JP7077656B2 - 虚像表示装置 - Google Patents

虚像表示装置 Download PDF

Info

Publication number
JP7077656B2
JP7077656B2 JP2018031641A JP2018031641A JP7077656B2 JP 7077656 B2 JP7077656 B2 JP 7077656B2 JP 2018031641 A JP2018031641 A JP 2018031641A JP 2018031641 A JP2018031641 A JP 2018031641A JP 7077656 B2 JP7077656 B2 JP 7077656B2
Authority
JP
Japan
Prior art keywords
lens
light
image display
display device
virtual image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018031641A
Other languages
English (en)
Other versions
JP2019148626A (ja
Inventor
将行 ▲高▼木
高司 武田
朗 小松
敏明 宮尾
論人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018031641A priority Critical patent/JP7077656B2/ja
Priority to EP19158795.5A priority patent/EP3531183A1/en
Priority to CN201910137389.7A priority patent/CN110196492B/zh
Priority to US16/284,404 priority patent/US10606095B2/en
Publication of JP2019148626A publication Critical patent/JP2019148626A/ja
Application granted granted Critical
Publication of JP7077656B2 publication Critical patent/JP7077656B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state

Description

本発明は、頭部に装着して映像素子等によって形成された映像を観察者に提示する虚像表示装置に関する。
観察者の頭部に装着するヘッドマウントディスプレイ等の虚像表示装置あるいは頭部搭載型表示装置として、例えば特許文献1に示すように、広視野のクローズドタイプであって、ハーフミラーを利用した一部光学折返し部を設けることで、薄型で広画角の光学系を実現しているものが知られている。なお、以下において、ヘッドマウントディスプレイをHMDとも記載する。
しかしながら、HMDにおいて、薄型で広画角の光学系を実現しつつ装置の小型化あるいは薄型化を図ろうとすると、光学系への負担が大きくなる。つまり、光学系を構成するレンズの曲面形状や屈折率については、パワーを得やすいものとなっていることが望ましい。この場合、光学系を構成するレンズの形状等によっては、例えば、周辺側では各種収差の発生の可能性が高まるのみならず、全反射条件から光が入射できなくなる可能性等までも考えられる。すなわち、設計上の制約が増すことになる。特に、小型の映像素子による画像を拡大して投射を行う場合には、上記のような光の入射角度の問題が顕著となる可能性がある。
また、上記のような折り返し光学系において、例えば光を折り返すための光学素子として偏光板等を用いる際には、平面に設けることが望ましい、あるいは、必須となる、といったことも想定される。
特開平8-327940号公報
本発明に係る虚像表示装置は、画像を表示する映像素子と、映像光の取出し位置に配置され、映像光を射出させる光射出平面と、映像素子側に形成される凸面とを有する第1レンズと、第1レンズよりも映像素子側に配置され、第1レンズの凸面に接合する凹面と、映像素子からの映像光を入射させる光入射平面とを有する第2レンズと、凸面と凹面との接合部に設けられるハーフミラーと、光射出平面に設けられ、光の偏光状態に応じて透過または反射を選択的に行う透過反射選択部材とを備える。
上記虚像表示装置では、第1レンズと第2レンズとを接合した構成とした上で、第1レンズの光射出側と第2レンズの光入射側とを平面とすることで、小型化あるいは薄型化を実現している。また、平面とすることで、例えば光を折り返すための光学素子等種々の光学素子を取り付けやすいものにできる。また、映像素子からの光の入射角度の条件についても例えば凸球面レンズのような曲面を有するレンズの場合に比べて緩和可能になる。一方、光路中においてハーフミラーを凸面と凹面との接合部に設けることで、光路の折り曲げに際してパワーを持たせることで、広画角な画像形成が可能となる。
実施形態に係る虚像表示装置と、その映像光の光路について概念的に説明するための側方断面図である。 拡大光学系の構成について説明するための分解図である。 虚像表示装置の一例における光線図である。 虚像表示装置の他の一例における光線図である。 虚像表示装置のさらに他の一例における光線図である。 比較例の虚像表示装置の一例における光線図である。 第1レンズと第2レンズとでの屈折率の差と、曲率半径やペッツバール和との関係を示すグラフである。 第1レンズと第2レンズとでの屈折率の差と、収差の関係を示すグラフである。 硝材と縦色収差との関係を示すグラフである。 色分散の様子を説明するための光線図である。 一変形例の虚像表示装置を構成する光学系について示す概念的な側面図である。 他の一変形例の虚像表示装置を構成する光学系について示す概念的な側面図である。 別の一変形例の虚像表示装置について示す概念的な側方断面図である。
以下、図1等を参照しつつ、本発明の一実施形態に係る虚像表示装置について詳細に説明する。
図1に概念的に示すように、本実施形態の虚像表示装置100は、映像素子(画像表示部)である画像表示装置10と、拡大光学系20とを備え、虚像表示装置100を装着した観察者又は使用者に対して虚像による画像光(映像光)を視認させることができる虚像表示装置、すなわちヘッドマウントディスプレイ(HMD)である。ここで、図1は、虚像表示装置100を観察者が装着した場合の側方から見た様子を概念的に示しており、虚像表示装置100における光学系の光軸AXがZ方向となっているものとする。さらに、Z方向に対して垂直な面の面内方向のうち、水平方向すなわち左右方向をX方向とし、面内方向のうち、X方向に垂直な方向をY方向とする。この場合、観察者の左右の眼の並ぶ方向として想定される水平方向がX方向となる。そして、水平方向に直交する方向である観察者にとっての上下方向が垂直方向であり、Y方向となる。また、図示において、観察者の眼EYの位置は、虚像表示装置100の構成上、観察者の眼EYのある場所として想定される瞳の位置となっている。
なお、画像表示装置10及び拡大光学系20は、右眼用と左眼用とについてそれぞれ用意される左右一対構成であるが、左側の構造と右側の構造とが対称性を有することから、ここでは、省略して左右のうち一方(左眼用)のみを示している。すなわち、図1において、+X側が外側(耳側)であり、-X側が内側(鼻側)である。なお、虚像表示装置100は、左右一対の一方のみ、すなわち単独でも虚像表示装置として機能する。また、左右一対構成とせず、単眼用に虚像表示装置を構成することも可能である。
以下、虚像表示装置100による映像光の導光をするための各部の構造等についての一例を概念的に説明する。
画像表示装置10は、画像形成を行う主要な本体部分である映像光GLを射出するパネル部11と、パネル部11の光射出面11aを覆うカバーガラスCGとを備える。ここでは、画像表示装置10は、小型のものを採用し、図示のように、画像表示装置10は、光軸AXについて垂直な方向に関して、少なくとも拡大光学系20よりも小さい構成となっている。具体的には、例えば、図示の例において、画像表示装置10の画像表示領域のサイズは、後述する拡大光学系20第2レンズL2の光学面のサイズよりも小さいものとなっていることは明らかである。
パネル部11は、例えば有機EL等の自発光型の素子(OLED)で構成される映像素子(映像表示素子)とすることができる。また、例えば透過型の空間光変調装置である映像表示素子(映像素子)のほか、映像表示素子へ照明光を射出するバックライトである照明装置(不図示)や動作を制御する駆動制御部(不図示)を有する構成としてもよい。
ここで、高精細化等の観点から、画像表示装置10のパネル部11に用いる映像素子として、例えばマイクロディスプレイ等の小型のものを採用することが望ましい場合が考えられる。高精細化を実現するためには、例えばHTPSやSiバックプレーンを使った液晶パネル、あるいはOLEDパネルを適用する必要があり、これらは、パネルサイズとパネル単価とに比例関係があるからである。つまり、製品コストを下げる等の実用的観点から、より小さなパネルを適用する必要がある。しかしながら、広画角化を図りつつパネルをより小型化しようとする、すなわち、より小さいパネルサイズを適用しようとすると、光学系の焦点距離も小さくする必要がある。つまり、レンズの曲率半径を小さくする必要がある。この場合、広視野角側の光の成分において、レンズ面での全反射条件の制限から、強い曲率の形状にできず、思うようなパネルサイズの縮小化が図れない可能性がある。本実施形態の虚像表示装置100では、このような点を考慮して、パネル部11の小型化を実現している。
図1及び図2に示すように、拡大光学系20は、観察者側から順に接合されて並ぶ2つの第1及び第2レンズL1,L2に加え、光入射側に偏光板12と入射側偏光変換部材13とを備え、第1レンズL1と第2レンズL2との接合箇所にハーフミラー21を備え、光射出側に透過反射選択部材30を備える。透過反射選択部材30は、射出側偏光変換部材22と、半透過反射型偏光板23とで構成される。なお、第1及び第2レンズL1,L2は、ガラスレンズである。
まず、第1レンズL1は、拡大光学系20を構成するレンズのうち、観察者の眼前側すなわち眼EYに近い-Z側において、映像光GLを装置外部へ取り出す取出し位置に配置され、眼前側に光射出平面SEを有し、光射出平面SEの反対側である画像表示装置10側に凸面CVを有する平凸レンズである。第1レンズL1は、画像を十分に広画角なものとすべく、例えば屈折率1.8以上の高屈折レンズとなっている。また、凸面CVは球面となっている。すなわち、第1レンズL1は、球面平凸レンズである。なお、以下において、屈折率の値については、ndの値を示すものとする。また、アッベ数の値については、νdの値を示すものとする。
次に、第2レンズL2は、第1レンズL1よりも画像表示装置10側に配置され、眼前側に凹面CCを有し、凹面CCの反対側である画像表示装置10側に画像表示装置10からの映像光GLを入射させる光入射平面SIを有する平凹レンズである。第2レンズL2の屈折率は、第1レンズL1の屈折率と同じか第1レンズL1の屈折率よりも小さくなっている。また、凹面CCは、第1レンズL1の凸面CVに対応する曲面形状の球面を有するものとなっている。すなわち、第2レンズL2は、球面平凹レンズである。
第1レンズL1と第2レンズL2とは、凸面CVと凹面CCとで接合され、接合部CNを形成している。
また、光射出平面SEと光入射平面SIとは、ともに、画像表示装置10の光射出面11aに対して平行である.図示の例では、XY面に対して平行となっている。なお、ここでの平行についての許容範囲としては、例えば±2°以内とすることが考えられる。
ハーフミラー21は、映像光の一部を透過させるとともに他の一部を反射させる半反射半透過膜であり、例えば、誘電体多層膜や金属膜等で構成される。図示のように、ハーフミラー21は、第1レンズL1と第2レンズL2との間に形成されている。すなわち、接合部CNに設けられている。したがって、ハーフミラー21は、観察者側から見て凹の曲面形状となっている。
ここで、ハーフミラー21あるいは接合部CNの形成について一例を説明する。図2の分解図において拡大光学系20の構成を例示するように、まず、第1レンズL1の凸面CV上にハーフミラー21となるべき膜が蒸着により成膜される。次に、成膜されたハーフミラー21の膜と第2レンズL2の凹面CCとを接着剤により接着させ、これが固化して接着膜ADを形成することで、接合部CNが形成される。なお、詳しくは後述するが、接着膜ADを第1レンズL1側ではなく第2レンズL2側に設けることで、映像光GLの拡大光学系20の通過に際して、接着膜ADの通過回数を少なくできる。
偏光板12は、入射側偏光変換部材13を介して第2レンズL2の光入射平面SI上に貼り付けられており、拡大光学系20のうち最も画像表示装置10側に位置している。偏光板12は、透過型偏光板であり、画像表示装置10からの映像光GLの通過に際して、映像光GLのうち直線偏光の成分を抽出する部材である。
入射側偏光変換部材13は、1/4波長板すなわちλ/4板であり、通過する光の偏光状態を変換する。図示のように、第2レンズL2の光入射平面SIに貼り付けられている。また、偏光板12の光路下流側に位置し、偏光板12を経て直線偏光となった映像光GLを円偏光にする。
透過反射選択部材30は、既述のように、射出側偏光変換部材22と、半透過反射型偏光板23とで構成されており、光の偏光状態に応じて透過または反射を選択的に行う。
透過反射選択部材30のうち、射出側偏光変換部材22は、1/4波長板すなわちλ/4板であり、通過する光の偏光状態を変換する。図示のように、偏光変換部材22は、第1レンズL1の光射出平面SEに貼り付けられ、第1レンズL1と半透過反射型偏光板23との間に設けられている。偏光変換部材22は、半透過反射型偏光板23とハーフミラー21との間を往復する成分の偏光状態を変換する。ここでは、1/4波長板である偏光変換部材22は、円偏光の状態にある映像光GLを直線偏光に変換したり、あるいは、逆に、直線偏光の状態にある映像光GLを円偏光に変換したりする。
透過反射選択部材30のうち、半透過反射型偏光板23は、射出側偏光変換部材22を介して光射出平面SEに貼り付けられている。すなわち、半透過反射型偏光板23は、観察者の眼EYの位置として想定される瞳の位置に一番近い側に配置される部材であり、映像光GLを観察者の眼前側へ射出させる。ここでは、半透過反射型偏光板23は、反射型のワイヤーグリッド偏光板で構成されるものとする。つまり、半透過反射型偏光板23は、入射する成分の偏光の状態が偏光透過軸の方向であるか否かによって、透過・反射の特性を変える。この場合、半透過反射型偏光板23の光路上流側に偏光変換部材22が配置されていることで、偏光変換部材22を経るたびに光の偏光状態が変化し、半透過反射型偏光板23は、その変化に応じて入射する成分を透過させたり反射したりする。ここでは、一例として、観察者の眼の並ぶ方向として想定される水平方向(X方向)を偏光透過軸の方向とする。なお、反射型のワイヤーグリッド偏光板で構成される半透過反射型偏光板23については、入射する成分の偏光の状態に応じて透過・反射の特性を変えることから、反射型偏光板と呼ぶこともある。
透過反射選択部材30は、上記のような射出側偏光変換部材22及び半透過反射型偏光板23で構成されることにより、光の偏光状態を変化させつつこれに応じて光の透過または反射を選択的に行うことを可能としている。
以上のように、本実施形態の虚像表示装置100は、拡大光学系20において、光学系の主要部となるレンズを2枚構成とし、かつ、これらを接合させて空気間隔を設けない構成とし、さらに、レンズの表面である光入射平面SI及び光射出平面SEを平面としている。これにより、特に、光軸方向に沿って短くすることができ、小型化あるいは薄型化を可能としている。また、光入射平面SI及び光射出平面SEは平面であるから、これらの面に、上述したように、偏光板や1/4波長板、反射型のワイヤーグリッド偏光板といったものを、各種光学シートとして直接容易に貼り合せることが可能となり、部品点数の削減、光学部品の小型化、性能の向上を図ることができる。
以下、図1を参照して、映像光GLの光路について概略説明する。まず、画像表示装置10のパネル部11で変調された映像光GLは、拡大光学系20に向けて射出される。射出された映像光GLは、拡大光学系20のうち最も画像表示装置10側に位置する透過型偏光板である偏光板12において、直線偏光に変換される。ここでは、偏光板12を通過した後の直線偏光の偏光方向を第1方向とする。
映像光GLは、偏光板12で第1方向の直線偏光に変換された後、第1の1/4波長板である入射側偏光変換部材13により円偏光に変換され、光入射平面SIから第2レンズL2に入射する。その後、映像光GLは、第2レンズL2と第1レンズL1との界面すなわち接合部CNに設けられたハーフミラー21に達する。映像光GLのうち一部の成分が、ハーフミラー21を通過し、第2の1/4波長板である偏光変換部材22にて直線偏光に変換される。ここでの直線偏光の偏光方向は、偏光板12の通過後、1/4波長板を2回通過しているため、第1方向に対して90°異なる方向となっている。ここでは、この方向を第2方向とする。映像光GLは、偏光変換部材22で第2方向の直線偏光に変換された後、半透過反射型偏光板23あるいは反射型偏光板に到達する。
ここで、半透過反射型偏光板23は、第1方向の直線偏光については透過させ、第2方向の直線偏光については反射するように設定されているものとする。見方を変えると、偏光板12の透過特性や半透過反射型偏光板23の透過反射選択特性が、そのように構成されている。この場合、第2方向の直線偏光である映像光GLは、半透過反射型偏光板23にて反射され、再び1/4波長板である偏光変換部材22にて円偏光となり、ハーフミラー21に達する。ハーフミラー21において、映像光GLのうち一部の成分はそのまま透過するが、残りの成分は反射され、反射された映像光GLの成分は、1/4波長板である偏光変換部材22で今度は第1方向の直線偏光に変換される。第1方向の直線偏光となっている映像光GLの成分は、半透過反射型偏光板23を通過し、映像光GLは、観察者の眼EYのある場所として想定される瞳の位置に達する。
なお、既述のように、ハーフミラー21は、まず、第1レンズL1側に蒸着されており、その後、接着膜ADを介して第2レンズL2に接着固定される構成となっている。したがって、映像光GLは、上記光路上のうち、半透過反射型偏光板23で反射された後は、接着膜ADを通過することなく、ハーフミラー21で反射されることになる。つまり、接着膜ADの通過は、最初の第1レンズL1と第2レンズL2との間を通過する際の1回のみとなるように構成されている。以上のように、接着膜ADの通過を極力削減することで、映像光GLの成分量の低下や劣化を抑制している。
以上のように、本実施形態の虚像表示装置100は、拡大光学系20において、ハーフミラー21や透過反射選択部材30により映像光GLの光路を折り曲げるとともに、曲面に設けたハーフミラー21における反射を利用すること等により、映像光GLを広画角なものとすることができる。
ここで、本実施形態の場合、拡大光学系20では、2つのレンズL1,L2において光入射平面SI及び光射出平面SEを平面としている。このため、映像光GLを構成する各光線束の光路調整については、2つのレンズL1,L2の接合される曲面部分の箇所が担うことになる。すなわち、この面に形成されているハーフミラー21での反射作用と、2つのレンズL1,L2間での屈折率の差等による屈折作用によって光路調整がなされている。
図3は、虚像表示装置100の一例における光線図であり、2つのレンズL1,L2について、異なる屈折率硝材として、第1レンズL1に屈折率n=2.00となるもの、第2レンズL2に屈折率n=1.55となるものを用いた場合を例示している。つまり、第1レンズL1の屈折率nは、第2レンズL2の屈折率nよりも大きいものとなっている。なお、各硝材のアッベ数は、第1レンズL1については、アッベ数ν=29.1、第2レンズL2については、アッベ数ν=75.5となっている。
また、図示のように、ここでは、画像表示装置10の画像表示領域のサイズに相当するパネルサイズの一辺の長さを長さLL1とし、拡大光学系20の光軸方向の全長を長さLD1とし、拡大光学系20から眼EYの位置までの距離であるアイレリーフの長さを長さLE1とし、眼EYの位置におけるアイリングの径を径RE1とする。
これらのうち、パネルサイズの一辺の長さLL1については、小型化の要請の観点からは、2.5インチ以下、さらには、1インチ以下(より望ましくは、12~13mm程度)とすることが望ましい。本実施形態では、画像表示装置10としてマイクロディスプレイのような小型パネルを用い、これによる画像を拡大光学系20で拡大して広画角な画像形成を可能としている。ここでの値としては、一辺の長さLL1=0.8インチとする。
また、HMD等の虚像表示装置においては、広画角化が進んでおり、光学系は非常に焦点距離の短いものとなる。ここでは、FOVについて、半画角を50°すなわち全画角を100°とする。以上を満たすべく、上記各寸法は、拡大光学系20の全長の長さLD1=14mm、アイレリーフの長さLE1=10mm、アイリングの径RE1=6mmとなっている。また、レンズ面の曲率半径すなわち第1レンズL1の凸面CV及び第2レンズL2の凹面CCの曲率半径は、44.2mmとなっている。
図4Aは、虚像表示装置100の他の一例における光線図であり、2つのレンズL1,L2について、異なる屈折率硝材として、第1レンズL1に屈折率n=1.95となるもの、第2レンズL2に屈折率n=1.82となるものを用いた場合を例示している。また、各硝材のアッベ数は、第1レンズL1については、アッベ数ν=32.3、第2レンズL2については、アッベ数ν=24.1となっている。この場合、ν>νの関係となっている。
異なる屈折率硝材を用いるものとして、図3や図4Aに例示した場合のほか、例えば、第1レンズL1に屈折率n=1.85、アッベ数ν=40となるものを用い、第2レンズL2に屈折率n=1.50、アッベ数ν=82となるものを用いることも考えられる。
一方、図4Bは、虚像表示装置100のさらに他の一例における光線図であり、2つのレンズL1,L2について、同一の高屈折率硝材として、屈折率n=2.0となるものを用いた場合を例示している。
図3や図4A等の場合、レンズ面の面形状や2つのレンズL1,L2についての屈折率の差を利用することで、上記のような画角となる画像光すなわち映像光GLの光路形成がなされる。
一方、図4Bの場合、第1レンズL1と第2レンズL2とで同材料を適用しているため、2つのレンズL1,L2間の接合面であるレンズ面での屈折は生じず、もっぱら当該レンズ面での反射作用により上記のような映像光GLの光路形成を行っている。ただし、この場合、屈折作用が生じないため、色収差を抑えることが可能となる。
また、上記各図の場合において、当該レンズ面を球面レンズとしていることで、より高屈折な材料を適用することができる。より高屈折な材料を適用することで、レンズ面の曲率を抑えることができる場合には、ペッツバール曲率を抑制でき、像面湾曲を低減することも可能となると考えられる。なお、適用する材料により、レンズ面の曲率に関する調整や、屈折と反射の作用とによる光学系全体におけるペッツバール曲率を集積したペッツバール和を小さくすること等が検討でき、これについて詳しくは後述する。
図5は、比較例の虚像表示装置の一例における光線図である。比較例の虚像表示装置100では、本実施形態の場合と異なり、1枚のレンズで光学系が構成されている。具体的に説明すると、図5のレンズL1は、平凸レンズであり、平面側に透過反射選択部材30を有し、凸面側にハーフミラー21を有しているものとする。また、偏光板12及び入射側偏光変換部材13を、画像表示装置10側に設けられているものとする。以上のような場合、映像光の光路については、他の図の場合と同様に折り返したものとなる。しかしながら、図5の構成では、例えば本願と同様の画像形成をしようとすると、例えば半角すなわち片側FOV50°の光線、すなわち一番上の光線が、図の一部を拡大して示すように、第1レンズL1のレンズ面に入射する際に、全反射条件を満たすぎりぎりの状態となる。具体的には、レンズL1について、屈折率2.0である場合、曲率半径R=-54mmが全反射条件を満たす限界である。この場合、焦点距離を小さくするのにも限界が生じ、例えば本願のようなパネルサイズを小さな構成とすることは困難となる。また一方で、図5の場合、レンズ面がレンズと空気との境界であるため屈折時の作用が大きく、屈折時と反射時の両方を合わせれば強いパワーを生じさせることが可能となるが、その分、周辺部では強い像面湾曲と色収差を生じさせることにもなる。これに対して、本願では、上記のように、第1レンズL1と第2レンズL2とを組み合わせることのほか、上述した種々の構成を有することで、図5の比較例に示す凸球面レンズである第1レンズL1のような曲面を有するレンズを用いる場合に比べて、光の入射角度に関する要件が緩和されている。
以上のように、本実施形態では、第1レンズL1と第2レンズL2とを接合した構成とした上で、第1レンズL1の光射出側である光射出平面SEと第2レンズL2の光入射側である光入射平面SIとを平面とすることで、小型化あるいは薄型化を実現している。また、平面とすることで、例えば光を折り返すための透過反射選択部材30等の種々の光学素子を取り付けやすいものにできる。また、画像表示装置10からの光の入射角度の条件についても例えば凸球面レンズのような曲面を有するレンズの場合に比べて緩和可能になる。一方、光路中においてハーフミラー21を凸面CVと凹面CCとの接合部CNに設けることで、光路の折り曲げに際してパワーを持たせることで、広画角な画像形成が可能となる。
以下、図6等を参照して、第1レンズL1と第2レンズL2とに適用する硝材に関して考察する。
なお、図6は、第1レンズL1と第2レンズL2とでの屈折率の差と、曲率半径やペッツバール和との関係を示すグラフである。図7Aは、第1レンズL1と第2レンズL2とでの屈折率の差と、収差の関係を示すグラフである。図7Bは、硝材と縦色収差との関係を示すグラフである。
まず、前提として、本実施形態の構成では、光学面が少なく、第1レンズL1及び第2レンズL2によって各収差を抑制することが非常に困難である。つまり、ザイデルの5収差すなわち、球面、コマ、非点、像面湾曲、ディスト―ションと、色収差との全てを抑制することは、事実上不可能となる。また、上記のような広画角な設定では、画角と像高の関係から光学系の焦点距離は約6mmとなり、新たにレンズを追加することも難しい。そのため、ここでは、画像処理で補正可能な収差であるディスト―ションと横色収差については光学系での収差補正は行わず、球面、コマ、非点、像面湾曲、縦色収差の抑制を優先的に検討する。
ここで、周辺画角での画像認識について、考察する。まず、人間の有効視野(眼球運動だけで瞬時に情報受容できる領域)は、水平±30°、垂直±20°とされており、この範囲に相当する領域である有効視野領域では、頭部を動かすことなく細かな情報を読み取れるため、HMDの解像性能も高い性能が要求される。つまり、FOV±30°までの周辺画角の領域については、球面、コマ、非点、像面湾曲の収差抑制が必要ということになる。
一方、各レンズの曲率が大きくなる(曲率半径が小さくなる)ほど、強い収差が生じる。曲面形状によって例えば焦点距離6mmを実現しようとすると、強いパワーの光学面が必要となる、すなわち曲率を大きくせざるを得なくなる。そこで、上記では、第1レンズL1の屈折率nをより大きくすることによって、同じパワーでも曲率を小さくすることを可能としつつ、さらに収差を抑制することを可能としている。
また、補正対象とする収差の中でも影響の大きいのが像面湾曲である。像面湾曲を抑えるためにはペッツバール和を0に近づける必要がある。各光学面でのパワーφ、入射側屈折率n、出射側屈折率ni+1とし、焦点距離fとすると、ペッツバール和は
Figure 0007077656000001
で表すことができる。
また、パワーφは、透過面および凹面鏡において、それぞれ
Figure 0007077656000002
で表すことができる。
ここでは、虚像表示装置100における光学系の焦点距離fを、f=6mmで固定して、第1レンズL1と第2レンズL2との屈折率を変えた際のレンズ曲率半径とペッツバール和について検証する。
既述のように、図6では、第1レンズL1と第2レンズL2とでの屈折率の差と、曲率半径やペッツバール和との関係を示している。図6中の左側のグラフにおいて、横軸は、第1レンズL1と第2レンズL2とでの屈折率の差を示し、縦軸は、上記f=6mmの設定で必要となる曲率半径を示している。各曲線C1~C3は、第1レンズL1の屈折率nを、1.9、1.75、1.6とした場合の様子をそれぞれ示している。
上記グラフによると、第1レンズL1の屈折率を大きくするほど曲率半径を抑えることが可能となることが分かる。これは、第1レンズL1の屈折率nを大きくすることによって、より大きな曲率半径でも同じパワーを生じさせることに相当することを意味している。また、第1レンズL1の屈折率よりも第2レンズL2の屈折率を小さくするほど、曲率半径を小さくすることができる。これは、第2レンズL2から第1レンズL1に入射する際に両者の屈折率差によって正のパワーが生じるためである。光学系全体としては、第1レンズL1の曲面の透過時と第1レンズL1の曲面での反射時との両方で正のパワーが生じることで、より大きなパワーを生じさせることができるようになっている。
図6中の右側のグラフにおいて、横軸は、第1レンズL1と第2レンズL2とでの屈折率の差を示し、縦軸は、ペッツバール和を示している。各曲線Q1~Q3は、第1レンズL1の屈折率nを、1.9、1.75、1.6とした場合の様子をそれぞれ示している。
上記グラフによると、第1レンズL1の屈折率を大きくすればするほど、また、第1レンズL1と第2レンズL2とでの屈折率差を大きくするほど、ペッツバール和もゼロに近くなっている。これは、上記のように、屈折率差を大きくするほど曲率半径が小さくなることで、ペッツバール和もゼロに近づくためである。
また、既述のように、図7Aは、第1レンズL1と第2レンズL2とでの屈折率の差と、画角に応じたパネル面での像面湾曲の発生との関係を示す縮小側収差図である。
図7Aでは、第1レンズL1の屈折率をn=1.9とした場合に対して、第2レンズL2の屈折率をn=1.9、1.7、1.5とした場合の像面湾曲の状態をそれぞれ示し、比較可能にしている。図7Aから、像面湾曲について、視野角30°以下の有効視野領域では、屈折率n=1.7~1.5付近である程度抑えられていることが分かる。ただし、有効視野領域よりも周辺側の非近軸領域となる周辺視野領域では、大きく像面湾曲が生じる。また、広視野角領域では非点収差が大きくなる傾向があるが、屈折率差を大きくするほど同じ視野角でも非点収差が大きくなる。
以上から、図6に示したように、ペッツバール和は、屈折率を大きくするほど抑えられるものの、非点収差や、広視野角領域での像面湾曲を考えると、上記の例示の中では、n=1.9/n=1.6が、最も収差の程度が良い状態となると考えられる。また、以上に示した事項を加味すると、1つの考えとしては、ある程度以上の屈折率の差を設けることが重要であることが分かる。特に、図3等に例示した事項からは、第1レンズL1と、第2レンズL2との屈折率の差は、0.4以上であることが望ましいと考えられる。一方、状況によっては、ある程度の屈折率の差を有しつつもある程度の差の範囲内としておくことも有効な場合もあると考えられる。この場合、第1レンズL1と、第2レンズL2との屈折率の差は、0.3以上0.5以下であることが望ましいと考えられる。
また、本構成では、第1レンズL1の屈折率nが、1.8以上であることが望ましい。屈折率nが1.8以上とすることによって、上記設定において、有効視野領域の像面湾曲を0.15mm以下に抑えることができ、実用上必要な解像性能を確保することが可能となる。
さらに、第1レンズL1のアッベ数νと、第2レンズL2のアッベ数νとについて、を、ν>νとなるように材料を選定することで、縦色収差を抑制できる構成とすることが考えられる。
図7Bは、既述のように、第1レンズL1及び第2レンズL2の硝材と縦色収差との関係を示している。図7Bにおいて、曲線P1で特性が示される第1レンズL1の硝材は、屈折率n=1.82、アッベ数ν=33.3である。これに対して、曲線P2で特性が示される第2レンズL2の硝材は、屈折率n=1.81、アッベ数ν=24.1である。このように、第2レンズL2の硝材として、第1レンズL1の硝材とにほぼ同屈折率で異なるアッベ数の硝材を適用した場合に、上記の例のように、第1レンズL1の硝材よりも小さなアッベ数の硝材を第2レンズL2に用いると、縦色収差がほとんど解消できる場合があることが分かる。
なお、図8は、アッベ数の状況に応じたRGB各波長ごとの色分散の様子を示した光線図を示す。本光線図では、射出瞳側から光線追跡を実施した場合に生じた色分散の様子を示している。両レンズのアッベ数が同じ場合、第2レンズL2の平面での屈折時のみで軸上色収差の原因となる分散が生じる。そのため、図8では、当該平面での色収差が生じている。このような色収差を打ち消すべく、ν1>ν2となるように材料を適用することで、光学系素子に起因する縦色収差の発生を抑えることが可能となる。
以下、図9A等を参照して、種々の変形例について説明する。
まず、図9Aは、一変形例の虚像表示装置について示すための図であり、虚像表示装置のうち、拡大光学系20の概念的な側面図である。図9Aは、図1に示す虚像表示装置のうち、拡大光学系20に対応する図である。本変形例では、第2レンズL2において、切り欠き部CTを設けている。例えば、図3等に示されるように、本実施形態では、映像光GLは、第1レンズL1において最も光線束の幅が広がり、第2レンズL2では、比較的狭くなっている。そこで、第2レンズL2のうち、例えば映像光GLの光路外であって、かつ、迷光等の発生の要因となる可能性の低いところについては、図示のように一部を切り欠くことで、第2レンズL2の軽量化を図ることができる。なお、切り欠き部CTの形状については、種々考えられ、他の部材の機能が確保できれば、例えば、図9Bに示す他の一変形例のように、ハーフミラー21の一部露出するような切り方も考えられる。なお、この場合、例えばハーフミラー21を金属膜で構成する、といったことが考えられる。
また、上記では、偏光板12と入射側偏光変換部材13とを拡大光学系20側に設ける構成としているが、例えば図10に示すように、画像表示装置10側にこれらを設ける構成としてもよい。
〔その他〕
以上実施形態に即して本発明を説明したが、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
上記において、画像表示装置10としては、例えば有機EL等の自発光型の素子(OLED)で構成されるものとしているが、この場合において、例えば円偏光の映像光を射出するものを採用し、偏光板や1/4波長板を省略するものとしてもよい。
また、上記では、第1レンズL1及び第2レンズL2をガラスレンズとしているが、要件等によっては、樹脂レンズを適用することも可能であり、例えば、ゼロ複屈折性の樹脂レンズまたは低複屈折性の樹脂レンズ(すなわち配向複屈折±0.01以下、または、光弾性定数10[10-12/Pa]以下の樹脂レンズ)のいずれかで構成し、複屈折を生じにくいものとすることも考えられる。
また、画像表示装置10としては、透過型の液晶表示デバイスとしてのHTPSのほか、上位以外にも種々のものを利用可能であり、例えば、反射型の液晶表示デバイスを用いた構成も可能であり、液晶表示デバイス等からなる映像表示素子に代えてデジタル・マイクロミラー・デバイス等を用いることもできる。
また、各レンズのレンズ面に適宜ARコートを設けることで、ゴースト光の発生等をさらに抑制するものとしてもよい。
また、本願発明の技術を、画像光のみを視認させるいわゆるクローズ型(シースルーでない)タイプの虚像表示装置のほか、観察者に外界像をシースルーで視認又は観察させることができるものに採用したり、ディスプレイと撮像装置とで構成されるいわゆるビデオシースルーの製品に対応させたりするものとしてもよい。
また、本願発明の技術を、双眼鏡型のハンドヘルドディスプレイ等に適用することもできる。
また、上記において、映像光の一部を透過させるとともに他の一部を反射させる半反射半透過膜で構成されるハーフミラー21を設けた箇所については、これに代えて例えば体積ホログラム等の回折素子といった光学機能面を設けることで、ハーフミラー21による作用と同等の役割を果たすようにすることも考えられる。
10…画像表示装置、11…パネル部、11a…光射出面、12…偏光板、13…入射側偏光変換部材、20…拡大光学系、21…ハーフミラー、22…射出側偏光変換部材、23…半透過反射型偏光板、30…透過反射選択部材、100…虚像表示装置、AD…接着膜、AX…光軸、C1-C3…曲線、CC…凹面、CG…カバーガラス、CN…接合部、CT…切欠き部、CV…凸面、EY…眼、f…焦点距離、GL…映像光、L1…第1レンズ、L2…第2レンズ、n,n1,n2…屈折率、P1,P2…曲線、Q1-Q3…曲線、R…曲率半径、LL1,LD1,LE1…長さ、RE1…径、SE…光射出平面、SI…光入射平面、ν1,ν2…アッベ数、φi…パワー

Claims (9)

  1. 画像を表示する映像素子と、
    映像光の取出し位置に配置され、映像光を射出させる光射出平面と、前記映像素子側に形成される凸面とを有する第1レンズと、
    前記第1レンズよりも前記映像素子側に配置され、前記第1レンズの前記凸面に接合する凹面と、前記映像素子からの映像光を入射させる光入射平面とを有する第2レンズと、
    前記凸面と前記凹面との接合部に設けられるハーフミラーと、
    前記光射出平面に設けられ、光の偏光状態に応じて透過または反射を選択的に行う透過反射選択部材と
    を備え
    前記第1レンズの屈折率は、前記第2レンズの屈折率よりも大きい、虚像表示装置。
  2. 前記光射出平面と前記光入射平面とは、前記映像素子の光射出面に対して平行である、請求項1に記載の虚像表示装置。
  3. 前記ハーフミラーは、前記凸面に蒸着して設けられる、請求項1及び2のいずれか一項に記載の虚像表示装置。
  4. 前記透過反射選択部材は、通過する光の偏光状態を変換する射出側偏光変換部材と、前記偏光変換部材を経た光の偏光状態に応じて透過または反射させる半透過反射型偏光板とを備える、請求項1~3のいずれか一項に記載の虚像表示装置。
  5. 前記光入射平面に設けられ、通過する光の偏光状態を変換する入射側偏光変換部材を備える、請求項1~4のいずれか一項に記載の虚像表示装置。
  6. 前記第1レンズ及び前記第2レンズは、ガラスレンズであり、前記凸面と前記凹面とは、球面である、請求項1~5のいずれか一項に記載の虚像表示装置。
  7. 前記映像素子の画像表示領域のサイズは、前記第2レンズの光学面のサイズよりも小さい、請求項1~6のいずれか一項に記載の虚像表示装置。
  8. 前記映像素子は、画像表示領域の一辺の長さを2.5インチ以下とするマイクロディスプレイである、請求項7に記載の虚像表示装置。
  9. 前記第2レンズは、切り欠き部を有する、請求項1~8のいずれか一項に記載の虚像表示装置。
JP2018031641A 2018-02-26 2018-02-26 虚像表示装置 Active JP7077656B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018031641A JP7077656B2 (ja) 2018-02-26 2018-02-26 虚像表示装置
EP19158795.5A EP3531183A1 (en) 2018-02-26 2019-02-22 Virtual image display device
CN201910137389.7A CN110196492B (zh) 2018-02-26 2019-02-25 虚像显示装置
US16/284,404 US10606095B2 (en) 2018-02-26 2019-02-25 Virtual image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031641A JP7077656B2 (ja) 2018-02-26 2018-02-26 虚像表示装置

Publications (2)

Publication Number Publication Date
JP2019148626A JP2019148626A (ja) 2019-09-05
JP7077656B2 true JP7077656B2 (ja) 2022-05-31

Family

ID=65529513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031641A Active JP7077656B2 (ja) 2018-02-26 2018-02-26 虚像表示装置

Country Status (4)

Country Link
US (1) US10606095B2 (ja)
EP (1) EP3531183A1 (ja)
JP (1) JP7077656B2 (ja)
CN (1) CN110196492B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984261B2 (ja) 2017-09-14 2021-12-17 セイコーエプソン株式会社 虚像表示装置
CN107861247B (zh) * 2017-12-22 2020-08-25 联想(北京)有限公司 光学部件及增强现实设备
US11243397B2 (en) * 2018-05-18 2022-02-08 Facebook Technologies, Llc Optical assembly with polarization volume holographic element
JP7151255B2 (ja) * 2018-08-06 2022-10-12 セイコーエプソン株式会社 虚像表示装置
JP7154878B2 (ja) * 2018-08-22 2022-10-18 キヤノン株式会社 観察光学系及びそれを有する観察装置
JP2021121826A (ja) * 2020-01-31 2021-08-26 セイコーエプソン株式会社 表示モジュールおよび表示装置
JP2022063534A (ja) 2020-10-12 2022-04-22 株式会社ジャパンディスプレイ 表示装置
JP2022063533A (ja) 2020-10-12 2022-04-22 株式会社ジャパンディスプレイ 表示装置
WO2022170287A2 (en) * 2021-06-07 2022-08-11 Panamorph, Inc. Near-eye display system
CN115032792B (zh) * 2022-05-30 2023-03-14 歌尔光学科技有限公司 光学模组以及头戴显示设备
CN115128824A (zh) * 2022-07-19 2022-09-30 上海摩勤智能技术有限公司 一种光学系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275566A (ja) 1999-01-28 2000-10-06 Kaiser Electro Opt Inc 小型コリメーター装置
JP2003529795A (ja) 2000-03-31 2003-10-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ヘッドマウントディスプレイ
US20040014504A1 (en) 2000-07-03 2004-01-22 Coates Nicholas Richard Display device for mobile telecommunications apparatus
JP2005148655A (ja) 2003-11-19 2005-06-09 Sony Corp 画像表示装置
US20180031835A1 (en) 2016-07-29 2018-02-01 Intevac, Inc. Biocular compact collimation apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122642A (ja) * 1994-10-26 1996-05-17 Olympus Optical Co Ltd 光学系
JP3295583B2 (ja) 1994-12-19 2002-06-24 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
JP3411953B2 (ja) 1996-04-24 2003-06-03 シャープ株式会社 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
US5715023A (en) * 1996-04-30 1998-02-03 Kaiser Electro-Optics, Inc. Plane parallel optical collimating device employing a cholesteric liquid crystal
JPH11237584A (ja) 1997-12-19 1999-08-31 Sharp Corp 画像表示装置、該画像表示装置を用いた頭部装着型ディスプレイ及び映像通信装置
JP2002107655A (ja) 2000-09-27 2002-04-10 Minolta Co Ltd 映像表示装置
JP5847829B2 (ja) * 2011-09-29 2016-01-27 富士フイルム株式会社 撮像レンズおよび撮像装置
US9632322B2 (en) * 2013-09-30 2017-04-25 Sharp Kabushiki Kaisha Display apparatus
CN107076966B (zh) * 2014-09-29 2022-05-24 Asml控股股份有限公司 高数值孔径物镜系统
CN205562978U (zh) * 2016-03-21 2016-09-07 深圳多哚新技术有限责任公司 短距离光学放大模组、眼镜、头盔及vr系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275566A (ja) 1999-01-28 2000-10-06 Kaiser Electro Opt Inc 小型コリメーター装置
JP2003529795A (ja) 2000-03-31 2003-10-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ヘッドマウントディスプレイ
US20040014504A1 (en) 2000-07-03 2004-01-22 Coates Nicholas Richard Display device for mobile telecommunications apparatus
JP2005148655A (ja) 2003-11-19 2005-06-09 Sony Corp 画像表示装置
US20180031835A1 (en) 2016-07-29 2018-02-01 Intevac, Inc. Biocular compact collimation apparatus

Also Published As

Publication number Publication date
US10606095B2 (en) 2020-03-31
JP2019148626A (ja) 2019-09-05
US20190265494A1 (en) 2019-08-29
CN110196492A (zh) 2019-09-03
CN110196492B (zh) 2022-02-22
EP3531183A1 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
JP7077656B2 (ja) 虚像表示装置
US10627644B2 (en) Virtual image display device
US8094377B2 (en) Head-mounted optical apparatus using an OLED display
JP6349704B2 (ja) 虚像表示装置
WO2010032700A1 (ja) 映像表示装置およびヘッドマウントディスプレイ
TW201809774A (zh) 目鏡光學系統及頭戴式顯示器
JP6687885B2 (ja) 虚像光学系及び虚像表示装置
WO2016181459A1 (ja) プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
JP2002311379A (ja) 観察光学系
CN112327495B (zh) 导光体、虚像光学系统以及虚像显示装置
JP2020095205A (ja) 画像表示装置、及び、接眼光学系
JP2019012259A (ja) 虚像表示装置
JP2017058400A (ja) 画像表示装置
US11640060B2 (en) Head-mounted display
JP2016170203A (ja) 画像表示装置
JP2008158203A (ja) 観察光学系およびそれを用いた映像表示装置
CN111443484B (zh) 虚像显示装置
JP2006091477A (ja) ホログラフィック反射面を有する広角観察光学系
JP7027748B2 (ja) 虚像表示装置
JP2024010699A (ja) 虚像表示装置用光学系、虚像表示装置及びヘッドマウントディスプレイ
JP6614438B2 (ja) 虚像光学系及び虚像表示装置
JP2008076429A (ja) 観察光学系およびそれを用いた映像表示装置
JP2018066799A (ja) 画像表示装置と光学シースルーディスプレイ
WO2016181460A1 (ja) プリズム光学系、プリズム光学系を用いた画像表示装置及びプリズム光学系を用いた撮像装置
JP2002244075A (ja) 画像表示装置

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181121

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7077656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150