JP7087854B2 - ステアリング制御装置 - Google Patents

ステアリング制御装置 Download PDF

Info

Publication number
JP7087854B2
JP7087854B2 JP2018167873A JP2018167873A JP7087854B2 JP 7087854 B2 JP7087854 B2 JP 7087854B2 JP 2018167873 A JP2018167873 A JP 2018167873A JP 2018167873 A JP2018167873 A JP 2018167873A JP 7087854 B2 JP7087854 B2 JP 7087854B2
Authority
JP
Japan
Prior art keywords
steering
angle ratio
reaction force
mode
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018167873A
Other languages
English (en)
Other versions
JP2020040454A (ja
Inventor
崇志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018167873A priority Critical patent/JP7087854B2/ja
Priority to CN201910831800.0A priority patent/CN110884559B/zh
Priority to US16/560,074 priority patent/US11124230B2/en
Publication of JP2020040454A publication Critical patent/JP2020040454A/ja
Application granted granted Critical
Publication of JP7087854B2 publication Critical patent/JP7087854B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/007Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits adjustable by the driver, e.g. sport mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/181Steering columns yieldable or adjustable, e.g. tiltable with power actuated adjustment, e.g. with position memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/185Steering columns yieldable or adjustable, e.g. tiltable adjustable by axial displacement, e.g. telescopically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/187Steering columns yieldable or adjustable, e.g. tiltable with tilt adjustment; with tilt and axial adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Description

本発明は、ステアリング制御装置に関する。
従来、ステアリング装置において、操舵角に対する転舵角の角度比(以下、「舵角比」という)を可変とする技術が知られている。
例えば特許文献1に開示されたステアリング装置は、舵角比が可変な可変モードと舵角比が固定の固定モードとをドライバが選択的に入力可能である。また、舵角比が大きいときには、ハンドルが軽く感じられるため、このステアリング装置は、アシストトルクを小さい値に設定する。
特開2016-159782号公報
運転シーンに応じて操作性の良い舵角比は異なるが、その条件の切り分けが困難であった。また、運転中に舵角比が大きく変わると、ドライバが車両の旋回を操ることが難しいという課題があった。
また、特許文献1の従来技術では、舵角比が大きいときアシストトルクを小さい値に設定することで、ドライバがハンドルを重く感じられるようにすることができる。しかし、アシストトルクを小さくするため路面からの入力を抑えることができず、路面からの入力に対してハンドルが取られやすくなるという問題がある。さらに特許文献1の技術では、操舵装置と転舵装置とが機械的に分離したステアバイワイヤシステムへの適用に関し、何ら考慮されていない。
本発明は、このような点に鑑みて創作されたものであり、その目的は、舵角比を可変としたステアバイワイヤシステムにおいて、舵角比が大きいとき、路面からの入力に対してハンドルが取られることを防止するステアリング制御装置を提供することにある。
本発明のステアリング制御装置は、操舵装置(50)と転舵装置(70)とが機械的に分離したステアバイワイヤシステムに適用される。このステアリング制御装置は、反力アクチュエータ(58)と、転舵アクチュエータ(78)と、入力装置(61、91)と、制御部(60)と、を備える。反力アクチュエータは、操舵装置において、操舵に対する反力を付与するようにステアリングホイール(91)を回転させる。転舵アクチュエータは、転舵装置においてタイヤ(99)を転舵させる。
入力装置は、「通常モード」又は「高角度比モード」のいずれかの舵角比モードをドライバが選択して入力可能である。通常モードでは、「ステアリングホイールの操舵角に対するタイヤの転舵角の比」である舵角比(θt/θs)が基準値に設定される。高角度比モードでは、舵角比が基準値より高い値に設定される。制御部は、入力装置に入力された舵角比モードに基づいて、反力アクチュエータ及び転舵アクチュエータの出力を制御する。
制御部は、転舵アクチュエータの出力から算出される路面情報に基づく「反力量」、及び、操舵装置の操舵速度に対し負の相関を有する「粘性補償量」について、通常モードから高角度比モードに移行するとき、反力量の絶対値を小さく、且つ粘性補償量の絶対値を大きく変更する。また、制御部は、高角度比モードから通常モードに移行するとき、反力量の絶対値を大きく、且つ粘性補償量の絶対値を小さく変更する。
操舵装置と転舵装置とが機械的に分離したステアバイワイヤシステムのステアリング装置では、ドライバに路面入力を感知させることと操舵感を生成することとを個別に行うことができる。本発明ではこの特性を利用し、通常モードから高角度比モードに移行するとき、制御部はドライバに感知させる反力量の絶対値を小さくし、路面入力によりハンドルが取られることを防止する。また、制御部は、粘性補償量の絶対値を大きくすることで、舵角比が大きい時でもドライバによるハンドル入力のふらつきを軽減することができる。
なお本明細書では、操舵装置を構成する操舵部材の名称としては「ステアリングホイール」の用語を用いる。ただし、作用効果の記載では、慣用的な表現に従い、「ハンドルが取られる」、「ハンドル入力」等、「ハンドル」の用語を含む表現を用いる。
例えば、従来の電動パワーステアリングシステムとギア比可変ステアリングシステムとを組み合わせたシステムでは、舵角比が高い時に、舵角比が低い時よりも路面からの入力がハンドルに伝わりにくくなる。しかし、操舵感の生成と路面入力の伝達とを切り分けて行うことができない。それに対し、ステアバイワイヤシステムに適用される本発明のステアリング制御装置は、舵角比の変更と共に反力量及び粘性補償量を変更することにより、操舵感の生成と路面入力の伝達とを好適に両立して行うことができる。
第1実施形態のステアリング制御装置が適用されるステアバイワイヤシステムの構成図。 反力モータの制御ブロック図。 (a)反力量、(b)粘性補償量のマップ。 転舵モータの制御ブロック図。 第1実施形態による舵角比変更処理のタイムチャート。 第1実施形態による舵角比変更処理のフローチャート。 高角度比モードへの移行ステップのサブフローチャート。 通常モードへの移行ステップのサブフローチャート。 第2実施形態のステアリング制御装置が適用されるステアバイワイヤシステムの構成図。 図9、図13のステアリングホイール部分のX方向の側面図。 第2実施形態による舵角比変更処理のタイムチャート。 第2実施形態による舵角比変更処理のフローチャート。 第3実施形態のステアリング制御装置が適用されるステアバイワイヤシステムの構成図。 チルトアクチュエータの制御ブロック図。 第3実施形態による舵角比変更処理のタイムチャート。 第3実施形態による舵角比変更処理のフローチャート。
以下、ステアリング制御装置の複数の実施形態を図面に基づいて説明する。各実施形態のステアリング制御装置は、操舵装置と転舵装置とが機械的に分離したステアバイワイヤシステムに適用される。複数の実施形態で実質的に同一の構成には同一の符号を付して説明を省略する。また、以下の第1~第3実施形態を包括して「本実施形態」という。
(第1実施形態)
第1実施形態について、図1~図8を参照して説明する。図1に、第1実施形態のステアリング制御装置が適用されるステアバイワイヤシステム901の全体構成を示す。ステアバイワイヤシステム901は、操舵装置50と転舵装置70とが機械的に分離されている。図1において、タイヤ99は片側のみを図示し、反対側のタイヤの図示を省略する。
操舵装置50は、ステアリングホイール91、ステアリングシャフト92、トルクセンサ94、及び、「反力アクチュエータ」としての反力モータ58等を含む。ステアリングホイール91は、ステアリングシャフト92の一端に設けられる。トルクセンサ94は、トーションバーの捩れ変位に基づき、ステアリングシャフト92に加わる操舵トルクTsを検出する。
ステアバイワイヤシステム901では、ドライバは操舵に対する反力を直接感知することができない。そこで、反力モータ58は、操舵に対する反力を付与するようにステアリングホイール91を回転させ、ドライバに適切な操舵フィーリングを与える。また、第1実施形態では、「入力装置」として、ドライバが操作可能な高角度比スイッチ61がステアリングホイール91上に設けられている。
転舵装置70は、ピニオンギア96、ラック軸97、タイロッド98、ナックルアーム985、及び、「転舵アクチュエータ」としての転舵モータ78等を含み、転舵モータ78の回転を伝達してタイヤ99を転舵させる。詳しくは、転舵モータ78の回転によってピニオンギア96が回転すると、ピニオン96の回転運動は、ラックアンドピニオン機構により、ラック軸97の直線運動に変換される。ラック軸97の両端に設けられたタイロッド98がナックルアーム99を往復移動させることで、タイヤ99の向きが変わる。これにより、一対のタイヤ99は、ラック軸97の変位量に応じた角度に転舵される。
制御部60は、反力モータ58及び転舵モータ78に電気的に接続され、反力モータ58及び転舵モータ78の出力を制御する。反力モータ58、転舵モータ78、高角度比スイッチ61及び制御部60は、「ステアリング制御装置」を構成する。制御部60は、マイコン等を主体として構成され、内部にはいずれも図示しないCPU、ROM、RAM、I/O、及び、これらの構成を接続するバスライン等を備えている。制御部60の各処理は、ROM等の実体的なメモリ装置(すなわち、読み出し可能非一時的有形記録媒体)に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
また、レイアウトの点から、制御部60は一箇所に配置されてもよく、複数箇所に分かれて配置され通信線により互いに情報を通信するように構成されてもよい。例えば反力モータ58を制御する部分が、反力モータ58のステータ及びロータ等と一体に構成され、いわゆる「機電一体式」の構成としてもよい。機電一体式モータは、電動パワーステアリング装置の分野において周知である。同様に、転舵モータ78を制御する部分が、転舵モータ78のステータ及びロータ等と一体に構成されてもよい。
以下、ステアリングホイール91の操舵角θsに対するタイヤ99の転舵角θtの比を「舵角比(θt/θs)」と定義する。また、舵角比が基準値に設定されるモードを「通常モード」、舵角比が基準値よりも高い値に設定されるモードを「高角度比モード」と定義する。ドライバは、「入力装置」としての高角度比スイッチ61をON/OFFすることで、通常モード又は高角度比モードの舵角比モードを選択して入力可能である。明細書中、高角度比スイッチ61を適宜「スイッチ61」と省略して記載する。
したがって、図1に破線矢印で示すように、制御部60には、トルクセンサ94からの操舵トルクTsの情報、及び、高角度比スイッチ61からのスイッチON/OFF情報が入力される。また、実線矢印で示すように、制御部60は、トルク、電流、回転角等の情報を反力モータ58及び転舵モータ78から取得しつつ、反力モータ58及び転舵モータ78に駆動信号を出力する。
ところで、運転シーンに応じて操作性の良い舵角比は異なり、例えば高速走行時には舵角比が小さい方が直進安定性が得られ、低速での駐車時等には舵角比が大きい方が操作効率が向上する。従来、特許文献1(特開2016-159782号公報)には、操舵装置と転舵装置とが機械的に連結されたステアリング制御装置において、舵角比を可変とする技術が開示されている。この技術では、舵角比が大きいとき、アシストトルクを小さい値に設定することでドライバがハンドルを重く感じられるようにすることができる。しかし、アシストトルクを小さくするため路面からの入力を抑えることができず、路面からの入力に対してハンドルが取られやすくなるという問題がある。
また、操舵装置と転舵装置とが機械的に連結されたステアリングシステムにおいて、電動パワーステアリングシステムとギア比可変ステアリングシステムとを組み合わせた構成が想定される。ただし、このシステムでは、舵角比が高い時に、舵角比が低い時よりも路面からの入力がハンドルに伝わりにくくなる。しかし、操舵感の生成と路面入力を伝えることとを切り分けて行うことができない。
それに対し、ステアバイワイヤシステムに適用される本実施形態は、ギア比を可変とすることなく、反力モータ58及び転舵モータ78により、操舵角θsと転舵角θtとを独立して制御することができる。また、舵角比モードを変更するとき、操舵感の生成と路面入力の伝達とを個別に調整することができる。続いて、その詳細構成について説明する。
制御部60による反力モータ58及び転舵モータ78の制御構成について、図2~図4を参照して説明する。反力モータ58に関するパラメータの記号には「r」、転舵モータ78に関するパラメータの記号には「t」を付して区別する。反力モータ58及び転舵モータ78は、それぞれ自身の出力のフィードバック情報に加え、互いに他方のモータの動作情報を用いて制御される。すなわち、反力モータ58の制御には転舵モータ78のトルクTt又は電流Itが用いられ、転舵モータ78の制御には反力モータ58の回転角θrが用いられる。
図2に反力モータ58の制御ブロック図を示す。本実施形態の反力モータ58は、インバータ57から交流電力が供給されて駆動される多相交流モータである。反力モータ58の回転はギア59を介して減速されステアリングシャフト92に伝達され、操舵トルクに付与される。図2等における反力モータ回転角θr、回転角速度ωr及びトルクTrは、ギア59のギア比を乗じた換算後の値とする。また、反力モータ回転角θr及び回転角速度ωrは、操舵角θs及び操舵速度ωsの相関値であり、適宜、操舵角θs及び操舵速度ωsに置き換え可能である。
図2に示す制御系では、反力モータ58の実トルクTrがトルク指令値Tr*に対してフィードバック制御される。トルク指令値Tr*は、路面入力による反力量Trfの他、ばね性成分Tsp、SAT成分Tsat、摩擦補償量Tfric、及び粘性補償量Tviscの各項が加算器51、52、53、54で加算されて算出される。
トルク指令値Tr*の各項は、各演算部510、515、520、530、540にてマップ演算等により演算される。図2に示すマップは、入力と出力とが正の相関であるか負の相関であるかのイメージを表す程度の簡易的なものであり、詳しい特性は適宜規定される。例えば、ステアリングホイール91を中立位置から離れる方向に操舵する切り込み時と、中立位置に戻す方向に操舵する切り戻し時とでマップを切り替えてもよい。
ばね性成分演算部510は、反力モータ回転角θrに基づき、ばね性成分Tspを演算する。SAT成分演算部515は、反力モータ回転角θr及び車速Vに基づき、SAT(セルフアライニングトルク)成分Tsatを演算する。ばね性成分Tsp及びSAT成分Tsatは加算器51に入力される。
摩擦補償量演算部520は、反力モータ回転角速度ωrに基づき、摩擦補償量Tfricを演算する。摩擦補償量Tfricは、反力モータ回転角速度ωr又は操舵速度ωsに対し正の相関を有する。粘性補償量演算部530は、反力モータ回転角速度ωrに基づき、ドライバの操舵において粘性感を付与する粘性補償量Tviscを演算する。粘性補償量Tviscは、反力モータ回転角速度ωr又は操舵速度ωsに対し負の相関を有する。摩擦補償量Tfric及び粘性補償量Tviscは、それぞれ加算器52、53に入力される。
反力量演算部540は、転舵モータ78のトルクTt又は電流It、すなわち転舵モータ78の出力から算出される路面情報に基づく反力量Trfを演算する。反力量Trfは、転舵モータ78のトルクTt又は電流Itに対し負の相関を有する。反力量Trfは加算器54に入力される。こうして加算器51、52、53、54に入力された各項が合計され、トルク指令値Tr*が算出される。
トルク減算器55は、トルク指令値Tr*と反力モータ58の実トルクTrとのトルク偏差を算出する。電流制御部56は、実トルクTrがトルク指令値Tr*に追従するように出力電流Irを演算し、インバータ57に出力する。ここで、反力モータ58のトルクのフィードバック制御に代えて、破線で示すように、電流制御部56の出力電流をフィードバック制御してもよい。
次に図3を参照し、舵角比変更処理に関係する制御について説明する。本実施形態では後述する舵角比変更処理において、舵角比α(=(θt/θs))の変更と共に、反力量Trf及び粘性補償量Tviscを相対的に大きく又は小さく変更する。上述のように、反力量Trfは、負の比例定数により転舵モータ78のトルクTt又は電流Itに比例するトルク成分である。また、粘性補償量Tviscは、負の比例定数により反力モータ回転角速度ωr又は操舵速度ωsに比例するトルク成分である。
図3(a)に示す反力量演算部540のマップにおいて、転舵モータ78の出力に対する反力量Trfの直線の負の勾配の絶対値を「マップ勾配の絶対値」という。反力量演算部540は、舵角比αが相対的に小さい通常モードではマップ勾配の絶対値が相対的に大きく設定され、舵角比αが相対的に大きい高角度比モードではマップ勾配の絶対値が相対的に小さく設定される。したがって、転舵モータ78の出力が一定のとき、高角度比モードでは通常モードよりも反力量Trfの絶対値が小さくなる。これにより、高角度比モードで路面入力によりハンドルが取られにくくなる。
図3(b)に示す粘性補償量演算部530のマップにおいて、反力モータ回転角速度ωr又は操舵速度ωsに対する粘性補償量Tviscの直線の負の勾配の絶対値を「マップ勾配の絶対値」という。反力量演算部540は、舵角比αが相対的に小さい通常モードではマップ勾配の絶対値が相対的に小さく設定され、舵角比αが相対的に大きい高角度比モードではマップ勾配の絶対値が相対的に大きく設定される。したがって、操舵速度ωsが一定のとき、高角度比モードでは通常モードよりも粘性補償量Tviscの絶対値が大きくなる。これにより、高角度比モードでハンドル入力のふらつきが抑制される。
図4に転舵モータ78の制御ブロック図を示す。本実施形態の転舵モータ78は、反力モータ58と同様にインバータ77から交流電力が供給されて駆動される多相交流モータである。転舵モータ78の回転は、ギア79を介して減速されタイヤ99に伝達される。転舵モータ78の制御系は、外側ループで転舵角θtを制御し、内側ループで転舵モータ電流Itを制御する二重ループにより構成されている。
転舵モータ78の制御系には、ギア比換算後の反力モータ回転角θrが入力される。角度換算部71は、入力された反力モータ回転角θrに舵角比α(=(θt/θs))を乗じた換算値αθrを算出する。したがって、舵角比αが変更されると換算値αθrは変化する。また、転舵角θtの実値は、転舵モータ78の回転角にギア79のギア比を乗じた値としてフィードバックされる。
角度減算器73は、反力モータ回転角の換算値αθrと転舵角θtとの角度偏差を算出する。角度制御部74は、角度減算器73が算出した角度偏差を0に近づけるように電流指令値It*を演算する。電流減算器75は、電流指令値It*とフィードバックされた電流制御部76の出力電流Itとの電流偏差を算出する。電流制御部76は、出力電流Itが指令値It*に追従するように出力電流Itを演算し、インバータ77に出力する。
第1実施形態による舵角比変更処理について、図5のタイムチャート、及び図6~図8のフローチャートを参照して説明する。図5には、上から順に、高角度比スイッチ61のON/OFF、反力量の絶対値、舵角比、及び粘性補償量の絶対値の変化を示す。これらの値は、スイッチON/OFF以外の運転条件、すなわち、図3に示す回転加速度ωrや転舵モータ78のトルクTt又は電流It等の条件が一定であることを前提として、いずれも2値で変化する。
タイムチャートの時刻t0~t8の記号は、第2実施形態の図11及び第3実施形態の図15と共通に用いられる。第1実施形態では、時刻t1は時刻t2と重なり、時刻t5は時刻t6と重なる。ただし厳密には、時刻t2は時刻t1に対し、また時刻t6は時刻t5に対し、スイッチ61の動作検出時間及び通信時間の遅延が生じる可能性がある。
時刻t0以前の初期状態では、高角度比スイッチ61はOFFであり、舵角比は基準値である。時刻t0に高角度比スイッチ61がONしてから所定時間(例えば0.5s)後の時刻t1と実質的に同じ時刻t2に、制御部60は、高角度比モードへの移行処理を開始する。制御部60は、まず時刻t2に反力量の絶対値を小さく変更し、次に時刻t3に舵角比を高角度比の値に変更し、その後、時刻t4に粘性補償量の絶対値を大きく変更する。時刻t2、t3、t4の間の時間差は、応答時間のばらつき等による逆転が生じない範囲であれば最小限でかまわない。
この処理順番は、第1が「ドライバが意図する急操舵を妨げないこと」、第2が「路面入力でハンドルが取られないこと」、第3が「高角度比でのハンドル入力のふらつきを防ぐこと」という優先順位の考え方に基づき設定される。つまり、ドライバが意図する急操舵を妨げないように舵角比を高く変更してから粘性を大きくする。また、路面入力でハンドルが取られないように、反力量の絶対値を小さくしてから舵角比を高く変更する。
次に、高角度比モードにおいて時刻t5に高角度比スイッチ61がOFFされると、時刻t5と実質的に同じ時刻t6に、制御部60は、通常モードへの移行処理を開始する。高角度比モードへの移行処理とは逆に、制御部60は、まず時刻t6に粘性補償量の絶対値を小さく変更し、次に時刻t7に舵角比を基準値に変更し、その後、時刻t8に反力量の絶対値を大きく変更する。時刻t6、t7、t8の間の時間差は、応答時間のばらつき等による逆転が生じない範囲であれば最小限でかまわない。
図6以下のフローチャートの説明で、記号「S」はステップを示す。各実施形態で実質的に同一のステップについてステップ番号を共通に用いる都合上、ステップ番号に欠番が生じる場合がある。図7、図8は、それぞれ、図6のS19及びS29のサブフローチャートである。
図6のフローチャートにおいて、車両起動時における初期の舵角比は基準値である。すなわち、初期の舵角比モードは通常モードである。前半のS11~S19では、通常モードから高角度比モードへの舵角比変更処理が実行され、後半のS21~S29では、高角度比モードから通常モードへの舵角比変更処理が実行される。
通常モード中に実行されるS11では、高角度比モードが有効であるか判断される。高角度比モードが無効であり、S11でNOと判断されると、S21に移行する。高角度比モードが有効であり、S11でYESと判断されると、S12では高角度比スイッチ61がON状態であるか判断される。高角度比スイッチ61がOFFであり、S12でNOと判断されると、S21に移行する。
S13では、運転条件について、以下の3項目のAND条件が成立するか判断される。3項目の全てがYESの場合、S13でYESと判断され、制御部60は舵角比モードの変更を許可する。一方、3項目のうちいずれか1つでもNOの場合、S13でNOと判断され、制御部60は舵角比モードの変更を禁止する。S13でNOと判断されるとS21に移行する。
ここで、操舵角θs及び操舵トルクTsは、ステアリングホイール91の中立位置に対する回転方向に応じて、例えば左回転方向が正、右回転方向が負と定義される。基本的に回転方向による特性の違いはないため、両回転方向の値を包括して絶対値が判定閾値と比較される。
<条件1>操舵角の絶対値|θs|が操舵角閾値θs_th(例えば10[deg])未満である。つまり、車両がほぼ直進中の時、制御部60は舵角比モードの変更を許可する。一方、車両が旋回途中に舵角比を変更すると操舵が不安定となるおそがあるため、操舵角の絶対値|θs|が操舵角閾値θs_th以上のとき、制御部60は、舵角比モードの変更を禁止する。なお、操舵角の絶対値|θs|に代えて転舵角の絶対値|θt|が転舵角閾値と比較されてもよい。
<条件2>操舵トルクの絶対値|Ts|がトルク閾値Ts_th(例えば5[Nm])未満である。つまり、ドライバが実質的に操舵中でない時、制御部60は舵角比モードの変更を許可する。一方、ドライバが比較的大きいトルクで操舵中に舵角比を変更すると操舵が不安定となるおそがあるため、操舵トルクの絶対値|Ts|が操舵トルク閾値Ts_th以上のとき、制御部60は舵角比モードの変更を禁止する。
<条件3>車速Vが車速閾値V_th(例えば30[km/h])未満である。つまり、低速走行時には、制御部60は舵角比モードの変更を許可する。一方、車速Vが車速閾値V_th以上の高速走行時には、制御部60は舵角比モードの変更を禁止する。
S13の舵角比変更可否判断ステップでYESと判断されると、制御部60は、S17で高角度比モードへの移行をインストルメントパネルのメータ等でドライバに通知し、所定時間(例えば0.5s)待機する。その後、制御部60は、S19で高角度比モードに移行する。図7に示すように、通常モードから高角度比モードに移行するとき、制御部60は、まずS191で反力量の絶対値を小さく変更し、次にS192で舵角比を高角度比の値に変更し、その後、S193で粘性補償量の絶対値を大きく変更する。
続いてS21では、現在高角度比モードであるか否か判断され、YESの場合、S22に移行し、NOの場合、S11に戻る。S22では、高角度比モードが無効、又は、高角度比スイッチ61がOFFであるか判断され、YESの場合、S23に移行し、NOの場合、S22の判断が繰り返される。S23では、S13と同じ3項目のAND条件に基づき、舵角比モードの変更可否が判断される。S23でNOと判断されると、S22の前に戻る。
S23でYESと判断されると、制御部60は、S27で、前述のメータ等で通知した高角度比モードの通知をオフしてS29で通常モードに移行し、S11の前に戻る。つまり、通常モードに戻すときには、通知後の待機の処理が省略される。図8に示すように、高角度比モードから通常モードに移行するとき、制御部60は、まずS291で粘性補償量の絶対値を小さく変更し、次にS292で舵角比を基準値に変更し、その後、S293で反力量の絶対値を大きく変更する。
(効果)
制御部60は、通常モードから高角度比モードに移行するとき、反力量の絶対値を小さく、且つ粘性補償量の絶対値を大きく変更する。すなわち制御部60は、ドライバに感知させる反力量の絶対値を小さくし、路面入力によりハンドルが取られることを防止する。それと共に、制御部は、粘性補償量の絶対値を大きくすることで、舵角比が大きい時でもドライバによるハンドル入力のふらつきを軽減することができる。また、制御部60は、高角度比モードから通常モードに移行するとき、反力量の絶対値を大きく、且つ粘性補償量の絶対値を小さく変更する。これにより、通常モードに適切に復帰することができる。
詳しくは、制御部60は、通常モードから高角度比モードに移行するとき、反力量の絶対値を小さくした後に舵角比を高く変更し、その後、粘性補償量の絶対値を大きくする。これにより、ドライバが意図する急操舵を妨げないように、且つ、路面入力でハンドルが取られないように舵角比を高く変更することができる。また、制御部60は、高角度比モードから通常モードに移行するとき、粘性補償量の絶対値を小さくした後に舵角比を低く変更し、その後、反力量の絶対値を大きくする。これにより、通常モードに適切に復帰することができる。
さらに制御部60は、車両が直進中でない時や、車速Vが車速閾値V_th以上の高速走行時には、スイッチ61のON/OFFにかかわらず舵角比モードの変更を禁止する。これにより、舵角比モードの変更時に操舵が不安定となることを防止することができる。
加えて第1実施形態では、「入力装置」として高角度比スイッチ61がステアリングホイール91上に設けられている。舵角比モード変更専用のスイッチ61を用いることで、ドライバは、他のスイッチと間違えることなく適切に操作することができる。
(第2実施形態)
第2実施形態について、図9~図12を参照して説明する。図9に示すステアバイワイヤシステム902に適用される第2実施形態のステアリング制御装置は、ステアリングホイール91のチルト角度を調整するチルトアクチュエータ48がステアリングコラム93に設けられている。図10に示すように、ステアリングホイール91は、初期状態の基準位置γ0からチルトアクチュエータ48の動作により、チルト角度γ、すなわち上下方向の位置が可変に設けられている。第2実施形態では、舵角比モードを変更する時、チルトアクチュエータ48によりチルト角度γを変更してドライバに通知する。
第2実施形態による舵角比変更処理について、図11のタイムチャート、及び図12のフローチャートを参照して説明する。第1実施形態のタイムチャートである図5に対し、図11にはチルト角度γの図が追加されている。チルト角度γが基準位置γ0よりも低いほど下方に図示される。また、図12のフローチャートでは、第1実施形態の図6に対し、S18及びS28が追加されている。
図11の時刻t0に高角度比スイッチ61がONしてから所定時間(例えば0.5s)後の時刻t1に、制御部60はチルトアクチュエータ48を駆動し、チルト角度γを基準位置γ0から下げる方向に変更を開始する。このステップが図12のS18である。時刻t2にチルト角度γが高角度比モードに対応する値γhiに到達すると、第1実施形態と同様に、通常モードから高角度比モードへの移行が実施される。
また、時刻t5に高角度比スイッチ61がOFFすると、制御部60はチルトアクチュエータ48を駆動し、チルト角度γを基準位置γ0に戻す方向に変更を開始する。このステップが図12のS28である。時刻t6にチルト角度γが基準位置γ0に到達すると、第1実施形態と同様に、高角度比モードから通常モードへの移行が実施される。
以上のように第2実施形態では、ドライバによりスイッチ61が操作された後、舵角比モードを変更する直前に、制御部60は、チルト角度γを変更してドライバに通知する。したがってドライバは、舵角比モードが変更されることを、メータからの視覚情報に加え、ステアリングホイール91を握った手の感覚からより確実に感知することができる。
(第3実施形態)
第3実施形態について、図13~図16を参照して説明する。図13のステアリングホイール部分の側面図は、第2実施形態の図10を援用する。図13に示すステアバイワイヤシステム903に適用される第3実施形態のステアリング制御装置は、「入力装置」としての高角度比スイッチ61は設けられていない。その代わり、ドライバがステアリングホイール91のチルト角度γを変更したとき、ステアリングホイール91が「入力装置」として機能する。
ステアリングホイール91は初期状態で最も高い基準位置γ0にあるものとし、チルト角度γは、ステアリングホイール91を基準位置γ0から下げる方向を正とする。チルトアクチュエータ48は例えばモータで構成され、ステアリングホイール91を昇降させるようにトルクを出力する。チルトアクチュエータ48の出力トルクが比較的大きいとき、ドライバは自分の力でステアリングホイール91を昇降させ、チルト角度γを任意に変更することができない。一方、チルトアクチュエータ48の出力トルクが比較的小さいとき、ドライバは自分の力でチルト角度γを任意に変更することができ、その操作を入力として舵角比モードが切り替えられる。
図14にチルトアクチュエータ48の概略の制御ブロック図を示す。チルトアクチュエータ48は、制御パラメータのフィードバック制御により制御される。フィードバックされるパラメータはトルクでもよく電流でもよい。減算器45は、トルク又は電流の目標値と実値との偏差を算出する。電流制御部46は、減算器45で算出された偏差を0に近づけるように電流制御を行い、駆動回路47に駆動信号を出力する。
ここで、ステアリングホイール91を基準位置γ0から下げる操作を「進み操作」といい、ステアリングホイール91を基準位置γ0に戻すように上げる操作を「戻し操作」という。舵角比モードの変更が許可される場合、制御部60は、進み操作を入力として通常モードから高角度比モードに切り替え、戻し操作を入力として高角度比モードから通常モードに切り替える。
現在のチルト角度をγpr、通常モードに対応する基準位置のチルト角度をγ0、高角度比モードに対応するチルト角度をγhiとする。また、進み操作でのチルトトルク定数をKa、戻し操作でのチルトトルク定数をKbとすると、フィードバック制御の目標値は、進み操作時には式(1)、戻し操作時には式(2)で算出される。進み操作又は戻し操作に応じて、いずれかの式で算出された目標値が減算器45に入力される。
|Ka×(γpr-γ0)| ・・・(1)
|Kb×(γpr-γhi)| ・・・(2)
第3実施形態による舵角比変更処理について、図15のタイムチャート、及び図16のフローチャートを参照して説明する。第2実施形態のタイムチャートである図11に対し図15には高角度比スイッチの図が無い。また、チルト角度γの図の縦軸に閾値γa、γbが記されている。ここでは、基準位置のチルト角度γ0を0とする。進み操作時の第1閾値γaは、高角度比モードに対応するチルト角度γhiに基づき、マージン等を考慮して設定される。戻し操作時の第2閾値γbは、基準位置のチルト角度γ0に基づいて設定される。例えば、第1閾値γaは15[deg]、第2閾値γbは1[deg]というように、「0≦γb≦γa」の関係に設定される。
ドライバがステアリングホイール91を下げてチルト角度γを第1閾値γa以上とする操作は、高角度比スイッチ61をONする操作に相当する。また、ドライバがステアリングホイール91を下げた状態から基準位置側に戻し、チルト角度γを第2閾値γb以下とする操作は、高角度比スイッチ61をOFFする操作に相当する。このように、図15に示す例では、「γb<γa」とし、チルト角度γによる舵角比モードの切替機能にヒステリシスを設定している。ただし、舵角比モードのハンチングが問題にならない場合、「γb=γa」の関係に設定してもよい。
図15の時刻t0にはチルト角度γが第1閾値γa以上となり、その0.5s後の時刻t2~時刻t4の期間に、通常モードから高角度比モードへの移行が実行される。また、時刻t5にはチルト角度γが第2閾値γb以下となり、時刻t6~時刻t8の期間に、高角度比モードから通常モードへの移行が実行される。
次に図16のフローチャートでは、第1、第2実施形態の図6、図12にて高角度比スイッチ61のON/OFFを判断するS12、S22は無い。通常モードから高角度比モードへの移行において、S13でYES、すなわち移行可能と判断された場合、S14dで制御部60は、チルトトルク定数Kaを、ドライバの力でチルト角度γを動かすことができる程度の小さな値に設定する。一方、S13でNO、すなわち移行不可と判断された場合、S14uで制御部60は、チルトトルク定数Kaを、ドライバがチルト角度γを動かすことができない程度の大きな値に設定する。
S13でYESの場合、S14dの次のS15で、現在のチルト角度γが進み操作時の第1閾値γa以上であるか判断される。或いは、チルト角度γの進み側変化量が変化量閾値以上であるかが判断されてもよい。S15でYESの場合、制御部60は、高角度比モードへの移行要求が有ると判断し、S16でチルトアクチュエータ48の指令を切り替える。制御部60は、S17で高角度比モードへの移行をインストルメントパネルのメータ等でドライバに通知し、所定時間(例えば0.5s)待機する。その後、制御部60は、S19で高角度比モードに移行する。
S15でNOの場合、制御部60は、高角度比モードへの移行要求が無いと判断する。この場合、S16~S19がスキップされ、高角度比モードでないため、S21でNOと判断されてルーチンの最初に戻る。
高角度比モードから通常モードへの移行において、S23でYES、すなわち移行可能と判断された場合、S24dで制御部60は、チルトトルク定数Kbを、ドライバの力でチルト角度γを動かすことができる程度の小さな値に設定する。一方、S23でNO、すなわち移行不可と判断された場合、S24uで制御部60は、チルトトルク定数Kbを、ドライバがチルト角度γを動かすことができない程度の大きな値に設定する。
S23でYESの場合、S24dの次のS25で、チルト角度γが戻し操作時の第2閾値γb以下であるか判断される。或いは、チルト角度γの戻し側変化量が変化量閾値以上であるかが判断されてもよい。S25でYESの場合、制御部60は、通常モードへの移行要求が有ると判断し、S26でチルトアクチュエータ48の指令を切り替え、S27で前述のメータ等で通知した高角度比モードの通知をオフし、S29で通常モードに移行する。S25でNOの場合、制御部60は、通常モードへの移行要求が無いと判断し、S23の前に戻る。
以上のように第3実施形態では、ドライバがチルト角度γを変更することにより、ステアリングホイール91が「入力装置」として機能する。したがって、専用の高角度比スイッチ61を設ける必要がなくなる。また、第2実施形態と同様、ドライバは、ステアリングホイール91のチルト角度γにより、現在の舵角比モードを把握しやすくなる。
(その他の実施形態)
(a)第1実施形態の高角度比スイッチ61の設置位置は、図1に示すステアリングホイール91上の他、パドルシフト周辺やシフトレバー周辺でもよい。また、シフトレバーを入力装置とし、例えばRレンジにシフトした時、高角度比モードに移行するようにしてもよい。
(b)第2、第3実施形態のチルトアクチュエータ48は、ステアリングホイール91を前後に移動させるテレスコーピックアクチュエータとしての機能を兼ね備えてもよい。或いは、チルトアクチュエータ48とは別にテレスコーピックアクチュエータが設けられてもよい。なお、テレスコーピックアクチュエータの図示は、図9、図13のチルトアクチュエータ48の図を援用する。その場合、第2実施形態では、高角度比モード移行時のドライバへの通知手段として、チルト角度γに代えて図10に示すテレスコーピック長Lを変更してもよい。また、第3実施形態では、チルト角度γに代えてテレスコーピック長Lを変更することで、舵角比モードを切り替えてもよい。
(c)第2、第3実施形態ではチルト角度の基準位置γ0を最高位置に設定した例を示しているが、最低位置又は中間位置を基準位置γ0としてもよい。基準位置γ0を中間位置に設定した場合、ドライバがステアリングホイール91を基準位置γ0から変化量閾値以上、上昇又は下降させたとき、舵角比モードを切り替えるようにしてもよい。
(d)フローチャートのS13、S23に示される舵角比変更可否判断ステップでは、操舵角θs、操舵トルクTs、車速Vの3項目の条件のいずれかが省略されてもよく、又はこれらに加えて、他のパラメータの条件が判断されてもよい。例えば操舵角速度ωs、摩擦係数等の路面状況、ドライバの適正情報等が判断に用いられてもよい。また、通常モードから高角度比モードへの移行時と、高角度比モードから通常モードへの移行時とで、パラメータや判定閾値が異なってもよい。
(e)上記実施形態での舵角比モードは通常モード及び高角度比モードの二段階であるが、三段階以上の舵角比モードを設定可能としてもよい。また、例えば一段階の舵角比の差が比較的小さく、操舵中や高速走行時に舵角比が変更されても操舵安定性に及ぼす影響が小さい場合等には、舵角比モードの変更を常に許可してもよい。
(f)反力アクチュエータ及び転舵アクチュエータは、回転出力を生成する電動モータに限らず、直線出力を生成するリニアアクチュエータや油圧式アクチュエータでもよい。チルトアクチュエータ及びテレスコーピックアクチュエータについても同様である。
本発明はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
50・・・操舵装置、58・・・反力モータ(反力アクチュエータ)、
60・・・制御部、 61・・・高角度比スイッチ(入力装置)、
70・・・転舵装置、78・・・転舵モータ(転舵アクチュエータ)、
901-903・・・ステアバイワイヤシステム、
91・・・ステアリングホイール、入力装置、 99・・・タイヤ。

Claims (7)

  1. 操舵装置(50)と転舵装置(70)とが機械的に分離したステアバイワイヤシステム(901-903)に適用されるステアリング制御装置であって、
    前記操舵装置において、操舵に対する反力を付与するようにステアリングホイール(91)を回転させる反力アクチュエータ(58)と、
    前記転舵装置においてタイヤ(99)を転舵させる転舵アクチュエータ(78)と、
    前記ステアリングホイールの操舵角に対する前記タイヤの転舵角の比である舵角比(θt/θs)が基準値に設定される通常モード、又は、前記舵角比が前記基準値より高い値に設定される高角度比モードのいずれかの舵角比モードをドライバが選択して入力可能な入力装置(61、91)と、
    前記入力装置に入力された舵角比モードに基づいて、前記反力アクチュエータ及び前記転舵アクチュエータの出力を制御する制御部(60)と、
    を備え、
    前記制御部は、
    前記転舵アクチュエータの出力から算出される路面情報に基づく反力量、及び、前記操舵装置の操舵速度に対し負の相関を有する粘性補償量について、
    前記通常モードから前記高角度比モードに移行するとき、前記反力量の絶対値を小さく、且つ前記粘性補償量の絶対値を大きく変更し、
    前記高角度比モードから前記通常モードに移行するとき、前記反力量の絶対値を大きく、且つ前記粘性補償量の絶対値を小さく変更するステアリング制御装置。
  2. 前記制御部は、
    前記通常モードから前記高角度比モードに移行するとき、前記反力量の絶対値を小さくした後に前記舵角比を高く変更し、その後、前記粘性補償量の絶対値を大きくし、
    前記高角度比モードから前記通常モードに移行するとき、前記粘性補償量の絶対値を小さくした後に前記舵角比を低く変更し、その後、前記反力量の絶対値を大きくする請求項1に記載のステアリング制御装置。
  3. 前記制御部は、操舵角の絶対値又は転舵角の絶対値が角度閾値以上のとき、前記舵角比モードの変更を禁止する請求項1または2に記載のステアリング制御装置。
  4. 前記制御部は、車速が車速閾値以上のとき、前記舵角比モードの変更を禁止する請求項1~3のいずれか一項に記載のステアリング制御装置。
  5. 前記入力装置は、ドライバが操作可能な高角度比スイッチ(61)である請求項1~4のいずれか一項に記載のステアリング制御装置。
  6. 前記ステアリングホイールのチルト角度を調整するチルトアクチュエータ(48)又はテレスコーピック長を調整するテレスコーピックアクチュエータをさらに備え、
    前記制御部は、前記舵角比モードを変更するとき、前記チルトアクチュエータ又は前記テレスコーピックアクチュエータによりチルト角度又はテレスコーピック長を変更してドライバに通知する請求項5に記載のステアリング制御装置。
  7. ドライバが前記ステアリングホイールのチルト角度又はテレスコーピック長を変更することで前記ステアリングホイールが前記入力装置として機能する請求項1~4のいずれか一項に記載のステアリング制御装置。
JP2018167873A 2018-09-07 2018-09-07 ステアリング制御装置 Active JP7087854B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018167873A JP7087854B2 (ja) 2018-09-07 2018-09-07 ステアリング制御装置
CN201910831800.0A CN110884559B (zh) 2018-09-07 2019-09-04 转向控制器和转向控制的方法
US16/560,074 US11124230B2 (en) 2018-09-07 2019-09-04 Steering controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018167873A JP7087854B2 (ja) 2018-09-07 2018-09-07 ステアリング制御装置

Publications (2)

Publication Number Publication Date
JP2020040454A JP2020040454A (ja) 2020-03-19
JP7087854B2 true JP7087854B2 (ja) 2022-06-21

Family

ID=69720862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018167873A Active JP7087854B2 (ja) 2018-09-07 2018-09-07 ステアリング制御装置

Country Status (3)

Country Link
US (1) US11124230B2 (ja)
JP (1) JP7087854B2 (ja)
CN (1) CN110884559B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759822B2 (ja) * 2016-08-02 2020-09-23 いすゞ自動車株式会社 操舵補助装置及び操舵補助方法
US11345387B2 (en) * 2019-11-21 2022-05-31 Nsk Ltd. Electrically adjustable steering
JP7342763B2 (ja) * 2020-03-30 2023-09-12 トヨタ自動車株式会社 車両用ステアリングシステム
CN112572602B (zh) * 2020-12-24 2022-03-29 上海汽车工业(集团)总公司 Sbw末端锁止位置可变控制方法、控制器和存储介质
CN113247086B (zh) * 2021-03-05 2022-08-16 北京汽车股份有限公司 中位扭矩偏移的补偿方法、装置及车辆

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041416A (ja) 2003-07-25 2005-02-17 Nissan Motor Co Ltd 車両用操舵装置
WO2011013217A1 (ja) 2009-07-29 2011-02-03 トヨタ自動車株式会社 操舵制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226499A (en) * 1989-02-28 1993-07-13 Mazda Motor Corporation Front and rear wheel turning system for vehicle
JPH02227381A (ja) 1989-02-28 1990-09-10 Mazda Motor Corp 車両の後輪操舵とパワーステアリングの協調制御装置
JP4293734B2 (ja) * 2001-01-17 2009-07-08 三菱電機株式会社 電動式パワーステアリング制御装置
JP4120427B2 (ja) * 2003-03-06 2008-07-16 トヨタ自動車株式会社 車輌用操舵制御装置
JP2004291877A (ja) * 2003-03-27 2004-10-21 Toyoda Mach Works Ltd 車両用操舵装置
JP3875209B2 (ja) * 2003-04-22 2007-01-31 株式会社ジェイテクト ステアバイワイヤシステム及びその制御プログラム
JP2005254835A (ja) * 2004-03-09 2005-09-22 Hitachi Ltd 車両の走行制御装置及び車両制御ユニット
JP4449918B2 (ja) * 2006-02-15 2010-04-14 トヨタ自動車株式会社 電動パワーステアリング装置
JP4894388B2 (ja) * 2006-07-21 2012-03-14 日産自動車株式会社 操舵機構制御装置及び自動車
JP5250979B2 (ja) * 2007-02-07 2013-07-31 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5430505B2 (ja) * 2010-06-25 2014-03-05 トヨタ自動車株式会社 車両の制御装置
CN105377661B (zh) * 2013-07-11 2018-04-03 丰田自动车株式会社 车辆控制装置
JP2016159782A (ja) 2015-03-02 2016-09-05 日本精工株式会社 ステアリング装置
JP2016172459A (ja) * 2015-03-16 2016-09-29 株式会社ジェイテクト ステアリング装置
JP6112275B1 (ja) * 2015-06-26 2017-04-12 日本精工株式会社 電動パワーステアリング機構を用いた運転支援制御装置
JP6790452B2 (ja) * 2015-11-13 2020-11-25 株式会社デンソー ステアリング制御装置
JP6750341B2 (ja) * 2016-06-22 2020-09-02 株式会社ジェイテクト 操舵制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005041416A (ja) 2003-07-25 2005-02-17 Nissan Motor Co Ltd 車両用操舵装置
WO2011013217A1 (ja) 2009-07-29 2011-02-03 トヨタ自動車株式会社 操舵制御装置

Also Published As

Publication number Publication date
CN110884559A (zh) 2020-03-17
US20200079423A1 (en) 2020-03-12
CN110884559B (zh) 2022-08-19
JP2020040454A (ja) 2020-03-19
US11124230B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
JP7087854B2 (ja) ステアリング制御装置
JP5971426B2 (ja) 電動パワーステアリング装置
JP3894886B2 (ja) 車両用操舵装置
JP4470565B2 (ja) 車両用操舵装置
EP3517406B1 (en) Steering control apparatus
JP7124561B2 (ja) 旋回制御装置
JP3897293B2 (ja) 車両の運転操作装置
JP2005008007A (ja) 車両用操舵装置
JP2014201157A (ja) 車両用操舵装置
JP2004352090A (ja) 車両の操舵制御装置
CN113173203A (zh) 转向控制装置
JP4788856B2 (ja) 車両の操舵装置
JP3825297B2 (ja) 車両の操舵装置
JP3643942B2 (ja) 車両用操舵装置
CN115723837A (zh) 转向系统
KR101172098B1 (ko) 능동조향장치의 반력저감을 위한 전동식 파워스티어링시스템
JP5831406B2 (ja) 操舵装置及び操舵制御装置
JP3894765B2 (ja) 車両の操舵装置
JP2009166715A (ja) 電動パワーステアリング装置
JP5045872B2 (ja) 電動パワーステアリング装置
JP2008087644A (ja) 操舵制御装置、及び操舵制御方法
JP2006264393A (ja) 車両用操舵装置
JP2016084002A (ja) 車両用操舵装置
JPH10218001A (ja) 車両用操舵装置
JP3975777B2 (ja) 車両の操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7087854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151