JP7057014B2 - 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット - Google Patents

炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット Download PDF

Info

Publication number
JP7057014B2
JP7057014B2 JP2021122497A JP2021122497A JP7057014B2 JP 7057014 B2 JP7057014 B2 JP 7057014B2 JP 2021122497 A JP2021122497 A JP 2021122497A JP 2021122497 A JP2021122497 A JP 2021122497A JP 7057014 B2 JP7057014 B2 JP 7057014B2
Authority
JP
Japan
Prior art keywords
silicon carbide
internal space
temperature
seed crystal
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021122497A
Other languages
English (en)
Other versions
JP2022041903A (ja
Inventor
パク、ジョンフィ
ク、カプレル
キム、ジョンギュ
チェ、ジョンウ
ゴ、サンキ
ジャン、ビョンキュ
ヤン、ウンス
ソ、ジョンドゥ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senic Inc
Original Assignee
Senic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200110065A external-priority patent/KR102239736B1/ko
Priority claimed from KR1020200162868A external-priority patent/KR102245213B1/ko
Application filed by Senic Inc filed Critical Senic Inc
Publication of JP2022041903A publication Critical patent/JP2022041903A/ja
Application granted granted Critical
Publication of JP7057014B2 publication Critical patent/JP7057014B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide

Description

具現例は、炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴットに関する。
炭化珪素は、耐熱性及び機械的強度に優れ、物理的及び化学的に安定しているので、半導体材料として注目されている。近年、高電力素子などの基板として炭化珪素単結晶基板の需要が高まっている。
このような炭化珪素単結晶を製造する方法として、液相蒸着法(Liquid Phase Epitaxy;LPE)、化学気相蒸着法(Chemical Vapor Deposition;CVD)、物理的気相輸送法(Physical Vapor Transport;PVT)などがある。その中で物理的気相輸送法は、坩堝内に炭化珪素原料を装入し、坩堝の上端には炭化珪素単結晶からなる種結晶を配置した後、坩堝を誘導加熱方式で加熱して原料を昇華させることで、種結晶上に炭化珪素単結晶を成長させる方法である。
物理的気相輸送法は、高い成長率を有することによってインゴットの形態の炭化珪素を作製することができるので、最も広く用いられている。ただし、坩堝の誘導加熱時に、温度勾配の条件、加熱手段の相対位置、坩堝の上部と下部との温度差などによって坩堝の内部の温度分布が変化して、製造される炭化珪素インゴットの品質に影響を与え得る。
そこで、炭化珪素インゴットの結晶品質を向上させ、インゴット製造の再現性を確保するために、成長ステップにおいて坩堝の内部の温度分布に影響を与え得る因子について十分に考慮する必要がある。
前述した背景技術は、発明者が具現例の導出のために保有していた、または導出過程で習得した技術情報であって、必ずしも本発明の出願前に一般公衆に公開された公知技術であるとは限らない。
関連先行技術として、韓国公開特許公報第10-2013-0124023号に開示された"大口径単結晶の成長装置及びこれを用いる成長方法"がある。
具現例の目的は、炭化珪素インゴットの製造過程のうち、炭化珪素インゴットの成長時に形状を誘導するガイド部を設けることで、良好な品質を示すようにする炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システムを提供することにある。
具現例の他の目的は、炭化珪素インゴットの製造過程のうち、本格的にインゴットを成長させるステップにおいて、加熱手段を所定の速度で移動させて反応容器の内部の温度分布をインゴットの成長に応じて変化させる炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システムを提供することにある。
具現例の更に他の目的は、前記炭化珪素インゴットの製造方法などを通じて、炭化珪素インゴットの前面と後面との直径比が特定の値を有するようにし、前面と後面を結ぶ縁部が特定の傾斜角を有するようにすることで、結晶品質を向上させた炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴットを提供することにある。
具現例の更に他の目的は、欠陥の発生が少なく、良好な結晶品質を有する炭化珪素インゴット及び炭化珪素ウエハを製造する方法並びにシステムを提供することにある。
上記の目的を達成するために、具現例に係る炭化珪素インゴットの製造方法は、
炭化珪素原料及び炭化珪素種結晶が配置された反応容器の内部空間を真空雰囲気に調節する準備ステップと;
不活性気体を前記内部空間に注入し、前記反応容器を取り囲む加熱手段を介して前記炭化珪素原料を前記種結晶上に昇華させ、炭化珪素インゴットが成長するように誘導する進行ステップと;
前記内部空間の温度を常温に冷却する冷却ステップと;を含み、
前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部を含み、
前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
前記進行ステップは、前記加熱手段が移動する過程を含み、
前記加熱手段の移動は、前記種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかることができる。
一実施例において、前記ガイド傾斜角は4°~25°であってもよい。
一実施例において、前記反応容器は黒鉛坩堝であり、
前記ガイド部は黒鉛を含み、
前記ガイド部の密度は、前記反応容器の密度よりも低くてもよい。
一実施例において、前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する方向を基準として、前記炭化珪素種結晶のガイド部の高さは30mm以上であってもよい。
一実施例において、前記進行ステップは、前成長過程及び成長過程を順に含み、
前記前成長過程は、前記準備ステップの真空雰囲気を不活性雰囲気に変更する第1過程、前記加熱手段を用いて前記内部空間の温度を昇温する第2過程、及び前記内部空間の圧力を成長圧力に達するように減圧し、前記内部空間の温度が成長温度になるように昇温する第3過程を順に含み、
前記成長過程は、前記内部空間を前記成長温度及び前記成長圧力に維持し、前記インゴットが成長するように誘導する過程であり、
前記加熱手段の移動は前記成長過程で行われ、
温度差は、前記内部空間の上部の温度と前記内部空間の下部の温度との差であり、
前記成長過程において温度差は110℃~160℃であってもよい。
上記の目的を達成するために、具現例に係る炭化珪素ウエハの製造方法は、
前記によって製造された炭化珪素インゴットを切断して炭化珪素ウエハを設ける切断ステップ;を含むことができる。
一具現例において、前記炭化珪素ウエハは、ボウ(bow)絶対値が50μm以下であってもよい。
上記の目的を達成するために、具現例に係る炭化珪素インゴットは、
前面及びその反対面である後面を含む炭化珪素インゴットであって、
前記後面は、炭化珪素種結晶から切断された面であり、
前記後面に垂直な方向に最大高さが15mm以上であり、
前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であってもよい。
上記の目的を達成するために、具現例に係る炭化珪素インゴット製造用システム(製造装置)は、
内部空間を有する反応容器と;
前記反応容器の外面に配置されて前記反応容器を取り囲む断熱材と;
前記反応容器又は前記内部空間の温度を調節する加熱手段と;を含む。
前記内部空間の上部に炭化珪素種結晶が位置し、
前記内部空間の下部に原料が位置し、
前記加熱手段及び前記反応容器間において上下方向に相対位置を変化させる移動手段を含み、
前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部を含み、
前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
前記種結晶から炭化珪素インゴットを成長させることができる。
前記炭化珪素インゴットの製造装置を通じて製造された炭化珪素インゴットは、前面及びその反対面である後面を含み、
前記後面は、炭化珪素種結晶から切断された面であり、
前記後面に垂直な方向に最大高さが15mm以上であり、
前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であってもよい。
前記加熱手段の移動は、前記種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかることができる。
一具現例において、前記加熱手段の移動時の温度は、最大加熱領域を基準として2100℃~2500℃であり、
前記最大加熱領域は、前記炭化珪素原料と種結晶とを結ぶ任意の線を基準として、前記加熱手段の中央から両端に向かって所定の長さを有する加熱手段の内部領域であり、
前記内部空間の上部に副加熱領域が位置し、
前記副加熱領域は、前記炭化珪素原料と種結晶とを結ぶ任意の線を基準として、加熱手段の両端から中央に向かって所定の長さを有する加熱手段の内部領域であり、
前記副加熱領域の温度は、前記最大加熱領域の温度よりも110℃~160℃低い温度の領域であってもよい。
上記の目的を達成するために、他の具現例に係る炭化珪素インゴットの製造方法は、
内部空間を有する反応容器に原料と炭化珪素種結晶を離隔して配置する準備ステップと;
前記内部空間の温度、圧力及び雰囲気を調節して前記原料を昇華させ、前記炭化珪素種結晶から成長した炭化珪素インゴットを設ける成長ステップと;
前記反応容器を冷却させ、前記炭化珪素インゴットを回収する冷却ステップと;を含み、
前記反応容器の外面を取り囲む断熱材、及び前記内部空間の温度を調節する加熱部を含み、
前記断熱材は、前記反応容器の外側面を取り囲む断熱材外周部を含み、
前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.05~0.8であり、
前記成長ステップは、前記内部空間を常温から第1温度まで昇温させる昇温過程と;第1温度から第2温度まで昇温させる第1成長過程と;前記第2温度を維持する第2成長過程と;を含んで炭化珪素インゴットを設け、
前記第1温度は、前記内部空間の減圧が始まる温度であり、
前記第2温度は、前記内部空間の減圧が完了し、前記減圧された圧力下で炭化珪素インゴットの成長を誘導する温度であり、
温度差は、前記内部空間の上部の温度と下部の温度との差であり、
前記第2温度において前記温度差は160℃~240℃であってもよい。
一具現例において、前記断熱材の比抵抗は8×10-3Ωm以下であってもよい。
一具現例において、前記断熱材の密度は0.14g/cc~0.28g/ccであってもよい。
一具現例において、前記断熱材の気孔率は72%~95%であってもよい。
一具現例において、前記断熱材外周部の厚さは200mm~600mmであってもよい。
一具現例において、前記断熱材の1000℃での熱膨張係数は2×10-6/℃~3.5×10-6/℃であってもよい。
一具現例において、前記加熱部は、前記反応容器の上下方向に移動可能に設置され、
前記加熱部は、前記成長ステップにおいて前記内部空間の上部と内部空間の下部との温度差を誘導し、
前記第1温度は、前記内部空間の下部を基準として1500℃~1700℃であり、
前記第2温度は、前記内部空間の下部を基準として2100℃~2500℃であってもよい。
一具現例において、前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.1~0.7であってもよい。
一具現例において、前記断熱材は、前記断熱材外周部の上部を覆う断熱材上部蓋、及び前記断熱材外周部の下部を覆う断熱材下部蓋を含み、
前記断熱材外周部の外径は8インチ以上であってもよい。
上記の目的を達成するために、他の具現例に係る炭化珪素インゴット製造用システム(製造装置)は、
内部空間を有する反応容器と;
前記反応容器の外面を取り囲む断熱材と;
前記内部空間の温度を調節する加熱部と;を含んで炭化珪素インゴットを製造し、
前記内部空間の上部に炭化珪素種結晶が位置し、
前記内部空間の下部に原料が位置し、
前記加熱部は、前記反応容器の上下方向に移動可能に設置されて前記内部空間の上部と内部空間の下部との温度差を調節し、
前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.05~0.8であってもよい。
具現例による炭化珪素インゴットの製造方法、炭化珪素インゴット製造用システム(製造装置)などは、炭化珪素インゴットの成長ステップにおいて炭化珪素インゴットの成長形状を誘導するガイド部を設け、また、反応容器と加熱手段の相対位置を所定の速度で調節することで、製造される炭化珪素インゴットの結晶品質を向上させることができる。
具現例によれば、炭化珪素インゴット及びウエハの製造時に、反応容器と断熱材との体積比、反応容器の上部と下部との温度差、断熱材の密度及び断熱材の比抵抗などの特性を最適化することで、製造される炭化珪素インゴットの結晶品質を確保し、欠陥の発生を最小化することができる。
具現例によって製造された炭化珪素インゴットは、前面と後面を結ぶ縁部が特定の角度を有し、前面と後面との直径の比率が特定の値を有するようにすることで、欠陥密度の数値が低く、クラックや結晶多形がほとんど発生しないという利点がある。
具現例に係る炭化珪素インゴット製造用システムを概略的に示した概念図である。 具現例に係る炭化珪素インゴットの製造方法において、時間の経過に伴う温度、圧力及び不活性気体(Ar)の推移を示したグラフである。 他の具現例に係る炭化珪素インゴット製造用システム(製造装置)を概略的に示した概念図である。 具現例に係る炭化珪素インゴット製造用システム(製造装置)の反応容器を概略的に示した概念図である。 他の具現例に係る炭化珪素インゴット製造用システム(製造装置)の反応容器を概略的に示した概念図である。 具現例に係る炭化珪素インゴットを概略的に示した概念図である。 実施例A~Dの炭化珪素ウエハの一面のマイクロパイプ欠陥を示したイメージマップである。 比較例A及びBの炭化珪素ウエハの一面のマイクロパイプ欠陥を示したイメージマップである。 具現例に係る炭化珪素インゴットの製造装置の反応容器、蓋、断熱材、断熱材外周部の一例を示した分解斜視図である。 具現例に係る炭化珪素インゴットの製造装置の他の一例を示した斜視図である。 具現例に係る炭化珪素インゴットの製造装置の更に他の一例を示した斜視図である。 AA'を含む平面視で反応容器及び断熱材外周部の断面を示した概念図である。 具現例に係る炭化珪素ウエハの一例を示した概念図である。
以下、本発明の属する技術分野における通常の知識を有する者が容易に実施できるように、一つ以上の具現例について添付の図面を参照して詳細に説明する。しかし、具現例は、様々な異なる形態で実現可能であり、ここで説明する実施例に限定されない。明細書全体にわたって類似の部分に対しては同一の図面符号を付した。
本明細書において、ある構成が他の構成を「含む」とするとき、これは、特に反対の記載がない限り、それ以外の他の構成を除くものではなく、他の構成をさらに含むこともできることを意味する。
本明細書において、ある構成が他の構成と「連結」されているとするとき、これは、「直接的に連結」されている場合のみならず、「それらの間に他の構成を介在して連結」されている場合も含む。
本明細書において、A上にBが位置するという意味は、A上に直接当接してBが位置するか、またはそれらの間に別の層が位置しながらA上にBが位置することを意味し、Aの表面に当接してBが位置することに限定されて解釈されない。
本明細書において、マーカッシュ形式の表現に含まれた「これらの組み合わせ」という用語は、マーカッシュ形式の表現に記載された構成要素からなる群から選択される1つ以上の混合又は組み合わせを意味するものであって、前記構成要素からなる群から選択される1つ以上を含むことを意味する。
本明細書において、「A及び/又はB」の記載は、「A、B、又は、A及びB」を意味する。
本明細書において、「第1」、「第2」又は「A」、「B」のような用語は、特に説明がない限り、同一の用語を互いに区別するために使用される。
本明細書において、単数の表現は、特に説明がなければ、文脈上解釈される単数又は複数を含む意味で解釈される。
本明細書において、図面に示された大きさ及び角度は、説明の便宜のために任意に示しており、必ずしも図示されたものに限定されて解釈されるものではない。
本明細書において、炭化珪素ウエハは、方向性を有する単結晶層である、いわゆるエピタキシャル層(epitaxial layer)が形成される前の炭化珪素ウエハ(いわゆるベアウエハ)を意味する。
発明者らは、炭化珪素インゴットの欠陥、クラックなどの発生を最小化し、結晶品質を向上させることができる方案について考慮する中で、炭化珪素インゴットの成長ステップで反応容器の内部に炭化珪素インゴットの形状を制御するガイド部を備え、加熱手段の相対位置を所定の速度で変更させる炭化珪素インゴットの製造方法を発明し、具現例を提示する。
炭化珪素インゴットの製造方法I
上記の目的を達成するために、具現例に係る炭化珪素インゴットの製造方法は、
炭化珪素原料300及び種結晶110が配置された反応容器200の内部空間を真空雰囲気に調節する準備ステップ(Sa)と;
不活性気体を前記内部空間に注入し、前記反応容器を取り囲む加熱手段600を介して昇温して前記炭化珪素原料が昇華され、前記種結晶上に炭化珪素インゴット100が成長するように誘導する進行ステップ(Sb,S1)と;
前記内部空間の温度を常温に冷却する冷却ステップ(S2)と;を含み、
前記進行ステップは、前記加熱手段が移動する過程を含み、
前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部120を含み、
前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
前記加熱手段の移動は、前記種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかることができる。
前記加熱手段600と前記反応容器200は、上下方向に相対位置の変化が可能なように設置されてもよい。前記相対位置は、前記移動手段を介して変化し得、加熱手段及び反応容器のいずれか1つ以上が移動して変化し得る。前記反応容器の位置が移動するものではなく、前記加熱手段が移動することを通じて前記相対位置を変えることが、より安定した炭化珪素インゴットの成長に有利であり得る。
図1、図3、図4及び図5などに炭化珪素インゴット製造用システム、反応容器200の一例を示した。これを参照して、具現例に係る炭化珪素インゴットの製造方法を説明する。
前記準備ステップ(Sa)は、内部空間を有する反応容器200に原料300と炭化珪素種結晶110を互いに対向するように配置し、真空雰囲気に調節するステップである。
前記準備ステップ(Sa)は、前記内部空間の圧力が50torr以下、10torr以下、または5torr以下になるように減圧することができ、1torr以上の圧力になるように減圧することができる。このような真空雰囲気の準備ステップを経る場合、より欠陥が減少したインゴットを製造することができる。
前記準備ステップ(Sa)の炭化珪素種結晶110は、目的とするインゴットのサイズに応じて適切なサイズのものを適用することができる。前記炭化珪素種結晶のC面((000-1)面)が前記原料300の方向に向かうようにすることができる。
前記準備ステップ(Sa)の炭化珪素種結晶110は、4インチ以上の4H炭化珪素を含むことができ、または6インチ以上の4H炭化珪素を含むことができる。
前記炭化珪素種結晶110が種結晶ホルダ(図示せず)に付着される形態である場合、前記炭化珪素種結晶は、後面上に配置された接着層をさらに含むことができる。前記炭化珪素種結晶が種結晶ホルダに直接接着されない形態である場合、前記炭化珪素種結晶は、後面上に配置される保護層をさらに含むことができる。このような場合、より欠陥の少ない炭化珪素インゴットの成長を誘導することができる。
前記準備ステップ(Sa)の炭化珪素原料300は、炭素源と珪素源を有する粉末形態の原料が適用され得、前記原料は炭化珪素粉末を含むことができる。
前記炭化珪素原料300は、互いにネッキング処理された炭化珪素粉末、または表面を炭化処理した炭化珪素粉末を含むことができる。このような場合、成長過程などにおいてより安定した炭化珪素の昇華を誘導して、より効率的な炭化珪素の成長を助けることができる。
前記準備ステップ(Sa)の反応容器200は、炭化珪素インゴットの成長反応に適した容器であれば適用可能であり、具体的に黒鉛坩堝を適用できる。例えば、前記反応容器は、内部空間及び開口部を含む本体210と、前記開口部と対応して前記内部空間を密閉する蓋220とを含むことができる。前記坩堝蓋は、前記坩堝蓋と一体又は別途に種結晶ホルダをさらに含むことができ、前記種結晶ホルダを介して、炭化珪素種結晶110と炭化珪素原料300とが対向するように、炭化珪素種結晶を固定することができる。
前記準備ステップ(Sa)の反応容器200は、内部空間に前記炭化珪素種結晶110の外周面を所定の間隔を置いて取り囲んで位置するガイド部120を含むことができる。
前記ガイド部120は、前記炭化珪素種結晶110から炭化珪素原料300に向かう方向に延びることができる。このとき、前記炭化珪素種結晶110の一面と前記炭化珪素原料300とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有することができる。前記ガイド傾斜角は、40°以下であってもよく、または25°以下であってもよい。前記ガイド傾斜角は、0.1°以上であってもよく、または4°以上であってもよい。前記ガイド部のガイド傾斜角がこのような範囲を満たすようにして、より欠陥が少なく、結晶品質に優れた炭化珪素インゴットを容易に製造するようにする。
前記準備ステップ(Sa)のガイド部120は、表面又はこれを構成する物質が非晶質炭素を含むことができ、前記反応容器の密度よりも低い黒鉛を含むことができる。これによって、炭化珪素インゴットの成長時に原料物質との不要な反応を抑制することができる。
前記準備ステップ(Sa)のガイド部120の比抵抗は、10μΩm~50μΩm以下であってもよい。このような比抵抗を有するガイド部120を介して、製造される炭化珪素インゴットの形状を安定的に誘導することができる。
前記準備ステップ(Sa)のガイド部120は、上下が開放された円錐台の筒状が前記反応容器200の内部上面に突出するか、または付着された形態であってもよく、前記反応容器の内周面から前記炭化珪素種結晶110に向かって三角形状などに突出するか、または付着された形態であってもよい。前記炭化珪素種結晶110から原料物質300の方向である垂直方向に炭化珪素インゴットが成長する際、炭化珪素インゴットの縁の直径が次第に増加するように誘導できる形態であれば、これに制限するものではない。
前記準備ステップ(Sa)のガイド部120の上端は、前記炭化珪素種結晶110の外周面と5mm~20mmの間隔で離隔してもよい。前記ガイド部の上端は、前記炭化珪素種結晶の外周面との距離が最短距離を示す位置であり得る。前記ガイド部がこのような範囲で炭化珪素種結晶と離隔するようにして、炭化珪素インゴットの成長過程でガイド上に不要な単結晶が形成される際に、炭化珪素インゴットに加えられる干渉を最小化することができる。
前記準備ステップ(Sa)のガイド部120は、前記炭化珪素種結晶110の一面と前記炭化珪素原料300とを最短距離で連結する方向を基準として、高さが30mm以上であってもよく、50mm以下であってもよい。
前記準備ステップ(Sa)の反応容器200は、外面に配置されて前記反応容器を取り囲む断熱材400を含むことができ、このとき、前記断熱材は、前記反応容器と接するか、または所定の間隔を有することができる。石英管のような反応チャンバ500内に前記反応容器を取り囲んだ断熱材が位置するようにすることができ、前記断熱材及び反応チャンバの外部に備えられた加熱手段600により、前記反応容器200の内部空間の温度などを制御することができる。
前記準備ステップ(Sa)の断熱材400は、気孔度が72%~95%であってもよく、75%~93%であってもよく、または80%~91%であってもよい。前記気孔度を満たす断熱材を適用する場合、成長する炭化珪素インゴットのクラックの発生をさらに減少させることができる。
前記準備ステップ(Sa)の断熱材400は、圧縮強度が0.2MPa以上であってもよく、0.48MPa以上であってもよく、または0.8MPa以上であってもよい。また、前記断熱材は、圧縮強度が3MPa以下であってもよく、または2.5MPa以下であってもよい。前記断熱材がこのような圧縮強度を有する場合、熱的/機械的安定性に優れ、アッシュ(ash)が発生する確率が低下するので、より優れた品質の炭化珪素インゴットを製造することができる。
前記準備ステップ(Sa)の断熱材400は、炭素系フェルトを含むことができ、具体的に黒鉛フェルトを含むことができ、レーヨン系黒鉛フェルトまたはピッチ系黒鉛フェルトを含むことができる。
前記反応チャンバ500は、反応チャンバの内部と連結され、反応チャンバの内部の真空度を調節する真空排気装置700と、反応チャンバの内部と連結され、反応チャンバの内部に気体を流入させる配管810と、気体の流入を制御するマスフローコントローラ800とを含むことができる。これらを通じて、後続の成長ステップ及び冷却ステップにおいて不活性気体の流量を調節できるようにする。
前記進行ステップ(Sb,S1)は、不活性気体を前記内部空間に注入し、前記内部空間の温度、圧力及び雰囲気を調節して前記原料を昇華させ、これによって、前記炭化珪素種結晶110から炭化珪素インゴット100の成長を誘導する。
前記進行ステップ(Sb,S1)は、前記内部空間を実質的に不活性気体雰囲気に変更することができる。前記不活性気体雰囲気は、炭化珪素原料300と種結晶110の配置などの過程後、大気雰囲気である反応容器の内部空間を減圧して実質的に真空雰囲気に誘導した後、不活性気体を注入する方式で形成されてもよいが、必ずしもこれに限定されるものではない。
前記進行ステップ(Sb,S1)において不活性気体雰囲気ということは、成長ステップで内部空間の雰囲気が大気雰囲気ではないことを意味し、不活性気体雰囲気を基本とするが、炭化珪素インゴットのドーピングなどを目的として微量の気体を注入することも含む。前記不活性気体雰囲気は、不活性気体を適用し、例示的にアルゴン、ヘリウム、またはこれらの混合気体であってもよい。
前記進行ステップ(Sb,S1)は、前記加熱手段600によって前記反応容器200又は反応容器の内部空間を加熱して行うことができ、前記加熱と同時又は別途に内部空間を減圧して真空度を調節し、不活性気体を注入しながら行うことができる。
前記進行ステップ(Sb,S1)は、前記炭化珪素原料300の昇華、及び前記炭化珪素種結晶110の一面上で炭化珪素インゴット100が成長するように誘導する。
前記加熱手段600は、前記反応容器200の周囲に配置され、炭化珪素種結晶110から原料300に向かう任意の線と実質的に平行に上下方向に移動可能に設置され得、前記加熱手段及び前記反応容器間において上下方向に相対位置を変化させる移動手段を含むことができる。これによって、反応容器と加熱手段との相対的な位置が変わり得、内部空間の温度勾配を誘導することができる。特に、前記加熱手段は、内部空間の上部230と内部空間の下部240に温度差を付与することができる。
前記加熱手段600は、前記反応容器200又は反応容器を取り囲んだ断熱材400の外周面に沿って螺旋状のコイルで形成した誘導加熱手段が適用されてもよいが、これに限定されるものではない。
前記進行ステップ(Sb,S1)は、前成長過程(Sb)及び成長過程(S1)を順に含むことができ、前記前成長過程は、前記準備ステップの高真空雰囲気を不活性雰囲気に変更する第1過程(Sb1)、前記加熱手段600を用いて前記内部空間の温度を昇温する第2過程(Sb2)、及び前記内部空間の圧力を成長圧力に達するように減圧し、前記内部空間の温度が成長温度になるように昇温する第3過程(Sb3)を順に含むことができる。
前記成長過程(S1)は、前記内部空間を前記成長温度及び前記成長圧力に維持し、前記炭化珪素インゴットが成長するように誘導する過程である。
前記第1過程(Sb1)は、アルゴンなどの不活性気体を注入して行うことができる。このとき、前記内部空間の圧力は500torr~800torrであってもよい。
前記第2過程(Sb2)は、前記内部空間の下部240が事前成長開始温度である1500℃~1700℃の温度になるように昇温される過程である。前記第2過程(Sb2)の昇温は、1℃/min~10℃/minの速度で行うことができる。
前記第3過程(Sb3)は、前記内部空間の下部240が成長温度である2100℃~2500℃の温度になるように昇温が行われ得、1torr~50torrの成長圧力まで減圧が進行し得る。前記第3過程(Sb3)の昇温は、1℃/min~5℃/minの速度で行うことができる。
前記第2過程及び第3過程の前記昇温速度及び圧力の範囲で、目的とする結晶以外の多形の発生を防止し、安定的に成長するように誘導することができる。
図5を参照すると、内部空間の上部230は、炭化珪素種結晶110又はインゴットの表面と近い内部空間の一領域であり、内部空間の下部240は、原料300の表面と近い内部空間の領域である。具体的には、前記内部空間の上部230は、炭化珪素種結晶又はインゴットの表面の下方に約5mm以上離れた位置であってもよく、または前記ガイド部120の最下端から上端に10mmの高さを有する位置であってもよい。前記内部空間の下部240は、原料300の表面から上方に約10mm以上離れた位置であってもよい。前記内部空間の上部又は前記内部空間の下部が、坩堝の長手方向に見たときに同じ位置であるとき、それぞれ測定する位置ごとに測定された温度が異なれば、中央部の温度を基準とする。
前記成長過程(S1)において、前記反応容器を基準として加熱手段の相対位置が移動する過程が含まれ得る。
前記成長過程(S1)において成長圧力を維持するという意味は、減圧された圧力で炭化珪素インゴットの成長を止めない範囲で、必要に応じて流入ガスの圧力を多少調節する場合まで含む。また、成長圧力を維持するという意味は、炭化珪素インゴットの成長を維持できる限度内で、前記内部空間の圧力が所定の範囲内で維持されるということを意味する。
前記前成長過程(Sb)は、前記内部空間の上部230と内部空間の下部240に所定の温度差を付与することができ、前記事前成長開始温度において温度差は40℃~60℃であってもよく、または50℃~55℃であってもよい。前記成長温度において温度差は110℃~160℃であってもよく、または135℃~150℃であってもよい。このような温度差を有することによって、初期の炭化珪素インゴットの形成時に、目的とする結晶以外の多形の発生を最小化し、安定したインゴットの成長が可能なようにすることができる。
前記第3過程(Sb3)の昇温速度は、前記第2過程(Sb2)と第3過程(Sb3)全体の平均昇温速度よりも小さくてもよい。前記第2過程と第3過程全体の平均昇温速度は、第2過程の昇温開始時点での温度と第3過程の終了時点での温度との差を、かかった時間で割った値であり、前記第3過程の昇温速度は、第3過程の各時点において昇温速度を意味する。
前記加熱手段600は最大加熱領域を有することができ、前記最大加熱領域は、前記加熱手段によって加熱される内部空間の雰囲気の中で、温度が最も高い部分を意味する。前記加熱手段が螺旋状のコイルの形態で反応容器の側面を取り囲む場合、前記加熱手段の中央に対応する前記内部空間が最大加熱領域となる。例示的に、前記炭化珪素原料300と種結晶110との中央を結ぶ垂直方向の線(垂直中央線)、及び前記加熱手段の高さの中央から水平方向に延びた面(加熱手段の中央面)を仮定する場合、前記最大加熱領域は、前記垂直中央線と加熱手段の水平面との交点が位置する領域であってもよい。
前記第2過程(Sb2)及び第3過程(Sb3)は、前記加熱手段の最大加熱領域が前記反応容器の下部、原料の表面240となるように位置させて行うことができ、前記加熱手段が螺旋状のコイル形状である場合、巻数及び厚さなどを変更して、目的とする前記内部空間の上部と内部空間の下部との温度差を付与するようにすることができる。
前記成長過程(S1)は、前記第3過程(Sb3)で成長温度に昇温した後、本格的に原料を昇華させて炭化珪素インゴットを形成するようにする。このとき、前記成長温度を維持して炭化珪素インゴットを形成するようにすることができる。成長温度を維持するという意味は、必ず固定された進行温度で行わなければならないということを意味するものではなく、絶対温度に多少変化があっても、実質的に炭化珪素インゴットの成長が止まる程度に温度を変化させない範囲で炭化珪素を成長させるということを意味する。
前記成長過程(S1)において前記反応容器に対する加熱手段600の相対位置は、種結晶110を基準として0.1mm/hr~0.48mm/hrの速度で遠ざかることができる。前記相対位置は、種結晶110を基準として0.1mm/hr~0.4mm/hrの速度で遠ざかってもよく、または0.2mm/hr~0.3mm/hrの速度で遠ざかってもよい。前記速度の範囲は非常に低速であるもので、このような速度で相対位置を変化させる場合、成長した炭化珪素インゴットに、目的とする結晶以外の多結晶が混入することを防止することができ、より欠陥の少ない炭化珪素インゴットを成長させることができる。
前記成長過程(S1)において、前記反応容器200、種結晶110に対する加熱手段600の相対位置の変更は、前記成長温度に到達した後に行うことができ、成長温度に到達した後、1時間~10時間後に行うことができる。
前記成長過程(S1)において、内部空間の上部230は、前記反応容器内で最大加熱領域の温度よりも110℃~160℃低い温度を有する副加熱領域を有することができる。前記副加熱領域の温度は、前記最大加熱領域の温度よりも135℃~150℃低い温度であってもよい。
前記副加熱領域は、前記加熱手段によって加熱される内部空間の雰囲気の中で、温度が相対的に低い部分を意味する。前記加熱手段が螺旋状のコイルの形態で反応容器の側面を取り囲む場合、前記副加熱領域は、前記最大加熱領域よりも上部に位置することができる。
前記炭化珪素原料300と種結晶110との中央を結ぶ垂直方向の線(垂直中央線)、及び前記加熱手段の高さの中央から水平方向に延びた面(加熱手段の中央面)を仮定する場合、前記副加熱領域は、前記最大加熱領域と前記炭化珪素種結晶又はインゴットの表面との間に位置する領域であり得、好ましくは、前記副加熱領域の少なくとも一部が前記内部空間の上部に重なり得る。
前記加熱手段600は、前記加熱手段及び前記反応容器200間において上下方向に相対位置を変化させる移動手段を通じて、前記反応容器を基準として上下に移動可能である。すなわち、前記反応容器に配置された種結晶110から炭化珪素原料300に向かう任意の線を基準として、実質的に並んだ方向に移動可能である。
前記成長過程S1の加熱手段600は、前記速度で前記反応容器を基準として下降しながら移動することができる。
前記成長過程(S1)の成長温度は、最大加熱領域を基準として2100℃~2500℃であってもよく、または2200℃~2400℃であってもよい。また、前記成長過程の温度は、前記内部空間の上部230を基準として1900℃~2300℃であってもよく、または2100℃~2250℃であってもよい。
前記成長過程(S1)の間の前記加熱手段の総移動距離が10mm以上であってもよく、または15mm以上であってもよい。前記総移動距離は、45mm以下であってもよく、または30mm以下であってもよい。
前記成長過程(S1)は、5時間~200時間行われてもよく、または75時間~100時間行われてもよい。
前記前成長過程(Sb)及び/又は成長過程(S1)は、前記反応容器200が上下方向を軸として回転しながら行われ得、炭化珪素インゴットの成長にさらに有利な温度勾配が形成されるように誘導することができる。
前記進行ステップ(Sb,S1)は、前記反応容器200の外部に所定流量の不活性気体を加えることができる。前記不活性気体は、前記反応容器200の内部空間で気体の流れが形成され得、前記原料300から前記炭化珪素種結晶110の方向に気体の流れが誘導され得る。これによって、前記反応容器及び内部空間の安定した温度勾配が形成され得る。
前記冷却ステップ(S2)は、前記進行ステップを通じて成長した炭化珪素インゴットを所定の冷却速度及び不活性気体の流量の条件で冷却するステップである。
前記冷却ステップ(S2)は、1℃/min~10℃/minの速度で冷却が行われてもよく、または1℃/min~5℃/minの速度で冷却が行われてもよい。
前記冷却ステップ(S2)は、前記反応容器200の内部空間の圧力の調節が同時に行われてもよく、または前記冷却ステップと別途に圧力の調節が行われてもよい。前記圧力は、前記内部空間の圧力が最大800torrになるように調節され得る。
前記冷却ステップ(S2)は、前記進行ステップと同様に、前記反応容器200の内部に所定流量の不活性気体を加えることができる。前記不活性気体は、前記反応容器の内部空間でその流れが形成され得、前記炭化珪素原料300から前記炭化珪素種結晶110の方向にその流れが形成され得る。
前記冷却ステップ(S2)は、前記反応容器200の内部空間の圧力が大気圧以上になるように加圧し、前記内部空間の温度が上部230を基準として1500℃~1700℃になるように冷却させる1次冷却過程と;前記1次冷却過程の後、前記内部空間の温度を常温に冷却させる2次冷却過程と;を含むことができる。
前記冷却ステップ(S2)の回収は、前記種結晶110と接する炭化珪素インゴットの後面を切断して行われ得る。このように切断された炭化珪素インゴットは、成長した末端の中心と縁との間に良好な高さ差を示し、低減された欠陥密度を有することができ、具体的な炭化珪素インゴットの形状及び欠陥密度は後述する
炭化珪素ウエハの製造方法
上記の目的を達成するために、具現例に係る炭化珪素ウエハの製造方法は、
前記によって製造された炭化珪素インゴットを切断して炭化珪素ウエハを設ける切断ステップ;を含むことができる。
前記切断ステップの前に前記炭化珪素インゴットの縁部を研磨して、一定の直径を有する円筒形の形状になるように加工することができる。
前記切断ステップは、前記炭化珪素インゴットの(0001)面又は成長が始まった面と所定のオフ角を有して一定の厚さ間隔で切断されてもよい。前記オフ角は、0°~10°であってもよい。
前記切断ステップは、前記炭化珪素ウエハの厚さが150μm~900μmになるようにすることができ、または200μm~600μmになるようにすることができるが、これに制限するものではない。
前記炭化珪素ウエハの製造方法は、前記切断ステップを経て設けられた炭化珪素ウエハの厚さを平坦化し、表面を研磨する加工ステップを含むことができる。
前記加工ステップは、炭化珪素ウエハの両面にホイール研削などが適用されてもよく、このとき、ホイール研削に用いられる研磨材はダイヤモンド研磨材が適用されてもよい。前記加工ステップの厚さを平坦化する過程を通じて、前記切断ステップでウエハに加えられた損傷及びストレスを減少させ、厚さを平坦にする。
前記加工ステップの表面を研磨する過程は、湿式又は乾式エッチングステップをさらに含むことができる。
前記加工ステップは、化学的機械的研磨(chemical mechanical polishing)ステップをさらに含むことができる。前記化学的機械的研磨は、定盤上に置かれた研磨パッドに研磨粒子スラリーを加えながら、炭化珪素ウエハを所定の圧力で研磨パッドに接触させ、かつ、研磨パッド及び炭化珪素ウエハを回転させながら行われ得る。
前記製造方法を通じて製造された炭化珪素ウエハは、欠陥密度が少なく、反り特性、ボウ(bow)絶対値が50μm以下であるという優れた利点を有する。
炭化珪素インゴットの製造方法II
上記の目的を達成するために、具現例に係る炭化珪素インゴットの製造方法は、
内部空間を有する反応容器200に原料300と炭化珪素種結晶110を離隔して配置する準備ステップと;
前記内部空間の温度、圧力及び雰囲気を調節して前記原料を昇華させ、前記炭化珪素種結晶から成長した炭化珪素インゴット100を設ける成長ステップと;
前記反応容器を冷却させ、前記炭化珪素インゴットを回収する冷却ステップと;を含み、
前記反応容器の外面を取り囲む断熱材400、及び前記内部空間の温度を調節する加熱部600を含み、
前記断熱材は、前記反応容器の外側面を取り囲む断熱材外周部410を含み、
前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは、0.05~0.8であり、
前記成長ステップは、前記内部空間を常温から第1温度まで昇温させる昇温過程と;第1温度から第2温度まで昇温させる第1成長過程と;前記第2温度を維持する第2成長過程と;を含んで炭化珪素インゴットを設け、
前記第1温度は、前記内部空間の減圧が始まる温度であり、
前記第2温度は、前記内部空間の減圧が完了し、前記減圧された圧力下で炭化珪素インゴットの成長を誘導する温度であり、
温度差は、前記内部空間の上部の温度と下部の温度との差であり、
前記第2温度において前記温度差は160℃~240℃である。
前記準備ステップは、内部空間を有する反応容器に、原料と炭化珪素種結晶が互いに対向するように離隔して配置する。
前記炭化珪素種結晶110は、目的とするウエハに応じて適切なサイズのものを適用することができ、前記炭化珪素種結晶のC面((000-1)面)が前記原料300の方向に向かうようにすることができる。
前記炭化珪素種結晶110は、4インチ以上の4H炭化珪素を含むことができ、6インチ以上の4H炭化珪素を含むことができ、または8インチ以上の4H炭化珪素を含むことができる。前記炭化珪素種結晶は12インチ以下であってもよい。
前記原料300は、炭素源と珪素源を有する粉末形態が適用され得、前記粉末が互いにネッキング処理された原料、または表面を炭化処理した炭化珪素粉末などが適用されてもよい。
前記反応容器200は、炭化珪素インゴットの成長反応に適した容器であれば適用可能であり、具体的に黒鉛坩堝を適用できる。例えば、前記反応容器は、内部空間及び開口部を含む本体210と、前記開口部と対応して前記内部空間を形成する蓋220とを含むことができる。前記坩堝蓋は、前記坩堝蓋と一体又は別途に種結晶ホルダをさらに含むことができ、前記種結晶ホルダを介して、炭化珪素種結晶と原料とが対向するように、炭化珪素種結晶を固定することができる。
前記反応容器200は、断熱材400によって取り囲まれて固定され得、石英管のような反応チャンバ500内に前記反応容器を取り囲んだ断熱材が位置することができる。前記断熱材及び反応チャンバの外部に加熱部600が備えられて前記反応容器の内部空間の温度を制御することができる。
前記断熱材400は、比抵抗が8×10-3Ωm以下であってもよく、5×10-3Ωm以下であってもよく、または3.1×10-3Ωmであってもよい。前記断熱材は、比抵抗が1×10-4Ωm以上であってもよく、2.5×10-4Ωm以上であってもよく、または1.0×10-4Ωm以上であってもよい。このような比抵抗を有する断熱材を適用する場合、成長する炭化珪素インゴットの欠陥の発生をさらに減少させることができる。
前記断熱材400は、前記反応容器200の側面を取り囲む断熱材外周部410を含むことができ、前記断熱材外周部の厚さは、200mm~600mmであってもよく、または300mm~500mmであってもよい。このような外周部の厚さを有する断熱材を適用する場合、高品質の炭化珪素インゴットを成長させることができる。
前記断熱材400は、気孔度が72%~95%であってもよく、75%~93%であってもよく、または80%~91%であってもよい。前記気孔度を満たす断熱材を適用する場合、成長する炭化珪素インゴットの欠陥の発生をさらに減少させることができる。
前記断熱材400は、炭素系フェルトを含むことができ、具体的に黒鉛フェルトを含むことができ、レーヨン系黒鉛フェルトまたはピッチ系黒鉛フェルトを含むことができる。
前記断熱材400の密度は、0.14g/cc~0.28g/ccであってもよく、または0.15g/cc~0.17g/ccであってもよい。このような密度を有する断熱材を適用する場合、高品質の炭化珪素インゴットを成長させることができる。
前記反応容器200の体積Vcと前記断熱材外周部410の体積Viとの比Vc/Viは、0.05~0.8であってもよく、0.1~0.7であってもよく、または0.3~0.5であってもよい。図9を参照すると、前記反応容器の体積Vcは、内部空間を除いた反応容器自体の体積であり得る。前記断熱材外周部は、図9乃至図11に示したように、前記反応容器の上下部の蓋を除いた側面を取り囲むものであってもよく、または前記内部空間を取り囲むものであってもよい。図9乃至図11において、内部空間の上部230に種結晶110が、内部空間の下部240に原料300が位置することができる。
前記反応容器200の体積Vc及び前記断熱材外周部410の体積Viは、実測するか、または3次元モデリングプログラム(CATIA、SolidWorks、AutoCAD)などを介して体積を計算することができる。
前記断熱材外周部410は、内径及び外径を有する中空状であってもよい。前記断熱材外周部の外径は、8インチ以上であってもよく、14インチ以下であってもよい。
前記断熱材400は、前記反応容器200の上部に位置する断熱材上部蓋、及び前記反応容器の下部に位置する断熱材下部蓋をさらに含むことができる。前記断熱材上部蓋及び断熱材下部蓋は、前記断熱材外周部410の上部及び下部をそれぞれ覆って封じることで、断熱材の内部を断熱処理することができる。
前記反応容器200と断熱材外周部410が適切な体積比率を有することによって、成長する炭化珪素インゴットの欠陥の発生を最小化するようにし、炭化珪素インゴットを介して炭化珪素ウエハの製造時にマイクロパイプなどの発生を最小化するようにする。このようなVc/Vi比を外れる場合、成長する炭化珪素インゴットが過度の曲率を有し得るため、残留応力の増加によって品質が低下することがあり、クラックが発生する恐れがある。また、確保される品質の割りに製造単価が上昇し、経済性が低下する恐れがある。
前記反応チャンバ500は、反応チャンバの内部と連結され、反応チャンバの内部の真空度を調節する真空排気装置700と、反応チャンバの内部と連結され、反応チャンバの内部に気体を流入させる配管810と、気体の流入を制御するマスフローコントローラ800とを含むことができる。これらを通じて、後続の成長ステップ及び冷却ステップにおいて不活性気体の流量を調節できるようにする。
前記成長ステップは、前記加熱部600によって前記反応容器200及び前記反応容器の内部空間を加熱して行うことができ、前記加熱と同時又は別途に内部空間を減圧して真空度を調節し、不活性気体を注入しながら炭化珪素インゴットの成長を誘導することができる。
前記加熱部600は、前記反応容器200の上下方向に移動可能に設置され得、これによって、反応容器と加熱部との間の相対的な位置が変更され得、前記内部空間の上部230と前記内部空間の下部240に温度差を付与することができる。具体的には、前記内部空間の上部の炭化珪素種結晶110及び下部の原料300に温度差を付与することができる。
前記加熱部600は、前記反応容器200又は反応容器を取り囲んだ断熱材400の外周面に沿って螺旋状のコイルで形成されてもよい。
前記成長ステップは、図2を参照すると、前記内部空間を常温から第1温度まで昇温させる昇温過程(Sb1,Sb2)と;第1温度から第2温度まで昇温させる第1成長過程(Sb3)と;前記第2温度を維持する第2成長過程(S1)と;を含んで炭化珪素インゴットを設けることができる。
前記成長ステップの前に、大気状態の内部空間を減圧する減圧過程(Sa)を含むことができる。
前記第1温度までの昇温は、3℃/min~13℃/minの速度で行われてもよく、または5℃/min~11℃/minの速度で行われてもよい。前記事前成長開始温度までの昇温は、7℃/min~10℃/minの速度で行われてもよい。
前記減圧過程(Sa)は、前記内部空間の圧力が10torr以下、または5torr以下になるように行われてもよい。
前記昇温過程(Sb1,Sb2)は、前記内部空間の圧力が500torr~800torrになるようにアルゴン、窒素などの不活性ガスを注入して行うことができ、1℃/min~10℃/minの速度で前記内部空間の下部が1500℃~1700℃の温度になるように昇温が行われてもよい。
図5を参照すると、前記成長ステップにおいて、内部空間の上部230は、炭化珪素種結晶110の表面に該当する位置であり得、内部空間の下部240は、原料300の表面に該当する位置であり得る。
前記第1温度は、前記原料300の昇華が一部始まる温度であって、図2の点線領域に表示したように、成長ステップの前に前記昇温過程(Sb1,Sb2)を経た温度であってもよく、または前記昇温過程の不活性ガスの注入後に内部空間の減圧が始まる温度であってもよい。具体的には、前記内部空間の下部240を基準として1500℃~1700℃であってもよく、または1600℃~1640℃であってもよい。
前記第1温度は、前記内部空間の上部230を基準として1450℃~1650℃であってもよく、または1550℃~1587℃であってもよい。
前記第1成長過程(Sb3)は、前記第1温度において前記内部空間の上部230と内部空間の下部240との温度差が40℃~60℃であってもよく、または50℃~55℃であってもよい。
前記第2温度は、本格的に前記原料300の昇華が行われる温度であって、図2の点線領域に表示したように、前記第1成長過程の昇温が行われた温度であってもよく、または前記内部空間の減圧が完了し、前記減圧された圧力下で炭化珪素インゴットの成長を誘導する温度であってもよい。また、前記第2温度で前記減圧された圧力に対して±10%以内に圧力を変更しながら炭化珪素インゴットの成長を誘導することができる。
前記第2温度は、内部空間の下部240を基準として2100℃~2500℃であってもよく、または2200℃~2400℃であってもよい。
前記第2温度は、前記内部空間の上部230を基準として1900℃~2300℃であってもよく、または2100℃~2250℃であってもよい。
前記第1成長過程(Sb3)は、前記第2温度において内部空間の上部230と内部空間の下部240との温度差が160℃~240℃であってもよく、または180℃~220℃であってもよい。前記温度差は、196℃~207℃であってもよく、または202℃~207℃であってもよい。
前記第1成長過程(Sb3)は、前記内部空間の温度の上昇に伴い、前記内部空間の上部230と内部空間の下部240との温度差が共に増加することができる。
前記第1成長過程(Sb3)は、前記内部空間の上部230と内部空間の下部240の温度範囲、温度差及び温度差の変化量を有することによって、初期の炭化珪素インゴットの形成時に、目的とする結晶以外の多形の発生を最小化し、安定したインゴットの成長が可能なようにすることができる。前記第1成長過程の第1温度及び第2温度において前記範囲の温度差未満であると、目的とする結晶以外の結晶が混入して多結晶を形成する可能性が高くなり、成長速度が低下する恐れがあり、前記範囲の温度差を超えると、結晶の品質が低下することがある。
前記第1成長過程(Sb3)は、前記第1温度から第2温度に昇温すると共に減圧が行われ得、1torr~50torrまで進行することができる。
前記第1成長過程(Sb3)の昇温速度は、前記昇温過程(Sb1,Sb2)の昇温速度よりも小さくてもよく、または前記昇温過程と前記第1成長過程全体の平均昇温速度よりも小さくてもよい。
前記第1成長過程(Sb3)の昇温速度は、1℃/min~5℃/minであってもよく、または3℃/min~5℃/minであってもよい。前記昇温速度の範囲で、目的とする結晶以外の多形の発生を防止し、安定的に成長するように誘導することができる。
前記第1成長過程(Sb3)は、前記加熱部600の最大加熱領域が前記内部空間の下部240、原料300の表面となるように行うことができ、前記加熱部が螺旋状のコイル形状である場合、巻数及び厚さなどを変更して、目的とする前記内部空間の上部230と内部空間の下部との温度差を付与するようにすることができる。
前記第2成長過程(S1)は、前記第1成長過程(Sb3)で第2温度に昇温した後、第2温度を維持して本格的に原料300を昇華させて炭化珪素インゴットを形成するようにする。
前記第2成長過程(S1)は、5時間~180時間行われてもよく、30時間~160時間行われてもよく、または50時間~150時間行われてもよい。
前記成長ステップは、前記反応容器200の上下方向を軸として回転しながら行うことができ、温度勾配をさらに同一に維持するようにすることができる。
前記成長ステップは、前記反応容器200の外部に所定流量の不活性気体を加えることができる。前記不活性気体は、前記反応容器の内部空間でその流れが形成され得、前記原料300から前記炭化珪素種結晶110の方向にその流れが形成され得る。これによって、前記反応容器及び内部空間の安定した温度勾配を形成できるようにする。
前記第2成長ステップ(S1)の前記不活性気体は、具体的にアルゴン、ヘリウム、またはこれらの混合気体であってもよい。
前記第2成長ステップ(S1)の後、前記反応容器200を冷却させ、前記炭化珪素インゴットを回収する冷却ステップ(S2);を含むことができる。
前記冷却ステップ(S2)は、前記成長ステップを通じて成長した炭化珪素インゴットを、所定の冷却速度及び不活性気体の流量の条件で冷却する。
前記冷却ステップ(S2)は、1℃/min~10℃/minの速度で冷却が行われてもよく、または3℃/min~9℃/minの速度で冷却が行われてもよい。前記冷却ステップは、5℃/min~8℃/minの速度で冷却が行われてもよい。
前記冷却ステップ(S2)は、前記反応容器200の内部空間の圧力の調節が同時に行われてもよく、または前記冷却ステップと別途に圧力の調節が行われてもよい。前記圧力の調節は、前記内部空間の圧力が最大800torrになるように行われてもよい。
前記冷却ステップ(S2)は、前記成長ステップと同様に、前記反応容器200の内部に所定流量の不活性気体を加えることができる。前記不活性気体は、例示的にアルゴン、または窒素であってもよい。前記不活性気体は、前記反応容器の内部空間でその流れが形成され得、前記原料300から前記炭化珪素種結晶110の方向にその流れが形成され得る。
前記冷却ステップ(S2)は、前記反応容器200の内部空間の圧力が大気圧以上になるように加圧し、前記内部空間の温度が上部230を基準として1500℃~1700℃になるように冷却させる1次冷却過程と;前記1次冷却過程の後、前記内部空間の温度を常温に冷却させる2次冷却過程と;を含むことができる。
前記冷却ステップ(S2)の回収は、前記炭化珪素種結晶110と接する炭化珪素インゴット100の後面を切断して行われ得る。このように切断された炭化珪素インゴットは、種結晶と接する後面の損失を最小化し、改善された結晶品質を示すことができる。
炭化珪素インゴット製造用システムI
上記の目的を達成するために、具現例に係る炭化珪素インゴット製造用システム(製造装置)は、
内部空間を有する反応容器200と;
前記反応容器の外面に配置されて前記反応容器を取り囲む断熱材400と;
前記反応容器又は前記内部空間の温度を調節する加熱手段600と;を含み、
前記内部空間の上部に炭化珪素種結晶110が位置し、
前記内部空間の下部に原料300が位置し、
前記加熱手段及び前記反応容器間において上下方向に相対位置を変化させる移動手段を含み、
前記内部空間は、前記炭化珪素種結晶の外側に備えられるガイド部120を含み、
前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう垂直方向に延び、前記垂直方向を基準として内周面が外側に50°以下に傾斜し、
前記種結晶から炭化珪素インゴットを成長させ、
前記加熱手段の移動は、前記種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかることができる。
前記反応容器200は、図3を参照すると、内部空間及び開口部を含む本体210と、前記開口部と対応して前記内部空間を密閉する蓋220とを含むことができ、その他の事項は、上述した通りである。
前記ガイド部120の具体的な事項は、上述した通りである。
前記断熱材400の材料、物性などは、上述した通りである。
前記炭化珪素インゴット製造用システムは、前記断熱材400で取り囲まれた反応容器200を内部に位置させた反応チャンバ500を含むことができる。このとき、前記加熱手段600は、前記反応チャンバの外部に備えられて前記反応容器の内部空間の温度を制御することができる。
前記反応チャンバ500は、反応チャンバの内部と連結され、反応チャンバの内部の真空度を調節する真空排気装置700と、反応チャンバの内部と連結され、反応チャンバの内部に気体を流入させる配管810と、気体の流入を制御するマスフローコントローラ800とを含むことができる。これらを通じて、成長ステップ及び冷却ステップにおいて不活性気体の流量を調節できるようにする。
前記加熱手段600は、図1及び図5を参照すると、前記反応容器200に対する前記加熱手段の相対位置は、0.1mm/hr~0.48mm/hrの速度で遠ざかることができ、0.1mm/hr~0.4mm/hrの速度で遠ざかることができ、または0.2mm/hr~0.3mm/hrの速度で遠ざかることができる。前記移動速度を満たすようにして、インゴットが成長して表面の位置が変化しても安定した温度差及び温度勾配を付与することができるようにし、目的とする結晶以外の多結晶の形成を防止するようにする。
前記加熱手段600の移動は、前記内部空間の温度、圧力及び雰囲気を調節して前記原料を昇華させ、前記種結晶から成長した炭化珪素インゴットを設ける進行ステップで行われてもよく、例示的に、進行ステップの前成長過程である第2過程及び第3過程と成長過程で行われてもよく、このようなステップ及び過程は、上述した通りである。
前記加熱手段600及び前記反応容器200間において上下方向に相対位置を変化させる移動手段を含むことで、前記成長ステップにて前記速度で、図1及び図5に示したように下降しながら移動することができる。
前記加熱手段600は、最大加熱領域が内部空間の下部に位置するようにすることができる。最大加熱領域は、加熱手段の中央に対応する位置の前記内部空間の領域である。前記加熱手段が螺旋状のコイル形状である場合、前記炭化珪素原料と種結晶110とを結ぶ任意の線を基準として、前記加熱手段の中央から両端に向かって所定の長さを有する加熱手段の内部領域が最大加熱領域であり得る。前記最大加熱領域の温度は、2100℃~2500℃であってもよく、または2200℃~2400℃であってもよい。
前記加熱手段600は、前記成長ステップで前記内部空間の上部230が前記最大加熱領域の温度よりも110℃~160℃低い温度、または135℃~150℃低い温度となるように移動することができる。前記加熱手段が螺旋状のコイル形状である場合、前記内部空間の上部は、前記最大加熱領域である中心よりも上部に位置し得る。前記内部空間の上部の温度は、1900℃~2300℃であってもよく、または2100℃~2250℃であってもよい。
前記炭化珪素インゴット製造用システムは、上述した準備ステップ(Sa)、進行ステップ(Sb,S1)及び冷却ステップ(S2)などが順次行われ得る。
炭化珪素インゴット製造用システムII
具現例に係る炭化珪素インゴット製造用システム(製造装置)は、
内部空間を有する反応容器200と;
前記反応容器の外面を取り囲む断熱材400と;
前記内部空間の温度を調節する加熱部600と;を含んで炭化珪素インゴットを製造し、
前記内部空間の上部230に炭化珪素種結晶110が位置し、
前記内部空間の下部240に原料300が位置し、
前記加熱部は、前記反応容器の上下方向に移動可能に設置されて前記内部空間の上部と内部空間の下部との温度差を調節し、
前記反応容器の体積Vcと前記断熱材外周部410の体積Viとの比Vc/Viは0.05~0.8であってもよい。
前記炭化珪素インゴット製造用システムを通じて、既述した炭化珪素インゴットの製造方法の減圧過程(Sa)、昇温過程(Sb1,Sb2)、第1成長過程(Sb3)、第2成長過程(S1)、及び冷却ステップ(S2)が適用され得る。
前記炭化珪素インゴット製造用システムの炭化珪素種結晶110、原料300、反応容器200、断熱材400、加熱部600などは、炭化珪素インゴットの製造方法IIで説明したものと同一であってもよい。
炭化珪素ウエハの製造方法
上記の目的を達成するために、具現例に係る炭化珪素ウエハの製造方法は、
上記の炭化珪素インゴットの製造方法を通じて製造された炭化珪素インゴットを切断して炭化珪素ウエハを設ける切断ステップ;を含む。
前記切断ステップは、前記ウエハの厚さが150μm~900μmになるようにすることができ、または200μm~600μmになるようにすることができるが、これに制限するものではない。
前記切断ステップの後、設けられた炭化珪素ウエハの厚さを平坦化し、表面を研磨する加工ステップをさらに含むことができる。
前記加工ステップにおいて、研削ホイールは、表面に粒子が埋め込まれた形態であってもよく、前記研削ホイールの表面に埋め込まれた粒子はダイヤモンドであってもよい。
前記加工ステップは、前記研削ホイールとウエハが互いに反対方向に回転しながら行われ得る。
前記加工ステップは、前記研削ホイールの直径が前記ウエハの直径よりも大きくてもよく、250mm以下であってもよい。
前記加工ステップの後、前記炭化珪素ウエハを湿式エッチングするステップをさらに含むことができる。
前記加工ステップは、化学的機械的研磨(chemical mechanical polishing)ステップをさらに含むことができる。
前記化学的機械的研磨は、回転する定盤上に研磨粒子スラリーを加えながら、回転する研磨ヘッドに固定されたウエハを所定の圧力で接触させて行われ得る。
前記加工ステップの後、通常のRCA(Radio Corporation of America)化学洗浄溶液を介した洗浄ステップがさらに行われてもよい。
前記製造方法を通じて製造されたウエハは、欠陥密度が低く、不純物粒子の数が少なく、表面特性が良好であるという利点を有し、これを素子の製造に適用する際に、電気的及び光学的特性に優れた素子を製造することができる。
炭化珪素ウエハ製造用システム
上記の目的を達成するために、具現例に係る炭化珪素ウエハ製造用システム(製造装置)は、
上記の炭化珪素インゴット製造用システムと、製造された炭化珪素インゴットを切断して炭化珪素ウエハを設ける切断手段とを含むことができる。
前記切断手段は、炭化珪素インゴットを一定の厚さを有する炭化珪素ウエハの形状に切断できるものが適用され得、例示的に、ダイヤモンド粒子を含むワイヤソー(wire saw)が適用されてもよい。
前記切断手段は、前記炭化珪素インゴットの(0001)面と所定のオフ角を有するように切断が行われてもよく、前記オフ角は0°~10°であってもよい。
前記炭化珪素ウエハ製造用システムはまた、切断された炭化珪素ウエハの厚さを平坦化し、表面を研磨する研削装置、炭化珪素ウエハの表面を乾式又は湿式エッチングするエッチング装置、化学的機械的研磨装置などをさらに含むことができる。
前記炭化珪素ウエハ製造用システムを通じて製造された炭化珪素ウエハは、欠陥密度が少なく、反り特性、ボウ(bow)絶対値が50μm以下であるという優れた利点を有する。
炭化珪素ウエハ10
上記の目的を達成するために、具現例に係る炭化珪素ウエハ10は、
マイクロパイプ密度が1/cm以下であり、高分解能X線回折分析によるロッキングカーブの半値全幅が0.01°~0.5°であってもよい。
前記炭化珪素ウエハ10は、前記ロッキングカーブの半値全幅が0.01°~0.5°であってもよく、0.02°~0.4°であってもよく、または0.1°~0.4°であってもよい。このような特徴を有する炭化珪素ウエハは、優れた結晶質特性を有することができ、後続工程を通じて製造される素子の特性を向上させることができる。
前記ロッキングカーブは、高分解能X線回折分析システム(HR-XRD system)を適用して、前記炭化珪素ウエハの[11-20]方向をX線経路に合わせ、X線ソースとX線検出器の角度を2θ(35°~36°)に設定した後、炭化珪素ウエハのオフ角に合わせてオメガ(ω)(又はシータ(θ)、X線検出器)角度を調節してロッキングカーブを測定し、ロッキングカーブの半値全幅値を通じて結晶性を評価する。具体的には、炭化珪素インゴットの(0001)面に対して0°~10°の範囲から選択された角度であるオフ角を適用した炭化珪素ウエハのうち、オフ角が0°である場合、オメガ角度は17.8111°であり、オフ角が4°である場合、オメガ角度は13.811°、そして、オフ角が8°である場合、オメガ角度は9.8111°である。
前記炭化珪素ウエハ10は、4インチ以上であってもよく、5インチ以上であってもよく、6インチ以上であってもよく、または8インチ以上であってもよい。前記ウエハの直径は、12インチ以下であってもよく、または10インチ以下であってもよい。
前記炭化珪素ウエハ10は4H炭化珪素を含むことができる。
前記炭化珪素ウエハ10は、表面にエピタキシャル層を形成する前のものであってもよい。例示的に、前記炭化珪素ウエハは、炭化珪素インゴットから切断された後、平坦化加工及び化学的機械的研磨過程を経る前のウエハであってもよい。
前記炭化珪素ウエハ10は、図13に示したように、珪素原子層が表面に現れた一面11であるSi面、及び炭素原子層が表面に現れた他面12であるC面を含むことができる。炭化珪素インゴットから切断加工して炭化珪素ウエハを製造するとき、炭化珪素単結晶が有する炭素原子の層と珪素原子の層との境界面、またはこれと平行な方向に切断されやすい。したがって、炭素原子が主に露出する面と珪素原子が主に露出する面が切断面上に現れるようになる。
前記炭化珪素ウエハ10の一面11であるSi面のRa粗さは、0.3nm以下であってもよく、または0.2nm以下であってもよい。前記一面のRa粗さは0.01nm以上であってもよい。このような粗さ範囲を有するウエハは、後続工程を通じて素子の製造時に電気的特性を向上させることができる。
前記炭化珪素ウエハ10の厚さは、100μm~900μmであってもよく、半導体素子に適用できる適切な厚さであれば、これに制限するものではない。
炭化珪素インゴット100
上記の目的を達成するために、具現例に係る炭化珪素インゴット100は、
前面102及びその反対面である後面101を含む炭化珪素インゴットであって、
前記後面は、炭化珪素種結晶110から切断された面であり、
前記後面に垂直な方向に最大高さが15mm以上であり、
前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であってもよい。
図6を参照すると、前記炭化珪素インゴット100は、前記炭化珪素インゴットの製造方法を通じて製造されたもので、製造過程中に、備えられたガイド部120、加熱手段600の移動速度の調節、温度差などを通じて特定の形状を有するように制御されたものであり得る。
前記炭化珪素インゴット100の後面101は、実質的に前記炭化珪素種結晶と類似の断面を有することができ、その断面が円形であり得、直径Dbを有することができる。
前記炭化珪素インゴットの前面102は、突出した凸面であってもよく、または平面であってもよく、縁部の周縁とその周縁の直径Dfを有することができる。
前記炭化珪素インゴットの前面102の直径Dfは、178mm以下であってもよく、170mm以下であってもよく、または158mm以下であってもよい。このようなDf値を有する炭化珪素インゴットは、優れた結晶品質を有することができる。前記Df値の範囲は、炭化珪素種結晶110の直径が150mmであることを基準とすることができる。
前記炭化珪素インゴットは、前記後面101の直径Dbと前記前面102の周縁の直径Dfとの比Df/Dbが、0.95~1.17であってもよく、または1~1.1であってもよい。また、このとき、炭化珪素インゴット100は、前記後面101に垂直な方向に最大高さが15mm以上であってもよく、18mm以上であってもよく、または21.6mm以上であってもよい。このような直径比及び高さを有する炭化珪素インゴットは、成長過程で内部応力の発生が最小化されたものであり得、良好な結晶品質を示すことができる。
図6を参照すると、前記後面101の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面102の一側を結ぶ縁線との角度は、-4°~50°であってもよく、-1°~40°であってもよく、または0.1°~30°であってもよい。このような範囲を外れる炭化珪素インゴットは、内部にクラックや欠陥などが発生する可能性が高く、ウエハの加工時に負荷が発生する可能性が高く、使用可能な有効面積が減少し、収率が低下する恐れがある。
また、前記角度は、前記後面101と直交し、前記後面の直径を含む平面の観点で、前記後面に垂直な方向を0°とした基準にて、前記後面の周縁の一側からこれと最も隣接する前面の一側に繋がる縁部の傾斜した角度であり得る。そして、前記角度は、前記後面に垂直な方向を0°とした基準にて、前記炭化珪素インゴットの外周面が傾斜した程度を示すことができる。
前記炭化珪素インゴット100は、前記後面101を基準として反対面である前面102の中心の高さと縁の高さの差が、0.01mm~3mmであってもよく、または0.01mm~2.9mmであってもよい。
前記炭化珪素インゴット100は、マイクロパイプ(Micropipe)密度が、1/cm以下であってもよく、0.8/cm以下であってもよく、または0.59/cm以下であってもよく、0.1/cm以上であってもよい。
前記炭化珪素インゴット100は、基底面転位(Basal Plane Dislocation)密度が、1300/cm以下であってもよく、1100/cm以下であってもよく、または980/cm以下であってもよい。
前記炭化珪素インゴット100は、エッチピット(Etch Pit)密度が、12000/cm以下であってもよく、または10000/cm以下であってもよい。
前記マイクロパイプ、基底面転位及びエッチピットは、前記炭化珪素インゴット100を切断してウエハを設けた後、ウエハを500℃、5分の条件で溶融水酸化カリウム(KOH)中に浸漬してエッチングさせた後、その表面の単位面積当たりの欠陥を光学顕微鏡などを通じて測定して、密度を計算することができる。
前記炭化珪素インゴット100は、前記欠陥密度の範囲を満たすことで、欠陥の少ないウエハを提供できるようにし、これを素子に適用する際、電気的特性又は光学的特性に優れた素子を製造することができる。
前記炭化珪素インゴット100を切断して設けられた炭化珪素ウエハは、ボウ(bow)絶対値が50μm以下であってもよく、48μm以下であってもよく、または43μm以下であってもよい。前記ボウ絶対値は5μm以上であってもよい。前記ボウの測定は、下記の実験例に記載されたような方法で行われ得る。
以下、具体的な実施例を通じて本発明をより具体的に説明する。以下の実施例は、本発明の理解を助けるための例示に過ぎず、本発明の範囲がこれに限定されるものではない。
<実施例1~5-炭化珪素インゴットの製造>
図3に炭化珪素インゴット製造用システム、装置の一例を示したように、反応容器200の内部空間の下部240に原料300である炭化珪素粉末を装入し、内部空間の上部230に炭化珪素種結晶を配置した。このとき、炭化珪素種結晶は、直径6インチの4H炭化珪素結晶からなるものを適用し、C面((000-1)面)が内部空間の下部の炭化珪素原料に向かうように通常の方法により固定した。また、前記炭化珪素種結晶の外側にガイド部120を備え、このとき、ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう垂直方向に延び、前記垂直方向を基準として内周面が外側に50°傾斜するようにした。
反応容器200を密閉し、その外部を断熱材400で取り囲んだ後、外部に加熱手段600である加熱コイルが備えられた石英管500内に反応容器を配置した。
図2に示したように、前記反応容器200の内部空間を減圧して真空雰囲気に調節し、アルゴン気体を注入して前記内部空間が760torrに到達するようにし、前記内部空間の温度を、下部を基準として1600℃まで10℃/minの速度で昇温させた。その次に、前成長過程として、減圧と同時に3℃/minの速度で昇温させ、内部空間の下部の温度が、前記加熱手段の最大加熱領域の温度である2350℃になるようにした。以降、同一の条件を維持して、炭化珪素インゴットを表1の加熱手段の移動速度、時間、及び移動距離の条件で成長させた。
成長後、前記内部空間の温度を5℃/minの速度で25℃まで冷却させ、同時に、内部空間の圧力が760torrになるようにアルゴン気体を注入した。その次に、形成された炭化珪素インゴットを種結晶から切断して分離した。
<比較例1及び2-加熱手段の移動速度の変更>
前記実施例において、加熱手段の移動速度、時間及び移動距離を、表1の条件に変更した以外は、前記実施例と同様に行った。
<実験例-製造された炭化珪素インゴットの成長角度、前後面の直径、及び炭化珪素ウエハのボウ値の測定>
それぞれの実施例1~5及び比較例1、2で製造された炭化珪素インゴットを、図6のように、成長方向と垂直に正面を見る観点で、成長末端である前面102の最大高さをハイトゲージで測定し、後面101の縁において後面と垂直な線と、後面と前面を結ぶ縁線との夾角を測定し、前面102の周縁の直径を測定して、表1に示した。
また、前記それぞれの実施例1~5及び比較例1、2で製造された炭化珪素インゴットを、(0001)面と4°のオフ角を有するように切断して360μmのウエハを設け、ダイヤモンドホイールなどで研削したウエハを準備した。このウエハのボウ(bow)値をコーニング・トロペル(Corning Tropel)社のFlatmaster 200XRA機器を通じて測定し、表1に示した。
Figure 0007057014000001
表1を参照すると、加熱手段の移動速度が0.1mm/hr~0.48mm/hrである実施例の場合、インゴットの後面(種結晶面)を基準として反対面である前面の中心の高さが14mm以上であり、縁の傾斜角度が-4°~50°を示し、インゴットから製造されたウエハのボウ値の絶対値も50μm以下と良好であることを確認した。
加熱手段が移動しないか、または移動速度が0.1mm/hr未満である比較例では、前記中心の高さが14mm未満を示し、縁の傾斜角度が50°を超え、炭化珪素インゴットから製造されたウエハのボウ値も良好でない数値を示した。
<実施例A-炭化珪素インゴット及びウエハの製造>
図4に炭化珪素インゴットの製造装置の一例を示したように、反応容器200の内部空間の下部に原料300である炭化珪素粉末を装入し、その上部に炭化珪素種結晶110を配置した。前記炭化珪素種結晶は、6インチの4H-炭化珪素結晶からなるものを適用し、C面((000-1)面)が内部空間の下部の原料に向かうように固定した。
反応容器200を密閉し、その外部を断熱材400で取り囲むようにし、外部に加熱部600である加熱コイルが備えられた石英管500内に反応容器を配置した。前記断熱材の密度、前記反応容器の体積Vcと、前記反応容器の外側面を取り囲む断熱材外周部410の体積Viとの比Vc/Viが、下記表Aに記載されたものになるように適用した。各体積は、実測又は3次元モデリングプログラムなどを通じて計算された。
前記反応容器200の内部空間を減圧して真空雰囲気に調節し、アルゴンガスを注入して前記内部空間が760torrに到達するようにした。以降、再び内部空間を減圧させると同時に、前記内部空間の温度を、下部を基準として第1温度(1600℃)まで7℃/min~10℃/minの速度で昇温させた。第1成長過程として、減圧と同時に3℃/min~5℃/minの速度で表Aの第2温度及び温度差に到達するように昇温させた。同一の条件を維持しながら炭化珪素インゴットを80~140時間成長させた。
成長後、前記内部空間の温度を5℃/min~8℃/minの速度で25℃まで冷却させ、同時に、内部空間の圧力が760torrになるようにアルゴン又は窒素ガスを注入して炭化珪素インゴットを冷却させた。
前記冷却された炭化珪素インゴットの外周面を研削して、均一な外径を有する形状に加工し、炭化珪素インゴットの(0001)面と0°、4°及び8°のオフ角のいずれか1つのオフ角を有するように切断し、360μmの厚さを有する炭化珪素ウエハを製造した。その次に、ダイヤモンドホイールを介して炭化珪素ウエハを研削して厚さを平坦化し、以降、シリカスラリーを介して化学的機械的研磨処理を施して炭化珪素ウエハを設けた。
<実施例B~D、比較例A及びB-炭化珪素インゴット及びウエハの製造>
前記実施例1において、前記Vc/Vi、前記第2温度で上部の温度及び温度差、断熱材の密度及び断熱材の比抵抗を、表Aに記載された通りに変更して、炭化珪素ウエハを設けた。
Figure 0007057014000002
<実験例-炭化珪素ウエハのマイクロパイプ及びX線ロッキングカーブの半値全幅の測定>
1)マイクロパイプの測定
KLA-Tencor社のCandela 8520装置を通じて、前記実施例A~D及び比較例A、Bで設けられた炭化珪素ウエハを、図7及び図8に示したようにイメージマップを形成し、マイクロパイプ密度を測定した。
2)ロッキングカーブの半値全幅の測定
高分解能X線回折分析システム(Rigaku、SmartLab High Resolution X-ray Diffraction System)を適用して、前記実施例A~D及び比較例A、Bで設けられた炭化珪素ウエハの[11-20]方向をX線経路に合わせ、X線ソースとX線検出器の角度を2θ(35~36°)に設定した後、ウエハのオフ角度に合わせてオメガ(ω)(又はシータ(θ)、X線検出器)角度を調節して測定した。具体的に、0°オフを基準として、オメガ角度は17.8111°であり、4°オフを基準として、オメガ角度は13.811°、そして、8°オフを基準として、オメガ角度は9.8111°を適用して、表Bに示した。
Figure 0007057014000003
前記表A及び表Bを参照すると、炭化珪素インゴットの製造時に最適の前記Vc/Vi、温度差、断熱材の密度及び断熱材の比抵抗を適用した実施例の場合、マイクロパイプ密度が著しく小さく、ロッキングカーブの半値全幅が小さいので、結晶特性がさらに優れることが分かる。比較例A及びBの場合、適切でないVc/Vi、温度差、断熱材の密度及び断熱材の比抵抗の影響により、炭化珪素インゴットの成長過程で曲率、応力の発生などが過度となり、結晶品質及び欠陥特性が良くない結果を示したことを確認することができる。
以上、本発明の好ましい実施例について詳細に説明したが、本発明の権利範囲は、これに限定されるものではなく、添付の特許請求の範囲で定義している本発明の基本概念を利用した当業者の様々な変形及び改良形態もまた本発明の権利範囲に属する。
10 炭化珪素ウエハ
11 一面
12 他面
100 炭化珪素インゴット
101 後面
102 前面
110 炭化珪素種結晶
120 ガイド部
200 反応容器
210 本体
220 蓋
230 内部空間の上部
240 内部空間の下部
300 原料
400 断熱材
500 反応チャンバ、石英管
600 加熱手段
700 真空排気装置
800 マスフローコントローラ
810 配管

Claims (8)

  1. 炭化珪素原料及び炭化珪素種結晶が配置された反応容器の内部空間を真空雰囲気に調節する準備ステップと、
    不活性気体を前記内部空間に注入し、前記反応容器を取り囲む加熱手段を介して前記炭化珪素原料を前記炭化珪素種結晶上に昇華させ、炭化珪素インゴットが成長するように誘導する進行ステップと、
    前記内部空間の温度を常温に冷却し、前記炭化珪素種結晶と接する前記炭化珪素インゴットの後面を切断して、前記炭化珪素インゴットを回収する冷却ステップとを含んで前記炭化珪素インゴットを製造し、
    前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部を含み、
    前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
    前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
    前記進行ステップは、前記加熱手段が移動する過程を含み、
    前記加熱手段の移動は、前記炭化珪素種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかり、
    前記炭化珪素インゴットは、前面及び前記後面を含み、
    前記後面に垂直な方向に最大高さが15mm以上であり、
    前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
    前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であり、
    前記進行ステップは、前成長過程及び成長過程を順に含み、
    前記前成長過程は、前記準備ステップの真空雰囲気を不活性雰囲気に変更する第1過程、前記加熱手段を用いて前記内部空間の温度を昇温する第2過程、及び前記内部空間の圧力を成長圧力に達するように減圧し、前記内部空間の温度が成長温度になるように昇温する第3過程を順に含み、
    前記成長過程は、前記内部空間を前記成長温度及び前記成長圧力に維持し、前記インゴットが成長するように誘導する過程であり、
    前記加熱手段の移動は前記成長過程で行われ、
    温度差は、前記内部空間の上部の温度と前記内部空間の下部の温度との差であり、
    前記成長過程において温度差は110℃~160℃である、炭化珪素インゴットの製造方法。
  2. 前記ガイド傾斜角は4°~25°である、請求項1に記載の炭化珪素インゴットの製造方法。
  3. 前記反応容器の外面を取り囲む断熱材を含み、
    前記断熱材は、前記反応容器の外側面を取り囲む断熱材外周部を含み、
    前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.05~0.8である、請求項1に記載の炭化珪素インゴットの製造方法。
  4. 前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する方向を基準として、前記炭化珪素種結晶のガイド部の高さは30mm以上である、請求項1に記載の炭化珪素インゴットの製造方法。
  5. 炭化珪素原料及び炭化珪素種結晶が配置された反応容器の内部空間を真空雰囲気に調節する準備ステップと、
    不活性気体を前記内部空間に注入し、前記反応容器を取り囲む加熱手段を介して前記炭化珪素原料を前記炭化珪素種結晶上に昇華させ、炭化珪素インゴットが成長するように誘導する進行ステップと、
    前記内部空間の温度を常温に冷却し、前記炭化珪素種結晶と接する前記炭化珪素インゴットの後面を切断して、前記炭化珪素インゴットを回収する冷却ステップとを含んで前記炭化珪素インゴットを製造し、
    前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部を含み、
    前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
    前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
    前記進行ステップは、前記加熱手段が移動する過程を含み、
    前記加熱手段の移動は、前記炭化珪素種結晶を基準とする相対位置が0.1mm/hr~0.48mm/hrの速度で遠ざかり、
    前記炭化珪素インゴットは、前面及び前記後面を含み、
    前記後面に垂直な方向に最大高さが15mm以上であり、
    前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
    前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であり、
    前記反応容器の外面を取り囲む断熱材を含み、
    前記断熱材は、前記反応容器の外側面を取り囲む断熱材外周部を含み、
    前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.05~0.8であり、
    前記進行ステップは、前成長過程及び成長過程を順に含み、
    前記前成長過程は、前記準備ステップの真空雰囲気を不活性雰囲気に変更する第1過程、前記加熱手段を用いて前記内部空間の温度を昇温する第2過程、及び前記内部空間の圧力を成長圧力に達するように減圧し、前記内部空間の温度が成長温度になるように昇温する第3過程を順に含み、
    前記成長過程は、前記内部空間を前記成長温度及び前記成長圧力に維持し、前記インゴットが成長するように誘導する過程であり、
    前記加熱手段の移動は前記成長過程で行われ、
    温度差は、前記内部空間の上部の温度と前記内部空間の下部の温度との差であり、
    前記成長過程において温度差は160℃~240℃である、炭化珪素インゴットの製造方法
  6. 前記断熱材外周部の厚さは200mm~600mmである、請求項3又は5に記載の炭化珪素インゴットの製造方法。
  7. 内部空間を有する反応容器と、
    前記反応容器の外面に配置されて前記反応容器を取り囲む断熱材と、
    前記反応容器又は前記内部空間の温度を調節する加熱手段とを含んで炭化珪素インゴットを製造する炭化珪素インゴットの製造装置であって、
    前記内部空間の上部に炭化珪素種結晶が位置し、
    前記内部空間の下部に原料が位置し、
    前記加熱手段及び前記反応容器間において上下方向に相対位置を変化させる移動手段を含み、
    前記内部空間は、前記炭化珪素種結晶の外周面を所定の間隔を置いて取り囲んで位置するガイド部を含み、
    前記ガイド部は、前記炭化珪素種結晶から炭化珪素原料に向かう方向に延び、
    前記炭化珪素種結晶の一面と前記炭化珪素原料とを最短距離で連結する仮想の基準線を0°とするとき、前記ガイド部は、前記炭化珪素種結晶の外側に-4°~50°だけ傾斜したガイド傾斜角を有し、
    前記炭化珪素種結晶から炭化珪素インゴットを成長させ、
    前記炭化珪素インゴットの製造装置を通じて製造された炭化珪素インゴットは、前面及びその反対面である後面を含み、
    前記後面は、炭化珪素種結晶から切断された面であり、
    前記後面に垂直な方向に最大高さが15mm以上であり、
    前記後面の直径Dbと前面の周縁の直径Dfとの比Df/Dbは0.95~1.17であり、
    前記後面の周縁の一側において後面に垂直な線と、前記垂直な線及び前記後面の直径を含む平面において、前記後面の周縁の一側から近い前記前面の一側を結ぶ縁線との角度は-4°~50°であり、
    前記加熱手段の移動時の温度は、最大加熱領域を基準として2100℃~2500℃であり、
    前記最大加熱領域は、前記炭化珪素原料と炭化珪素種結晶とを結ぶ任意の線を基準として、前記加熱手段の中央から両端に向かって所定の長さを有する加熱手段の内部領域であり、
    前記内部空間の上部に副加熱領域が位置し、
    前記副加熱領域は、前記炭化珪素原料と炭化珪素種結晶とを結ぶ任意の線を基準として、加熱手段の両端から中央に向かって所定の長さを有する加熱手段の内部領域であり、
    前記副加熱領域の温度は、前記最大加熱領域の温度よりも110℃~160℃低い温度の領域である、炭化珪素インゴットの製造装置。
  8. 前記断熱材は、前記反応容器の外側面を取り囲む断熱材外周部を含み、
    前記反応容器の体積Vcと前記断熱材外周部の体積Viとの比Vc/Viは0.05~0.8である、請求項7に記載の炭化珪素インゴットの製造装置。
JP2021122497A 2020-08-31 2021-07-27 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット Active JP7057014B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200110065A KR102239736B1 (ko) 2020-08-31 2020-08-31 탄화규소 잉곳의 제조방법 및 이에 따라 제조된 탄화규소 잉곳
KR10-2020-0110065 2020-08-31
KR10-2020-0162868 2020-11-27
KR1020200162868A KR102245213B1 (ko) 2020-11-27 2020-11-27 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조 시스템

Publications (2)

Publication Number Publication Date
JP2022041903A JP2022041903A (ja) 2022-03-11
JP7057014B2 true JP7057014B2 (ja) 2022-04-19

Family

ID=77499680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021122497A Active JP7057014B2 (ja) 2020-08-31 2021-07-27 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット

Country Status (5)

Country Link
US (2) US11339497B2 (ja)
EP (2) EP3960911A1 (ja)
JP (1) JP7057014B2 (ja)
CN (1) CN114108077B (ja)
TW (1) TWI765810B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102321229B1 (ko) * 2021-03-30 2021-11-03 주식회사 쎄닉 탄화규소 웨이퍼 및 이를 적용한 반도체 소자

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096578A (ja) 2004-09-28 2006-04-13 Nippon Steel Corp 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2013166672A (ja) 2012-02-16 2013-08-29 Mitsubishi Electric Corp 単結晶の製造方法および製造装置
JP2014101246A (ja) 2012-11-19 2014-06-05 Toyota Central R&D Labs Inc 単結晶製造装置、および単結晶の製造方法
JP2019119623A (ja) 2017-12-28 2019-07-22 昭和電工株式会社 炭化珪素単結晶インゴット、炭化珪素単結晶の製造方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001245270A1 (en) 2000-02-15 2001-09-03 The Fox Group, Inc. Method and apparatus for growing low defect density silicon carbide and resulting material
JP3961750B2 (ja) 2000-08-21 2007-08-22 独立行政法人産業技術総合研究所 単結晶の成長装置および成長方法
US7422634B2 (en) 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
JP2007204309A (ja) 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2008110907A (ja) 2006-10-31 2008-05-15 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
CN101680112A (zh) 2007-01-16 2010-03-24 Ii-Vi有限公司 借助多层生长导向器的直径导向式SiC升华生长
CN103351000A (zh) 2007-04-25 2013-10-16 卡甘·塞兰 通过大表面积气-固界面及液相再生沉积高纯硅
JP5143139B2 (ja) 2007-11-08 2013-02-13 パナソニック株式会社 単結晶成長装置
JP2010111521A (ja) 2008-11-04 2010-05-20 Bridgestone Corp 炭化珪素単結晶の製造装置及び炭化珪素単結晶の製造方法
JP5779171B2 (ja) * 2009-03-26 2015-09-16 トゥー‐シックス・インコーポレイテッド SiC単結晶の昇華成長方法及び装置
JP2010241628A (ja) 2009-04-03 2010-10-28 Bridgestone Corp 炭化珪素単結晶の製造装置
JP5526866B2 (ja) * 2010-03-02 2014-06-18 住友電気工業株式会社 炭化珪素結晶の製造方法および炭化珪素結晶の製造装置
JP5381957B2 (ja) 2010-10-27 2014-01-08 株式会社デンソー 炭化珪素単結晶の製造装置および製造方法
KR20130000294A (ko) 2011-06-22 2013-01-02 엘지이노텍 주식회사 잉곳 제조 장치
WO2013031856A1 (ja) 2011-08-29 2013-03-07 新日鐵住金株式会社 炭化珪素単結晶基板及びその製造方法
KR101372710B1 (ko) 2012-05-04 2014-03-12 재단법인 포항산업과학연구원 대구경 단결정 성장장치 및 이를 이용하는 성장방법
JP5668724B2 (ja) 2012-06-05 2015-02-12 トヨタ自動車株式会社 SiC単結晶のインゴット、SiC単結晶、及び製造方法
KR101339377B1 (ko) 2012-06-19 2013-12-09 주식회사 인솔텍 실리콘 잉곳 제조장치 및 이를 이용한 잉곳 제조방법
US9657409B2 (en) * 2013-05-02 2017-05-23 Melior Innovations, Inc. High purity SiOC and SiC, methods compositions and applications
JP6489191B2 (ja) 2013-09-25 2019-03-27 住友電気工業株式会社 炭化珪素半導体基板
JP2015224169A (ja) 2014-05-29 2015-12-14 住友電気工業株式会社 炭化珪素インゴットの製造方法
JP6223290B2 (ja) 2014-06-27 2017-11-01 三菱電機株式会社 単結晶の製造装置
KR101640313B1 (ko) 2014-11-14 2016-07-18 오씨아이 주식회사 잉곳 제조 장치
JP6489891B2 (ja) 2015-03-24 2019-03-27 昭和電工株式会社 昇華再結晶法に用いるSiC原料の製造方法
KR101951136B1 (ko) 2015-03-24 2019-02-21 쇼와 덴코 가부시키가이샤 탄화규소 단결정의 제조 방법
US20170137962A1 (en) * 2015-11-16 2017-05-18 National Chung-Shan Institute Of Science And Technology Fabrication Method for Growing Single Crystal of Multi-Type Compound
KR101744287B1 (ko) 2015-12-17 2017-06-08 재단법인 포항산업과학연구원 탄화규소(SiC) 단결정 성장 장치
KR101742103B1 (ko) 2015-12-29 2017-05-31 주식회사 알앤비 단열재 균열방지를 위한 가열로용 커버부재 및 이를 장착한 가열로
KR101760030B1 (ko) 2016-03-02 2017-08-01 한국세라믹기술원 대구경 탄화규소 단결정 성장 장치로부터 소구경 탄화규소 단결정을 성장시키는 방법 및 장치
JP6742183B2 (ja) 2016-07-25 2020-08-19 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
CN106906515A (zh) 2017-04-20 2017-06-30 山东大学 一种能实现温度场实时调整的SiC单晶生长装置及利用该装置生长SiC单晶的方法
JP2019091798A (ja) 2017-11-14 2019-06-13 昭和電工株式会社 SiCエピタキシャルウェハ
JP7030506B2 (ja) * 2017-12-22 2022-03-07 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
KR102109805B1 (ko) 2018-08-10 2020-05-12 에스케이씨 주식회사 탄화규소 단결정 잉곳 성장 장치
KR102202447B1 (ko) 2018-12-18 2021-01-14 주식회사 포스코 탄화규소 단결정 성장장치
KR102104751B1 (ko) 2019-06-17 2020-04-24 에스케이씨 주식회사 탄화규소 잉곳 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096578A (ja) 2004-09-28 2006-04-13 Nippon Steel Corp 炭化珪素単結晶の製造方法及び炭化珪素単結晶インゴット
JP2013166672A (ja) 2012-02-16 2013-08-29 Mitsubishi Electric Corp 単結晶の製造方法および製造装置
JP2014101246A (ja) 2012-11-19 2014-06-05 Toyota Central R&D Labs Inc 単結晶製造装置、および単結晶の製造方法
JP2019119623A (ja) 2017-12-28 2019-07-22 昭和電工株式会社 炭化珪素単結晶インゴット、炭化珪素単結晶の製造方法

Also Published As

Publication number Publication date
EP4163423A1 (en) 2023-04-12
US20220220632A1 (en) 2022-07-14
TWI765810B (zh) 2022-05-21
TW202210667A (zh) 2022-03-16
EP3960911A1 (en) 2022-03-02
CN114108077B (zh) 2024-04-05
US11339497B2 (en) 2022-05-24
US20220064817A1 (en) 2022-03-03
CN114108077A (zh) 2022-03-01
JP2022041903A (ja) 2022-03-11

Similar Documents

Publication Publication Date Title
KR102340110B1 (ko) 탄화규소 잉곳, 웨이퍼 및 이의 제조방법
JP7030260B2 (ja) 炭化珪素インゴット、その製造方法及び炭化珪素ウエハの製造方法
JP2021138597A (ja) ウエハ、エピタキシャルウエハ及びその製造方法
KR102245213B1 (ko) 탄화규소 잉곳의 제조방법 및 탄화규소 잉곳 제조 시스템
JP7057014B2 (ja) 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット
JP7023542B2 (ja) 炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システム
US11289576B2 (en) Wafer and method of manufactruring wafer
KR102239736B1 (ko) 탄화규소 잉곳의 제조방법 및 이에 따라 제조된 탄화규소 잉곳
JP2021195298A (ja) 炭化珪素インゴット、ウエハ及びその製造方法
JP7056979B2 (ja) 炭化珪素インゴットの製造方法及び炭化珪素インゴット製造用システム
KR102236395B1 (ko) 탄화규소 잉곳 제조방법, 탄화규소 웨이퍼 및 탄화규소 웨이퍼 제조방법
JP7023543B2 (ja) ウエハの製造方法、エピタキシャルウエハの製造方法、これによって製造されたウエハ及びエピタキシャルウエハ
JP7398829B2 (ja) 炭化珪素ウエハ及び半導体素子
TWI816326B (zh) 碳化矽晶圓以及使用其之半導體元件
JP7298940B2 (ja) 炭化珪素ウエハ及びその製造方法
KR102236397B1 (ko) 탄화규소 웨이퍼 및 이를 적용한 반도체 소자

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7057014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150