JP7119094B2 - レーザ処理装置及び方法 - Google Patents

レーザ処理装置及び方法 Download PDF

Info

Publication number
JP7119094B2
JP7119094B2 JP2020535955A JP2020535955A JP7119094B2 JP 7119094 B2 JP7119094 B2 JP 7119094B2 JP 2020535955 A JP2020535955 A JP 2020535955A JP 2020535955 A JP2020535955 A JP 2020535955A JP 7119094 B2 JP7119094 B2 JP 7119094B2
Authority
JP
Japan
Prior art keywords
laser
laser beam
fiber
core
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020535955A
Other languages
English (en)
Other versions
JP2021514841A (ja
Inventor
カンガステュパ ジャーノ
サロカトヴ アルト
Original Assignee
コアレイズ オーワイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コアレイズ オーワイ filed Critical コアレイズ オーワイ
Publication of JP2021514841A publication Critical patent/JP2021514841A/ja
Application granted granted Critical
Publication of JP7119094B2 publication Critical patent/JP7119094B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0096Portable laser equipment, e.g. hand-held laser apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明は、レーザ処理装置及び方法に関する。特に、本発明は、レーザ処理による材料の溶接に関する。
レーザビームで金属を溶接する際、レーザビームは、典型的には、コンデンサレンズを通して100-500μmのスポットに集光され、エネルギー密度を増大し、ワークピースを瞬間的に1500°C以上の温度に加熱して、ワークピースを溶かす。同時に、溶融金属の酸化を防止するためにアシストガスを供給することができる。固体レーザ又はファイバレーザからの1マイクロメートル波長帯のレーザビームは、CОレーザの10マイクロメートル波長帯のレーザビームと比較して、金属ワークにおける非常に高い光エネルギー強度と吸収を実現する。しかしながら、ガウスビームを用いた1マイクロメートルの波長帯レーザビームを酸素アシストガスと共に用いて軟鋼板のワークピースを切断すると、ワークピースの頂面のメルト幅が不必要に広くなり、カーフコントロールが損われる。さらに、レーザ切断の品質を低下させる自己燃焼が発生する可能性がある。
環状又は「ドーナツ」のような形状を有すると説明することができる強度プロファイルを提供するリング形状のレーザビームの使用は、レーザ材料処理の分野で知られている。所定の厚さの金属の切断は、従来のビームプロファイルの代わりにドーナツビームを用いると、ずっと低い電力レベルで実行することができるため、切断速度及び品質を向上させることができる。
特許文献1は、レーザビームをマルチクラッドファイバに向けて、出力レーザビームの異なるビームプロファイル特性を生成する、入力レーザビームが内部ファイバコア又は外部リングコアに選択的に結合される、様々な構成を開示している。
このような材料処理アプリケーションは、レーザビームの輝度を最大化するよう努めている。輝度は、単位立体角及び単位面積当たりの屈折力として定義される。輝度の重要性の例として、レーザビームの輝度を増大させることにより、処理速度又は材料の厚さを増大させることができる。高輝度レーザビームは、例えば、ファイバレーザ及び薄型ディスクレーザから得ることができる。ダイレクトダイオードレーザの輝度も常に向上しているが、材料処理用の市販のダイレクトダイオードレーザは、ファイバレーザや薄型ディスクレーザの輝度にはまだ達していない。
米国特許第8781269号公報
従来のレーザ溶接では、レーザビームの溶け込みが溶接シームに沿って変化することがあり、その結果、不規則な又は粗い溶接シームが生じ得る。従って、レーザ溶接のための改善された方法及び装置が必要である。
本発明は、独立請求項の特徴によって定義される。いくつかの特定の実施形態は、従属請求項で定義される。
本発明の一態様によれば、レーザ溶接装置は、各々が少なくとも1つの第1の光フィードファイバに第1のレーザビームを提供する少なくとも1つの第1のレーザデバイスと、各々が少なくとも1つの第2の光フィードファイバに第2のレーザビームを提供する少なくとも1つの第2のレーザデバイスと、ワークピースを溶接するための第1の出力レーザビーム及び第2の出力レーザビームを含む複合レーザビームを生成する手段であって、第1の出力レーザビームは、円形断面を有し、且つ、第2の出力レーザビームは、第1の出力レーザビームと同心の環状形状を有する、手段と、を備える。第2のレーザデバイスは、ファイバレーザデバイス又はファイバ結合レーザデバイスである。前記装置は、少なくとも第2のレーザビームに基づいて第2の出力レーザビームを形成するように構成され、第2の出力レーザビームは、少なくとも10ナノメートルの差を有する第1の波長及び第2の波長、又は、第2の出力レーザビームは、少なくとも10ナノメートルのスペクトル幅を有する。
本発明の第2の態様によれば、ワークピースをレーザビームで溶接する方法は、少なくとも1つの第1のレーザデバイスに接続された少なくとも1つの第1の光フィードファイバから少なくとも1つの第1のレーザビームを提供する工程と、少なくとも1つの第2のレーザデバイスに接続された少なくとも1つの第2の光フィードファイバから少なくとも1つの第2のレーザビームを提供する工程と、ワークピースを溶接するための第1の出力レーザビーム及び第2の出力レーザビームを含む複合レーザビームを生成する工程であって、第1の出力レーザビームは円形の断面を有し、且つ、第2の出力レーザビームは第1の出力レーザビームと同心の環状形状を有する、工程と、を含み、第2の出力レーザビーム(2)は、ファイバレーザデバイス又はファイバ結合レーザデバイスによって、少なくとも第2のレーザビームに基づいて形成され、第2の出力レーザビーム(2)は、少なくとも10ナノメートルの差を有する第1の波長及び第2の波長を含み又は、第2の出力レーザビーム(2)は、少なくとも10ナノメートルのスペクトル幅を有する。
一実施形態によれば、第2の出力レーザビームの波長は、800~815nmである。
一実施形態によれば、第1のレーザデバイスは、ファイバレーザデバイスを備え、第2のレーザデバイスは、ファイバ結合ダイオードレーザデバイスを備える。
一実施形態によれば、レーザ処理装置及び複合レーザビームは、1~20mmの厚さを有するアルミニウム板を溶接するように構成される。
一実施形態によれば、第1及び第2のレーザデバイスに機能的に接続され、第1及び/又は第2の出力レーザビームのパワー密度を個別に制御する、制御ユニットが設けられる。
次に、添付図面を参照して本発明の実施形態をより詳細に説明する。
以下において、本発明は、添付の図面を参照して詳細に説明される。
本発明のいくつかの実施形態によるレーザ溶接作業の例を示す図である。 本発明のいくつかの実施形態による複合レーザビームの断面図を示す。 本発明のいくつかの実施形態によるレーザ溶接作業の例を示す図である。 図2Aは、本発明のいくつかの実施形態による第2の出力レーザビームの特性を示す図である。図2Bは、本発明のいくつかの実施形態による第2の出力レーザビームの特性を示す図である。 複合レーザビームを集束するための光学配置を示す図である。 レイリー長に関連するビームパラメータを示す図である。 焦点シフトのシミュレーション結果を示す図である。 本発明のいくつかの実施形態による、レーザビームプロファイル出力制御のための制御ユニットを示す図である。 本発明のいくつかの実施形態による装置の例を示す図である。 いくつかの実施形態による結合手段の受容端を示す断面図である。 いくつかの実施形態による結合手段の出力における屈折率プロファイルを示す図である。 一実施形態による光学コンポーネントを概略的に示す図である。
溶接品質を向上させることができる方法及び装置が提供される。これは、以下でさらに説明される特定の複合レーザビーム構成を適用することによって実現される。
図1Aを参照すると、本特徴は、実質的に円形の断面を有する第1のレーザ出力ビーム1及び第1のレーザ出力ビームと同心の実質的に環状の形状を有する第2のレーザ出力ビーム2が、レーザ処理ヘッド3から溶接されるワークピース4の部分に照射される、方法及び装置に適用することができる。従って、第1の出力レーザビーム1は、円形又は中心ビームと称され、第2の出力レーザビーム2は、環状又はリングビームと称される。
図1Bには、レーザ処理ヘッド3からワークピース4に発せられる複合レーザビーム7の構造が示されている。環状外側リングビーム2は、第2のレーザデバイスによって提供されるレーザ出力を運ぶ。これに対応して、内部中心ビーム1は、第1のレーザデバイスによって提供されるレーザ出力を運ぶ。
いくつかの実施形態では、中心ビーム1は、ファイバレーザ(デバイス)からのレーザビームに基づいて形成され、リングビーム2は、ファイバレーザ(デバイス)又はファイバ結合レーザ(デバイス)によって形成される。中心ビーム1及びリングビーム2を、溶接される要素に選択的に向けることができる。
図1Cに示すように、中心ビーム1を、ワークピースにキーホールパターンを引き起こすように構成することができる。ビーム1と2との間は、迷光のみが提供されるか、あるいは、レーザ放射が全く提供されない、環状のゾーン8である。
複合レーザビーム7に特定の環状ビーム構成を適用して溶接品質を向上させる。いくつかの実施形態では、リングビーム2は、2つの異なる波長を有するビーム2a、2bを含む。 図2Aにさらに示すように、リングビーム2は、平均波長の違いを指し得る、少なくとも10ナノメートルの差を有する第1の波長及び第2の波長を含むことができる。いくつかの代替の実施形態では、図2Bを参照すると、リングビーム2は、少なくとも10ナノメートルのスペクトル幅を有し、これは、いくつかの実施形態において異なる波長を有する1つ以上のビームによって形成され得るリングビーム2の全スペクトル幅を指し得る。図2Bは、スペクトル幅を決定するための1つのオプションを示すに過ぎず、リングビームのスペクトル幅は、強度ピークのより高い強度レベルで定義され得ることに留意されたい。さらなる実施形態におけるスペクトル幅を、100nmを超えず、10~50nmなど、10nm~100nmの間の領域で選定することができる。
平均波長で少なくとも10nmの差又は少なくとも10nmの広いスペクトルを適用する本構成は、ビームの経路に沿った侵入深さをより小さい変動にすることができる。このことは、特定の環状ビーム構造なしで提供された線5と比較して、変化が比較的小さい図1Cの線6によって示されている。加えて、スパッタの量を低減し、低い気孔率を達成することができる。さらに、平均波長で少なくとも10nmの差又は少なくとも10nmの広いスペクトルを有するリングビーム2を用いて、アルミニウム及びアルミニウム合金を溶接している間に変形させずに表面から酸化アルミニウムを除去することができる。この方法により、酸化アルミニウムのクロージャの量を低減し、溶接シームの品質をより良くより強くすることができる。加えて、酸化物を除去するための溶接前の追加の準備を回避し又は低減することができる。
特定の複合レーザビーム構成は、リングビーム2において異なるスペクトル幅でテストされている。10nmのスペクトル幅は、5nmのスペクトル幅よりも実質的に良好なシーム品質及び低い気孔率を提供することが観察された。例示的な構成では、リングビーム2の約100nmのスペクトル幅は、各々が20nmの間隔で10nmのスペクトル幅を有する4つのレーザビーム源(第2のレーザデバイス出力において)を設定することによって達成することができる。例えば、1030~1090nmの領域の波長を適用することができる。
図3を参照すると、レーザビーム変換のための光学システムが示されている。かような光学システムを、少なくともいくつかの実施形態では、複合レーザビーム7のためのレーザ処理ヘッド3に適用することができる。
コリメーションレンズ及び集束レンズの焦点距離は、それぞれfcol及びffocでであり、Θは収束角、dはビーム径、Zはワークピースの焦点でのレイリー距離である。
焦点径は、発散角及び集束ビームのビームパラメータ積(bpp)に依存する。
Figure 0007119094000001
ここで、Mはビームの理想係数であり、λはビームの自由空間波長である。
図4は、レイリー距離に関連するビームパラメータをさらに示している。レイリー距離は、処理ヘッドの光学系で用いられている材料の屈折率の分散により、スペクトルの広いレーザの波長で焦点シフトDfを評価するのに適したスケールである。レイリー距離Zは、レーザビームが焦点にある焦点距離を与える。パラメータb=2Zは、焦点深度として説明することができる。理想的なガウスレーザビームのレイリー距離は、焦点での最小ビーム半径w及び波長λによって定義される。
Figure 0007119094000002
非理想的な又はマルチモードのレーザビームの場合、レイリー距離は、理想的なガウスビームよりも係数Mだけ小さくなる。Df<<Zの場合、ビームの異なる波長によって引き起こされる焦点距離の変化は、レーザ処理品質に大きな影響を与えないかもしれない。一方、Df~Z又はDf>Zの場合、波長スペクトルの幅がレーザ溶接品質に大きな影響を与える可能性がある。処理される材料の厚さも品質に影響することに注意されたい。
図5は、溶融シリカからなる単一のレンズ要素の屈折率のばらつきによる焦点シフトのシミュレーション結果を示している。この例では、250mm焦点レンズを用いたレーザ溶接時に、第2の出力レーザビームの第1の波長2aと第2の波長2bの波長の差が15nmの場合での0.1mmの焦点シフトを達成することができる。典型的な処理ヘッドでのように、複数のレンズ要素を用いる場合には、分散による焦点シフトも単一の要素の場合と比較して増大する。
ファイバ又はファイバ結合レーザ(デバイス)の出力レベルは、問題となるアプリケーションのニーズに応じて、0~10kW以上に制御することができる。多くのアプリケーションでは、リングビーム2に約1~4kWのファイバレーザ出力電力レベルを適用することができる。
本特定の複合ビーム構成は、従来のレーザビームが用いられる場合と比較して、溶接に低出力レベルを適用することを可能にする。例示的な実施形態では、レーザ出力は、中心ビーム1では600W及びリングビーム2では1kWであり、アルミニウム(例えば、3000シリーズのアルミニウム)を溶接する場合の溶接速度は100mm/秒とすることができる。これらのパラメータを用いると、1mmの溶け込み深さ及び非常に優れたレーザ溶接品質を達成することができる。
レーザ溶接シームのメルトプールの長さは、中心1及びリングビーム2の溶接パラメータを適切に制御することにより、本特定の複合ビーム構成で最適化することができる。スパッタは、メルトプールの長さを最適化し、メルトプール内の乱流を最小化することにより大幅に低減することができる。加えて、メルトプールの長さを最適化することにより、メルトが固化する前に、ガス及び気泡がメルトから逃げるのに十分な時間を与えることができる。これにより、気孔率が低下し、溶接シーム内のボイドの数が減少する。
いくつかの実施形態では、リングビーム2内のファイバ又はファイバ結合レーザの波長は、1030~1090nmの領域内にある。中心ビーム1内のファイバレーザの波長は、問題となるアプリケーションに応じて、いくつかの実施形態では、例えば1070nmなどの700~1200nmの領域内で選定することができる。
いくつかの実施形態では、レーザ処理装置及び複合レーザビームは、アルミニウム板を溶接するように適合されている。アルミニウム板は、1~20mm、好ましくは1~10mmの厚さを有することができる。例えば、800~1100nmの範囲内にあるリングビーム2の波長を選定することができる。リングビーム2の波長が808nmの場合、波長808nmに吸収ピークがあるため、少なくとも6000シリーズのアルミニウム合金片を溶接する場合に、特に良好な品質の溶接結果を得ることができる。
他のいくつかの実施形態では、第2の出力レーザビーム2は、ファイバ結合ダイオードレーザビームを含むことができる。リングビーム2に適切なファイバ結合ダイオードレーザビームを追加することにより、複合レーザビーム7の光出力の吸収の増大が促進される。
一実施形態では、ファイバレーザとダイオードレーザとの組み合わせが適用されて、リングビーム2が形成される。例えば、リングビーム2用の(第2のレーザデバイス又はさらなる第3のレーザデバイスの)光源の1つは、ダイオード光を発しても良い。これにより、図1Cの線6によっても示されるように、環状ビーム用のダイオードレーザデバイスなしで提供される線5と比較して、比較的小さな変動で浸透深さの安定性をさらに向上させることができる。かような実施形態では、ビーム2aは、ファイバレーザビームを指し、ビーム2bは、ダイオードレーザビームを指すことがある。いくつかの実施形態では、ダイオードレーザビームの波長は、リングビームにおいて0.5~1.5μmの範囲内にある。いくつかの実施形態では、10~50Wの範囲内のダイオードレーザ出力パワーレベルが、リングビーム2に適用される。いくつかの実施形態では、リングビーム内のファイバビーム及びダイオードビーム、並びに、それらの出力レベルは、独立して採用することができる。
従って、本開示の特徴を適用し、追加のダイオード光を複合レーザビーム溶接に適用することによって達成できる様々な利点がある。1つの有利な点は、溶接シームの品質及び均一性を向上することができることである。環状リング内のファイバレーザと組み合わせたダイオード光の特定の構成により、溶接品質を向上させることができる。さらに、被処理材のメルトプールをより安定させることができるため、スパッタを低減することができる。
図6は、レーザ装置の中心1及びリングビーム2の生成を制御するための、いくつかの実施形態による制御ユニット10を示す。制御ユニット10は、中心ビーム1及び/又はリングビーム2を生成するように構成された少なくとも1つのレーザユニット12に直接的又は間接的に接続されている。制御ユニット10は、電力制御のための適切なソフトウェアを備えた汎用コンピュータを備えることができ、又は、制御ユニットは、マイクロコントローラを備えることができる。制御ユニットは、シングル又はマルチコアプロセッサとすることができる少なくとも1つのプロセッサ11を備え、シングルコアプロセッサは1つの処理コアを備え、マルチコアプロセッサは2つ以上の処理コアを備える。プロセッサは、少なくとも1つの特定用途向け集積回路、ASICを備えることができる。プロセッサを、デバイスにおいて方法ステップを実行するための手段とすることができる。プロセッサを、少なくとも部分的にコンピュータ命令によって、本開示の特定の複合ビーム構成及びプロファイルを制御するように構成することができる。
制御ユニットデバイスは、メモリ13を備えることができる。メモリは、ランダムアクセスメモリ及び/又は永久メモリを備えることができる。メモリは、少なくとも1つのRAMチップを含むことができる。メモリは、例えば、ソリッドステート、磁気、光学及び/又はホログラフィックメモリを備えることができる。メモリを、少なくとも部分的にプロセッサにアクセス可能とすることができる。メモリは、プロセッサ11が実行するように構成されているコンピュータ命令14を備えることができる。プロセッサに特定のアクションを実行させるように構成されたコンピュータ命令がメモリに格納され、デバイス全体がメモリからのコンピュータ命令を用いてプロセッサの指示の下で実行されるように構成されている場合、プロセッサ及び/又はその少なくとも1つの処理コアは、前記特定のアクションを実行するように構成されていると見なすことができる。メモリ13を、少なくとも部分的にプロセッサが含むことができる。メモリ13は、少なくとも部分的にデバイスの外部にあるものの制御ユニットデバイスにアクセス可能であるものとすることができる。
本開示の特徴は、メモリ13に格納され、プロセッサ11で実行されると、プロセッサにレーザユニット12へのそれぞれの出力制御信号によってレーザビーム1、2a、2bの構成を制御させる命令を備える、少なくとも1つのコンピュータプログラムによって引き起こされることができる。メモリ13はまた、プロセッサによって制御されるリングビーム2及び/又は中心ビーム1の特性に影響を与える様々なパラメータ15、例えば、異なる中心及び/又はリングビームパラメータ及びオペレータによって調整可能な異なる溶接プロファイル及びプログラムを定義するパラメータセットを格納することができる。
制御ユニットデバイスは、ユーザインタフェース、UI16を備えることができる。UIは、例えば、ディスプレイ、キーボード、タッチスクリーンのうちの少なくとも1つを含むことができる。制御ユニットを、ユーザ入力に少なくとも部分的に基づいて、レーザビーム構成及び/又はパラメータを制御するように構成することができる。制御ユニット10は、また、レーザ溶接操作の進行を監視するセンサ及び/又は処理中のワークピースの特性を検出するセンサなどの1つ又は複数のセンサ17に接続することができる。制御ユニット10は、少なくとも1つのセルラー又は非セルラー規格に従って情報を送信及び受信するように構成された送信機及び受信機などの他のユニットも備えることができる。
いくつかの実施形態によれば、制御ユニット10を、他のビームの状態に関係なく、中心ビーム1及び/又はリングビーム2のパワー密度を個別に制御するように構成することができる。中心ビーム1のパワー密度とリングビーム2のパワー密度との関係は、溶接されるワークの厚さに応じて制御することができる。例えば、制御ユニット10は、リングレーザビームをオフにするための所定の厚さ限界値を下回るワークピースの厚さに応答して、リングビームをオフにするように構成することができる。いくつかの実施形態では、限界値は、4~8ミリメートル、一実施形態では6mm、の範囲から選択される。溶接される材料に応じて、異なるパワー密度、及び、中心ビーム1とリングビーム2との関係を制御することができる。
制御ユニット10によって制御することができる他の溶接パラメータもある。そのようなパラメータのいくつかの例としては、溶接進行速度、中心及び/又はリングビームの直径、変調オン/オフ、変調パラメータ、及び他のビームプロパティが含まれるが、これらに限定されない。
実施形態は、スポット溶接及び連続溶接の用途に適用することができる。連続溶接の場合、レーザ処理ヘッドの移動方向のリングビーム2の先縁が最初の強度ピークを引き起こし、リングビーム2の後縁が2番目の強度ピークを引き起こす。従って、要素は段階的に加熱され、後縁及び前縁の強度レベルは、単一のスポットビームと比較して低くなることができ、適切な溶融を引き起こす。予熱に加えて、前縁は、汚染物質のアブレーションも供する。これにより、急激な温度変化を回避し、その後の焼戻し、従って急激な温度変化によって引き起こされるより弱い領域を回避又は少なくとも低減することができる。連続溶接でのリングビームの使用は、スパッタを回避する上でも有利である。一実施形態では、中心ビーム1のパワー密度を低く設定するか、または中心ビームを完全に閉じることさえもできる。従って、過熱を回避することができる。
複合レーザビーム7、すなわち中心ビーム1とリングビーム2とのハイブリッドは、元のレーザデバイスからのレーザビームとマルチコア光ファイバのフィードファイバとを組み合わせることによって生成することができ、得られた中心ビーム1及びリングビーム2を有する複合レーザビームをワークピースに向けることができる。第1の光フィードファイバを、マルチコア光ファイバの第1のコアと位置合わせすることができ、第2の光フィードファイバを、マルチコア光ファイバの第2のコアと位置合わせすることができる。マルチコア光ファイバの第1のコアは円形の断面を有し、第2のコアは第1のコアと同心の環状形状を有する。いくつかのさらなる例示的な実施形態を以下に示す。
いくつかの実施形態では、図1Cの図も参照して、キーホールレーザ溶接が熱伝導溶接と組み合わせて適用され、動的に適応可能な中心及びリングレーザビームプロファイルを提供する。熱伝導溶接を、典型的には、材料の厚さが約2mmまでの金属シートの溶接に適用することができる。伝導溶接が可能なレーザで処理された金属シートは、金属の比較的浅いが広いスポットに影響を与える。典型的なキーホールパターンは、ファイバレーザなどの高輝度レーザによって引き起こされる。キーホールの直径は、1ミリメートル未満、例えば、0.1ミリメートルの領域であっても良く、スポットの直径は、例えば、3ミリメートルなどの数ミリメートルの領域であっても良い。純粋なキーホール溶接と円形及び環状のレーザビームによるハイブリッド溶接の適用とを比較すると、ハイブリッド溶接の溶け込みは、同じ処理速度を用いた純粋なキーホール溶接のそれよりも、少なくとも20%深いことがわかっている。
図7は、独立した中心及びリングビーム出力制御を可能にし、そこでそれにより特定の複合レーザビーム構成上の上記例示された特徴の少なくともいくつかを適用することができる装置の一実施形態を示す。第1のレーザ(デバイス)30は、光フィードファイバ32でレーザビームコンバイナ34に接続される。同様に、1つ又は複数の第2のレーザ31は、フィードファイバ33でビームコンバイナ34に接続される。コンバイナの役割は、全ての入力レーザビームを配列してデュアルコア光ファイバ35に結合することである。従って、レーザ装置のハイブリッドの性質は、単一のデュアルコア光ファイバ35の内部を伝播する2つのレーザビームを有する結果である。ファイバ35内の2つのレーザビームは、典型的には、異なる輝度及び強度プロファイルを有し、異なる波長を有することができる。さらに、2つのレーザビームの出力レベルは、第1のレーザ30及び第2のレーザデバイス31からの出力レベルを調整することによって、独立して連続的に制御することができる。
ビームの十分な輝度を達成するために、第1のレーザデバイス30を、ダイオード励起の単一又は複数のファイバレーザ発振器又はマスター発振器パワー増幅器(MOPA)モジュールを備える高輝度ファイバレーザとすることができ、各々が、例えば、ファイバ共振器に結合されたファイバ結合ダイオードレーザからなる。高輝度レーザのさらなる例は、ダイオードレーザからの光で励起される、ファイバ結合薄ディスクレーザ又はNd-YAGレーザである。多くのアクティブな固体光増幅材料は絶縁体であるため、モデムレーザ技術は、エネルギー伝達媒体として光に依存することが良くある。ダイオードレーザは、効率が高く、光スペクトルが狭いため、エネルギーポンプとして以前に用いられていたフラッシュランプに取って代わった。
第2のレーザデバイス31は、上述したように、リングビーム2構成を形成するための特定の第2のレーザビームを提供するように構成することができる。第2のレーザデバイス31を、例えば薄ディスクレーザ共振器(図示せず)のようなダイオードレーザによって励起される固体レーザ共振器を備えることができる、ファイバレーザ又はファイバ結合レーザとすることができる。デュアルコア光ファイバ35は、図8Aに示すように、第1のレーザデバイス30からのレーザビームをその中心コアに運び、1つ又は複数の第2のレーザデバイス31によって生成されたビームを中心コアから離れて中心コアの周りに環状に配置された外側コアに運ぶように配置することができる。
いくつかの実施形態では、第1及び第2のレーザデバイス30、31は両方とも、ファイバレーザであり、各々が独立に制御可能な出力レベルを有する。一部のレーザは、構造上ファイバレーザであり、本質的に光を光ファイバに送り、他のものは、ファイバと光学的に干渉してレーザビームを出力ファイバのコアに位置合わせさせる必要がある。レーザ装置の目的及び個々のレーザモジュールの出力定格及び他の特性は、どのタイプのレーザがビームコンバイナ34に接続されることが可能であるかを決定する。
いくつかの実施形態では、装置は、ビームコンバイナ34にダイオードレーザビームを提供するさらなるダイオードレーザデバイス(図示せず)を備える。ビームコンバイナ34は、ダイオードレーザビームをマルチコア光ファイバの少なくとも1つの第2のコアと位置合わせさせるように構成されている。
デュアルコア光ファイバは、反対側の端部で、結合又は複合レーザビーム7をワークピース21に向けてガイドするレーザ処理ヘッド20に接続される。レーザ処理ヘッド20は通常は、コリメートレンズ及び集束レンズを備え、ファイバ35の端部からワークピース21上に現れる強度プロファイルの画像を、レンズの焦点距離によって決定される所望のサイズで生成する。レーザヘッド20の役割は、加圧ガスジェットを溶接ラインに提供することでもあり得る。加圧ガスを加えて、レーザヘッド20内の光学系を溶融金属の噴出からさらに保護し、それを溶接ラインから除去して、それを清浄に保つのに役立つこともできる。一実施形態において、酸素アシストガスは、少なくとも溶接進行転換点に関連して適用され、追加のエネルギーを提供し、これらの点における溶接エッジ品質をさらに向上させることができる。
本発明の一実施形態では、装置は、上述の制御ユニット10などの制御ユニットを備える。 制御ユニットは、レーザデバイス30又は31の1つに統合されることもできる。あるいは、全てのユニット30、31及び10を、利便性及び信頼性のために、単一のハウジング内に配置し、それらの構造において互いに統合することができる。図示のように、制御ユニット10は、リング2及び中心1ビームのプロファイルの独立した出力制御を実行し、上記の特徴の少なくともいくつかを適用することにより、実行中に調整されることができる動的に調整可能なリング-中心ビームを可能にするのに用いることができる。制御ユニットを、レーザデバイス30、31のうちの少なくとも1つの変調及び/又は他のパラメータを制御するように構成することができる。好ましくは、両レーザビームの変調は、別々に動的に制御される。従って、同じ装置により多種多様な溶接の用途及び目的が可能になる。ビームプロファイルは、異なる材料、コーティング、及び/又は厚さといった、困難な溶接タイプ/アプリケーションの様々な要求に合わせて動的に調整することができる。
制御ユニット10は、レーザヘッド20のユーザからのフィードバック36、又は、例えば光強度センサから自動フィードバックを受信するように構成することができる。次いで、フィードバック又は入力を用いて、レーザ30及び31の出力を制御し、所定のターゲットを追跡するか、ワークピース21で観察された引き起こされた溶接結果に従ってレーザ出力を調整する。制御ユニット10又は別の制御ユニットは、ワークピースに対するレーザ処理ヘッド20の動きといった、装置の他の機能を制御することもできる。
本発明によれば、ビームコンバイナ34は、光出力がコンバイナ構造全体を介して溶融シリカの内部を伝搬する、溶融シリカコンポーネントでできており、コンバイナは、入力及び出力に光ファイバを有する。従って、本発明では、ビームコンバイナ34は、全ガラスファイバコンバイナと称することができる。
図8Aには、一次クラッド54を有する中心コア51を有する、例示的なデュアル/マルチコア光ファイバ50の断面が示されている。外側コア53は、内側クラッド54及び外側クラッド55によって空間的に形成される。当業者には明らかなように、クラッドは、コアの屈折率よりも低い屈折率を有する材料として定義される。例えば、中心コア51の直径を70μmとすることができ、外側コア53の内径及び外径を、それぞれ、100μm及び180μmとすることができる。中心及び周辺コア51及び53は、上述のもの以外の形態をとることもできる。中心コア51を、例えば、正方形又は長方形の形状とすることができる。周辺コア53は、長方形の境界を有し、又は、直線又は円形の形状の複数のセグメントから構成されることもできる。
破線は、ビームコンバイナからの溶融フィードファイバ56及び57(図9のファイバ72及び71)の端部のコアが、デュアルコア光ファイバ50の断面とどのように位置合わせすることができるかを示している。例えば、(リングビーム2を形成するための)周辺コア53に位置合わせされた4つのフィードファイバ57の各々は、20nm間隔で10nmのスペクトル幅を有することができ、その結果、リングビーム2の約100nmの合計スペクトル幅になる。
デュアルコア光ファイバ50の中心コア51におけるレーザ放射は、中央の狭い空間強度プロファイルを有し、一方、外側コア53における強度分布は、ドーナツの形状をとる。この空間強度パターンは、レーザヘッド20内の処理光学系によりワークピース上にさらに画像化される。この構成では、レーザビームのビーム品質は、中心コアと外側コアとの両方で比較的高くなる。
次に、図8Bを参照すると、光デュアルコアファイバ50の例示的な屈折率プロファイルが示されている。コア51及び53は、それぞれ包囲材料54及び55の屈折率n54及びn55よりも高い屈折率n51及びn53を有する。このようにして、レーザビームは、環状の強度プロファイルの起こり得る劣化を最小限に抑え、各コアの光出力及び強度の減衰を抑えてワークピースにガイドされる。
溶融シリカの屈折率を、それに不純物をドープすることで調整することができる。溶融シリカをゲルマニウムでドープすると屈折率が増大し、フッ素でドープすると屈折率が低下する。従って、コア51及び53は、例えば、Geドープ又は非ドープの溶融シリカからなり、それらの一次クラッド54及び55は、例えば、Fドープの溶融シリカからなる。
図9には、ファイバコンバイナ34の主要な光学コンポーネント70が示されている。それは、溶融シリカガラスチューブ77、少なくとも2つのレーザデバイスからの光フィードファイバ71及び72(例えばデバイス30及び31のファイバ32及び33)によって運ばれるレーザビーム(図示せず)を受信するための入力端76からなる本体部分を有するマルチボア毛細管である。それは、同じ方向に互いに位置合わせされた少なくとも2つのレーザビームからなる複合出力レーザビームを伝達するための反対の出力端74も有する。
入力端76に入る光フィードファイバ71、72は、毛細管ボア内の本体部分を通って出力端74まで延在し、ガラスチューブ77と融合して、光ガイドコア71a、72aからなり、ガラス材料を取り囲んでいるコンポーネントを形成する。コアは、コアの周りを取り囲むガラス材料の屈折率よりも高い屈折率を有し、全内部反射によって、コンポーネント全体を通るコア内の光出力の伝搬を提供する。
ファイバコンバイナの原理を示すために、コアの寸法及びコンポーネント70の寸法は縮尺どおりではなく、明確にするために、いくつかのコアのみが破線で示されている。
光学コンポーネント70を、例えば図面により製造することができる。この例では、中心に直径約300μmのファイバ72用の大きいボア、及び、中心ボア72に対して対称的且つ周辺に配置されたファイバ71用の4つの小さいボアがあっても良い。小さいボアは、例えば、約150μmの直径を有することができる。毛細管の外径は、例えば1mmとすることができる。管の材料を、例えば、溶融シリカとすることができる。バルクガラス(図示せず)の外側クラッディングが少なくとも部分的にエッチングで除去されていることが好ましいファイバは、中間ボアに挿入され、毛細管テーパの腰部分73に押し通される。ファイバが置かれた際に、毛細管70は腰部73で加熱されて、ファイバをチューブに融合させ、全てが光学コンポーネント70を通って延びる、第1の中心光ガイドコア72a及び第2の光ガイドコア71aを形成する。
ファイバ71、72は、代替として、純粋な溶融シリカ材料の内部コア及びFドープの溶融シリカの外部クラッドを有することができる。ファイバの光ガイドコアは、本質的に、より低い屈折率を有する材料によって囲まれるので、このようにして、光学コンポーネント70の溶融シリカガラスチューブ77は、純粋な溶融シリカから製造することができる。これは、毛細管の屈折率がファイバコアと同じであっても、光がコア71a、72aに残ることを意味する。この場合、バルクガラスの外側ファイバクラッドは、Fドープのクラッドまで、又はさらに、Fドープのクラッドが純粋又はGeドープの内側ファイバコアの周りに残っている限り、エッチングで除去することができる。
次に、融合されたコア71a、72a(破線で示される)及びチューブ70は、端面74を生成するために切断又は割かれる。次に、図8に示されるもののようなデュアルコアファイバ35は、端部74で毛細管に溶接することができ、その結果、継ぎ目75が生じる。
好ましい実施形態では、第1の光フィードファイバ72の中心は、コンポーネント70の中心と位置合わせされ、例えば4つの第2の光フィードファイバ71の中心は、第1の中心光ガイドコア72aからの所定の距離Rの出力端74で出力ビームを提供するように配置される。第2の供給ファイバの数はそのように限定されず、例えば4の代わりに8、16又は32であることを理解されたい。第2の光ガイドコア71aは、好ましくは、中心コア72aに対して対称的に配置され、互いの間の角度距離が90°の出力ビームを提供する。
本開示のレーザ溶接の方法及び装置は、多種多様な用途に適用することができる。特定の有利な点は、厚さなどの異なる特性を有するレーザ溶接材料や、変更及びマルチフォーム溶接操作で優れた溶接面品質を達成する必要がある用途で達成される。単一の溶接装置をこれらの様々な特性/要求に用いることができるようになり、最適な溶接ビームプロファイルに即座に適応できるようになる。いくつかの例として、本システムは、自動車産業の溶接ニーズに特に有利であり得る。
開示された発明の実施形態は、本明細書に開示された特定の構造、プロセスステップ又は材料に限定されず、関連分野の当業者によって認識されるように、それらの均等物に拡張されることを理解されたい。本明細書で用いられる用語は、特定の実施形態を説明する目的でのみ用いられており、限定することを意図していないことも理解されたい。
本明細書を通して「一実施形態」又は「実施形態」への言及は、実施形態に関連して記載された特定の特徴、構造、又は特性が、本発明の少なくとも1つの実施形態に含まれることを意味する。従って、本明細書全体にわたる様々な場所での「一実施形態では」又は「実施形態では」という句の出現は、必ずしも全てが同じ実施形態を言及しているわけではない。
本発明の様々な実施形態及び実施例は、本明細書では、その様々な構成要素の代替物とともに参照され得る。そのような実施形態、実施例、及び代替物は、事実上互いに等しいと解釈されるべきではなく、本発明の別個の自律的な表現と見なされるべきであることが理解される。
さらに、記載される特徴、構造、又は特性は、1つ又は複数の実施形態において任意の適切な方法で組み合わせることができる。記載では、本発明の実施形態の完全な理解を提供するために、長さ、幅、形状などの例など、多くの特定の詳細が提供される。しかしながら、当業者は、本発明が、1つ以上の特定の詳細なしで、又は、他の方法、構成要素、材料などを用いて実施され得ることを認識するであろう。他の例では、本発明の態様を曖昧にすることを避けるために、周知の構造、材料、又は操作は、示されていないか又は詳細に説明されていない。
前述の例は、1つ又は複数の特定の用途における本発明の原理を例示するものであるが、形式、使用法、及び実装の詳細における多くの修正が、当業者にとって、発明の能力及び本発明の原理及び概念から逸脱することなく、明らかであろう。従って、以下に述べる請求項による場合を除いて、本発明が限定されることは意図されていない。

Claims (11)

  1. -各々が第1のレーザビームを提供するための少なくとも1つの第1の光フィードファイバ(32)を有する、少なくとも1つの第1のレーザデバイス(30)と、
    -各々が第2のレーザビームを提供するための少なくとも1つの第2の光フィードファイバ(33)を有する、少なくとも1つの第2のレーザデバイス(31)と、
    前記第1及び第2の光フィードファイバに及びマルチコア光ファイバに接続されたビーム結合器であって、前記マルチコア光ファイバは、前記マルチコア光ファイバの中心に位置し円形の断面を有する第1のコア及び前記第1のコアから離れ且つ前記第1のコアに同心の環状の断面を有する第2のコアを有し、前記少なくとも1つの第1の光フィードファイバは、前記マルチコア光ファイバの前記第1のコアに位置合わせされ、且つ、前記少なくとも1つの第2の光フィードファイバは、前記マルチコア光ファイバの環状の前記第2のコアの内径と外径との間に位置合わせされる、ビーム結合器と、
    を備えたレーザ溶接装置であって、
    前記第1及び第2のコアは、第1の出力レーザビーム(1)及び第2の独立した出力レーザビーム(2)を含む複合レーザビームを溶接されるワークピースに描像する集束レンズを有するレーザ処理ヘッドに接続可能であり、前記第1の出力レーザビームは、円形の断面を有し、且つ、前記第2の出力レーザビームは、前記第1の出力ビームに同心の環状の断面を有し且つ前記ワークピースにて前記第1の出力レーザビームから離れており、
    前記第2のレーザデバイス(31)は、ファイバレーザデバイス又はファイバ結合レーザデバイスであり、
    前記装置は、少なくとも前記第2のレーザビームに基づいて、前記第2の出力レーザビーム(2)を形成するように構成され、
    前記第2の出力レーザビーム(2)は、第1の波長及び第2の波長を含み、前記第1の波長及び前記第2の波長は、異なるレーザ源によって生成され、前記第1の波長と前記第2の波長との差は、少なくとも15nmであり且つ前記第1の波長及び前記第2の波長に関連した画像間に少なくとも0.1mmの焦点シフトを生じさせるのに十分である、レーザ溶接装置。
  2. 前記装置は、前記第1(30)及び第2のレーザデバイス(31)に機能的に接続されて、前記第1及び/又は第2の出力レーザビーム(1、2)のパワー密度を個別に制御する、制御ユニット(10)を備える、請求項1に記載のレーザ溶接装置。
  3. 前記第1のレーザデバイス(30)は、ファイバレーザデバイスを備え、且つ、前記第2のレーザデバイス(31)は、ファイバ結合ダイオードレーザデバイスを備える、請求項1又は2に記載のレーザ溶接装置。
  4. 前記レーザ溶接装置及び前記複合レーザビーム(7)が、1~20mmの厚さを有するアルミニウム板を溶接するように構成された、請求項1~のいずれか一項に記載のレーザ溶接装置。
  5. 前記第2の出力レーザビーム(2)の波長は、800~1100nmの範囲にある、請求項1~のいずれか一項に記載のレーザ溶接装置。
  6. 前記第2の出力レーザビーム(2)は、ファイバレーザデバイスによって放射されたファイバレーザビーム(2a)及びダイオードレーザデバイスによって放射されたダイオードレーザビーム(2b)を含む、請求項1に記載のレーザ溶接装置。
  7. レーザビームでワークピースを溶接する方法であって、
    -少なくとも1つの第1のレーザデバイスにおいて少なくとも1つの第1のレーザビーム(1)を生成し、少なくとも1つの第1の光フィードファイバ(32)を介して前記少なくとも1つの第1のレーザビームを提供する工程と、
    -少なくとも1つの第2のレーザデバイスにおいて少なくとも1つの第2のレーザビーム(2)を生成し、少なくとも1つの第2の光フィードファイバ(33)を介して前記少なくとも1つの第2のレーザビームを提供する工程と、
    -マルチコア光ファイバにおいて、前記少なくとも1つの第1の光フィードファイバを前記マルチコア光ファイバの第1のコアに位置合わせし、且つ、前記少なくとも1つの第2の光フィードファイバを前記マルチコア光ファイバの第2のコアの内径と外径との間に位置合わせすることによって、前記第1及び第2のレーザビームを結合する工程であって、前記マルチコア光ファイバは、前記マルチコア光ファイバの中心に位置し円形の断面を有する前記第1のコア及び前記第1のコアから離れかつ且つ前記第1のコアに同心の環状の断面を有する前記第2のコアを有する、工程と、
    -第1の出力レーザビーム及び独立した第2の出力レーザビームを含む複合レーザビームの画像を、前記マルチコア光ファイバから溶接されるワークピースへと集束させる工程であって、前記第1の出力レーザビームは、円形の断面を有し、且つ、前記第2の出力レーザビームは、前記第1の出力レーザビームに同心の環状の断面を有し且つ前記ワークピースにて前記第1の出力レーザビームから離れている、工程と、
    を含み、
    前記第2の出力レーザビーム(2)は、ファイバレーザデバイス又はファイバ結合レーザデバイスによって、少なくとも前記第2のレーザビームに基づいて形成され、
    前記第2の出力レーザビーム(2)は、第1の波長及び第2の波長を含み、前記第1の波長及び前記第2の波長は、異なるレーザ源によって生成され、前記第1の波長と前記第2の波長との差は、少なくとも15nmであり且つ前記第1の波長及び前記第2の波長に関連した前記画像間に少なくとも0.1mmの焦点シフトを生じさせるのに十分である、方法。
  8. 前記第1及び第2の出力レーザビーム(1、2)におけるパワー密度が、前記第1及び/又は第2のレーザデバイス(30、31)に機能的に接続された制御ユニット(10)によって個別に制御される、請求項に記載の方法。
  9. 前記第1のレーザデバイスは、ファイバレーザデバイスを備え、且つ、前記第2のレーザデバイスは、ファイバ結合ダイオードレーザデバイスを備える、請求項に記載の方法。
  10. 前記第2の出力レーザビーム(2)の波長は、800~1100nmの範囲にある、請求項に記載の方法。
  11. 前記第2の出力レーザビーム(2)は、ファイバレーザデバイスによって放射されたファイバレーザビーム(2a)及びダイオードレーザデバイスによって放射されたダイオードレーザビーム(2b)を含む、請求項7に記載の方法。
JP2020535955A 2017-12-29 2017-12-29 レーザ処理装置及び方法 Active JP7119094B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2017/050959 WO2019129917A1 (en) 2017-12-29 2017-12-29 Laser processing apparatus and method

Publications (2)

Publication Number Publication Date
JP2021514841A JP2021514841A (ja) 2021-06-17
JP7119094B2 true JP7119094B2 (ja) 2022-08-16

Family

ID=67063262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020535955A Active JP7119094B2 (ja) 2017-12-29 2017-12-29 レーザ処理装置及び方法

Country Status (8)

Country Link
US (2) US11850679B2 (ja)
EP (1) EP3731991B1 (ja)
JP (1) JP7119094B2 (ja)
KR (1) KR102418512B1 (ja)
CN (1) CN111526966B (ja)
FI (1) FI3731991T3 (ja)
TW (1) TWI789466B (ja)
WO (1) WO2019129917A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3924136B1 (en) * 2019-02-13 2023-04-26 Coherent, Inc. Laser welding method
US11005227B2 (en) 2019-09-05 2021-05-11 Nufern Multi-wavelength adjustable-radial-mode fiber laser
DE102019215968A1 (de) * 2019-10-17 2021-04-22 Trumpf Laser- Und Systemtechnik Gmbh Laserschweißverfahren für Eckverbindungen von Werkstückteilen
DE102019218398A1 (de) * 2019-11-27 2021-05-27 Trumpf Laser- Und Systemtechnik Gmbh Laserschweißen von Stromschienen mit Strahlformung
US11446764B2 (en) * 2020-03-24 2022-09-20 Corelase Oy Laser welding stacked foils
US11524361B2 (en) 2020-05-22 2022-12-13 Coherent, Inc. Laser welding method
CN113794091B (zh) * 2020-05-25 2023-07-18 深圳市创鑫激光股份有限公司 一种激光器和多波长输出激光加工系统
CN116056829A (zh) * 2020-07-07 2023-05-02 松下知识产权经营株式会社 用于更改光束形状和强度的阶跃芯光纤结构和方法
KR102279691B1 (ko) * 2020-09-04 2021-07-20 한국광기술원 복수빔을 이용한 레이저 용접 장치 및 방법
DE102020212846A1 (de) 2020-10-12 2022-04-14 Trumpf Laser- Und Systemtechnik Gmbh Vorrichtung und Verfahren zur Erfassung des Prozessleuchtens bei der Laserbearbeitung
DE102021113430A1 (de) * 2021-05-25 2022-01-20 Audi Aktiengesellschaft Verfahren zum Laserstrahltiefschweißen
CN113798666A (zh) * 2021-09-07 2021-12-17 武汉锐科光纤激光技术股份有限公司 焊接材料的焊接方法、装置、设备、存储介质和电子装置
DE102021126754A1 (de) 2021-10-15 2023-04-20 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Laserschweißen eines Werkstücks mit schnellem Wechsel zwischen Schweißzonen mit unterschiedlichen zu schweißenden Materialien
DE102021126749A1 (de) 2021-10-15 2023-04-20 Trumpf Laser- Und Systemtechnik Gmbh Laserschweißverfahren
CN114101907A (zh) * 2021-12-24 2022-03-01 沈阳大学 一种2000MPa级热成形钢薄板双光斑激光焊接工艺
DE102022105499A1 (de) 2022-03-09 2023-09-14 Futonics Laser GmbH Vorrichtung zum Anschließen einer Applikationsfaser an einen Laser und Laserapparatur mit einem Laser und einer Applikationsfaser
US11709325B1 (en) * 2023-01-06 2023-07-25 Mloptic Corp. Waveguide calibration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105096A (ja) 2006-09-28 2008-05-08 Sumitomo Electric Ind Ltd レーザ加工方法及びレーザ加工装置
JP2013180295A (ja) 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 加工装置及び加工方法
JP2016503348A (ja) 2012-11-30 2016-02-04 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh レーザ加工装置及びレーザ加工方法
WO2016198724A2 (en) 2015-06-09 2016-12-15 Corelase Oy Laser processing apparatus and method and an optical component therefor
JP2017185543A (ja) 2017-03-14 2017-10-12 株式会社アマダホールディングス レーザ加工機

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088501B1 (en) 1982-02-12 1986-04-16 United Kingdom Atomic Energy Authority Laser pipe welder/cutter
JPS58159514A (ja) 1982-03-18 1983-09-21 Toshiba Corp レ−ザビ−ム空間分布形成方法
US4642446A (en) 1985-10-03 1987-02-10 General Motors Corporation Laser welding of galvanized steel
JPH01197084A (ja) 1988-01-29 1989-08-08 Fanuc Ltd Cncレーザ加工機のパワー制御方式
JPH03216287A (ja) 1990-01-19 1991-09-24 Fanuc Ltd レーザ切断加工方法
JPH03238184A (ja) 1990-02-15 1991-10-23 Nec Corp レーザ加工法
JPH067973A (ja) 1992-06-25 1994-01-18 Fanuc Ltd レーザ加工装置
US6037968A (en) * 1993-11-09 2000-03-14 Markem Corporation Scanned marking of workpieces
JP3531199B2 (ja) * 1994-02-22 2004-05-24 三菱電機株式会社 光伝送装置
US5694408A (en) 1995-06-07 1997-12-02 Mcdonnell Douglas Corporation Fiber optic laser system and associated lasing method
FR2790689B1 (fr) 1999-03-12 2001-06-08 Industrialisation Des Rech S S Procede et dispositif d'assemblage par soudage de deux pieces
US6317549B1 (en) * 1999-05-24 2001-11-13 Lucent Technologies Inc. Optical fiber having negative dispersion and low slope in the Erbium amplifier region
JP3768730B2 (ja) 1999-06-14 2006-04-19 松下電器産業株式会社 レーザ加工機およびその数値制御装置ならびにレーザ加工機の制御方法
US20060249491A1 (en) * 1999-09-01 2006-11-09 Hell Gravure Systems Gmbh Laser radiation source
JP2001108869A (ja) 1999-10-05 2001-04-20 Mitsubishi Heavy Ind Ltd 高出力レーザー光伝送方法及びその装置及びレーザー加工装置
JP4126828B2 (ja) 1999-11-10 2008-07-30 三菱電機株式会社 光ファイバ取付位置調整装置および調整方法
AU2001247240A1 (en) * 2000-03-01 2001-09-12 Heraeus Amersil, Inc. Method, apparatus, and article of manufacture for determining an amount of energy needed to bring a quartz workpiece to a fusion weldable condition
JP2002160083A (ja) 2000-11-29 2002-06-04 Nippon Steel Corp 亜鉛めっき鋼板の重ねレーザー溶接方法
FR2817782B1 (fr) 2000-12-13 2003-02-28 Air Liquide Procede et installation de coupage laser avec tete de decoupe a double flux et double foyer
EP1374139B1 (en) * 2001-03-29 2011-05-04 LASX Industries, Inc. Controller for a laser using predictive models ofa laser beam motion system
JP2003305585A (ja) * 2001-09-11 2003-10-28 Seiko Epson Corp レーザー加工方法および加工装置
FR2830477B1 (fr) 2001-10-09 2004-02-06 Usinor Procede et dispositif de soudage par recouvrement a l'aide d'un faisceau a haute densite d'energie de deux toles revetues
KR100443152B1 (ko) 2001-11-28 2004-08-04 한국원자력연구소 레이저 용접시 용접 풀 크기감시 및 초점제어 방법
JP2004105972A (ja) 2002-09-13 2004-04-08 Mitsubishi Heavy Ind Ltd レーザ切断加工システム
JP2004154813A (ja) 2002-11-06 2004-06-03 National Institute Of Advanced Industrial & Technology レーザ加工方法および装置
JP2004358521A (ja) 2003-06-05 2004-12-24 Mitsubishi Heavy Ind Ltd レーザ熱加工装置、レーザ熱加工方法
JP4267378B2 (ja) 2003-06-11 2009-05-27 トヨタ自動車株式会社 樹脂部材のレーザ溶着方法及びその装置およびレーザ溶着部材
US20050088654A1 (en) * 2003-10-27 2005-04-28 Excel/Quantronix, Inc. Apparatus for combining multiple lasers and methods of use
US7046875B2 (en) 2003-10-29 2006-05-16 Itf Technologies Optiques Inc. Optical coupler comprising multimode fibers and method of making the same
GB0328370D0 (en) * 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
DE102004038310A1 (de) 2004-08-05 2006-02-23 Kuka Schweissanlagen Gmbh Lasereinrichtung und Betriebsverfahren
JP4182034B2 (ja) 2004-08-05 2008-11-19 ファナック株式会社 切断加工用レーザ装置
JP2007007766A (ja) 2005-06-30 2007-01-18 Jtekt Corp ワーク搬送装置
CA2615093A1 (en) 2005-07-13 2007-01-18 The Furukawa Electric Co., Ltd. Light irradiating apparatus and welding method
JP2007196254A (ja) 2006-01-25 2007-08-09 Fanuc Ltd レーザ加工方法
CA2535472C (en) 2006-02-07 2014-04-22 Itf Technologies Optiques Inc./Itf Optical Technologies Inc. Multimode fiber outer cladding coupler for multi-clad fibers
US9018562B2 (en) * 2006-04-10 2015-04-28 Board Of Trustees Of Michigan State University Laser material processing system
US7615722B2 (en) * 2006-07-17 2009-11-10 Coherent, Inc. Amorphous silicon crystallization using combined beams from optically pumped semiconductor lasers
JP4795886B2 (ja) 2006-07-27 2011-10-19 株式会社キーエンス レーザ加工装置、レーザ加工条件設定装置、レーザ加工条件設定方法、レーザ加工条件設定プログラム
JP5148118B2 (ja) 2007-01-15 2013-02-20 株式会社ジャパンユニックス レーザー式はんだ付け装置
JP5147834B2 (ja) 2007-04-04 2013-02-20 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
JP2008277582A (ja) 2007-04-27 2008-11-13 Fujikura Ltd 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
DE102007024700A1 (de) 2007-05-25 2008-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Materialbearbeitung mit Laserstrahlung sowie Vorrichtung zur Durchführung des Verfahrens
WO2009003484A2 (en) 2007-07-05 2009-01-08 Crystal Fibre A/S A tapered fibre optical coupler comprising an annular guiding region
WO2009077637A1 (en) 2007-12-14 2009-06-25 Corelase Oy Method and device relating to optical fibers
JP4612076B2 (ja) 2008-04-24 2011-01-12 東亜工業株式会社 金属メッキ板のレーザー溶接方法
GB2460648A (en) 2008-06-03 2009-12-09 M Solv Ltd Method and apparatus for laser focal spot size control
US20120074110A1 (en) 2008-08-20 2012-03-29 Zediker Mark S Fluid laser jets, cutting heads, tools and methods of use
JP5358216B2 (ja) 2009-02-23 2013-12-04 小池酸素工業株式会社 レーザ切断装置
US8520298B2 (en) 2009-02-26 2013-08-27 Cubic Corporation Tightly coiled amplifying optical fiber with reduced mode distortion
TWI420168B (zh) 2009-02-27 2013-12-21 Univ Nat United 纖殼泵激式漸逝場型增益光纖
US8319148B2 (en) 2009-08-20 2012-11-27 General Electric Company System and method of dual laser beam welding of first and second filler metals
JP5708015B2 (ja) 2010-02-26 2015-04-30 住友電気工業株式会社 光ファイバケーブル
US20110293215A1 (en) 2010-03-30 2011-12-01 Anthony Ruggiero Low loss laser transmission through telescopes with mirror obscurations
JP5693705B2 (ja) 2010-03-30 2015-04-01 イムラ アメリカ インコーポレイテッド レーザベースの材料加工装置及び方法
DE102010003750A1 (de) * 2010-04-08 2011-10-13 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Anordnung zum Verändern der Strahlprofilcharakteristik eines Laserstrahls mittels einer Mehrfachclad-Faser
JP5499403B2 (ja) * 2010-04-20 2014-05-21 株式会社村谷機械製作所 レーザ加工装置及びレーザ加工方法
TW201237478A (en) 2011-01-24 2012-09-16 Miyachi Corp Optical fiber and laser machining apparatus therewith
CN102289078A (zh) 2011-06-22 2011-12-21 深圳市大族激光科技股份有限公司 一种激光合束系统及一种激光合束方法
WO2013019204A1 (en) * 2011-08-01 2013-02-07 Ipg Photonics Corporation Method and apparatus for processing materials with composite structure
JP6063670B2 (ja) 2011-09-16 2017-01-18 株式会社アマダホールディングス レーザ切断加工方法及び装置
US9403238B2 (en) * 2011-09-21 2016-08-02 Align Technology, Inc. Laser cutting
JP5923765B2 (ja) 2011-10-07 2016-05-25 株式会社ブイ・テクノロジー ガラス基板のレーザ加工装置
WO2013058072A1 (ja) 2011-10-20 2013-04-25 新日鐵住金株式会社 レーザ加工装置及びレーザ加工方法
US9250390B2 (en) * 2011-12-09 2016-02-02 Lumentum Operations Llc Varying beam parameter product of a laser beam
JP5938622B2 (ja) 2011-12-28 2016-06-22 株式会社村谷機械製作所 レーザ加工装置及びレーザ加工方法
TW201343296A (zh) 2012-03-16 2013-11-01 Ipg Microsystems Llc 使一工件中具有延伸深度虛飾之雷射切割系統及方法
WO2013186862A1 (ja) 2012-06-12 2013-12-19 トヨタ自動車株式会社 溶接装置、溶接方法、及び電池の製造方法
JP5990419B2 (ja) * 2012-07-09 2016-09-14 株式会社フジクラ 光学入出力デバイス
JP2014018800A (ja) 2012-07-12 2014-02-03 Miyachi Technos Corp レーザ接合方法及びレーザ接合システム
CN103056523A (zh) * 2012-11-29 2013-04-24 中国航空工业集团公司北京航空制造工程研究所 一种多光束激光焊接方法
GB2510370A (en) 2013-01-31 2014-08-06 Gsi Group Ltd Fibre Optical Laser Combiner
JP6121733B2 (ja) 2013-01-31 2017-04-26 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP6161188B2 (ja) 2013-02-05 2017-07-12 株式会社ブイ・テクノロジー レーザ加工装置、レーザ加工方法
DK2972479T3 (da) * 2013-03-13 2020-11-30 Ipg Photonics Canada Inc Fremgangsmåder og systemer til beskrivelse af laserbearbejdningsegenskaber ved at måle keyholedynamik ved hjælp af interferometri
US10226837B2 (en) 2013-03-15 2019-03-12 Nlight, Inc. Thermal processing with line beams
US20140305910A1 (en) * 2013-03-27 2014-10-16 Ipg Photonics Corporation System and Method Utilizing Fiber Lasers for Titanium Welding Using an Argon Cover Gas
CN103472546A (zh) 2013-09-27 2013-12-25 武汉锐科光纤激光器技术有限责任公司 一种激光波长合束器
US9463992B2 (en) * 2013-11-06 2016-10-11 Advalue Photonics, Inc. Laser processing system using broad band pulsed lasers
JP5460917B1 (ja) 2013-11-08 2014-04-02 坂口電熱株式会社 レーザ加熱装置
CN203992814U (zh) 2014-07-17 2014-12-10 深圳市大族激光科技股份有限公司 一种双频激光焊接头
US10310201B2 (en) * 2014-08-01 2019-06-04 Nlight, Inc. Back-reflection protection and monitoring in fiber and fiber-delivered lasers
KR102251657B1 (ko) * 2014-08-13 2021-05-12 아이피지 포토닉스 코포레이션 다중빔 섬유 레이저 시스템
JP5941113B2 (ja) 2014-09-30 2016-06-29 ファナック株式会社 集光径を拡大できるレーザ加工装置
US20170248759A1 (en) 2014-10-20 2017-08-31 Corelase Oy An optical assembly and a method for producing such
CN104503099B (zh) 2015-01-09 2017-02-01 中国人民解放军国防科学技术大学 基于光束整形技术和空间合束系统的光偏振补偿装置
CN204790085U (zh) 2015-04-15 2015-11-18 西安中科汇纤光电科技有限公司 光纤合束器
KR20170104818A (ko) * 2016-03-08 2017-09-18 주식회사 이오테크닉스 벨로우즈 용접이 가능한 레이저 용접 장치
CN105974534B (zh) 2016-07-14 2018-01-12 北京凯普林光电科技股份有限公司 一种光纤耦合装置
BR112019000361B1 (pt) * 2016-07-15 2022-12-06 Corelase Oy Método para processar uma peça de trabalho com um feixe de laser e aparelho de processamento a laser
CN106563880B (zh) * 2016-10-21 2019-01-29 华中科技大学 一种多光源、多功能、多轴激光加工头及装备
KR102636850B1 (ko) * 2016-12-08 2024-02-14 코렐라스 오와이 레이저 처리 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105096A (ja) 2006-09-28 2008-05-08 Sumitomo Electric Ind Ltd レーザ加工方法及びレーザ加工装置
JP2013180295A (ja) 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd 加工装置及び加工方法
JP2016503348A (ja) 2012-11-30 2016-02-04 ディレクトフォトニクス インダストリーズ ゲーエムベーハーDirectphotonics Industries Gmbh レーザ加工装置及びレーザ加工方法
WO2016198724A2 (en) 2015-06-09 2016-12-15 Corelase Oy Laser processing apparatus and method and an optical component therefor
JP2017185543A (ja) 2017-03-14 2017-10-12 株式会社アマダホールディングス レーザ加工機

Also Published As

Publication number Publication date
TW201929989A (zh) 2019-08-01
EP3731991A1 (en) 2020-11-04
US20200306878A1 (en) 2020-10-01
JP2021514841A (ja) 2021-06-17
KR20200103027A (ko) 2020-09-01
CN111526966B (zh) 2022-08-05
US11850679B2 (en) 2023-12-26
FI3731991T3 (fi) 2023-05-11
EP3731991A4 (en) 2021-08-18
EP3731991B1 (en) 2023-04-26
WO2019129917A1 (en) 2019-07-04
US20240082948A1 (en) 2024-03-14
TWI789466B (zh) 2023-01-11
CN111526966A (zh) 2020-08-11
KR102418512B1 (ko) 2022-07-07

Similar Documents

Publication Publication Date Title
JP7119094B2 (ja) レーザ処理装置及び方法
CN110087817B (zh) 激光加工设备和方法
CA3026330C (en) Laser processing apparatus and method
JP6698701B2 (ja) レーザー加工装置および方法ならびにその光学部品

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220803

R150 Certificate of patent or registration of utility model

Ref document number: 7119094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150