンジ及びドライブモードの説明図である。車両1はシフター91を有する。シフター91はドライバ操作によりレンジ切替を行うための装置であり、ドライバ操作は各レンジに対応するゲートへのシフトレバー操作やスイッチ操作により行われる。
シフター91はモーメンタリ式のシフターとされる。モーメンタリ式のシフター91では、ドライバ操作から解放されたシフトレバーが自律的にホームポジションに戻る。ドライバ操作により選択されたレンジは、後述するドライブモードとともに車室内に設けられたレンジ表示器に表示される。レンジ表示器は選択されているレンジを視認可能にする。
シフター91により選択可能なレンジは、Pレンジ(駐車レンジ)、Rレンジ(後進レンジ)、Nレンジ(ニュートラルレンジ)のほか、第1前進レンジであるDレンジと第2前進レンジであるBレンジとを含む。
DレンジとBレンジとはこれらに共通のD/Bゲートへのシフトレバー操作により選択される。D/Bゲートへのシフトレバー操作により、Dレンジが選択されている場合はBレンジが、Bレンジが選択されている場合はDレンジが選択される。Dレンジ及びBレンジ以外のレンジが選択されている場合、D/Bゲートへのシフトレバー操作によりDレンジが選択される。Dレンジ及びBレンジについてはさらに後述する。
車両1はドライブモードスイッチ92を有する。ドライブモードスイッチ92はドライバ操作によりドライブモードを変更するためのスイッチである。
ドライブモードはNモードとSモードとECOモードとを含む。Nモードはアクセルペダル操作で加速が行われるモード(通常回生モード)とされる。このため、Nモードではアクセルペダル操作が行われている間は回生減速が行われず、アクセルペダルがオフの状態のときに回生減速が行われる。SモードとECOモードとはアクセルペダル操作で加速及び回生減速が行われるモード(1ペダルモード)とされ、ECOモードはSモードよりも燃費運転に適したモードとされる。ドライブモードはドライブモードスイッチ92を押す度にNモード、Sモード、ECOモードの順で変更される。ECOモードの次はNモードに戻る。
車両1では、選択されたドライブモードとの組み合わせにより、DレンジがNモードとの組み合わせのNDモード、Sモードとの組み合わせのSDモード、ECOモードとの組み合わせのECO-Dモードを構成する。同様に、Bレンジは選択されたドライブモードとの組み合わせにより、NBモード、SBモード、ECO-Bモードを構成する。
BレンジはDレンジよりも、アクセルペダルがオフの状態のときに走行用モータ4の回生によって生じる車両1の減速度が大きいレンジとされる。換言すれば、BレンジではDレンジよりも目標減速度が大きく設定される。減速度が大きいとは、減速度合いが大きいこと(減速度の絶対値が大きいこと)を意味する。目標減速度についても同様である。BレンジではDレンジよりも走行用モータ4による回生電力の絶対値が大きくなる結果、減速度が大きくなる。また、SDモード及びECO-Dモードは、NDモードよりもアクセルペダルがオフの状態のときの走行用モータ4による回生電力が大きくなる結果、減速度が大きくなる。以下の説明において、Nモードを通常回生モード、Sモード及びECOモードを強回生モードともいう。
図3は、統合コントローラ34の処理機能を示すブロック図である。図3では目標エンジン回転速度NE-Tと目標エンジントルクTQ-Tの演算処理を示す。統合コントローラ34は、目標駆動力演算部341と、エンジン始動/停止演算部342と、目標電力演算部343と、目標ENG動作点演算部344とを有する。なお、これら各演算部は演算処理機能を示すものであって、物理的な構成を意味するものではない。後述する図4、図5についても同様である。
目標駆動力演算部341は、車速VSPとアクセル開度APOとに基づき走行用モータ4の目標駆動力DP-Tを演算する。目標駆動力DP-Tは車速VSPとアクセル開度APOとに応じてマップデータで予め設定できる。目標駆動力演算部341では、回生時に負の目標駆動力DP-Tつまり目標回生動力が演算される。演算された目標駆動力DP-Tは目標電力演算部343に入力される。なお、目標駆動力DP-Tは図3には示されていない走行用モータコントローラ33にも入力される。走行用モータコントローラ33は目標駆動力DP-Tに基づいて走行用モータ4の駆動トルクを制御する。
エンジン始動/停止演算部342は、車速VSPとバッテリ5の充電率SOCとに基づき、内燃機関2を始動させるか、または停止させるかの判断を行い、始動させる場合にはエンジン始動フラグを、停止させる場合にはエンジン停止フラグを立てる。いずれのフラグも目標電力演算部343に入力される。エンジン始動/停止演算部342の演算内容の詳細については後述する。
目標電力演算部343は、目標駆動力DP-Tに基づき発電用モータ3による発電又は放電のための目標電力EP-Tを演算する。発電では内燃機関2による発電用モータ3の駆動が行われ、放電では発電用モータ3による内燃機関2の駆動、つまりモータリングが行われる。ただし、エンジン始動/停止演算部342からエンジン停止フラグが入力される場合には内燃機関2による発電用モータ3の駆動は行われない。
正の目標駆動力DP-Tが入力された場合、目標電力演算部343では発電用の目標電力EP-Tが演算される。発電用の目標電力EP-Tに対しては、各種発電要求フラグに応じた電力の上乗せ等による補正が行われる。発電用の目標電力EP-Tは上限充電電力を上限として演算される。
負の目標駆動力DP-Tが入力された場合、目標電力演算部343では放電用の目標電力EP-Tが演算される。放電用の目標電力EP-Tは絶対値で上限放電電力を上限として演算される。演算された目標電力EP-Tは、目標ENG動作点演算部344に入力される。
目標ENG動作点演算部344は、目標電力EP-Tに基づき内燃機関2の目標動作点を演算する。目標動作点は目標電力EP-Tに応じてマップデータで予め設定できる。放電つまりモータリングを行う場合、目標ENG動作点演算部344では、目標回転速度NE-T及び目標トルクTQ-Tが目標動作点として演算される。演算された目標回転速度NE-Tは発電用モータコントローラ32に、目標トルクTQ-Tはエンジンコントローラ31に、それぞれ入力される。
エンジンコントローラ31は、入力された目標トルクTQ-Tに基づいて内燃機関2を制御する。発電用モータコントローラ32は、入力された目標回転速度NE-Tに基づき発電用モータ3を制御する。これにより、内燃機関2のモータリングが行われ、電力が消費される。
ここで、エンジン始動/停止演算部342の演算内容について図4、図5を参照して説明する。
Bレンジでの減速中は、Dレンジの通常回生モードでの減速中に比べて回生電力が大きくなるため、充電率SOCの上昇速度が高くなる。そして、充電率SOCには充電可能な上限があり、減速中に上限に達すると回生電力を下げざるを得ない。例えば、充電率SOCが所定値より大きい場合は、回生時に目標駆動力演算部341が負の目標駆動力DP-T、つまり目標回生動力を減少させる。ここでの「減少させる」とは、ゼロに近づけることをいう。また、上記の所定値は、例えば80%とする。
すなわち、運転者が大きな減速度を要求してBレンジを選択している場合でも、充電率SOCが上限に達すると減速度が小さくなり、運転者に違和感を与えるおそれがある。特に、運転者が大きい目標駆動力を要求したこと、または充電率SOCが所定値以下になることで内燃機関2を始動して発電を開始する充電率制御や、各種発電要求に基づく発電制御等による発電を実行していると、充電率SOCの上昇速度は高くなる。
そこで、本実施形態の統合コントローラ34は、Bレンジが選択されている場合には、充電率SOCの上昇を抑制するために、Dレンジが選択されている場合よりも内燃機関2による発電が実行される機会が少なくなるように制御する。換言すると、統合コントローラ34は、Bレンジが選択されている場合にはDレンジが選択されている場合よりも、内燃機関2が始動し難く、かつ停止し易くする。具体的には、エンジン始動/停止演算部342が、レンジ及びモードに基づいて始動または停止の判定用の閾値を設定し、当該閾値と車両要求出力とを比較して内燃機関2を始動させるか、または停止させるかを判断し、判断結果を目標電力演算部343に入力する。車両要求出力は、運転者の要求に応じて車両を走行させるために必要となる出力である。本実施形態では、上述した目標駆動力DP-Tを実現するために走行用モータ4が必要とする電力(以下、目標駆動電力ともいう)を車両要求出力とする場合について説明する。
[始動判定]
図4は、エンジン始動/停止演算部342が実行する、内燃機関2を始動させるか否かを判断するための処理機能を示すブロック図である。
始動用第1閾値演算部41は、車速VSPと充電率SOCとに基づいて始動用第1閾値を算出する。始動用第1閾値は、Bレンジが選択されている場合における内燃機関2を始動するか否かの判定用の電力である。すなわち、Bレンジが選択されている場合には、車両要求出力が始動用第1閾値以上になったら内燃機関2が始動する。
始動用第1閾値は予めマップ化され統合コントローラ34に記憶されている。始動用第1閾値は、同一充電率SOCであれば車速VSPが高い方が低い方より小さく、かつ同一車速VSPであれば充電率SOCが高い方が大きい値が設定されている。同一車速VSPの場合に充電率SOCが高い方が大きい始動用第1閾値なのは、充電率SOCが高いほど、つまり充電可能な上限に近いほど、内燃機関2を始動し難くするためである。同一充電率SOCの場合の特性については後述する。算出された始動用第1閾値は第1スイッチ44に入力される。
なお、図4の始動用第1閾値演算部41に記載したマップが始動用第1閾値の特性の概略を示したものであり、より具体的な特性については後述する。以下に説明する始動用第2閾値演算部42及び始動用第3閾値演算部43のマップについても同様である。
始動用第2閾値演算部42は、始動用第1閾値演算部41と同様に、車速VSPと充電率SOCとに基づいて始動用第2閾値を算出する。始動用第2閾値は、Dレンジの強回生モードにおける内燃機関2を始動するか否かの判定用の閾値である。始動用第2閾値の特性は基本的には始動用第1閾値と同様であるが、同一車速VSPかつ同一SOCにおける大きさは異なる。これについては後述する。算出された始動用第2閾値は第1スイッチ44に入力される。
第1スイッチ44は、Bレンジフラグが入力されたら始動用第1閾値を選択し、入力されなければ始動用第2閾値を選択する。Bレンジフラグは、Bレンジが選択されている場合に入力されるフラグである。ここで選択された閾値は第2スイッチ45に入力される。
始動用第3閾値演算部43は、始動用第1閾値演算部41及び始動用第2閾値演算部42と同様に、車速VSPと充電率SOCとに基づいて始動用第3閾値を算出する。始動用第3閾値は、Dレンジの通常回生モードにおける内燃機関2を始動するか否かの判定用の閾値である。始動用第3閾値の特性は基本的には始動用第1閾値及び始動用第2閾値と同様であるが、同一車速VSPかつ同一SOCにおける大きさは異なる。これについては後述する。算出された始動用第3閾値は第2スイッチ45に入力される。
第2スイッチ45は、強回生モードフラグが入力されたら第1スイッチ44で選択された閾値を選択し、入力されなければ始動用第3閾値を選択する。強回生モードフラグは、SDモードまたはECO-Dモードの場合に入力されるフラグである。ここで選択された閾値は始動判定部46に入力される。
始動判定部46は、第2スイッチ45で選択された閾値と、車両要求出力とを比較し、車両要求出力が当該閾値以上の場合に、エンジン始動フラグを目標電力演算部343に入力する。
ここで、始動用第1閾値、始動用第2閾値及び始動用第3閾値の大小関係について説明する。図6は、横軸を車速VSP,縦軸を閾値としての電力(始動判定電力)として、同一の充電率SOCにおける始動用第1閾値、始動用第2閾値及び始動用第3閾値を示したものである。いずれの閾値も、車速VSPが低い方が高い方に比べて大きい。また、低車速域及び高車速域では一定であり、中車速域では車速が高くなるほど小さい値となっている。
このような特性にしたのは、車両の乗員に発電時のエンジン音ができるだけ伝わらないようにするためである。すなわち、市街地走行時のようにエンジン音が目立つ状況では閾値を大きくすることでエンジンが始動し難くなるようにする。一方、高車速域では、走行用モータ4の要求電力が大きく、かつロードノイズや風切り音等が大きいのでエンジン音が目立ち難いので閾値を低車速域より小さくして発電の機会を増加させる。中車速域は上記の低車速域と高車速域との間なので、車速が高くなるほど閾値を小さくする。
また、低車速域及び中車速域では始動用第1閾値>始動用第2閾値>始動用第3閾値であり、高車速域では始動用第1閾値>始動用第2閾値=始動用第3閾値である。これは、減速度が大きいほど充電率SOCの上昇速度が高くなるので、減速度が大きいほど内燃機関2を始動し難くするためである。
なお、図6に示した特性は一例であり、低車速域が高車速域に比べて閾値が大きくなる特性であれば、図6の例に限られるわけではない。例えば、図4に示したような、低車速域から高車速域に向けて一定の傾きで閾値が小さくなるような特性であってもよい。また、始動用第1閾値>始動用第2閾値>始動用第3閾値の関係が成立していれば、低車速域と高車速域で閾値が同じ大きさであってもよい。
上記の通り、統合コントローラ34は現在の走行レンジ及び走行モードに応じて、始動用第1閾値、始動用第2閾値または始動用第3閾値を切り替えて、内燃機関2を始動させるか否かを判定する。これにより、減速度が高いほど内燃機関2が始動し難くなり、充電率SOCの上昇を抑制できる。
[停止判定]
図5は、エンジン始動/停止演算部342が実行する、内燃機関2を停止させるか否かを判断するための処理機能を示すブロック図である。
図5は、図4の始動用第1閾値演算部41が停止用第1閾値演算部51に、図4の始動用第2閾値演算部42が停止用第2閾値演算部52に、図4の始動用第3閾値演算部43が停止用第3閾値演算部53に、図4の始動判定部46が停止判定部56に、それぞれ変更されたものである。
停止用第1閾値演算部51は、車速VSPと充電率SOCとに基づいて停止用第1閾値を算出する。停止用第1閾値は、Bレンジが選択されている場合における内燃機関2を停止するか否かの判定用の電力である。すなわち、Bレンジが選択されている場合には、車両要求出力が停止用第1閾値より小さくなったら内燃機関2が停止する。
停止用第1閾値は予めマップ化され統合コントローラ34に記憶されている。停止用第1閾値は、同一充電率SOCであれば車速VSPが高い方が低い方より小さく、かつ同一車速VSPであれば充電率SOCが高い方が大きい値が設定されている。同一車速VSPの場合に充電率SOCが高い方が大きい停止用第1閾値なのは、充電率SOCが高いほど、つまり充電可能な上限に近いほど、内燃機関2を停止し易くするためである。同一充電率SOCの場合の特性については後述する。算出された停止用第1閾値は第1スイッチ54に入力される。
なお、図5の停止用第1閾値演算部51に記載したマップが停止用第1閾値の特性の概略を示したものであり、より具体的な特性については後述する。以下に説明する始動用第2閾値演算部42及び始動用第3閾値演算部43のマップについても同様である。
停止用第2閾値演算部52は、停止用第1閾値演算部51と同様に、車速VSPと充電率SOCとに基づいて停止用第2閾値を算出する。停止用第2閾値は、Dレンジの強回生モードにおける内燃機関2を停止するか否かの判定用の閾値である。停止用第2閾値の特性は基本的には停止用第1閾値と同様であるが、同一車速VSPかつ同一SOCにおける大きさは異なる。これについては後述する。算出された停止用第2閾値は第1スイッチ54に入力される。
第1スイッチ54は、Bレンジフラグが入力されたら停止用第1閾値を選択し、入力されなければ停止用第2閾値を選択する。
停止用第3閾値演算部53は、停止用第1閾値演算部51及び停止用第2閾値演算部52と同様に、車速VSPと充電率SOCとに基づいて停止用第3閾値を算出する。停止用第3閾値は、Dレンジの通常回生モードにおける内燃機関2を停止するか否かの判定用の閾値である。停止用第3閾値の特性は基本的には停止用第1閾値及び停止用第2閾値と同様であるが、同一車速VSPかつ同一SOCにおける大きさは異なる。これについては後述する。算出された停止用第3閾値は第2スイッチ55に入力される。
第2スイッチ55は、強回生モードフラグが入力されたら第1スイッチ54で選択された閾値を選択し、入力されなければ停止用第3閾値を選択する。ここで選択された閾値は停止判定部56に入力される。
停止判定部56は、第2スイッチ55で選択された閾値と、車両要求出力とを比較し、車両要求出力が当該閾値より小さい場合に、エンジン停止フラグを目標電力演算部343に入力する。
ここで、停止用第1閾値、停止用第2閾値及び停止用第3閾値の大小関係について説明する。図7は、横軸を車速VSP,縦軸を閾値としての電力(始動判定電力)として、同一の充電率SOCにおける停止用第1閾値、停止用第2閾値及び停止用第3閾値を示したものである。いずれの閾値も、車速VSPが低い方が高い方に比べて大きい。また、中車速域及び高車速域では閾値は一定となっている。
このような特性にしたのは、車両の乗員に発電時のエンジン音ができるだけ伝わらないようにするためである。すなわち、市街地走行時のようにエンジン音が目立つ状況ではエンジンが停止し易くなるようにする。一方、走行用モータ4の要求電力が大きく、かつロードノイズや風切り音等が大きくなるほどエンジン音が目立ち難いので、閾値を低車速域より小さくして発電の機会を増加させる。
また、各停止用閾値の大小関係は、停止用第1閾値>停止用第3閾値>停止用第2閾値となっている。これは、減速度が大きいほど充電率SOCの上昇速度が高くなるので、相対的に減速度が大きいBレンジの場合に、相対的に減速度が小さいDレンジの場合よりも内燃機関2を停止し易くするためである。
なお、図7に示した特性は一例であり、低車速域が高車速域に比べて閾値が大きくなる特性であれば、図7の例に限られるわけではない。例えば、図5に示したような、低車速域から高車速域に向けて一定の傾きで閾値が小さくなるような特性であってもよい。また、停止用第1閾値>停止用第3閾値>停止用第2閾値の関係が成立していれば、低車速域と高車速域で閾値が同じ大きさであってもよい。
上記の通り、統合コントローラ34は現在の走行レンジ及び走行モードに応じて、停止用第1閾値、停止用第2閾値または停止用第3閾値を切り替えて、内燃機関2を停止させるか否かを判定する。これにより、減速度が高いほど内燃機関2が停止し易くなり、充電率SOCの上昇を抑制できる。
図8は、Bレンジで高車速域走行している場合のタイミングチャートである。タイミングT1までは内燃機関2が停止した状態かつ一定車速で走行しており、タイミングT1においてアクセルペダル開度が減少を開始して、その後にゼロになる。つまり、タイミングT1から車両要求出力が減少し、かつ、減速回生により充電率SOCが上昇する。
そして、タイミングT2において再加速のためにアクセルペダル開度が踏み込まれると、車両要求出力が増大し、充電率SOCが低下する。このとき、車両要求出力は始動用第1閾値には到達しないので、内燃機関2は始動しない。これにより、充電率SOCの更なる上昇を抑制できる。そして、タイミングT3以降はアクセルペダル開度がタイミングT1以前と同じ大きさまで減少し、これに伴い車両要求出力も減少する。すなわち、本実施形態によれば、図8に示した期間中は内燃機関2が始動しない。
仮に、Dレンジ用の始動用第2閾値及び始動用第3閾値より大きいBレンジ用の始動用第1閾値を設定していなければ、タイミングT2直後の、車両要求出力が始動用第2閾値及び始動用第3閾値を超えたときに内燃機関2が始動して発電が開始される。これにより、充電率SOCがさらに上昇するおそれがある。そして、タイミングT3以降にアクセルペダル開度が一定になった後も、車両要求出力は停止用第3閾値より大きいので、内燃機関2は停止しない。これにより、その後に減速が行われる際に、減速の途中で充電率SOCが上限に達するおそれがある。
これに対し、本実施形態では上記の通り図8に示した期間中は内燃機関2が始動しないので、充電率SOCの上昇を抑制できる。これにより、減速の途中で充電率SOCが上限に達したために減速度が変化する可能性を抑制できる。
また、仮にタイミングT1以前に内燃機関2が作動していた場合、Bレンジ用の停止用閾値がDレンジの強回生モード用の停止用第2閾値と同じであれば内燃機関2が停止しないので、充電率SOCの上昇速度は図8に示した場合より高くなる。これに対し本実施形態では、停止用第2閾値より大きい停止用第1閾値を設けているので、タイミングT1直後に内燃機関2が停止する。これにより、充電率SOCの上昇を抑制できる。
[第1変形例]
停止用閾値の変形例について説明する。本変形例も本発明の範囲に含まれる。
図9は、変形例にかかる停止用第1閾値、停止用第2閾値及び停止用第3閾値を図7と同様に示したものである。停車速域に比べて高車速域の方が閾値が小さくなる特性は図7と同様である。
ただし、本変形例では、低中車速域の第1速度閾値より低い車速域では、停止用第1閾値は停止用第2閾値と同等またはそれより大きく、かつ停止用第3閾値より小さい。そして、高車速域の第2速度閾値以上の速度域では、停止用第3閾値が停止用第1閾値及び停止用第2閾値より小さい。つまり、停止用第1閾値と停止用第2閾値との関係は、基本的に図7の場合と同様であるが、停止用第3閾値が低中車速域では停止用第1閾値より大きく、高車速域では停止用第1閾値より小さい点が図7との相違点である。なお、第1速度閾値及び第2速度閾値は任意に設定し得る値であり、本変形例を適用する車両の仕様等に応じて適宜設定する。
低車速域でできるだけ内燃機関2を作動させたくないことは上述した通りであり、そのために停止用第3閾値を大きく設定して、内燃機関2を停止し易くする。ただし、高車速域では走行用モータ4の駆動に要する電力が大きいので、高車速域でも停止用第3閾値を最も大きくすると、充電率SOCが過剰に減少するおそれがある。そこで、高車速域では停止用第3閾値を小さくして内燃機関2を停止し難くすることで、充電率SOCの過剰な減少を抑制する。
[第2変形例]
始動用閾値及び停止用閾値の変形例について説明する。本変形例も本発明の範囲に含まれる。
図10は、変形例にかかる始動用第1閾値、始動用第2閾値及び始動用第3閾値の関係を示す図である。図6との違いは横軸が充電率SOCである点である。
上記実施意形態では、横軸を車速VSPとするテーブルを用いて始動用第1閾値、始動用第2閾値及び始動用第3閾値を算出したが、図10のように横軸を充電率SOCとするテーブルを用いることもできる。その場合も上記実施形態と同様に、始動用第1閾値、始動用第2閾値及び始動用第3閾値のいずれも、同一充電率SOCでは車速VSPが高いほど小さい。
図10では、基本的には始動用第1閾値>始動用第2閾値>始動用第3閾値であり、充電率SOCが小さい領域では、始動用第1閾値=始動用第2閾値>始動用第3閾値となっている。これは、車速VSPを横軸とする場合と同様に、回生電力が大きいほど内燃機関2を始動し難くし、かつBレンジにおける充電率SOCの上昇を抑制するためである。なお、始動用第1閾値>始動用第2閾値の領域と始動用第1閾値=始動用第2閾値の領域との境界は、任意に設定することができ、本変形例を適用する車両の仕様等に応じて適宜設定する。
図11は、変形例にかかる停止用第1閾値、停止用第2閾値及び停止用第3閾値の関係を示す図である。図7との違いは、横軸が充電率SOCである点である。
上記実施意形態では、横軸を車速VSPとするテーブルを用いて停止用第1閾値、停止用第2閾値及び停止用第3閾値を算出したが、図11のように横軸を充電率SOCとするテーブルを用いることもできる。その場合も上記実施形態と同様に、停止用第1閾値、停止用第2閾値及び停止用第3閾値のいずれも、同一充電率SOCでは車速VSPが高いほど小さい。
図11では、停止用第1閾値が停止用第2閾値より大きく、停止用第3閾値は停止用第1閾値より大きい。停止用第1閾値が停止用第2閾値より大きいのは、相対的に回生電力が大きいBレンジの場合に、相対的に回生電力の小さいDレンジの強回生モードより内燃機関2を停止し易くすることで、充電率SOCの上昇を抑制するためである。停止用第3閾値が停止用第1閾値より大きいのは、停止用第3閾値を用いるDレンジの通常回生モードでは回生電力が小さいので、あまりに小さな閾値を設定すると車両要求出力が閾値を下回る機会が実質的になくなってしまうからである。
[第3変形例]
車両要求出力の変形例について説明する。本変形例も本発明の範囲に含まれる。
上記の実施形態では、車両要求出力として目標駆動電力を用い、目標駆動電力と閾値とを比較することで内燃機関2の始動及び停止を判定する。これに対し本変形例では、車両要求出力として目標駆動力DP-Tを用い、これを閾値と比較することで内燃機関2の始動及び停止を判定する。
目標駆動電力は目標駆動力DP-Tを実現するために走行用モータ4が必要とする電力である。したがって、目標駆動電力は、目標駆動力DP-Tを走行用モータ4の目標トルクに変換し、かつ、現在の車速VSPを走行用モータ4の回転速度に変換し、得られた目標トルクと回転速度とを乗じることで得られる出力ともいえる。つまり、目標駆動力DP-Tは目標駆動電力と実質的に同じものといえる。
また、車両要求出力を目標駆動電力から目標駆動力DP-Tに変更するのに伴い、始動用閾値および停止用閾値を、電力の閾値から駆動力の閾値に変更する必要がある。本変形例では、上記の実施形態および変形例における始動用閾値および停止用閾値を、電力から駆動力に変換したものを用いる。つまり、本変形例の始動用閾値および停止用閾値と、上記の実施形態及び変形例の始動用閾値および停止用閾値とは、実質的に同じものといえる。したがって、本変形例の始動用閾値および停止用閾値も、図6、7、9-11に示した特性を有する。
以上の通り、車両要求出力として目標駆動電力を用いる場合でも、上記実施形態と同様の作用効果を得ることができる。
[作用効果]
本実施形態では、内燃機関2の動力により駆動される発電用モータ3で発電される電力と走行用モータ4で回生された電力とをバッテリ5に充電し、バッテリ5の電力を利用して走行用モータ4で駆動輪を駆動し、車両要求出力が始動用閾値(発電開始閾値)を超えたら内燃機関2による発電を開始し、車両要求出力が停止用閾値(発電停止閾値)を下回ったら内燃機関2による発電を停止し、Bレンジ(第2前進レンジ)ではDレンジ(第1前進レンジ)よりも走行用モータの回生によって生じる減速度が大きくされる、シリーズハイブリッド車両の制御方法が提供される。なお、ここでいう走行用モータの回生は、アクセルペダルがオフの状態で行われるものである。この制御方法では、Bレンジが選択されている場合の始動用閾値または停止用閾値の少なくともいずれか一方が、それぞれDレンジが選択されている場合の始動用閾値と停止用閾値よりも大きい。
これにより、減速開始前の加速時(例えば図8のタイミングT2-T3)に要求駆動力(または要求電力)が始動用閾値を超えて発電を開始する頻度が低下することとなり、充電率SOCの上昇が抑制される。また、減速時または定速走行時(例えば図8のタイミングT1-T2、タイミングT3以降)に要求駆動力(または要求電力)が停止用閾値を下回って発電を開始する頻度が増加することとなり、充電率SOCの上昇が抑制される。その結果、回生電力が制限されることにより減速度が変化する頻度を低くすることができる。すなわち、減速中に減速度が変化する頻度を低くできる。
本実施形態では、Dレンジは、通常回生モードと、走行用モータの回生によって生じる減速度が通常回生モードより大きく、かつBレンジよりも小さい強回生モードとを備える。そして、強回生モードのDレンジにおける始動用閾値(始動用第2閾値)が通常回生モードのDレンジにおける始動用閾値(始動用第3閾値)より大きく、かつ、Bレンジにおける始動用閾値(始動用第1閾値)が始動用第3閾値より大きい。これにより、回生電力が大きいほど内燃機関2が始動し難くなる。
本実施形態では、発電用モータ3で発電した電力を充電するバッテリ5の充電率SOCが閾値より大きい場合は、Bレンジにおける始動用閾値が、Dレンジの強回生モード及び通常回生モードにおける始動用閾値より大きい。充電率SOCが閾値以下の場合は、Bレンジにおける始動用閾値が、Dレンジの通常回生モードにおける始動用閾値より大きく、かつDレンジの強回生モードと同等である。これにより、充電率SOCが低い状態のときにはBレンジでもDレンジの強回生モードと同等の頻度で内燃機関2による発電が行われるので、Bレンジにおいて充電率SOCが過剰に低下することを抑制できる。
本実施形態では、Bレンジでは、Dレンジの強回生モードより走行用モータ4の回生によって生じる減速度及び停止用閾値が大きい。これにより、回生電力の大きいBレンジにおいて内燃機関2を停止し易くして充電率SOCの上昇を抑制でき、回生電力が制限される頻度を低くすることができる。その結果、減速の途中で回生電力の制限により減速度が変化する頻度を低下させ、運転者の要求する減速度を満たすことができる。
本実施形態では、車速が第1速度閾値以下の場合は、Bレンジの停止用閾値はDレンジの強回生モードと同等またはそれより大きく、かつDレンジの通常回生モードより小さい。車速が第1速度閾値以上の大きさの第2速度閾値以上の場合は、Dレンジの通常回生モードにおける停止用閾値がBレンジ及びDレンジの強回生モードより小さい。車速が高い場合は駆動に要する電力が大きいので、本実施形態のように回生電力が小さいDレンジの通常回生モードにおいて内燃機関2を停止し難くすることで、充電率SOCの過剰な低下を抑制できる。
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (6)

  1. 内燃機関の動力により駆動される発電用モータで発電される電力と走行用モータで回生された電力とをバッテリに充電し、前記バッテリの電力を利用して前記走行用モータで駆動輪を駆動し、
    車両要求出力が発電開始閾値を超えたら前記内燃機関による発電を開始し、前記車両要求出力が発電停止閾値を下回ったら前記内燃機関による発電を停止し、
    第2前進レンジでは第1前進レンジよりも前記走行用モータの回生によって生じる減速度が大きくされる、シリーズハイブリッド車両の制御方法において、
    前記第2前進レンジが選択されている場合の前記発電開始閾値または前記発電停止閾値の少なくともいずれか一方は、それぞれ前記第1前進レンジが選択されている場合の前記発電開始閾値及び前記発電停止閾値よりも大きい、シリーズハイブリッド車両の制御方法。
  2. 請求項1に記載のシリーズハイブリッド車両の制御方法において、
    前記第1前進レンジは、通常回生モードと、前記走行用モータの回生によって生じる減速度が前記通常回生モードより大きく、かつ前記第2前進レンジよりも小さい強回生モードと、を備え、
    前記強回生モードの前記第1前進レンジにおける前記発電開始閾値が前記通常回生モードの前記第1前進レンジにおける前記発電開始閾値より大きい、シリーズハイブリッド車両の制御方法。
  3. 請求項2に記載のシリーズハイブリッド車両の制御方法において、
    前記バッテリの充電率が閾値より大きい場合は、前記第2前進レンジにおける前記発電開始閾値が、前記第1前進レンジの前記強回生モード及び前記通常回生モードにおける前記発電開始閾値より大きく、
    前記充電率が前記閾値以下の場合は、前記第2前進レンジにおける前記発電開始閾値が、前記第1前進レンジの前記通常回生モードにおける前記発電開始閾値より大きく、かつ前記第1前進レンジの前記強回生モードと同等である、シリーズハイブリッド車両の制御方法。
  4. 請求項2または3に記載のシリーズハイブリッド車両の制御方法において、
    前記第2前進レンジでは、前記第1前進レンジの前記強回生モードより前記走行用モータの回生によって生じる減速度及び前記発電停止閾値が大きい、シリーズハイブリッド車両の制御方法。
  5. 請求項2から4のいずれか一項に記載のシリーズハイブリッド車両の制御方法において、
    車速が第1速度閾値以下の場合は、前記第2前進レンジの前記発電停止閾値は前記第1前進レンジの前記強回生モードと同等またはそれより大きく、かつ前記第1前進レンジの前記通常回生モードより小さく、
    車速が前記第1速度閾値以上の大きさの第2速度閾値以上の場合は、前記第1前進レンジの前記通常回生モードにおける前記発電停止閾値が前記第2前進レンジ及び前記第1前進レンジの前記強回生モードより小さい、シリーズハイブリッド車両の制御方法。
  6. 内燃機関と、
    前記内燃機関の動力により駆動されて発電する発電用モータと、
    前記発電用モータの電力を利用して駆動輪を駆動する走行用モータと、
    前記発電用モータで発電した電力と前記走行用モータで回生した電力とを充電するバッテリと、
    車両要求出力が発電開始閾値を超えたら前記内燃機関による発電を開始し、前記車両要求出力が発電停止閾値を下回ったら前記内燃機関による発電を停止し、かつ、第2前進レンジでは第1前進レンジよりも前記走行用モータの回生によって生じる減速度を大きくする制御部と、
    を備えるシリーズハイブリッド車両において、
    前記第2前進レンジが選択されている場合の前記発電開始閾値または前記発電停止閾値の少なくともいずれか一方は、それぞれ前記第1前進レンジが選択されている場合の前記発電開始閾値及び前記発電停止閾値よりも大きい、シリーズハイブリッド車両。
JP2021567064A 2020-07-31 2020-07-31 シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両 Active JP7120473B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029524 WO2022024373A1 (ja) 2020-07-31 2020-07-31 シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両

Publications (2)

Publication Number Publication Date
JPWO2022024373A1 JPWO2022024373A1 (ja) 2022-02-03
JP7120473B2 true JP7120473B2 (ja) 2022-08-17

Family

ID=80035279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021567064A Active JP7120473B2 (ja) 2020-07-31 2020-07-31 シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両

Country Status (7)

Country Link
US (1) US20220355786A1 (ja)
EP (1) EP4190654A4 (ja)
JP (1) JP7120473B2 (ja)
CN (1) CN114286768A (ja)
BR (1) BR112022002087A2 (ja)
MX (1) MX2022001443A (ja)
WO (1) WO2022024373A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116586A1 (ja) 2017-12-15 2019-06-20 日産自動車株式会社 ハイブリッド車両の制御方法、及び、制御装置
JP2019151283A (ja) 2018-03-06 2019-09-12 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP2019163051A (ja) 2019-06-14 2019-09-26 本田技研工業株式会社 ハイブリッド車両の制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8868273B2 (en) * 2010-07-21 2014-10-21 Nissan Motor Co., Ltd. Apparatus and method for controlling hybrid vehicle
WO2012098658A1 (ja) * 2011-01-20 2012-07-26 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP5648984B2 (ja) * 2011-02-16 2015-01-07 スズキ株式会社 ハイブリッド車両
JP5747724B2 (ja) * 2011-08-04 2015-07-15 トヨタ自動車株式会社 車両および車両の制御方法
JP5981119B2 (ja) * 2011-10-11 2016-08-31 トヨタ自動車株式会社 車両
JP5817917B2 (ja) * 2012-03-16 2015-11-18 日産自動車株式会社 ハイブリッド車両の駆動力制御装置及びハイブリッド車両の駆動力制御方法
FR3024856B1 (fr) * 2014-08-12 2018-01-26 Psa Automobiles Sa. Procede et dispositif de controle des modes de fonctionnement d'une chaine de transmission hybride d'un vehicule, en fonction de lois d'evolution
JP6439322B2 (ja) 2014-08-27 2018-12-19 三菱自動車工業株式会社 ハイブリッド車両の回生制御装置
JP2016144977A (ja) * 2015-02-06 2016-08-12 トヨタ自動車株式会社 車両制御装置
US9815373B2 (en) * 2015-02-23 2017-11-14 Ford Global Technologies, Llc Battery state of charge target based on predicted regenerative energy
JP6428743B2 (ja) * 2016-10-26 2018-11-28 トヨタ自動車株式会社 自動車
JP6760488B2 (ja) * 2017-04-04 2020-09-23 日産自動車株式会社 車両の制御方法及び車両の制御装置
JP6596480B2 (ja) * 2017-11-29 2019-10-23 本田技研工業株式会社 ハイブリッド車両の制御装置
US11377086B2 (en) * 2017-12-15 2022-07-05 Nissan Motor Co., Ltd. Control method for hybrid vehicle and control apparatus for hybrid vehicle
JP6543745B2 (ja) * 2018-05-01 2019-07-10 本田技研工業株式会社 ハイブリッド車両の制御装置
WO2020079463A1 (ja) * 2018-10-19 2020-04-23 日産自動車株式会社 ハイプリッド車両の制御方法及び制御装置
JP2020100324A (ja) * 2018-12-25 2020-07-02 ダイハツ工業株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116586A1 (ja) 2017-12-15 2019-06-20 日産自動車株式会社 ハイブリッド車両の制御方法、及び、制御装置
JP2019151283A (ja) 2018-03-06 2019-09-12 本田技研工業株式会社 車両制御システム、車両制御方法、およびプログラム
JP2019163051A (ja) 2019-06-14 2019-09-26 本田技研工業株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
CN114286768A (zh) 2022-04-05
EP4190654A4 (en) 2023-08-30
BR112022002087A2 (pt) 2022-04-19
MX2022001443A (es) 2022-02-21
EP4190654A1 (en) 2023-06-07
JPWO2022024373A1 (ja) 2022-02-03
US20220355786A1 (en) 2022-11-10
WO2022024373A1 (ja) 2022-02-03

Similar Documents

Publication Publication Date Title
EP1970240B1 (en) Engine start control system for hybrid vehicle
JP4265564B2 (ja) 車両およびその制御方法
JP5247000B2 (ja) 車両のコースト減速制御装置
US8744656B2 (en) Running control device for electric vehicle
JP4165596B2 (ja) 制駆動力制御装置
JP2011131830A (ja) ハイブリッド電気自動車の制御装置
JP2009029261A (ja) 車両用駆動力制御装置
WO2008075479A1 (ja) 車両の制御装置および制御方法
JP2003061205A (ja) 電気自動車のモータ制御装置
JP5359937B2 (ja) ハイブリッド車両
JP7120473B2 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両
JP4254764B2 (ja) 自動車およびその制御方法
JP7435792B2 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両
JP2004023857A (ja) モータ駆動車両
JP4830987B2 (ja) 制駆動力制御装置
JP7140292B2 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両
JP7302746B2 (ja) シリーズハイブリッド車両の制御方法及びシリーズハイブリッド車両の制御装置
JP2009040275A (ja) 車両用制駆動力制御装置
JP2008195288A (ja) 駆動力制御装置
JP6614052B2 (ja) 自動車
JP4475266B2 (ja) 制駆動力制御装置
JP5082576B2 (ja) 駆動力制御装置
JP4241707B2 (ja) 車両およびその制御方法
JP6750359B2 (ja) 自動車
JP2019137180A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7120473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151