JP7100631B2 - フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等 - Google Patents

フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等 Download PDF

Info

Publication number
JP7100631B2
JP7100631B2 JP2019519171A JP2019519171A JP7100631B2 JP 7100631 B2 JP7100631 B2 JP 7100631B2 JP 2019519171 A JP2019519171 A JP 2019519171A JP 2019519171 A JP2019519171 A JP 2019519171A JP 7100631 B2 JP7100631 B2 JP 7100631B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
fluoroalkyl group
component
fluoroalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019519171A
Other languages
English (en)
Other versions
JPWO2018211981A1 (ja
Inventor
弘 福井
香子 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Toray Co Ltd
Original Assignee
Dow Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Toray Co Ltd filed Critical Dow Toray Co Ltd
Publication of JPWO2018211981A1 publication Critical patent/JPWO2018211981A1/ja
Application granted granted Critical
Publication of JP7100631B2 publication Critical patent/JP7100631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は誘電率が高く、硬化物の電気的特性および機械的特性に優れたフルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物に関するものであり、当該硬化物が電気活性シリコーン材料として、トランスデューサーの誘電層等に好適に使用することができる。さらに、本発明は、当該硬化性オルガノポリシロキサン組成物を用いてなる電気活性ポリマー材料の製造方法、並びにその電気活性ポリマー材料を含むトランスデューサー用部材、電子材料または表示装置用部材に関し、それを用いてなるトランスデューサー、電子部品又は表示装置に関する。
電気活性シリコーン材料は、その機械特性及び/又は電気的特性、具体的には、高い比誘電率、高い絶縁破壊強度、低いヤング率を備えることで高いエネルギー密度を実現することができ、かつ、トランスデューサーの誘電層として使用した場合の機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)に優れるため、耐久性と実用的な変位量を実現することができ、トランスデューサー用材料として好適に使用することができる。例えば、本出願人らは、フルオロアルキル基含有オルガノポリシロキサン硬化物が高い比誘電率を有し、トランスデューサー材料として有用であることを開示している(特許文献1または特許文献2)。
しかしながら、近年、アクチュエータをはじめとするトランスデューサー材料の分野では、電気活性シリコーン材料について、容易にフィルム状に加工可能であり、さらに高い比誘電率および機械的強度を両立した材料への要求が生じており、さらなる機械特性及び電気的特性の改善が強く求められている。
国際特許公開2014-105959号公報 国際特許公開2015-098072号公報
本発明は上記課題を解決すべくなされたものであり、容易にフィルム状に加工可能であり、高い比誘電率、高い絶縁破壊強度、低いヤング率を備えることで高いエネルギー密度を実現することができ、かつ、トランスデューサーの誘電層として使用した場合の機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)に優れたフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を提供することを目的とする。
同様に、本発明は、当該フルオロアルキル基含有オルガノポリシロキサン組成物の、アクチュエータ等のトランスデューサー材料としての用途を提供することを目的とする。
上記課題を解決すべく、鋭意検討の結果、本発明者らは、アルケニル基およびフルオロアルキル基を含有するオルガノポリシロキサンを主成分とし、架橋剤として、分子鎖両末端に少なくとも2個のケイ素結合水素原子を有し、フルオロアルキル基を有さないオルガノハイドロジェンポリシロキサンおよび、直鎖状またはT単位を有する分岐状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンを用いた付加反応により硬化可能なフルオロアルキル基含有硬化性オルガノポリシロキサン組成物により、上記課題を解決できることを見出し、本発明に到達した。
当該フルオロアルキル基含有硬化性オルガノポリシロキサン組成物の硬化物は、機械特性及び電気的特性に優れた電気活性シリコーン材料として、特に、フィルム状またはシート状のトランスデューサー用部材として利用可能である。
さらに、本発明者らは、前記フルオロアルキル基がトリフルオロプロピル基であるときに上記課題をより好適に解決できること、前記のオルガノハイドロジェンポリシロキサンが分子中にトリフルオロプロピル基を有する直鎖状またはT単位を有する樹脂状のオルガノハイドロジェンポリシロキサンである場合に、上記課題をさらに好適に解決できることを見出し、本発明に到達した。
すなわち、本発明の第1の目的は、
[1](A)1種類または2種類以上の、分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であるフルオロアルキル基含有オルガノポリシロキサン、

(B)以下の(B1)成分および(B2)成分からなるオルガノハイドロジェンポリシロキサンであって、(B1)成分中のケイ素原子結合水素原子数:(B2)成分中のケイ素原子結合水素原子数の比率が10:90~85:15となる範囲であるもの:

(B1)分子鎖両末端に少なくとも2個のケイ素結合水素原子を有し、フルオロアルキル基を有さないオルガノハイドロジェンポリシロキサン

(B2)下記平均単位式(III)で表される直鎖状オルガノハイドロジェンポリシロキサンおよび平均単位式(IV)で表される分岐状オルガノハイドロジェンポリシロキサンから選ばれる1種類以上のフルオロアルキル基含有オルガノハイドロジェンポリシロキサン

Si(OSiRf1(OSiR f2OSiR (III)
{式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基またはケイ素原子結合水素原子であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、炭素数1~6のアルコキシ基またはケイ素原子結合水素原子であり、かつ、全てのRのうち、少なくとも2個はケイ素原子結合水素原子であり、f1は正の数でありf2は0または正の数であり、5<f1+f2<150を満たす数である。}

(HR SiO1/2f3(R SiO1/2f4(HRSiO2/2f5(R SiO2/2f6(RSiO3/2f7(SiO4/2f8 (IV)
{式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、または炭素数1~6のアルコキシ基または前記のフルオロアルキル基であり、かつ、f3およびf7は正の数であり、f4,f5,f6およびf8は、0または正の数であり、かつf3+f4+f5+f6+f7+f8は、式(III)で示されるオルガノハイドロジェンポリシロキサンの重量平均分子量が400~10000となる範囲の数である。}

組成物中のアルケニル基の合計量1モルに対して、(B)成分中のケイ素原子結合水素原子の和が0.1~2.5モルとなる量、

(C)有効量のヒドロシリル化反応用触媒、
を含有する、フルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
により解決される。
好適には、本発明の第1の目的は、下記の組成物により解決される。
[2]前記の(A)成分の平均重合度が5~300の範囲である、[1]に記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
[3]前記(A)が下記平均単位式(I)で表されるオルガノポリシロキサンである、[1]または[2]に記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。

Si(OSiRe1(OSiR e2OSiR (I)

{式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基または炭素数2~12のアルケニル基であり、Rは、同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基であり、かつ、全てのRのうち、少なくとも2個は炭素数2~12のアルケニル基であり、全てのRおよびRのうち10モル%以上は、前記のフルオロアルキル基であり、e1は正の数であり、e2は0または正の数であり、5<e1+e2<298を満たす数である。}

[4]前記(A)が下記平均単位式(II)で表されるオルガノポリシロキサンである、[1]~[3]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
Vi Si(OSiROSiRVi (II)
{式中、RViは、炭素数2~12のアルケニル基であり、Rは前記同様の基であり、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、かつ、eは20<e<298を満たす数である。}
[5]前記(A)成分中の、(C2p+1)-R-(Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基が、トリフルオロプロピル基である、[1]~[4]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
[6]前記(B2)成分が、分子中にトリフルオロプロピル基を有するオルガノハイドロジェンポリシロキサンである、[1]~[5]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
[7]前記(A)成分が、下記(A1)成分または(A2)成分である、[1]~[6]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。

(A1) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50~300であり、重合度200以上のオルガノポリシロキサンの体積含有率が10%以上である、フルオロアルキル基含有オルガノポリシロキサン

(A2) 下記分子量分布の異なる(a1)成分および(a2)成分からなり、混合物全体の平均重合度が50~300であるフルオロアルキル基含有オルガノポリシロキサン:
(a1) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が200以上のフルオロアルキル基含有オルガノポリシロキサン
(a2) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50以下のフルオロアルキル基含有オルガノポリシロキサン
本発明の第2の目的は、上記のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる硬化物、そのトランスデューサー用部材、電子材料または表示装置用部材としての使用、およびそれを含むトランスデューサーであり、以下の発明により達成される。
[8][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる硬化物。
[9][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、フィルム状もしくはシート状である、トランスデューサー用部材。
[10][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、フィルム状もしくはシート状である、電子材料または表示装置用部材。
[11][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、ゲルまたはエラストマーである、トランスデューサー用部材。
[12][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる誘電層を有するトランスデューサー。
[13]少なくとも一対の電極層間に、[1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させて、または前記組成物の硬化反応を一部進行させてなる中間層を介装してなるトランスデューサー。
[14]中間層がゲルまたはエラストマーである、[12]または[13]のトランスデューサー。
[15]中間層が、[1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させてなる硬化物を、1層または2層以上積層してなることを特徴とする、[12]~[14]のいずれか1項記載のトランスデューサー。
[16][1]~[7]のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させて、または前記組成物の硬化反応を一部進行させてなる硬化物層を有する電子部品または表示装置。
本発明によれば、硬化物の透明性に優れ、容易にフィルム状に加工可能であり、高い比誘電率、高い絶縁破壊強度、低いヤング率を備えることで高いエネルギー密度を実現することができ、かつ、トランスデューサーの誘電層として使用した場合の機械的強度に優れたフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を提供することができる。当該フルオロアルキル基含有オルガノポリシロキサン組成物は付加硬化型であり、成形加工時の収縮がほとんどなく、硬化速度が大きく、所望の硬化条件を設定しやすいという利点がある。また、本発明のフルオロアルキル基含有オルガノポリシロキサン硬化物は、その高い比誘電率、さらには高い機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)のため、フィルム状もしくはシート状に成型して、誘電層として応用した場合、耐久性に加えて実用的な変位量、高い応答性を実現するため、アクチュエータ等のトランスデューサー材料としての用途に好適に用いることができる。
誘電層を積層した場合における、本発明のアクチュエータ1の断面図である。 誘電層及び電極層を積層した場合における、本発明のアクチュエータ2の断面図である。 本発明のセンサ3の構成を示す図である。 誘電層を積層した場合における、本発明の発電素子4の断面図である。
以下、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物について詳細に説明する。本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、以下の(A)~(C)成分、および任意の(D)ヒドロシリル化反応抑制剤、(E)充填剤を含有してなるものであり、まず、各成分について説明する。
[(A)成分]
(A)成分は、硬化性組成物の主剤であり、分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基である、フルオロアルキル基含有オルガノポリシロキサンである。
(A)成分は、フルオロアルキル基を一定量以上有し、かつ、分子中に少なくとも2個のアルケニル基を有するので、(B)成分との付加反応(ヒドロシリル化反応)により、架橋して、成形性、反応制御性および透明性に優れ、かつ、比較的高い比誘電率を有する硬化物を与える。その構造は特に制限されるものではなく、直鎖状、分岐鎖状、環状またはRSiO3/2単位(3官能性シロキシ単位)またはSiO単位(4官能性シロキシ単位)を必須とする樹脂状のオルガノポリシロキサンであってよい。さらに、1種類または2種類以上の、分子構造または平均重合度の異なるオルガノポリシロキサンの混合物であってもよい。しかしながら、アクチュエータ等の誘電層として応用する場合に、高い機械的強度を実現し、かつ、低い粘着力が求められる場合には、前記の3官能性シロキシ単位または4官能性シロキシ単位を有しないことが好ましい。特に好適には、(A)成分は、直鎖状のフルオロアルキル基含有オルガノポリシロキサンである。
(A)成分は、そのケイ素原子上の全ての置換基の10モル%以上、好適には20モル%以上、より好適には、40モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基である。フルオロアルキル基の含有量が、前記下限未満であると、硬化性オルガノポリシロキサン組成物を硬化して得られる硬化物の比誘電率が低下するため不適である。なお、(C2p+1)-R-で表されるフルオロアルキル基におけるフッ素原子の含有量が高い、すなわちpの値が大きい、例えばp≧4であり、かつ、Rであるアルキレン基の炭素原子数が少ない場合には、前記のフルオロアルキル基の含有量が、上記範囲の下限に近い値であっても本発明の技術的効果を奏することができる。特に、(A)成分中のフッ素原子の含有率は、10質量%以上であることが好ましい。なお、フルオロアルキル基としてトリフルオロプロピル基を選択する場合、(A)成分中のケイ素原子上の全ての置換基の40モル%以上とすることもできる。
(C2p+1)-R- で表されるフルオロアルキル基は、本発明の(A)成分における必須の官能基であり、(B)成分においても好適な官能基である。かかるフルオロアルキル基は、比誘電率に優れた硬化物を与え、かつ、各成分がフッ素原子を有することで各成分の相溶性を改善し、透明性に優れた硬化物を与える。このようなフルオロアルキル基の具体例としては、トリフルオロプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ウンデカフルオロヘプチル基、トリデカフルオロオクチル基、ペンタデカフルオロノニル基、ヘプタデカフルオロデシル基である。この中では、誘電特性、経済性、製造容易性、得られる硬化性オルガノポリシロキサン組成物の成形加工性の観点からp=1の基、すなわちトリフルオロプロピル基が好ましい基である。
(A)成分は、分子中に少なくとも2個の炭素数2~12のアルケニル基を有する。炭素数2~12のアルケニル基としては、経済性、反応性の観点からビニル基、アリル基、ヘキセニル基、オクテニル基が好ましく、ビニル基およびヘキセニル基がより好ましく使用される。(A)成分中のその他のケイ素原子結合官能基は、特に制限されるものではないが、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基が挙げられる。炭素数1~12のアルキル基としては、経済性、耐熱性を考慮するとメチル基が好ましい。炭素数6~20のアリール基としては、経済性の観点からフェニル基、メチルフェニル(トリル)基、ナフチル基が好ましい。炭素数7~20のアラルキル基としては、ベンジル基、フェネチル基が好ましく使用される。さらに、炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基が好ましい。なお、(A)成分中のケイ素原子上の全ての置換基の一定量以上は前記のフルオロアルキル基であり、分子中に炭素数2~12のアルケニル基を2以上の有するものであるが、その他のケイ素原子結合官能基は、メチル基、フェニル基または水酸基であることが好ましく、メチル基およびフェニル基から選ばれることが特に好ましい。
本発明の(A)成分は、その平均重合度について限定されるものではないが、硬化前の組成物の取り扱い作業性および硬化物の機械的強度の見地から、そのシロキサン単位の平均重合度(以下、単に「平均重合度」という)が500未満、450未満、400未満、350未満または300未満であってよい。同様に、平均重合度の下限は制限されるものではないが、7以上、10以上、15以上または20以上であってよい。また、(A)成分は、異なる平均重合度を有する前記フルオロアルキル基含有オルガノポリシロキサンの混合物であってよく、例えば、重合度が比較的低い(ex.10~90)前記フルオロアルキル基含有オルガノポリシロキサンと重合度が比較的高い(ex.100~300)前記フルオロアルキル基含有オルガノポリシロキサンの混合物(後述する分子量分布のピーク形状が多峰性となるもの)を用いてもよく、その場合、(A)成分のシロキサン単位の平均重合度は、混合物を構成する各フルオロアルキル基含有オルガノポリシロキサンの重合度と質量比に基づいて決定される。
特に好適には、(A)成分の平均重合度は10~300、15~250の範囲であり、フィルム/シート状に成型したゲル状またはエラストマー状の硬化物を得ることが容易であり、当該硬化物は良好な機械的特性および電気的特性(高い比誘電率)を示す。なお、本発明の硬化物は、例えば0℃以下の低温下においても、上記物性の変化が少ないため、幅広い温度域で安定した性能を実現しうる。
ここで、(A)成分であるオルガノポリシロキサンの重合度は、29Si NMRを用いたピーク強度の積分比により決定可能であり、本発明における「平均重合度」とは、(A)成分中に1以上の分子量分布が存在する場合に、全体の平均重合度を指すものである。(A)成分は1の分子量分布を有するオルガノポリシロキサンであってもよく、分子量分布の異なる2種以上のオルガノポリシロキサンからなる混合物であってもよく、分子量分布のピーク形状が単峰性であっても多峰性であってもよい。なお、平均重合度が前記範囲となる量的範囲において、2種以上のフルオロアルキル基含有オルガノポリシロキサンを併用することにより、組成設計時の原料の選択可能性が広がり、本発明の組成物からなる硬化物の物理特性がさらに改善される場合がある。
特に好適には、(A)成分は、平均単位式(I)で表される、一定量以上のフルオロアルキル基を有し、少なくとも2個のアルケニル基を有する1種類以上の直鎖状のオルガノポリシロキサンである。
平均単位式:
Si(OSiRe1(OSiR e2OSiR (I)
式中、Rで表される置換基は、同一または独立に、前記のフルオロアルキル基または炭素数2~12のアルケニル基であり、それらの具体例は前記同様である。また、Rで表される置換基は、同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基であり、かつ、全てのRのうち、少なくとも2個は炭素数2~12のアルケニル基である。好適には、(A)成分中の炭素数2~12のアルケニル基の含有量は0.01~10.00質量%であり、0.01~2.00質量%であってよく、0.02~1.50質量%であってよい。また、Rは、メチル基、フェニル基または水酸基であることが好ましく、メチル基またはフェニル基が特に好ましい。
さらに、全てのケイ素原子上の全ての置換基(RおよびR)の10モル%以上、好適には20モル%以上、より好適には、40モル%以上が、前記のフルオロアルキル基、好適にはトリフルオロプロピル基である。フルオロアルキル基の含有量が、前記下限未満であると、硬化性オルガノポリシロキサン組成物を硬化して得られる硬化物の比誘電率が低下するため不適である。
式中、e1およびe2の値は、(A)成分中の各シロキサン単位の平均重合度であり、e1は正の数であり、e2は0または正の数であり、かつ、5<e1+e2<498を満たすことが好ましい。なお、これらの値は平均重合度であり、(A)成分が2以上の成分からなる混合物である場合には、混合物全体として(A)成分の平均重合度e1+e2+2が500未満となることが好ましく、その他の値は、上記の(A)成分の平均重合度の好適範囲と同様である。(A)成分であるオルガノポリシロキサンの重合度は、29Si NMRを用いたピーク強度の積分比により決定可能であり、平均重合度の好適な範囲については前記同様である。
本発明の(A)成分は、前記の要件を満たす1種のオルガノポリシロキサンであってもよく、また、少なくとも2種のオルガノポリシロキサンの混合物であってもよい。少なくとも2種のオルガノポリシロキサンである場合、その混合物の平均重合度が前記の範囲であることが好ましく、各々のオルガノポリシロキサンが分子中に2以上の炭素数2~12のアルケニル基を有し、かつ、ケイ素原子上の全ての置換基の10モル%以上が前記のフルオロアルキル基であるオルガノポリシロキサンであることがより好ましい。
本発明の(A)成分において、前記のフルオロアルキル基は側鎖にあっても分子鎖末端にあってもよいが、特に好適には、下記平均単位式(II)で表される、側鎖に前記のフルオロアルキル基を有し、分子鎖両末端に炭素数2~12のアルケニル基を有する、ホモポリマー型のオルガノポリシロキサンである。
平均単位式:
Vi Si(OSiROSiRVi (II)
式中、RViは、炭素数2~12のアルケニル基であり、前記同様の基が例示される。
は前記同様の基であり、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、前記同様の基が例示される。なお、上記構造において、5<e<498の範囲において、全てのRVi、RおよびRのうち10モル%以上は、前記のフルオロアルキル基(R)であるという条件は、自動的に満たされる。すなわち、e>5なので、[R]=e/(2e+6)×100モル%の値は、5/16×100 =31.25モル%より必ず大きい。
好適には、RViはビニル基またはヘキセニル基であり、Rはメチル基、フェニル基または水酸基であり、前記のフルオロアルキル基は、好適にはトリフルオロプロピル基である。
式中、eの値は、(A)成分中の側鎖シロキサン単位の平均重合度であり、0または正の数であり、かつ、5<e<498を満たすことが好ましい。なお、これらの値は平均重合度であり、(A)成分が2以上の成分からなる混合物である場合には、混合物全体として(A)成分の平均重合度e+2が500未満となる。(A)成分であるオルガノポリシロキサンの重合度は、29Si NMRを用いたピーク強度の積分比により決定可能であり、平均重合度の好適な範囲については前記同様である。
本発明の(A)成分の具体例としては、両末端トリメチルシリル-ポリジメチルメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端トリメチルシリル-ポリメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシリル-ポリジメチルメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシリル-ポリジメチルメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリジメチルメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルフェニルシリル-ポリメチルビニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルフェニルシリル-ポリジメチルメチルビニルメチルトリフルオロプロピルシロキサン共重合体、 両末端ジメチルビニルシリル-ポリジメチルメチルビニルメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシリル-ポリメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシリル-ポリジメチルメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリメチルビニルメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリジメチルメチルビニルメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルビニルシリル-ポリメチルトリフルオロプロピルシロキサン等が挙げられる。
本発明の(A)成分の分子量分布については前記のとおりであり、その分子量分布のピーク形状が実質的に単峰性かつその平均重合度が500未満となるオルガノポリシロキサンであってもよく、その分子量分布のピーク形状が実質的に多峰性(=その分子量分布に2以上のピークを有する)であり、その平均重合度が500未満となるオルガノポリシロキサンであってもよい。
より具体的には、本発明の(A)成分は、下記(A1)成分または(A2)成分であってよい。
[(A1)成分]
分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50~300であり、重合度200以上のオルガノポリシロキサンの体積含有率が10%以上である、実質的に単峰性の分子量分布を有するフルオロアルキル基含有オルガノポリシロキサン。アルケニル基等の具体例は前記同様である。
[(A2)成分]
下記分子量分布および平均重合度の異なる(a1)成分および(a2)成分からなり、混合物全体の平均重合度が50~300であるフルオロアルキル基含有オルガノポリシロキサン:
(a1) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が200以上、好適には、200~400の範囲である、フルオロアルキル基含有オルガノポリシロキサン
(a2) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50以下、好適には、5~40の範囲である、フルオロアルキル基含有オルガノポリシロキサン。
ここで、(A2)成分は、(a1)平均重合度が200以上である1種類以上のフルオロアルキル基含有オルガノポリシロキサンと、(a2)平均重合度が50以下の1種類以上のフルオロアルキル基含有オルガノポリシロキサンであり、全体として分子量分布を測定した場合、平均重合度50以下の領域と平均重合度200以上の領域の各々に分子量分布の山(ピーク)を有する多峰性の分子量分布を有するフルオロアルキル基含有オルガノポリシロキサンの混合物である。なお、混合物全体の平均重合度は50~300の範囲であることが好ましく、全体としての平均重合度の好適な範囲については前記同様である。
本発明の(A)成分は、その使用量は、(A)~(C)成分の和(全体を100質量%とする)に対して20~99質量%の量であり、好適には30~80質量%、より好適には40~70質量%である。上記範囲の上限以下であると、本組成物を硬化してなる硬化物の力学強度が十分高く、一方、上記範囲の下限以上であると、好適に、該硬化物が低粘着性の弾性ゲル層として機能するからである。
[(B)成分]
(B)成分は、本発明組成物の特徴的な架橋剤であり、分子鎖両末端に少なくとも2個のケイ素結合水素原子を有し、フルオロアルキル基を有さないオルガノハイドロジェンポリシロキサンと、直鎖状またはT単位を有する分岐状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンとを特定の比率で含有するオルガノハイドロジェンポリシロキサンである。(B)成分として、フルオロアルキル基を有さない両末端SiHを有するオルガノハイドロジェンポリシロキサンを、フルオロアルキル基含有オルガノハイドロジェンポリシロキサンと一定の比率で併用することにより、硬化物の高い比誘電率と、良好な機械的特性を両立することができる。
具体的には、(B)成分は、後述する(B1)成分および(B2)成分からなるオルガノハイドロジェンポリシロキサンであって、(B1)成分中のケイ素原子結合水素原子数:(B2)成分中のケイ素原子結合水素原子数の比率が10:90~85:15となる範囲であるものである。
[(B1)成分]
(B1)成分は、分子鎖両末端に少なくとも2個のケイ素結合水素原子を有し、フルオロアルキル基を有さないオルガノハイドロジェンポリシロキサンである。(B1)成分は、両末端SiHを有するオルガノハイドロジェンポリシロキサンであるので、(A)成分との付加反応により、硬化物中のポリシロキサン構造間の鎖長延長剤(Chain Extender)として機能する成分である。このような(B1)成分は、分子鎖両末端にジオルガノハイドロジェンシロキシ単位を有する、シロキサン重合度3~200のオルガノハイドロジェンポリシロキサンであることが好ましく、例えば、下記の平均単位式:
HR Si(OSiHRe3(OSiR e4OSiR
で表される。
式中、Rで表される置換基は、同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基であり、メチル基、フェニル基または水酸基であることが好ましく、メチル基またはフェニル基が特に好ましい。式中、e3およびe4の値は、上記平均単位式で示される(B1)成分中の各シロキサン単位の平均重合度であり、0または正の数であり、かつ、e3+e4の値が0~198の範囲であることが好ましく、0~10の範囲であることが特に好ましい。
このような(B1)成分は、ビス(ジメチルハイドロジェンシロキシ)ジフェニルシラン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ポリジフェニルシロキサンまたはそのハイドロジェンシロキサンコポリマー、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ポリジメチルシロキサンまたはそのハイドロジェンシロキサンコポリマー、テトラメチルジハイドロジェンジシロキサン等が例示される。なお、(B1)成分中のシロキサン単位またはシロキシ単位数の和は2~12の範囲であることが好ましく、2~10の範囲が特に好ましい。
[(B2)成分]
(B2)成分は、直鎖状またはT単位により分岐された樹脂状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンであり、下記平均単位式(III)または(IV)により表される。このようなオルガノハイドロジェンポリシロキサンは、(A)成分との架橋反応により硬化物を与え、かつ、硬化物の比誘電率を向上させる。このような(B2)成分であるオルガノハイドロジェンポリシロキサンは、分子中に前記のフルオロアルキル基、特に、トリフルオロプロピル基を有することが好ましい。フルオロアルキル基の含有量は特に限定されるものではないが、1分子中に、全有機基中、好ましくは5~75モル%、より好ましくは5~70モル%、さらに好ましくは10~60モル%のトリフルオロプロピル基を有してよい。
[(B2)成分-1:直鎖状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサン]
平均単位式:
Si(OSiRf1(OSiR f2OSiR (III)
上記の平均単位式(III)で表されるものは、直鎖状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンであり、式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基またはケイ素原子結合水素原子であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、炭素数1~6のアルコキシ基またはケイ素原子結合水素原子であり、かつ、全てのRのうち、少なくとも2個はケイ素原子結合水素原子であり、f1は正の数であり、f2は0または正の数であり、5<f1+f2<150を満たす数である。好適なフルオロアルキル基の種類及び含有量は前記のとおりである。より好適には、Rはケイ素原子結合水素原子、メチル基またはフェニル基であり、f1は10<f1+f2<100の範囲の数であり、全てのRのうち、少なくとも5モル%以上が前記のフルオロアルキル基であり、残りのRがケイ素原子結合水素原子であることが好ましい。
このような(B2)成分は、具体的には、両末端トリメチルシリル-ポリジメチルメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端トリメチルシリル-ポリメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリジメチルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリジメチルメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリメチルトリフルオロプロピルシロキサン、両末端ヒドロキシジメチルシリル-ポリメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリジメチルメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルフェニルシリル-ポリメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルフェニルシリル-ポリジメチルメチルハイドロジェンメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリジメチルメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルハイドロジェンシリル-ポリメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ヒドロキシジメチルシリル-ポリメチルハイドロジェンメチルフェニルメチルトリフルオロプロピルシロキサン共重合体、両末端ジメチルトリフルオロプロピルシリル-ポリジメチルメチルハイドロジェンシロキサン共重合体、両末端ジメチルトリフルオロプロピルシリル-ポリメチルハイドロジェンシロキサン等が例示される。これらは、1種を単独で用いても良く、また、少なくとも2種のオルガノポリシロキサンの混合物であっても良い。
[(B2)成分-2:分岐状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサン]
平均単位式:
(HR SiO1/2f3(R SiO1/2f4(HRSiO2/2f5(R SiO2/2f6(RSiO3/2f7(SiO4/2f8 (IV)
上記の平均単位式(IV)で表されるものは、T単位により分岐された樹脂状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンであり、式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、または炭素数1~6のアルコキシ基または前記のフルオロアルキル基であり、かつ、f3およびf7は正の数であり、f4,f5,f6およびf8は、0または正の数であり、かつf3+f4+f5+f6+f7+f8は、式(IV)で示されるオルガノハイドロジェンポリシロキサンの重量平均分子量が400~10000となる範囲の数である。好適なフルオロアルキル基の種類及び含有量は前記のとおりである。Rは好適にはメチル基またはフェニル基であり、式(IV)で示されるオルガノハイドロジェンポリシロキサンの重量平均分子量は500~5000の範囲であることが好ましく、より好適には、500~2000の範囲である。
特に、上記の分岐状のフルオロアルキル基含有オルガノハイドロジェンポリシロキサンは、下式で表されるジオルガノハイドロジェンシロキシ単位とフルオロアルキルシロキシ単位から構成されるフルオロアルキル基含有オルガノハイドロジェンポリシロキサンであることが好ましい。
(HR SiO1/2f3(RSiO3/2f7
式中、Rは前記同様の基であり、好適にはメチル基またはフェニル基である。また、Rは、前記同様の基であり、好適にはトリフルオロプロピル基である。
このような(B2)成分は、具体的には、(MeSiO1/2)単位、(MeHSiO1/2)単位、および(TfpSiO3/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、および(TfpSiO3/2)単位からなるポリシロキサン、(MeSiO1/2)単位、(MeHSiO2/2)単位、および(TfpSiO3/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、(MeHSiO2/2)単位、および(TfpSiO3/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、(TfpSiO3/2)単位、および(MeSiO3/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、(TfpSiO3/2)単位、および(PhSiO3/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、(TfpSiO3/2)単位、および(SiO4/2)単位からなるポリシロキサン等が挙げられる。これらは、1種を単独で用いても良く、また、少なくとも2種のオルガノポリシロキサンの混合物であっても良い。ここで、Meはメチル基を、Phはフェニル基を、Tfpはトリフルオロプロピル基を表す。(B2)成分は、最も好適には、(MeHSiO1/2)単位、および(TfpSiO3/2)単位からなり、これらの単位を2:1~1:2の比率で含む、重量平均分子量が500~2000の範囲であるフルオロアルキル基含有オルガノハイドロジェンポリシロキサンである。
[その他のオルガノハイドロジェンポリシロキサン]
本発明の(B)成分は、上記の(B1)成分及び(B2)成分からなるものであるが、本発明の効果を妨げない限り、任意で、その他のオルガノハイドロジェンポリシロキサンを用いてもよい。その他のオルガノハイドロジェンポリシロキサンは、上記の(B1)成分及び(B2)成分に該当しないかぎり、直鎖状、環状、樹脂状、及び一部分岐を有する直鎖状のいずれであってもよく、T単位(すなわちYSiO3/2、Yはケイ素原子結合水素原子、一価有機基、水酸基またはアルコキシ基)またはQ単位(すなわちSiO4/2)を有するものであってよい。また、その粘度も特に限定されず、(A)成分との混合容易性および取り扱いの容易さから、25℃における粘度は、JIS K7117-1に準拠し、B型粘度計を用いて測定した場合に、常温で液状であることが好ましく、ケイ素原子数2~300のオルガノハイドロジェンポリシロキサンが特に好適である。
その他のオルガノハイドロジェンポリシロキサンは、両末端トリメチルシリル-ポリメチルハイドロジェンシロキサン、両末端ヒドロキシジメチルシリル-ポリメチルハイドロジェンメチルフェニルシロキサン共重合体、ジメチルメチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンメチルトリフルオロプロピルシクロポリシロキサン、ジメチルメチルハイドロジェンメチルトリフルオロプロピルシクロポリシロキサン、メチルフェニルメチルハイドロジェンメチルトリフルオロプロピルシクロポリシロキサン、1,1,3,5,5-ペンタメチル-3-トリフルオロプロピルトリシロキサン、トリス(ジメチルシロキシシリル)トリフルオロプロピルシラン、(MeSiO1/2)単位、(MeHSiO1/2)単位、および(SiO4/2)単位からなるポリシロキサン、(MeHSiO1/2)単位および(SiO4/2)単位からなるポリシロキサン、(MeHSiO1/2)単位、および(PhSiO3/2)単位からなるポリシロキサン等が挙げられる。これらは、1種を単独で用いても良く、また、少なくとも2種のオルガノポリシロキサンの混合物であっても良い。ここで、Meはメチル基を、Phはフェニル基を表す。
[(B)成分の使用量]
本発明の組成物における(B)成分の使用量は、組成物中のアルケニル基の合計量1モルに対して、(B)成分全体、すなわち、(B1)成分および(B2)成分中のケイ素原子結合水素原子の総和が0.1~2.5モルとなる量である。ここで、組成物中のアルケニル基は、主として(A)成分等に由来する。(B)成分の使用量が上記下限未満であると、本組成物の硬化が不十分となる場合がある。一方、(B)成分の使用量が上記上限を超えると、本発明の組成物を硬化させた場合に弾性ゲルまたは弾性エラストマーを得ることができない場合があり、特に、機械的強度が不十分となる場合がある。より好適な(B)成分の使用量は、組成物中のアルケニル基の合計量1モルに対して、本成分中のケイ素原子結合水素原子が0.2~2.00モル、0.2~1.80モル、0.25~1.75モル、さらに好適には、0.35~1.50モルとなる量である。
[(C)成分]
(C)成分であるヒドロシリル化反応用触媒は、ヒドロシリル化反応を促進することができる限り特定のものに限定されない。ヒドロシリル化反応触媒として、これまでに多くの金属及び化合物が知られており、それらの中から適宜選択して本発明に用いることができる。ヒドロシリル化反応触媒の例として、具体的には、シリカ微粉末又は炭素粉末担体上に吸着させた微粒子状白金、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸のオレフィン錯体、塩化白金酸とビニルシロキサンの配位化合物、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、白金黒、パラジウム、及びロジウム触媒を挙げることができる。特に、白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
ヒドロシリル化反応用触媒の使用量は、有効量であり、本発明の硬化性オルガノポリシロキサン組成物の硬化を促進する量であれば特に限定されない。具体的には、(A)~(C)成分の和(全体を100質量%とする)に対して、この触媒中の金属原子が質量単位で0.01~1,000ppm、好適には(C)成分中の白金金属原子が、0.1~500ppmの範囲内となる量である。これは、(C)成分の含有量が上記範囲の下限未満であると、硬化が不十分となる場合があり、上記範囲の上限を超えると、一般的に不経済である。
[(D)ヒドロシリル化反応抑制剤]
ヒドロシリル化反応抑制剤は、(A)成分および(B)成分との間で起こる架橋反応を抑制して、常温での可使時間を延長し、保存安定性を向上するために配合する任意の成分である。従って、本発明の硬化性組成物にとって、実用上、必然的に配合されることが好ましい成分である。
ヒドロシリル化反応抑制剤として、アセチレン系化合物、エンイン化合物、有機窒素化合物、有機燐化合物、オキシム化合物が例示される。具体的には、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-メチル-1-ペンチン-3-オール、1-エチニル-1-シクロヘキサノール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-1-ヘキシン-3-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のメチルアルケニルシクロシロキサン;ベンゾトリアゾールが例示される。
ヒドロシリル化反応抑制剤の配合量は、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物の常温での可使時間を延長し、保存安定性を向上するのに有効な量である。通常、成分(A)100質量%当り0.001~5質量%の範囲内であり、好ましくは0.01~2質量%の範囲内であるが、本成分の種類、白金系触媒の性能と含有量、(A)成分中のアルケニル基量、(B)成分中のケイ素原子結合水素原子量などに応じて適宜選定するとよい。
[(E)充填材]
本発明にかかる組成物において、充填材は、所望により用いても、用いなくてもよい。充填剤を用いる場合には無機充填剤及び有機充填剤のいずれか又は両方を用いることができる。用いる充填剤の種類は特に限定されないが、例えば、高誘電性充填剤、導電性充填剤、絶縁性充填剤および補強性充填剤が挙げられ、これらの1種以上を用いることができる。特に、本発明の組成物には、その透明性、塗工性および取扱作業性を損なわない範囲で、粘度の調整または機能性の付与を目的として、高誘電性充填剤、導電性充填剤、絶縁性充填剤および補強性充填剤からなる群から選択される1種以上の充填剤を含有することができ、特に、機械的強度の向上の見地から、少なくとも1種類以上の補強性充填剤を配合することが好ましい。特に、充填剤の一部または全部は、1種類以上の表面処理剤により表面処理されていてもよい。
充填剤は、1種類または2種類以上であってよく、の形状は、特に限定されるものではなく、粒子状、板状、針状、繊維状等の任意の形状のものを用いることができる。フィラーの形状が粒子の場合、フィラーの粒子径は特に限定されるものではないが、例えばレーザー光回折法や動的光散乱法で測定した場合、その体積平均粒子径は、例えば、0.001~500μmの範囲とすることができる。また、フィラーの使用目的によって、フィラーの体積平均子粒径は、300μm以下、200μm以下、100μm以下、10μm以下、或いは、0.01μm以上、0.1μm以上、1μm以上とすることができる。フィラーの形状が板状、針状、繊維状等の異方性の場合、フィラーのアスペクト比は1.5以上、5以上、または10以上であることができる。体積平均子粒径が0.01μm以下で、かつ最大粒子の粒子径が0.02μm以下の微粒子を用いると、実質的に透明性の高い硬化物、とくに誘電層フィルムを製造することができる場合がある。
[補強性充填材]
本発明において、好ましい充填材は、硬化物の機械的強度の見地から、平均一次粒子径が50nm未満である1種以上の補強性無機微粒子であり、ヒュームドシリカ、湿式シリカ、粉砕シリカ、炭酸カルシウム、珪藻土、微粉砕石英、アルミナ・酸化亜鉛以外の各種金属酸化物粉末、ガラス繊維、炭素繊維等が例示される。また、これらを後述する各種表面処理剤で処理したものであってもよい。中でもシリカが推奨される。
好例としては、機械的強度の向上の観点から、平均一次粒子径が10nm以下であり、部分的に凝集し、その比表面積が、50m2/g以上、300m2/g以下である親水性または疎水性のヒュームドシリカが挙げられる。更に、分散性の向上の点から、ヒュームドシリカをシラザンまたは後述するシランカップリング剤で処理したものが好ましい。これら補強性無機粒子は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
補強性無機微粒子を組成物中に配合することにより、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなるオルガノポリシロキサン硬化物(以下、単に「硬化物」)の力学強度、絶縁破壊強度を増加させることが可能となる。これら補強性無機微粒子の配合量は、硬化性オルガノポリシロキサン組成物に対し0.1~30質量%の範囲が好ましく、0.1~10質量%の範囲がより好ましい。配合量が上記の好ましい範囲を外れると無機粒子を配合したことによる効果が得られない、もしくは硬化性オルガノポリシロキサン組成物の成形加工性が低下する場合がある。
本発明に係る硬化性オルガノポリシロキサン組成物中で使用される、無機微粒子(粒子径、機能等を問わず)の一部または全部は、1種類以上の表面処理剤により表面処理されてよい。表面処理の種類は特に限定されるものではなく、親水化処理又は疎水化処理が挙げられるが、疎水化処理が好ましい。疎水化処理された無機微粒子を用いると、オルガノポリシロキサン組成物中に高充填率で分散させることができる。また、組成物の粘度の増大が抑制され、成形加工性が向上する。
前記表面処理は、表面処理剤で無機微粒子を処理(又は被覆処理)することにより行うことができる。疎水化用の表面処理剤としては、有機チタン化合物、有機ケイ素化合物、有機ジルコニウム化合物、有機アルミニウム化合物及び有機リン化合物からなる群から選択される少なくとも1種の表面処理剤が挙げられる。表面処理剤は単独で又は2種以上を組み合わせてもよい。これらの表面処理剤のうち、有機ケイ素化合物、なかでも、シラザン、シラン類、シロキサン類、ポリシロキサン類が好ましく、シラザン、アルキルトリアルコシキシラン類、片末端トリアルコシキシリルポリジメチルシロキサン類が最も好ましく使用される。
前記無機微粒子総量に対する表面処理剤の割合は、0.1質量%以上、10質量%以下の範囲が好ましく、0.3質量%以上、5質量%以下の範囲がより好ましい。なお、処理量については、無機粒子と表面処理剤の仕込み比であり、処理後に余剰の処理剤を除去することが好ましい。
[その他の機能性充填材]
その他の機能性充填材として、誘電性無機微粒子、導電性無機微粒子、絶縁性無機微粒子、および熱伝導性無機微粒子が例示される。これらの微粒子から選択される1種以上を本発明の組成物に用いることができる。なお、これらの無機微粒子は、補強性充填材としての機能等、2種類以上の機能を併せ持つ場合がある。
好ましい誘電性無機微粒子の例として、酸化チタン、チタン酸バリウム、チタン酸ストロンチウム、チタン酸ジルコン酸鉛、およびチタン酸バリウムのバリウムおよびチタン部位の一部をカルシウム、ストロンチウム、イットリウム、ネオジム、サマリウム、ジスプロシウムなどのアルカリ土類金属、ジルコニウム、または希土類金属で置換した複合金属酸化物からなる群から選択される1種以上の無機微粒子が挙げられ、酸化チタン、チタン酸バリウム、チタン酸ジルコン酸バリウムカルシウム、及びチタン酸ストロンチウムがより好ましく、酸化チタン、チタン酸バリウムがさらに好ましい。
特に、誘電性無機微粒子は、その少なくとも一部が、室温、1kHzにおける比誘電率が10以上の誘電性無機微粒子であることが特に好ましい。なお、当該無機微粒子の好ましい大きさ(平均一次粒子径)の上限は、20,000nm(20μm)であるが、後述するトランスデューサー用薄膜への加工性を考慮すると、10,000nm(10μm)がより好ましい。当該誘電性無機微粒子の使用により、オルガノポリシロキサン硬化物について、機械特性及び/又は電気的特性、特にその比誘電率をさらに改善できる場合がある。
導電性無機微粒子としては、オルガノポリシロキサン硬化物に導電性を付与することができるものであれば特に制限はない。具体的には、導電性カーボンブラック、グラファイト、気相成長カーボン(VGCF)等の導電性カーボン;白金、金、銀、銅、ニッケル、錫、亜鉛、鉄、アルミニウム等の金属粉が挙げられ、更に、アンチモンがドープされた酸化錫、リンがドープされた酸化錫、酸化錫/アンチモンで表面被覆された針状酸化チタン、酸化スズ、酸化インジウム、酸化アンチモン、アンチモン酸亜鉛、カーボンやグラファイトのウィスカー表面に酸化錫等を被覆した顔料;錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、リンドープ酸化錫及び酸化ニッケルからなる群より選ばれる少なくとも1種の導電性金属酸化物を被覆した顔料;二酸化チタン粒子表面に酸化錫及びリンを含む導電性を有する顔料等が挙げられ、また、これらは、後述する各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。
さらに、導電性無機微粒子は、ガラス繊維、シリカアルミナ繊維、アルミナ繊維、炭素繊維等の繊維、並びに、ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー等の針状の補強材、ガラスビーズ、タルク、マイカ、グラファイト、ウォラストナイト、ドロマイト等の無機充填材の表面に金属等の導電性物質を被覆したものでもよい。
本発明で使用可能な絶縁性無機微粒子としては、一般に知られる絶縁型無機材料、すなわち、体積抵抗率が1010~1018Ω・cmである無機材料の粒子であれば制限が無く、粒子状、フレーク状、ファイバー(ウィスカー含む)状のいずれの形状でも使用することができる。具体的には、セラミックの球状粒子、板状粒子、又はファイバーが挙げられ、アルミナ、酸化鉄、酸化銅、マイカやタルク等の金属シリケート、石英、非晶質シリカ、ガラス等の粒子が好ましい使用例として挙げられる。また、これらを後述する各種表面処理剤で処理したものであってもよい。これらはそれぞれ単独で又は2種以上組合せて用いることができる。絶縁性無機微粒子を組成物中に配合することにより、オルガノポリシロキサン硬化物の力学強度、絶縁破壊強度を増加させることが可能となり、比誘電率の増加も見られる場合がある。
これら絶縁性無機粒子の配合量は、その用途に応じ、硬化性オルガノポリシロキサン組成物に対し0.1~20質量%の範囲が好ましく、0.1~5質量%の範囲がより好ましい。配合量が上記の好ましい範囲を外れると、配合による効果が得られない、もしくはオルガノポリシロキサン硬化物の力学強度が低下する場合がある。
本発明で使用可能な熱伝導性無機微粒子としては、酸化マグネシウム、酸化亜鉛、酸化ニッケル、酸化バナジウム、酸化銅、酸化鉄、酸化銀等の金属酸化物粒子、および窒化アルミニウム、窒化ホウ素、炭化ケイ素、窒化ケイ素、炭化ホウ素、炭化チタン、ダイヤモンド、ダイヤモンドライクカーボン等の無機化合物粒子が挙げられ、酸化亜鉛、窒化ホウ素、炭化ケイ素、および窒化ケイ素が好ましい。これら熱伝導性無機微粒子の1種以上を組成物中に配合することにより、オルガノポリシロキサン硬化物の熱伝導率を増加させることが可能となる。
これらの無機粒子の平均粒子径の測定は当該分野で通常の測定方法により行うことができる。例えば、平均粒子径が50nm以上、500nm程度以下である場合は、透過型電子顕微鏡(TEM)、電界放射型透過電子顕微鏡(FE-TEM)、走査型電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE-SEM)等の顕微鏡観察により粒子径を測定し、平均値を求めることで平均一次粒子径の測定ができる。一方、平均粒子径が500nm程度以上である場合は、レーザー回折・散乱式粒度分布測定装置等により平均一次粒子径の値を直接求めることができる。
[その他の任意成分]
本発明に係る硬化性オルガノポリシロキサン組成物は、さらに離型性または絶縁破壊特性の改善のための添加剤、接着性向上剤等を含有することができる。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を薄膜状に硬化して得られるフィルム状またはシート状の硬化物は、トランスデューサーを構成する電気活性フィルム(誘電層または電極層)に好適に利用できるものであるが、薄膜形成時に硬化層の離型性が悪いと、特に高速で誘電性フィルムを製造した場合に、型離れに起因して誘電性フィルムが破損する場合がある。また、アクチュエータ、タッチパネル等に用いる誘電層としては、低圧下での感度向上のため、接着性の低減を求められる場合がある。本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、フィルムにダメージを与えることなくフィルムの製造速度を向上させることができ、かつ、その他の離型剤の添加により、さらに粘着性を低減できる場合がある。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物に適用可能な離型性向上添加剤(=離型剤)としては、例えば、カルボン酸系離型剤、エステル系離型剤、エーテル系離型剤、ケトン系離型剤、アルコール系離型剤等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、前記離型剤としては、ケイ素原子を含まないもの、ケイ素原子を含むもの、又は、これらの混合物を使用することができる。これらの具体例は、特許文献1(国際特許公開2014-105959号公報)と同様である。
絶縁破壊特性向上剤は、電気絶縁性向上剤であることが好ましく、アルミニウム又はマグネシウムの水酸化物又は塩、粘土鉱物、及び、これらの混合物、具体的には、ケイ酸アルミニウム、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、焼成クレイ、モンモリロナイト、ハイドロタルサイト、タルク、及び、これらの混合物からなる群から選択することができる。また、当該絶縁性向上剤は、公知の表面処理方法で処理されていてもよい。これらの具体例は、特許文献1(国際特許公開2014-105959号公報)と同様である。
接着性向上剤は、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物が硬化途上で接触している基材への接着性向上のためのものである。該組成物の硬化物である誘電層を再剥離しない場合に、有効な添加剤である。接着性向上剤として、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等の有機官能性アルコキシシラン化合物、そのシロキサン誘導体、特にフッ素含有有機基で置換された鎖状または三次元樹脂状のシロキサン誘導体が例示される。
その他の任意成分として、本発明の技術的効果を損なわない限り、フェノール系、キノン系、アミン系、リン系、ホスファイト系、イオウ系、チオエーテル系などの酸化防止剤;トリアゾール系、ベンゾフェノン系などの光安定剤;リン酸エステル系、ハロゲン系、リン系、アンチモン系などの難燃剤;カチオン系界面活性剤、アニオン系界面活性剤、非イオン系界面活性剤などからなる1種類以上の帯電防止剤;染料、顔料などが例示される。
[任意の溶媒]
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、そのまま硬化反応に供することができるが、一方、該組成物が固形状である場合や粘ちょう液状である場合には、その混和性および取り扱い性を向上させるため、必要に応じて有機溶媒を使用することもできる。特に、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物をフィルム状に塗工する場合、全体粘度が100~10,000mPa・sとなる範囲に、溶媒を用いて粘度調整をすることが好ましく、溶媒で希釈する場合、上記の固形分の和(100質量部)に対して、0~2000質量部の範囲で用いることができる。すなわち、本発明組成物において、溶媒は、0質量部であってもよい。特に、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、低重合度のポリマーを選択しているために、溶媒フリーとする設計が可能であり、硬化して得られるフィルム中にフッ素系溶媒、有機溶媒等が残留せず、環境負荷の問題および電子デバイスへの溶媒の影響を解消できる利点がある。
ここで使用する有機溶媒としては、組成物中の全構成成分または一部の構成成分を溶解させ得る化合物であれば、その種類は特に限定されず、沸点が80℃以上200℃未満のものが好ましく使用される。例えば、i-プロピルアルコール、t-ブチルアルコール、シクロヘキサノール、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン、メシチレン、1,4-ジオキサン、ジブチルエーテル、アニソール、4-メチルアニソール、エチルベンゼン、エトキシベンゼン、エチレングリコール、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、2-メトキシエタノール(エチレングリコールモノメチルエーテル)、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、1-メトキシ-2-プロピルアセテート、1-エトキシ-2-プロピルアセテート、オクタメチルシクロテトラシロキサン、及びヘキサメチルジシロキサン等の非ハロゲン系溶媒、トリフルオロメチルベンゼン、1,2-ビス(トリフルオロメチル)ベンゼン、1,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(トリフルオロメチル)ベンゼン、トリフルオロメチルクロロベンゼン、トリフルオロメチルフルオロベンゼン、ハイドロフルオロエーテル等のハロゲン系溶媒が挙げられる。これらの有機溶媒は単独で用いてもよく、二種以上を混合して使用してもよい。硬化性組成物中のフルオロアルキル基含有量が高いほど、上記のハロゲン系溶媒の使用比率を高める必要がある。
[組成物の全体粘度]
本組成物の25℃における粘度は、特に限定されないが、本組成物を薄膜上に塗工できる程度の粘度範囲に調整することができ、好ましくは、100~500,000mPa・sの範囲内、さらに好ましくは300~50,000mPa・s、特に好ましくは1,000~10,000mPa・sの範囲内である。好ましい粘度範囲に設定する目的で、上記の有機溶媒の使用量を調整することも可能である。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、上記(A)~(C)成分を均一に混合することにより、また、必要に応じてその他任意の成分を添加して、均一に混合することにより調製することができる。各種攪拌機あるいは混練機を用いて、常温で混合すればよいが、混合中に硬化しない成分の組合せであれば、加熱下で混合してもよい。また、混合に当たっては、押出機又は混練機(より具体的には、2軸押出機、2軸混練機および単軸ブレード型押出機から選ばれる1種類以上の機械的手段)を用いて混練することで製造してもよく、特に、本発明においては、反応性オルガノポリシロキサン成分と充填材および表面処理剤を、フリーボリュームが5,000(L/時間)以上の二軸押出機を用いて混練することで、無機微粒子を高濃度(例えば、80質量%以上)で含有するシリコーンゴムコンパウンド(マスターバッチ)を形成させた後、他の反応性オルガノポリシロキサン成分、硬化触媒、およびその他の成分を加えて混練して硬化性オルガノポリシロキサン組成物を製造してもよい。
混合中に硬化しなければ、各成分の配合順序は特に制限されるものではない。混合後、直ちに使用しないときは、(B)成分と(C)成分が同一の容器内に存在しないように複数の容器に分けて保管しておき、使用直前に全容器内の成分を混合することが好ましい。
本発明の、フルオロアルキル基含有硬化性オルガノポリシロキサン組成物の硬化反応は、通常、該組成物を加熱あるいは活性エネルギー線にさらすことにより達成される。熱による硬化反応温度は、特に限定されないが、50℃以上200℃以下が好ましく、60℃以上200℃以下がより好ましく、80℃以上180℃以下がさらに好ましい。また、硬化反応にかける時間は、上記(A)、(B)、(C)成分の構造に依存するが、通常1秒以上3時間以下である。一般的には、90~180℃の範囲内で10秒~30分保持することにより硬化物を得ることができる。
硬化反応に使用され得る活性エネルギー線としては、紫外線、電子線、及び放射線等が挙げられるが、実用性の点で紫外線が好ましい。紫外線により硬化反応を行なう場合は、使用する紫外線に対して高い活性を有するヒドロシリル化反応用触媒、例えばビス(2,4-ペンタンジオナト)白金錯体、(メチルシクロペンタジエニル)トリメチル白金錯体、を添加することが望ましい。紫外線発生源としては高圧水銀ランプ、中圧水銀ランプ、Xe-Hgランプ、及びディープUVランプ等が好適であり、その際の照射量は、100~8,000mJ/cmが好ましい。
本発明の硬化物は、上記のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなることを特徴とする。硬化物の形状は特に限定されず、例えば、シート状、フィルム状、テープ状が挙げられる。特に、上記のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物は、硬化速度が大きく、フィルムなどの成形品を製造するための加工性が良好であり、所望の厚み、形状の硬化物を効率よく生産することができる。
[部材]
上記の硬化物は、電気的特性および機械的特性に優れたゲルまたはエラストマーであり、高い比誘電率および機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)を有する。このため、当該オルガノポリシロキサン組成物を薄膜状に硬化して得られる電気活性シリコーンエラストマーシートまたは電気活性シリコーンゲルシートは、電子材料、表示装置用部材またはトランスデューサー用部材(センサー、スピーカー、アクチュエータ、およびジェネレーター用を含む)として使用でき、特に、トランスデューサーを構成する電気活性フィルム(誘電層または電極層)として好適に利用できる。
[機械的強度]
本発明に係る硬化性オルガノポリシロキサン組成物を少なくとも部分的に硬化して得られる、オルガノポリシロキサン硬化物は、2.0mm厚のシート状に加熱成形した場合、JIS K 6249に基づいて測定される以下の力学物性を有するように設計可能である。
(1)ヤング率(MPa)は、室温下において、10MPa以下とすることができ、特に好適な範囲は、0.1~2.5MPaである。
(2)引き裂き強さ (N/mm) は、室温下において、1N/mm以上とすることができ、特に好適な範囲は、2N/mm以上である。
(3)引っ張り強さ (MPa) は、室温下において、1MPa以上とすることができ、特に好適な範囲は、2MPa以上である。
(4)破断伸び (%) は、200%以上とすることができ、トランスデューサーの変位量の見地から、特に好適な範囲は、200-1000%の範囲である。
[誘電特性]
本発明に係る硬化性オルガノポリシロキサン組成物を硬化して得られる、オルガノポリシロキサン硬化物(エラストマーまたはゲル)は、以下の誘電特性を有するように設計可能である。
(1)0.10mm厚のシート状に加熱成形した場合、その絶縁破壊強度(V/μm)を、20V/μm以上とすることができる。好適な絶縁破壊強度は、トランスデューサーの用途に応じて変わるが、特に好適な範囲は、30V/μm以上である。
(2)1mm厚のシート状に加熱成形した場合、測定温度25℃、測定周波数100KHzの条件下で測定された比誘電率を、3.0以上とすることができる。好適な比誘電率は、トランスデューサーの種類および求められる誘電層の形態に応じて変わるが、特に好適な範囲は、上記測定条件下で5.0以上である。
本発明に係る硬化性オルガノポリシロキサン組成物を硬化または半硬化させてなるオルガノポリシロキサン硬化物は、その誘電特性及び力学物性から、特に人工筋肉、アクチュエータ、センサ、及び発電素子から選ばれるトランスデューサー用部材として好適に使用することができる。具体的には、硬化性オルガノポリシロキサン組成物をシート状またはフィルム状に成形した後、加熱または高エネルギー線の照射等により硬化させることが一般的である。硬化性オルガノポリシロキサン組成物をフィルム状に成形する方法としては、特に限定されないが、例えば、硬化性オルガノポリシロキサン組成物を従来公知の塗布方法で基材上に塗布して塗膜にする方法、所定の形状のスロットを設けた押出機を通して成形する方法等を挙げることができる。
こうしたフィルム状の硬化性オルガノポリシロキサン組成物の厚さは、例えば、0.1μm~5,000μmの範囲内にすることができる。前記の塗布方法および揮発溶剤の有無によっては得られる硬化物の厚みが、組成物の塗布する厚さより薄くなる場合がある。
さらに、オルガノポリシロキサン硬化物のフィルムまたはシートは実質的に平坦であることが好ましい。具体的には、このようなオルガノポリシロキサン硬化物は、フィルムの幅方向について、末端の厚みと中央の厚みの差が5.0%以内であり、フィルム中央の厚みが50~1000μmの範囲にある、フルオロアルキル基含有オルガノポリシロキサン硬化物の高誘電性フィルムであってよい。このようなオルガノポリシロキサン硬化物のフィルムまたはシート、およびその製造技術は、本件出願人が国際特許出願(PCT/JP2017/15028)において提案したとおりであり、本発明にかかるオルガノポリシロキサン硬化物についても適用が可能である。かかる平坦なオルガノポリシロキサン硬化物のフィルムまたはシートを、後述する方法で複数積層することにより、実質的に平坦かつ任意の厚みを有するトランスデューサー用部材が設計可能である。
なお、上述した方法によりフィルム状の硬化性オルガノポリシロキサン組成物を製造した後、任意で、このフィルム状の硬化性オルガノポリシロキサン組成物に、目的とする誘電性無機微粒子の配向方向に磁場又は電場を印加させながら、あるいは一定時間磁場または電場を印加してフィラーを配向させた後、硬化性オルガノポリシロキサン組成物を加熱硬化、常温硬化または高エネルギー線照射により硬化させてもよい。各硬化又硬化の条件は、特に限定されないが、硬化性オルガノポリシロキサン組成物が、付加硬化性オルガノポリシロキサン組成物である場合、90℃~180℃の範囲内で30秒~30分保持することにより行われる。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる硬化層が誘電層、特に、アクチュエータ等のトランスデューサー用の誘電性フィルム部材である場合、当該硬化層は、剥離コーティング能を有する剥離層を備えたフィルム基材上に、剥離可能な状態で配置した積層体フィルムとして取り扱うことが好ましい。
トランスデューサー用部材であるオルガノポリシロキサン硬化物の厚さは、特に限定されないが、例えば1~2,000μmである。ここで、本発明に係るオルガノポリシロキサン硬化物は、1層または2層以上を積層したものであり、さらに、誘電層の両端に電極層を設け、かつ、電極層および誘電層からなるトランスデューサー自体を高積層する構造であってもよい。この場合、一層あたりのオルガノポリシロキサン硬化物の厚さは0.1μm~1,000μmであり、これを2層以上積層することによって、0.2~2,000μmの厚さとしてもよい。
前記の積層されたオルガノポリシロキサン硬化層の形成方法は特に制限されるものではないが、(1)基材上に硬化性オルガノポリシロキサン組成物を塗布し、硬化させてオルガノポリシロキサン硬化物層を得た後、同硬化層上にさらに硬化性オルガノポリシロキサン組成物を塗布し、順次硬化と塗布を繰り返して積層する方法、(2)基材上に硬化性オルガノポリシロキサン組成物を未硬化または半硬化状態で重層的に塗布し、重層的に塗工された異なる硬化性オルガノポリシロキサン組成物全体を硬化させる方法、(3)剥離層を有する基材上に硬化性オルガノポリシロキサン組成物を塗布し、硬化させてオルガノポリシロキサン硬化物層を得た後、当該硬化層を剥離層から分離し、別途同様に準備したオルガノポリシロキサン硬化物層に物理的に積層する方法、または(4)これらの組み合わせのいずれであっても実施することができる。
本願発明においては、例えば、硬化性オルガノポリシロキサン組成物をダイコーティングによって基板に塗布して硬化させ、前記の積層された2種類以上のシリコーンエラストマー硬化層を形成させ、さらに得られたシリコーンエラストマー硬化層を電極と接着することによって製造することができる。この場合、積層された2種類以上のシリコーンエラストマー硬化層は誘電層であり、電極は導電層であることが好ましい。
ダイコーティングは高速塗布が可能であり、生産性の高い塗布方式である。本発明の多層構造を有するトランスデューサーは、オルガノポリシロキサン組成物を含む1つの層を単層塗布した後に、別のオルガノポリシロキサン組成物を含む層を塗布することによって製造してもよい。また、各オルガノポリシロキサン組成物を含む層を、同時に重層塗布することによって製造することもできる。
トランスデューサー用部材であるオルガノポリシロキサン硬化物は、前記の硬化性オルガノポリシロキサン組成物を基板上に塗工し、室温下、加熱下または紫外線等の高エネルギー線照射下で硬化させることにより得ることができる。また、薄膜状誘電性シリコーンエラストマーを重層する場合、硬化層上に未硬化の硬化性オルガノポリシロキサン組成物を塗工して順次硬化させてもよく、未硬化の硬化性オルガノポリシロキサン組成物を重層して、同時に硬化させてもよい。
上記の薄膜状オルガノポリシロキサン硬化物は、特に、トランスデューサーの誘電層として有用であり、その両端に電極層を設けることで、トランスデューサーを形成することができる。なお、本発明に係る硬化性オルガノポリシロキサン組成物に導電性無機粒子を配合することで、電極層としての機能を付与してもよい。なお、本発明の明細書において、「電極層」は、単に「電極」ということもある。
上記のトランスデューサー用部材の一つの形態は薄膜であり、シートまたはフィルム状である。膜厚は一般に1μm~2,000μmであり、単層、2層以上、またはさらに多くの層が積層された構造を含む。また、所望により積層された電気活性オルガノポリシロキサン硬化物層は、誘電層として用いる場合、5μm~10,000μm、または重層によりそれ以上の膜厚とすることができる。
当該トランスデューサー用部材である薄膜状オルガノポリシロキサン硬化物層は、同一の薄膜状シリコーンエラストマーを重層してもよく、異なる2種類以上の物理特性または硬化前組成の異なる薄膜状シリコーンエラストマーを重層してもよい。また、薄膜状オルガノポリシロキサン硬化物層の機能は、誘電層であっても良く、電極層であってもよい。特に誘電層の厚さが1~1,000μmであり、かつ電極層の厚さが0.05μm~100μmであるトランスデューサー用部材が好ましく例示される。
本発明のトランスデューサーは、本発明に係る硬化性オルガノポリシロキサン組成物を硬化させてなる当該トランスデューサー用部材を有することを特徴とし、特に、高積層構造、すなわち2層以上の誘電層を含んだ構造を有していてもよい。更に3層以上の誘電層を含んだ構造を有してもよい。このような高積層構造を有するトランスデューサーは、複数の層を含むことによって、より大きな力を発生させることができる。また、積層することにより、単一の層と比較してより大きな変位を得ることができる。
本発明のトランスデューサーの誘電層の両端には電極を含むことができる。電極の材質としては、金、白金、銀、パラジウム、銅、ニッケル、アルミニウム、チタン、亜鉛、ジルコニウム、鉄、コバルト、錫、鉛、インジウム、クロム、モリブデン、及びマンガン等の金属及びこれらの合金;インジウム-錫複合酸化物(ITO)、アンチモン-錫複合酸化物(ATO)、酸化ルテニウム、酸化チタン、酸化亜鉛、及び酸化錫等の金属酸化物;カーボンナノチューブ、カーボンナノホーン、カーボンナノシート、炭素繊維、及びカーボンブラック等のカーボン材料;並びにポリ(エチレン-3,4-ジオキシチオフェン)(PEDOT)、ポリアニリン及びポリピロール等の導電性樹脂を使用することができる。導電性フィラーを樹脂中に分散した導電性樹脂及びエラストマーを使用してもよい。
電極は上記の導電性物質のうちの1種を単独で含んでいても、2種以上を含んでいてもよい。電極が2種以上の導電性物質を含む場合には、そのうちの少なくとも1種を活物質として機能させ、残り電極の抵抗を低減させるための導電材として機能させることもできる。
本発明のトランスデューサーの誘電層の厚みの合計は、10μm~2,000μm(2mm)の範囲とすることができるが、特に200μm以上とすることができる。特に、誘電層を形成する誘電性シリコーンエラストマー一層あたりの厚さが0.1~500μmであることが好ましく、0.1~200μmの厚さであることが特に好ましい。これらの薄いシリコーンエラストマー層を2層以上積層することにより、1層の場合に比して、絶縁破壊電圧、誘電率、および変位量等の特性を改善することができる。
本発明においてトランスデューサーとは、ある種類のエネルギーを別のエネルギーに変換する素子、機器及び装置をいい、例えば電気エネルギーを機械エネルギーに変換する人工筋肉及びアクチュエータ、機械エネルギーを電気エネルギーに変換するセンサ及び発電素子、電気エネルギーを音響エネルギーに変換するスピーカー、マイクロフォン及びヘッドフォンが挙げられる。
本発明のトランスデューサーは、その誘電性及び機械特性から、特に人工筋肉、アクチュエータ、センサ、及び発電素子として使用することができる。人工筋肉は、ロボット、介護機器及びリハビリ機器等への応用が期待されている。例として、アクチュエータの実施形態について以下で説明する。
図1に、誘電層を積層した場合における、本実施形態のアクチュエータ1の断面図を示す。本実施形態では、例として誘電層は2層としている。アクチュエータ1は、誘電層10a及び10bと、電極層11a及び11bと、配線12と、電源13とを備えている。電極層11a及び11bは、それぞれ接触している誘電層の一面を覆っており、それぞれ配線12を介して電源13と接続されている。
アクチュエータ1は、電極層11aと電極層11bとの間に電圧を印加することによって駆動させることができる。電圧を印加することにより、誘電層10a及び10bは、その誘電性により厚さが薄くなり、電極層11a及び11bの面に対して平行に伸長することとなる。すなわち、電気エネルギーを力、変動又は変位の機械エネルギーに変換することができる。
図2に、誘電層及び電極層を積層した場合における、本実施形態のアクチュエータ2の断面図を示す。本実施形態では、例として誘電層は3層、電極層は4層としている。アクチュエータ2は、誘電層20a、20b及び20cと、電極層21a、21b、21c及び21dと、配線22と、電源23とを備えている。電極層21a、21b、21c及び21dは、それぞれ接触している誘電層の一面を覆っており、それぞれ配線22を介して電源23と接続されている。電極層は交互にそれぞれ電圧の異なる側と接続されており、電極層21a及び21cと、電極層21b及び21dとはそれぞれ異なる側と接続されている。
アクチュエータ2は、電極層21aと電極層21bとの間、電極層21bと電極層21cとの間、及び電極層21cと電極層21dとの間に電圧を印加することによって駆動させることができる。電圧を印加することにより、誘電層20a、20b及び20cは、その誘電性により厚さが薄くなり、電極層21a、21b、21c及び21dの面に対して平行に伸長することとなる。すなわち、電気エネルギーを力、変動又は変位の機械エネルギーに変換することができる。
本発明のトランスデューサーの一例としてのアクチュエータの実施形態は以上で述べたとおりであるが、他にも本発明のトランスデューサーに外部から圧力等の機械エネルギーを加えると、誘電層の変形に伴って電極層間の静電容量が変化するため、当該変化を読み取るセンサとして使用することもできる。このセンサの実施形態について以下で説明する。
図3に、本実施形態のセンサ3の構成を示す。センサ3は、誘電層30を、マトリックス状に配置した上部電極層31a、31b及び31cと、下部電極層32a、32b及び32cとの間に配置した構造を有している。本実施形態では、例として縦方向及び横方向に電極層を3列のマトリックス上に配置した構成としている。各電極層は、誘電層30と接していない面を絶縁層で保護することができる。また、誘電層30は、オルガノポリシロキサンを含む同一の誘電層を2層以上含んでいる。
センサ3の表面に外力が印加されると、印加された場所の上部電極層と下部電極層の間の誘電層30の厚みが変化し、この変化に伴って電極層間の静電容量が変化する。たとえば、この電極層間の静電容量の変化に伴う電圧変化を計測することによって、外力を検出することができる。
なお、本実施形態のセンサ3では、誘電層を挟んで対向する電極層は三対形成されているが、電極層の数、大きさ、及び配置等は、用途に応じて適宜決定することができる。
発電素子は、機械エネルギーを電気エネルギーに変換するトランスデューサーであり、波力、水力、及び水力等の自然エネルギーによる発電をはじめ、振動、衝撃、及び圧力変化等によって発電する装置に応用することができる。この発電素子の実施形態について以下で説明する。
図4に、誘電層を積層した場合における、本実施形態の発電素子4の断面図を示す。本実施形態では、例として誘電層は2層としている。発電素子4は、誘電層40a及び40bと、電極層41a及び41bとを備えており、電極層41a及び41bは、それぞれ接触している誘電層の一面を覆っている。
電極層41aと41bとは、図示しない負荷に電気的に接続されており、本発電素子4は、電極層41aと41bとの間の距離を変化させることにより静電容量を変化させて電気エネルギーを生じさせる。すなわち、誘電層40a及び40bにより形成される静電場によって電極層41aと41bが静電誘導された状態で素子形状を変化させることにより、発電する。
本実施形態において、図4に示す発電素子4の電極層41a及び41bの面に対して平行方向に圧縮力が印加された状態(上図)から同図に示す圧縮力が印加されない状態(下図)に変化することにより、たとえば、電極層41aと41bとの間に静電容量変化が生じ、機械エネルギーを電気エネルギーに変換することができる。また、複数の素子を基板上に配置し、それらを直列又は並列接続して発電量を向上させた発電装置を構成することもできる。
本発明のトランスデューサーは、空気中、水中、真空中、及び有機溶媒中で動作することができる。また、使用環境に応じて、適宜封止処理を行ってもよい。封止方法は特に限定されず、例えば樹脂材料による封止等が挙げられる。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物、それを硬化してなる硬化物は、力学特性および電気特性に優れたエラストマーまたはゲル状部材が要求される用途、例えばトランスデューサーの製造に好適に使用することができる。本発明の硬化性オルガノポリシロキサン組成物には、未硬化の硬化性組成物だけでなく、反応性オルガノポリシロキサンが部分的に反応しているが、硬化には至っていない硬化途中の状態にあるいわゆるBステージ材料も含まれる。本発明のBステージ材料としては、ゲル又は流動性を有する状態のものが挙げられる。したがって、本発明の態様には、硬化性オルガノポリシロキサン組成物の硬化反応が一部進んだ状態の、ゲル又は流動性を有する状態のトランスデューサー用部材も含まれる。また、このような半硬化状態のトランスデューサー用部材には、薄膜状オルガノポリシロキサン硬化物が一層または積層された構造のいずれであってもよい。
特に、上記の硬化物は、電気的特性および機械的特性に優れたゲルまたはエラストマーであり、高い比誘電率および機械的強度(具体的には、引っ張り強度、引き裂き強度、伸び率等)を有する。このため、当該オルガノポリシロキサン組成物を薄膜状に硬化して得られる電気活性シリコーンエラストマーシートまたは電気活性シリコーンゲルシートは、トランスデューサーを構成する電気活性フィルム(誘電層または電極層)に好適に利用できる。例えば、本出願人らが前記の特許文献1または特許文献2で提案したトランスデューサー材料として有用であるほか、シリコーン以外の誘電性エラストマーを用いるトランスデューサー装置についても、特に制限なく適用が可能であり、誘電性エラストマー層の一部又は全部を上記の硬化物に置き換えて設計が可能である。このようなトランスデューサー(アクチュエータ含む)の構造は多数提案されており、例えば、国際公開特許公報として、WO2011/118315号;日本国公開特許公報として、特表2008-533973号、特表2001-524278号、特開2008-187079号、特開2008-277729号、特開2009-59856号、特開2009-219302号、特開2012-65427号、特開2016-226258号、特開2017-064836号などが挙げられる。なお、上記の硬化物による誘電性エラストマー層の一部又は全部の置換に伴う、構造設計乃至設計変更を行うことは、当業者の通常の創作により対応可能であり、本発明はそのような創作を強く示唆するものである。
同様に、上記の硬化物は、いわゆる「高分子アクチュエータ」あるいは「ポリマーアクチュエータ」として知られるアクチュエータ素子構造における電解質層または誘電層を代替して利用することもできる。具体的には、電解質層(ポリマーにイオン液体が含まれた電解質層含む)と、前記電解質層に形成された電極層とを有し、前記電解質層に印加される電圧に応じて変形する高分子アクチュエータにおいて、電解質層の一部又は全部を代替して利用することが可能である。なお、このような高分子アクチュエータの構造は多数提案されており、国際公開特許公報として、WO10/100907号、WO10/110417号、WO11/114965号、WO10/029992号、WO13/118628号、WO14/104331号;日本国公開特許公報として、特開2004-282992号、特開2008-251697号、特開2010-003553号、特開2012-055153号、特開2013-255397号、特開2013-106491号、特開2013-251942号、特開2015-126597号、特開2015-186301号、特開2016-189651号などが挙げられる。なお、本発明にかかるオルガノポリシロキサン硬化物は、電解質と異なり、エラストマー乃至ゲル状で所望の形状に設計可能であり、特に積層乃至高い変位量が求められる構造設計に有用である。従って、既存の高分子アクチュエータにおいて、上記の機械特性および誘電特性を反映した構造設計乃至設計変更を行うことは、当業者の通常の創作により対応可能であり、本発明はそのような創作を強く示唆するものである。
本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物、それを硬化してなる硬化物は、その他の用途としては、上記に開示した他に何ら制約はなく、本発明のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる硬化物を備えてなる誘電層フィルムはテレビ受像機、コンピューター用モニター、携帯情報端末用モニター、監視用モニター、ビデオカメラ、デジタルカメラ、携帯電話、携帯情報端末、自動車などの計器盤用ディスプレイ、種々の設備・装置・機器の計器盤用ディスプレイ、自動券売機、現金自動預け払い機、など、文字や記号、画像を表示するための種々のフラットパネルディスプレイ(FPD)に使用することができる。装置としては、CRTディスプレイ、液晶ディスプレイ、プラズマディスプレイ、有機ELディスプレイ、無機ELディスプレイ、LEDディスプレイ、表面電解ディスプレイ(SED)、電界放出型ディスプレイ(FED)などの表示装置や、これらを利用したタッチパネルに応用が可能である。本発明のフィルムは、これらの、ディスプレイ表面の傷つき防止、汚れ防止、指紋付着防止、帯電防止、反射防止、のぞき見防止などの目的で使用してもよい。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例では下記の化合物を用いた。
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例では下記の化合物を用いた。
・成分(a1):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチルシロキサンポリマー (末端を含むシロキサン重合度:約268)
・成分(a2):両末端ビニルジメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチルシロキサンポリマー(末端を含むシロキサン重合度:約33)
・成分(B1-1):ビス(ジメチルハイドロジェンシロキシ)ジフェニルシラン
・成分(B1-2):両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルシロキサンポリマー(シロキサン重合度:約2.5)
・成分(B1-3):テトラメチルジヒドロジシロキサン
・成分(B2-1):ジメチルヒドロシロキシユニット(M単位)と3,3,3-トリフルオロプロピル基を有するTF3Pr単位(3官能シロキシ単位)で構成されるシロキサン(Mw=1.11×10、ケイ素原子結合水素原子は約0.59重量%である。)
なお、成分(B2-1)の重量平均分子量(Mw)は、テトラヒドロフラン(THF)を溶媒に用いて、GPC(ゲルパーミエーションクロマトグラフィ)で測定したポリスチレン換算の重量平均分子量である。
・成分(B2-2):両末端トリメチルシロキシ基封鎖、3,3,3-トリフルオロプロピルメチルメチルヒドロシロキサンコポリマー(末端を含むシロキサン重合度:約12)
なお、成分(B2-2)のケイ素原子結合水素原子は約0.53重量%である。
・成分(C1):白金-1,3-ジビニル1,1,3,3-テトラメチルジシロキサン錯体の両末端ビニルジメチルシロキシ基封鎖ジメチルシロキサンポリマー溶液(白金濃度で約0.6重量%)
<ヒドロシリル化反応抑制剤>
・成分(D1):1,3,5,7-テトラメチル-1,3,5,7-テトラビニル-シクロテトラシロキサン
<充填材>
・成分(E1):表面処理したCAB-O-SIL(R)MS75D
表1および表2に実施例となる組成を示した。以下の実施例では組成物中のビニル基1モル当たり、成分(B1)および(B2)のケイ素原子結合水素原子(Si-H)が1.3モルとなる量で用いた。また、(B1)と(B2)のSi-Hの比をB1/B2として示した。さらに、成分(A)の重合度は下記式により算出した。
[NAA1/(NAA1+NAA2)]DPA1+[NAA2/(NAA1+NAA2)]DPA2
ここでNAA1およびNAA2は、成分(A)中(A1)および(A2)の重量比率をそれぞれ数平均分子量で割り返したものであり、DPA1およびDPA2は(A1)および(A2)のそれぞれの重合度を表す。
[得られた材料の物性測定]
シリコーン組成物を150℃で15分間プレスキュアし、更に150℃で60分~120分間オーブン中ポストキュアを施し、硬化物を得た。JIS-K6249に基づき、得られた硬化物の引裂強さを測定し、また引張強さおよび破断伸びを測定し、ヤング率(モジュラス)を求めた。なお、機械的強度の測定のため、シートの厚さは2mmとした。また、厚さ6mmシートのデュロメータA硬度を測定した。ただし、硬化物が柔らかすぎる場合には測定不可とした。
また、上記条件にて厚さ約0.1mmのシートを作製し、電気絶縁油破壊電圧試験装置 総研電気株式会社製PORTATEST 100A-2で絶縁破壊強さを測定した。同様に、厚さ1mmのシートを作製し、LCRメーター ウェインカー社製6530P/D2で温度25℃、周波数20Hz~1MHzの範囲で比誘電率を測定した。そのうち100KHzでの値を実施例および比較例に使用した。各種物性値を表1~表3に示した。
[比較例1-4]
前記(B1)以外の成分を用い、表3に示す組成で実施例と同様に硬化性オルガノポリシロキサン組成物を作製し、上述した各種測定を行なった。
Figure 0007100631000001
Figure 0007100631000002

Figure 0007100631000003


上記のとおり、実施例1~11において、成分(B1)と成分(B2)の特定比率での併用により、ゲル状からエラストマー状まで、硬度等の異なる多様なフィルム状の硬化物を形成可能であり、高度な電気的特性を有する硬化物を形成する。さらに、これらの硬化物の切断時伸びは300%を超えるものであり、機械的特性、特に伸縮性に優れた硬化物を与えるフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を設計可能であることが示された。一方、成分(B1)を用いなかったり、成分(B1)を過剰に用いたりした場合には、比較例1~4に示すとおり、実用性のある硬化物を与えるフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を得ることはできない。特に、比較例4に示す通り、本発明の成分(B2)を過剰に用いると、架橋反応が十分に進行しないため、機械的物性等を測定可能な硬化物を得ることができなかった。
このような本発明実施例に係るフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を用いて得られた硬化物は、高い電気的特性に加え、所望により多様な硬度/ヤング率の硬化物を設計可能であり、かつ、伸縮性等の機械的特性に著しく優れるものであるから、アクチュエーターをはじめとする各種トランスデューサー用途に幅広く利用することができる。
1、2 アクチュエーター
10a、10b、20a、20b、20c 誘電層
11a、11b、21a、21b、21c、21d 電極層(導電層)
12、22 配線
13、23 電源
3 センサ
30 誘電層
31a、31b、31c 上部電極層
32a、32b、32c 下部電極層
4 発電素子
40a、40b 誘電層
41a、41b 電極層

Claims (16)

  1. (A)1種類または2種類以上の、分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であるフルオロアルキル基含有オルガノポリシロキサン、(A)~(C)成分の和を100質量%として20~99質量%

    (B)以下の(B1)成分および(B2)成分からなるオルガノハイドロジェンポリシロキサンであって、(B1)成分中のケイ素原子結合水素原子数:(B2)成分中のケイ素原子結合水素原子数の比率が10:90~85:15となる範囲であるもの:

    (B1)下記平均単位式で表される、分子鎖両末端に少なくとも2個のケイ素結合水素原子を有し、フルオロアルキル基を有さない直鎖状オルガノハイドロジェンポリシロキサン
    HR Si(OSiHR e3 (OSiR e4 OSiR
    {式中、R で表される置換基は、同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基であり、e3およびe4の値は、0または正の数であり、かつ、e3+e4=0~198を満たす数である}

    (B2)下記平均単位式(III)で表される直鎖状オルガノハイドロジェンポリシロキサンおよび平均単位式(IV)で表される分岐状オルガノハイドロジェンポリシロキサンから選ばれる1種類以上のフルオロアルキル基含有オルガノハイドロジェンポリシロキサン

    Si(OSiRf1(OSiR f2OSiR (III)
    {式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、炭素数1~6のアルコキシ基またはケイ素原子結合水素原子であり、かつ、全てのRのうち、少なくとも2個はケイ素原子結合水素原子であり、f1は正の数であり、f2は0または正の数であり、5<f1+f2<150を満たす数である。}

    (HR SiO1/2f3(R SiO1/2f4(HRSiO2/2f5(R SiO2/2f6(RSiO3/2f7(SiO4/2f8 (IV)
    {式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、Rは同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、または炭素数1~6のアルコキシ基または前記のフルオロアルキル基であり、かつ、f3およびf7は正の数であり、f4,f5,f6およびf8は、0または正の数であり、かつf3+f4+f5+f6+f7+f8は、式(IV)で示されるオルガノハイドロジェンポリシロキサンの重量平均分子量が400~10000となる範囲の数である。}

    組成物中のアルケニル基の合計量1モルに対して、(B)成分中のケイ素原子結合水素原子の和が0.1~2.5モルとなる量、

    (C)有効量のヒドロシリル化反応用触媒、
    を含有する、フルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
  2. 前記の(A)成分の平均重合度が5~300の範囲である、請求項1に記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
  3. 前記(A)が下記平均単位式(I)で表されるオルガノポリシロキサンである、請求項1または請求項2に記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。

    Si(OSiRe1(OSiR e2OSiR (I)
    {式中、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基または炭素数2~12のアルケニル基であり、Rは、同一または独立に、炭素数1~12のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、水酸基、もしくは炭素数1~6のアルコキシ基であり、かつ、全てのRのうち、少なくとも2個は炭素数2~12のアルケニル基であり、全てのRおよびRのうち10モル%以上は、前記のフルオロアルキル基であり、e1は正の数およびe2は0または正の数であり、5<e1+e2<298を満たす数である。}
  4. 前記(A)が下記平均単位式(II)で表されるオルガノポリシロキサンである、請求項1~3のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
    Vi Si(OSiROSiRVi (II)
    {式中、RViは、炭素数2~12のアルケニル基であり、Rは前記同様の基であり、Rは、(C2p+1)-R- (Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基であり、かつ、eは20<e<298を満たす数である。}
  5. 前記(A)成分中の、(C2p+1)-R-(Rは前記同様の基であり、pは前記同様の数である)で表されるフルオロアルキル基が、トリフルオロプロピル基である、請求項1~4のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
  6. 前記(B2)成分が、分子中にトリフルオロプロピル基を有するオルガノハイドロジェンポリシロキサンである、請求項1~5のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。
  7. 前記(A)成分が、下記(A1)成分または(A2)成分である、請求項1~6のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物。

    (A1) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50~300であり、重合度200以上のオルガノポリシロキサンの体積含有率が10%以上である、フルオロアルキル基含有オルガノポリシロキサン

    (A2) 下記分子量分布の異なる(a1)成分および(a2)成分からなり、混合物全体の平均重合度が50~300であるフルオロアルキル基含有オルガノポリシロキサン:
    (a1) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が200以上のフルオロアルキル基含有オルガノポリシロキサン
    (a2) 分子中に少なくとも2個の炭素数2~12のアルケニル基を有し、ケイ素原子上の全ての置換基の10モル%以上が、(C2p+1)-R- (Rは炭素原子数1~10のアルキレン基であり、pは1以上8以下の整数である)で表されるフルオロアルキル基であり、平均重合度が50以下のフルオロアルキル基含有オルガノポリシロキサン
  8. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる硬化物。
  9. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、フィルム状もしくはシート状である、トランスデューサー用部材。
  10. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、フィルム状もしくはシート状である、電子材料または表示装置用部材。
  11. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなり、ゲルまたはエラストマーである、トランスデューサー用部材。
  12. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化してなる誘電層を有するトランスデューサー。
  13. 少なくとも一対の電極層間に、請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させて、または前記組成物の硬化反応を一部進行させてなる中間層を介装してなるトランスデューサー。
  14. 中間層がゲルまたはエラストマーである、請求項12または請求項13のトランスデューサー。
  15. 中間層が、請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させてなる硬化物を、1層または2層以上積層してなることを特徴とする、請求項12~14のいずれか1項記載のトランスデューサー。
  16. 請求項1~7のいずれか1項記載のフルオロアルキル基含有硬化性オルガノポリシロキサン組成物を硬化させて、または前記組成物の硬化反応を一部進行させてなる硬化物層を有する電子部品または表示装置。
JP2019519171A 2017-05-18 2018-05-02 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等 Active JP7100631B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017099138 2017-05-18
JP2017099138 2017-05-18
PCT/JP2018/017480 WO2018211981A1 (ja) 2017-05-18 2018-05-02 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等

Publications (2)

Publication Number Publication Date
JPWO2018211981A1 JPWO2018211981A1 (ja) 2020-03-19
JP7100631B2 true JP7100631B2 (ja) 2022-07-13

Family

ID=64273629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519171A Active JP7100631B2 (ja) 2017-05-18 2018-05-02 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等

Country Status (7)

Country Link
US (1) US11479670B2 (ja)
EP (1) EP3626781A4 (ja)
JP (1) JP7100631B2 (ja)
KR (1) KR102561358B1 (ja)
CN (1) CN110573576B (ja)
TW (1) TWI768041B (ja)
WO (1) WO2018211981A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020116440A1 (ja) * 2018-12-07 2021-10-21 ダウ・東レ株式会社 硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
CN113453888B (zh) * 2018-12-27 2023-05-05 陶氏东丽株式会社 固化性有机硅组合物、由所述组合物形成的剥离涂布剂、使用所述剥离涂布剂的剥离膜、以及包含所述剥离膜的层叠体
JP7485497B2 (ja) 2019-02-14 2024-05-16 ダウ・東レ株式会社 オルガノポリシロキサン硬化物フィルム、その用途、製造方法および製造装置
CN110746784B (zh) * 2019-10-22 2022-03-18 湖北兴瑞硅材料有限公司 一种液体硅橡胶及其制备方法
WO2021125353A1 (ja) * 2019-12-20 2021-06-24 ダウ・東レ株式会社 硬化性エラストマー組成物及びその硬化物、硬化物を備えたフィルム、フィルムを備えた積層体及びその製造方法、硬化物を有する電子部品又は表示装置、硬化性エラストマー組成物の設計方法、並びにトランスデューサーデバイスの設計方法
CN112280303A (zh) * 2020-10-12 2021-01-29 北京国电富通科技发展有限责任公司 一种用于带电作业机器人的外绝缘固化料及其制备方法
CN117693558A (zh) * 2021-07-05 2024-03-12 陶氏东丽株式会社 换能器用有机聚硅氧烷组合物、由其固化物膜组成的层叠体、其用途及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502345A (ja) 2003-08-14 2007-02-08 ダウ・コーニング・コーポレイション 改良された表面特性を有するシリコーン及び該シリコーンを調製するための硬化性シリコーン組成物
JP2007502346A (ja) 2003-08-14 2007-02-08 ダウ・コーニング・コーポレイション 改良された耐薬品性を有する接着剤及び接着剤を調製するための硬化性シリコーン組成物
JP2014139292A (ja) 2012-12-21 2014-07-31 Shin Etsu Chem Co Ltd 硬化性シリコーン樹脂組成物、その硬化物及び光半導体デバイス
JP2016503108A (ja) 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサーのための硬化性オルガノポリシロキサン組成物及びかかる硬化性シリコーン組成物のトランスデューサーへの使用
WO2016031242A1 (ja) 2014-08-29 2016-03-03 東レ・ダウコーニング株式会社 フッ素含有重合体-フッ素含有オルガノポリシロキサン複合材料、その製造方法、その用途、及びその製造方法に用いる前駆体組成物
WO2016098334A1 (ja) 2014-12-16 2016-06-23 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
US20160215099A1 (en) 2013-09-03 2016-07-28 Dow Corning Toray Co., Ltd. Silicone gel composition and use thereof
WO2016163069A1 (ja) 2015-04-10 2016-10-13 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
JP2017114983A (ja) 2015-12-22 2017-06-29 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 付加硬化性ポリフルオロオルガノシロキサン組成物

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205359A (ja) 1987-02-20 1988-08-24 Shin Etsu Chem Co Ltd 硬化性フツ素シリコ−ン組成物
US5082706A (en) * 1988-11-23 1992-01-21 Dow Corning Corporation Pressure sensitive adhesive/release liner laminate
JPH0718183A (ja) * 1993-06-30 1995-01-20 Toray Dow Corning Silicone Co Ltd 硬化性シリコーン組成物
US5665794A (en) * 1996-05-20 1997-09-09 Dow Corning Corporation Method for controlling cure initiation and curing times of platinum group metal curing fluorosilicone compositions
WO1998035529A2 (en) 1997-02-07 1998-08-13 Sri International Elastomeric dielectric polymer film sonic actuator
JP4646530B2 (ja) 2003-02-28 2011-03-09 イーメックス株式会社 アクチュエータ素子及び駆動方法
JP5530585B2 (ja) 2007-01-31 2014-06-25 東海ゴム工業株式会社 電歪型アクチュエータ用誘電体エラストマー膜の製造方法
JP4946570B2 (ja) 2007-03-29 2012-06-06 Tdk株式会社 高分子アクチュエータ
JP4922879B2 (ja) 2007-03-30 2012-04-25 東海ゴム工業株式会社 アクチュエータ
JP5186160B2 (ja) 2007-08-31 2013-04-17 東海ゴム工業株式会社 柔軟電極およびそれを用いたアクチュエータ
JP5243818B2 (ja) 2008-03-12 2013-07-24 東海ゴム工業株式会社 アクチュエータ
JP5049205B2 (ja) 2008-06-20 2012-10-17 アルプス電気株式会社 発光性高分子アクチュエータ
JP5252405B2 (ja) 2008-09-12 2013-07-31 アルプス電気株式会社 高分子アクチュエータ
EP2370520B1 (en) * 2008-12-17 2014-10-22 3M Innovative Properties Company Blended fluorosilicone release materials
CN102204079A (zh) 2009-03-04 2011-09-28 松下电器产业株式会社 聚合物致动器
JP5097853B2 (ja) 2009-03-27 2012-12-12 アルプス電気株式会社 アクチュエータ装置及び入力装置
BR112012011534A2 (pt) * 2009-11-16 2016-06-28 3M Innovative Properties Co materiais de liberação de blenda de fluorossilicone
JP5466758B2 (ja) 2010-03-16 2014-04-09 アルプス電気株式会社 高分子アクチュエータを用いた駆動装置
KR101411814B1 (ko) 2010-03-23 2014-06-24 도카이 고무 고교 가부시키가이샤 도전성 가교체, 및 그 제조 방법, 그리고 그것을 사용한 트랜스듀서, 플렉시블 배선판, 전자파 시일드
JP5959807B2 (ja) 2010-08-05 2016-08-02 キヤノン株式会社 アクチュエータおよびアクチュエータ構造体
JP5589702B2 (ja) 2010-09-15 2014-09-17 豊田合成株式会社 アクチュエータ
JP2013106491A (ja) 2011-11-16 2013-05-30 Tdk Corp 高分子アクチュエータ
WO2013118628A1 (ja) 2012-02-08 2013-08-15 アルプス電気株式会社 高分子アクチュエータ素子及び前記高分子アクチュエータ素子の駆動装置ならびに駆動方法
JP2013251942A (ja) 2012-05-30 2013-12-12 Sony Corp 高分子アクチュエーター、アクチュエーター装置、高分子アクチュエーターの製造方法及びアクチュエーター装置の製造方法
JP5930534B2 (ja) 2012-06-08 2016-06-08 アルプス電気株式会社 高分子アクチュエータデバイスシステム
WO2014104331A1 (ja) 2012-12-27 2014-07-03 アルプス電気株式会社 高分子アクチュエータ素子
KR101526463B1 (ko) 2013-02-25 2015-06-05 손정률 자동차의 제동 보조 장치
US10351730B2 (en) * 2013-12-16 2019-07-16 3M Innovation Properties Company Blended release materials
JP6303495B2 (ja) 2013-12-26 2018-04-04 カシオ計算機株式会社 アクチュエータ
WO2015098072A1 (en) 2013-12-27 2015-07-02 Dow Corning Toray Co., Ltd. Curable organopolysiloxane composition, member for transducers
KR20150098072A (ko) 2014-02-19 2015-08-27 엘지전자 주식회사 디스플레이 장치
JP6270273B2 (ja) 2014-03-20 2018-01-31 アルプス電気株式会社 高分子アクチュエータ素子、高分子アクチュエータ素子用電極層、高分子アクチュエータ素子用電極層の製造方法、及び、高分子アクチュエータ素子の製造方法
JP6468646B2 (ja) 2015-03-30 2019-02-13 アルプス電気株式会社 積層型アクチュエータ
US9882117B2 (en) 2015-05-28 2018-01-30 Honda Motor Co., Ltd. Actuator including a dielectric elastomer and electrode films
JP6442386B2 (ja) 2015-09-29 2018-12-19 本田技研工業株式会社 力制御装置
EP3447082A4 (en) * 2016-04-22 2019-11-27 Dow Toray Co., Ltd. HIGH DIELECTRIC FILM, USE AND MANUFACTURING METHOD THEREFOR

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502345A (ja) 2003-08-14 2007-02-08 ダウ・コーニング・コーポレイション 改良された表面特性を有するシリコーン及び該シリコーンを調製するための硬化性シリコーン組成物
JP2007502346A (ja) 2003-08-14 2007-02-08 ダウ・コーニング・コーポレイション 改良された耐薬品性を有する接着剤及び接着剤を調製するための硬化性シリコーン組成物
JP2014139292A (ja) 2012-12-21 2014-07-31 Shin Etsu Chem Co Ltd 硬化性シリコーン樹脂組成物、その硬化物及び光半導体デバイス
JP2016503108A (ja) 2012-12-28 2016-02-01 ダウ コーニング コーポレーションDow Corning Corporation トランスデューサーのための硬化性オルガノポリシロキサン組成物及びかかる硬化性シリコーン組成物のトランスデューサーへの使用
US20160215099A1 (en) 2013-09-03 2016-07-28 Dow Corning Toray Co., Ltd. Silicone gel composition and use thereof
WO2016031242A1 (ja) 2014-08-29 2016-03-03 東レ・ダウコーニング株式会社 フッ素含有重合体-フッ素含有オルガノポリシロキサン複合材料、その製造方法、その用途、及びその製造方法に用いる前駆体組成物
WO2016098334A1 (ja) 2014-12-16 2016-06-23 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
WO2016163069A1 (ja) 2015-04-10 2016-10-13 東レ・ダウコーニング株式会社 フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
JP2017114983A (ja) 2015-12-22 2017-06-29 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 付加硬化性ポリフルオロオルガノシロキサン組成物

Also Published As

Publication number Publication date
US20200071527A1 (en) 2020-03-05
EP3626781A4 (en) 2021-03-03
EP3626781A1 (en) 2020-03-25
TW201917174A (zh) 2019-05-01
TWI768041B (zh) 2022-06-21
KR102561358B1 (ko) 2023-08-01
KR20200008128A (ko) 2020-01-23
CN110573576B (zh) 2021-09-24
US11479670B2 (en) 2022-10-25
WO2018211981A1 (ja) 2018-11-22
JPWO2018211981A1 (ja) 2020-03-19
CN110573576A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
JP7100631B2 (ja) フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等
WO2016163069A1 (ja) フルオロアルキル基含有硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えた電子部品または表示装置
WO2014105959A1 (en) Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
CN115038757B (zh) 固化性弹性体组合物及换能器设备的设计方法
CN116194294A (zh) 由聚有机硅氧烷固化物膜构成的层叠体、其用途及其制造方法
CN113330073B (zh) 膜形成用固化性聚有机硅氧烷组合物以及聚有机硅氧烷固化物膜的制造方法
WO2020116596A1 (ja) フィルム形成用硬化性オルガノポリシロキサン組成物およびオルガノポリシロキサン硬化物フィルムの製造方法
JPWO2020017480A1 (ja) オルガノポリシロキサン硬化物フィルム、その用途および製造方法
US20220017701A1 (en) Curable organopolysiloxane composition, cured product thereof, and transducer and the like equipped with said cured product
WO2014105974A1 (en) Curable organopolysiloxane composition for transducers and applications of such curable silicone composition for transducers
KR20240028480A (ko) 트랜스듀서용 오가노폴리실록산 조성물, 그의 경화물 필름으로 이루어진 적층체, 그의 용도, 및 그의 제조방법
WO2024075661A1 (ja) トランスデューサー用硬化性オルガノポリシロキサン組成物、その硬化物および当該硬化物を備えたトランスデューサー等

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220701

R150 Certificate of patent or registration of utility model

Ref document number: 7100631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350