JP7052530B2 - 超音波診断装置、および、超音波信号処理方法 - Google Patents

超音波診断装置、および、超音波信号処理方法 Download PDF

Info

Publication number
JP7052530B2
JP7052530B2 JP2018083920A JP2018083920A JP7052530B2 JP 7052530 B2 JP7052530 B2 JP 7052530B2 JP 2018083920 A JP2018083920 A JP 2018083920A JP 2018083920 A JP2018083920 A JP 2018083920A JP 7052530 B2 JP7052530 B2 JP 7052530B2
Authority
JP
Japan
Prior art keywords
wave
transmission
analysis target
observation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018083920A
Other languages
English (en)
Other versions
JP2019187777A (ja
Inventor
優 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2018083920A priority Critical patent/JP7052530B2/ja
Priority to US16/373,234 priority patent/US20190328363A1/en
Publication of JP2019187777A publication Critical patent/JP2019187777A/ja
Application granted granted Critical
Publication of JP7052530B2 publication Critical patent/JP7052530B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52019Details of transmitters
    • G01S7/5202Details of transmitters for pulse systems
    • G01S7/52022Details of transmitters for pulse systems using a sequence of pulses, at least one pulse manipulating the transmissivity or reflexivity of the medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Description

本開示は、超音波診断装置、および、超音波信号処理方法に関し、特に、せん断波を用いた組織内のせん断波の伝播速度解析、および、組織の弾性率測定に関する。
超音波診断装置は、超音波プローブを構成する複数の振動子から被検体内部に超音波を送信し、被検体組織の音響インピーダンスの差異により生じる超音波反射波(エコー)を受信し、得られた電気信号に基づいて被検体の内部組織の構造を示す超音波断層画像を生成して表示する医療用検査装置である。
近年、この超音波診断の技術を応用した組織の弾性率計測(SWSM:Shear Wave Speed Measurement、以後「超音波弾性率計測」とする)が広く検査に用いられている。臓器や体組織内に発見された腫瘤の硬さを非侵襲かつ簡易に計測することができるために、癌のスクリーニング検査において腫瘍の硬さを調べることや、肝臓疾患の検査において肝線維化の評価に用いることができ有用である。
この超音波弾性率計測では、被検体内の関心領域(ROI:Region of Interest)を定めると共に、複数の振動子から被検体内の特定部位に超音波を集束させたプッシュ波(集束超音波、又は、ARFI:Acoustic Radiation Force Impulse)を送信した後、検出用の超音波(以後、「検出波」とする)の送信と反射波の受信とを複数回繰り返して、プッシュ波の音響放射圧により生じたせん断波の伝播解析を行うことにより組織の弾性率を表すせん断波の伝播速度を算出して、組織弾性の分布を例えば画像化して弾性画像として表示することができる(例えば、特許文献1)。
特表2006-500089号公報
せん断波の伝播解析を行う代表的な方法としては、被検体内における超音波プローブ表面と直交する方向(以下、「深さ方向」と表記する)の変位を検出し、時系列における変位ピークの深さ方向に直交する方向(以下、「水平方向」と表記する)の移動速度をせん断波速度として検出する方法がある。プッシュ波による押圧の向きは深さ方向であるため、せん断波の振動の向きは深さ方向である一方、せん断波の伝播方向は水平方向となるからである。しかしながら、せん断波はプッシュ波の焦点から略放射状に伝播するため、着目している組織内の箇所において、せん断波の伝播方向と水平方向との一致度が低い場合、そのずれに応じてせん断波の検出精度の低下が生じることがある。
本開示は、上記課題に鑑みてなされたものであり、超音波弾性率計測において、弾性率計測結果の信頼性を向上させることを目的とする。
本開示の一態様に係る超音波診断装置は、複数の振動子が列設されたプローブが接続可能に構成されており、前記プローブに被検体内に超音波ビームが集束するプッシュ波を送信させ、当該プッシュ波の音響放射圧により生じたせん断波の伝播速度を検出する超音波診断装置であって、前記複数の振動子から選択される複数の送信振動子を用いて、被検体内の1以上の送信焦点に集束するプッシュ波を送信させるプッシュ波パルス送信部と、前記プッシュ波の送信に続き、前記複数の振動子の一部または全部に検出波パルスを供給して前記複数の振動子に被検体内の解析対象範囲を示す関心領域を通過する検出波を複数回送信させる検出波パルス送信部と、前記複数回の検出波の各々に対応して前記複数の振動子にて時系列に受信された反射検出波に基づき、前記関心領域内の複数の観測点それぞれにおける組織の変位量を検出する変位検出部と、前記複数の観測点における組織の変位量の時間変化の急峻度に基づき、前記複数の観測点の中から変位量の時間変化におけるピークの鋭さが極大となる観測点を特定し、特定された観測点の組合せを解析対象領域に含まれる観測点として選択することにより、せん断波の伝播解析の対象となる解析対象領域を決定する解析対象決定部と、前記解析対象領域内に存在する複数の観測点における組織の変位量に基づいて、前記解析対象領域内に存在する観測点それぞれにおけるせん断波の伝播速度を算出する伝播情報解析部とを備えることを特徴とする。
上記構成によれば、被検体内部において、せん断波の伝播方向を検出してせん断波の伝播解析を行うため、せん断波の仮定した伝播方向と実際の伝播方向のずれによる誤差を抑止し、伝播解析の精度を向上させることができる。したがって、せん断波が放射状に伝播する場合や、蛇行するように伝播する場合においても、観測点の配置を適切に行うことで、高精度に伝播解析を行うことができる。
実施の形態に係る超音波診断装置100における超音波弾性率計測法によるSWSシーケンスの概要を示す概略図である。 超音波診断装置100を含む超音波診断システム1000の機能ブロック図である。 (a)は、プッシュ波パルス発生部104で発生させるプッシュ波の送信焦点Fの位置を示す模式図、(b)は、検出波パルス発生部105で発生させる検出波パルスの構成概要を示す模式図である。 (a)は、送信部106の構成を示す機能ブロック図、(b)は、検出波受信部108の構成を示す機能ブロック図である。 (a)は、プッシュ波送信の概要を示す模式図、(b)は、プッシュ波パルスの例を示す模式図である。 (a)は、検出波送信の概要を示す模式図、(b)は、反射検出波受信の概要を示す模式図である。 遅延処理部10831において、超音波の伝播経路の計算方法の概要を示す模式図である。 変位検出部109、伝播情報解析部110、弾性率算出部111の構成を示す機能ブロック図である。 超音波診断装置100における統合SWSシーケンスの工程の概要を示す概略図である。 超音波診断装置100における超音波弾性率算出の動作を示すフローチャートである。 (a)から(e)は、プッシュ波パルスppによるせん断波の生成の様子を示す模式図である。 変位検出及びせん断波の伝播解析の動作を示す模式図である。 超音波診断装置100におけるせん断波の伝播情報解析の動作を示すフローチャートである。 (a)は、観測線とその上に存在する複数の観測点、および、せん断波の進行方向との相対関係を示す模式図であり、(b)、(c)は、変位の時間変化を示すグラフである。 (a)は、観測点の位置を基準として隣接する観測線上に存在する複数の観測点から変位量ピークの鋭さが極大となる観測点を特定する動作を示す模式図であり、(b)はプッシュ波の送信焦点Fが1つの場合の、(c)はプッシュ波の送信焦点Fpが複数存在する場合の、それぞれの観測点を特定する動作を示す模式図である。 せん断波の速度解析の詳細を示す模式図である。 (a)から(c)は、弾性画像の表示例を示す図である。
≪実施の形態≫
超音波診断装置100は、超音波弾性率計測法により組織の弾性率を表すせん断波の伝播速度を算出する処理を行う。図1は、超音波診断装置100における、超音波弾性率計測法によるSWSシーケンスの概要を示す概略図である。図1中央の枠に示すように、超音波診断装置100の処理は、「基準検出波パルス送受信」、「プッシュ波パルス送信」、「検出波パルス送受信」、「弾性率算出」の工程から構成される。
「基準検出波パルス送受信」の工程では、超音波プローブに基準検出波パルスpwp0を送信して、複数の振動子に被検体中の関心領域roiに対応する範囲に検出波pw0の送信と反射波ecの受信とを行わせて、組織の初期位置の基準となる音響線信号を生成する。
「プッシュ波パルス送信」の工程では、超音波プローブにプッシュ波パルスpppを送信して、複数の振動子に被検体内の特定部位に超音波を収束させたプッシュ波ppを送信させて、被検体組織にせん断波を励起させる。
その後、「検出波パルス送受信」の工程で、超音波プローブに検出波パルスpwpl(lは1からmまでの自然数、mは検出波パルスpwpの送信回数)を送信し、複数の振動子に検出波pwlの送信と反射波ecの受信とを複数回行わせることで、せん断波の伝播状態を計測する。「弾性率算出」の工程では、まず、せん断波の伝播に伴う組織の変位分布pt1を時系列に算出して、次に、変位分布pt1の時系列な変化から組織の弾性率を表すせん断波の伝播速度を算出するせん断波伝播解析を行い、最後に、弾性率分布を画像化し弾性画像として表示する。
以上に示した、プッシュ波pp送信に基づく1回のせん断波の励起に伴う一連の工程を、「SWSシーケンス」(SWS:Shear Wave Speed)と呼ぶ。
<超音波診断システム1000>
1.装置概要
実施の形態に係る超音波診断装置100を含む超音波診断システム1000について、図面を参照しながら説明する。図2は、実施の形態に係る超音波診断システム1000の機能ブロック図である。図2に示すように、超音波診断システム1000は、被検体に向けて超音波を送信し、その反射波を受信する複数の振動子(振動子列)101aが先端表面に列設された超音波プローブ101(以下、「プローブ101」とする)、プローブ101に超音波の送受信を行わせプローブ101からの出力信号に基づき超音波信号を生成する超音波診断装置100、検査者からの操作入力を受け付ける操作入力部102、超音波画像を画面上に表示する表示部114を有する。プローブ101、操作入力部102、表示部114は、それぞれ、超音波診断装置100に各々接続可能に構成されている。
次に、超音波診断装置100に外部接続される各要素について説明する。
2.プローブ101
プローブ101は、例えば一次元方向(以下、「振動子列方向」とする)に配列された複数の振動子101aからなる振動子列(101a)を有する。プローブ101は、後述の送信部106から供給されたパルス状の電気信号(以下、「送信信号」とする)をパルス状の超音波に変換する。プローブ101は、プローブ101の振動子側外表面を超音波ジェル等を介して被検体の皮膚表面に当てた状態で、複数の振動子から発せられる複数の超音波からなる超音波ビームを測定対象に向けて送信する。そして、プローブ101は、被検体からの複数の反射検出波(以下、「反射波」とする)を受信し、複数の振動子101aによりこれら反射波をそれぞれ電気信号に変換して超音波診断装置100に供給する。
3.操作入力部102
操作入力部102は、検査者からの超音波診断装置100に対する各種設定・操作等の各種操作入力を受け付け、超音波診断装置100の制御部116に出力する。
操作入力部102は、例えば、表示部114と一体に構成されたタッチパネルであってもよい。この場合、表示部114に表示された操作キーに対してタッチ操作やドラッグ操作を行うことで超音波診断装置100の各種設定・操作を行うことができ、超音波診断装置100がこのタッチパネルにより操作可能に構成される。また、操作入力部102は、例えば、各種操作用のキーを有するキーボードや、各種操作用のボタン、レバー等を有する操作パネルやマウス等であってもよい。
4.表示部114
表示部114は、いわゆる画像表示用の表示装置であって、後述する表示制御部113からの画像出力を画面に表示する。表示部114には、液晶ディスプレイ、CRT、有機ELディスプレイ等を用いることができる。
<超音波診断装置100の構成概要>
次に、実施の形態に係る超音波診断装置100について説明する。
超音波診断装置100は、プローブ101の複数ある振動子101aのうち、送信又は受信の際に用いる振動子を各々に選択し、選択された振動子に対する入出力を確保するマルチプレクサ部107、超音波の送信を行うためにプローブ101の各振動子101aに対する高電圧印加のタイミングを制御する送信部106と、プローブ101で受信した反射波に基づき、受信ビームフォーミングして音響線信号を生成する検出波受信部108を有する。
また、操作入力部102からの操作入力に基づき被検体内の解析対象範囲を表す関心領域roiを複数の振動子101aを基準に設定する関心領域設定部103、複数の振動子101aにプッシュ波パルスpppを送信させるプッシュ波パルス発生部104、プッシュ波パルスpppに続き検出波パルスpwplを複数(m)回送信させる検出波パルス発生部105を有する。
また、音響線信号から関心領域roi内の組織の変位を検出する変位検出部109、検出した組織の変位からせん断波の伝播情報解析を行い関心領域roi内の各観測点におけるせん断波の波面到達時間を算出してせん断波の伝播速度を算出する伝播情報解析部110、関心領域roi内の各観測点における弾性率を算出する弾性率算出部111を有する。
また、検出波受信部108が出力する音響線信号、変位検出部109が出力する変位量データ、伝播情報解析部110が出力する波面データ、波面到達時間データ及び速度値データ、弾性率算出部111が出力する弾性率データ等を保存するデータ格納部115、表示画像を構成して表示部114に表示させる表示制御部113、さらに、各構成要素を制御する制御部116を備える。
このうち、マルチプレクサ部107、送信部106、検出波受信部108、関心領域設定部103、プッシュ波パルス発生部104、検出波パルス発生部105、変位検出部109、伝播情報解析部110、弾性率算出部111は、超音波信号処理回路150を構成する。
超音波信号処理回路150を構成する各要素、制御部116、表示制御部113は、それぞれ、例えば、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)などのハードウェア回路により実現される。あるいは、CPU(Central Processing Unit)やGPGPU(General-Purpose computing on Graphics Processing Unit)やプロセッサなどのプログラマブルデバイスとソフトウェアにより実現される構成であってもよい。これらの構成要素は一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。また、複数の構成要素を組合せて一個の回路部品とすることができるし、複数の回路部品の集合体にすることもできる。
データ格納部115は、コンピュータで読み取り可能な記録媒体であり、例えば、フレキシブルディスク、ハードディスク、MO、DVD、DVD-RAM、半導体メモリ等を用いることができる。また、データ格納部115は、超音波診断装置100に外部から接続された記憶装置であってもよい。
なお、本実施の形態1に係る超音波診断装置100は、図1で示した構成の超音波診断装置に限定されない。例えば、マルチプレクサ部107が不要な構成もあるし、プローブ101に送信部106や検出波受信部108、またその一部などが内蔵される構成であってもよい。
<超音波診断装置100の各部構成>
次に、超音波診断装置100に含まれる各ブロックの構成について説明する。
1.関心領域設定部103
一般に、表示部114にプローブ101によりリアルタイムに取得された被検体の断層画像であるBモード画像が表示されている状態において、操作者は、表示部114に表示されているBモード画像を指標として、被検体内の解析対象範囲を指定し操作入力部102に入力する。関心領域設定部103は、操作入力部102から操作者により指定された情報を入力として設定し、制御部116に出力する。このとき、関心領域設定部103は、被検体内の解析対象範囲をあらわす関心領域roiをプローブ101にある複数の振動子101aからなる振動子列(101a)の位置を基準に設定してもよい。例えば、関心領域roiは、複数の振動子101aからなる振動子列(101a)を含む検出波照射領域Ax内の全部又は一部領域であってもよい。
2.プッシュ波パルス発生部104
プッシュ波パルス発生部104は、制御部116から関心領域roiを示す情報を取得し、関心領域roiの近傍又は内部の所定位置に1以上の特定点を設定する。そして、複数の振動子101aに送信部106からプッシュ波パルスpppn(n=1~nmax)を1回以上(nmax回)送信させることにより、複数の振動子101aに特定点(以下、「送信焦点FPn」(n=1~nmax)とする。)に対応する被検体中の特定部位に超音波ビームが集束するプッシュ波ppn(n=1~nmax)を送信させる。これにより、被検体中の特定部位にせん断波を励起させる。このとき、プッシュ波パルスpppnの送信回数(nmax)は1以上8以下としてもよい。しかしながら、nmaxは、上記に限定されず適宜変更可能であることは言うまでもない。
具体的には、プッシュ波パルス発生部104は、関心領域roiを示す情報に基づき、プッシュ波の送信焦点FPnの位置とプッシュ波pppnを送信させる振動子列(以後、「プッシュ波送信振動子列Pxn」とする)を以下に示すように決定する。
図3(a)は、プッシュ波パルス発生部104で発生させるプッシュ波pppnの送信焦点FPnの位置を示す模式図である。関心領域roiの列方向長さw及び被検体深さ方向の長さhが、それぞれ平面波による超音波照射範囲の列方向長さa及び被検体深さ方向の長さb以下であり、超音波照射範囲の中心付近に関心領域roiが設定される場合を例に説明する。本実施の形態では、図3(a)に示すように、送信焦点FPnの位置のうち、例えば、列方向送信焦点位置fxは関心領域roiの列方向中心位置wcと一致する構成とした。
また、プッシュ波送信振動子列Pxは、深さ方向送信焦点位置fynに基づき設定される。本実施の形態では、プッシュ波パルス送信振動子列Pxn(n=1~nmax)の長さは複数の振動子101a全部の列の長さaとする構成とした。
送信焦点FPnの位置と、プッシュ波送信振動子列Pxnを示す情報は、プッシュパルスpppnのパルス幅PWn、印加開始時刻PTnとともに、送信制御信号として送信部106に出力される。また、印加開始時刻PTnの時間間隔PInを含めてもよい。なお、プッシュ波パルスpppnのパルス幅PWn、印加開始時刻PTn、及び時間間隔PInについては後述する。
なお、関心領域roiと送信焦点FPとの位置関係は上記に限られず、被検体の検査すべき部位の形態等により適宜変更してもよい。
例えば、図3(a)に示す例を、送信焦点FPの位置のうち列方向送信焦点位置fxが関心領域roiの列方向中心位置wcからx軸の正又は負の方向にオフセットされた構成に変更してもよい。この場合、関心領域幅wと振動子列の列方向中心は異なる構成となる。さらに、送信焦点FPのうち列方向焦点位置fxが、関心領域roiの列方向中心wcからx軸の正又は負の方向にオフセットされ関心領域roi外に位置するような構成としてもよい。
また、関心領域幅wが相対的に大きい場合には、送信焦点FPnの列方向送信焦点位置fxが送信焦点FPnによって異なる複数のプッシュ波を発生する構成としてもよい。
また、関心領域roiの近傍であって関心領域roi外の所定位置に送信焦点FPを設定する構成としてもよい。このとき、関心領域roiの近傍に設定する場合には、送信焦点FPは関心領域roiに対してせん断波が関心領域roiへ到達可能な距離に設定される。
なお、プッシュ波による超音波ビームが「集束」するとは、超音波ビームが絞られフォーカスビームであること、すなわち、超音波ビームに照射される面積が送信後に減少し特定の深さにおいて最小値を採ることを指し、超音波ビームが1点にフォーカスされる場合に限られない。この場合、「送信焦点FP」とは、超音波ビームが集束する深さにおける超音波ビーム中心をさす。
なお、本明細書では、以降において、プッシュ波パルスpppn、プッシュ波ppn、プッシュ波送信振動子列Pxn、送信焦点FPn、深さ方向送信焦点位置fyn、プッシュ波パルスpppnのパルス幅PWn、印加開始時刻PTn、印加開始時刻PTnの時間間隔PInの送信順(n)の区別しない場合には、これらのnを付さずに表記するものとする。
3.検出波パルス発生部105
検出波パルス発生部105は、制御部116から関心領域roiを示す情報を入力し、複数の振動子101aに送信部106から検出波パルスpwplを複数回送信させることにより超音波ビームが関心領域roiを通過するよう、検出波パルス送信振動子列Txに属する複数の振動子101aに検出波pwを送信させる。具体的には、検出波パルス発生部105は、関心領域roiを示す情報に基づき、超音波ビームが関心領域roiを通過するよう、検出波パルスpwplを送信させる振動子列(以後、「検出波送信振動子列Tx」とする)を決定する。このとき、検出波パルスpwplの送信回数(m)は、例えば、30~100としてもよい。また、検出波パルスpwplの送信間隔は、例えば、100μsec~150μsecとしてもよい。しかしながら、これらの印加条件は、上記に限定されず適宜変更可能であることは言うまでもない。
図3(b)は、検出波パルス発生部105で発生させる検出波パルスpwplの構成概要を示す模式図である。図3(b)に示すように、検出波パルス発生部105は、検出波パルス送信振動子が同位相で駆動されるいわゆる平面波である検出波が関心領域roi全体を通過するように検出波パルス送信振動子列Txを設定する。検出波パルス送信振動子列Txの長さaは関心領域幅wよりも大きく設定されることが好ましい。本例では、関心領域幅wは検出波パルス送信振動子列Txの列方向の端部よりも所定距離βだけ内方に位置するように設定される。検出波pwは平面波であるので振動子列方向と垂直なY方向に伝播する。したがって、関心領域roiは、X方向両端において距離βだけマージンを持って超音波照射領域Axに含まれる。これより、1回の検出波の送受信により関心領域roi全体にある観測点について音響線信号を生成できるとともに、超音波ビームが確実に関心領域roi全体を通過するように前記検出波パルスpwplを送信することができる。しかしながら、検出波の送受信回数は上記に限られず、例えば、1回の検出波の送受信により関心領域roiの一部にある観測点について音響線信号を生成して、この検出波の送受信を複数回行うことにより、各送受信から得られた音響線信号を合成して関心領域roi全体の観測点について音響線信号を生成する構成としてもよい。
また、検出波パルス送信振動子列Txは複数の振動子101a全部とする構成としてもよい。超音波照射領域Axを、平面波による最大超音波照射領域Axmaxとすることができる。
検出波パルス送信振動子列Txを示す情報は、検出波パルスpwplのパルス幅とともに、送信制御信号として送信部106に出力される。
4.送信部106
送信部106は、マルチプレクサ部107を介してプローブ101と接続され、プローブ101から超音波の送信を行うために、プローブ101に存する複数の振動子101aの全てもしくは一部に当たるプッシュ波送信振動子列Px又は検出波送信振動子列Txに含まれる複数の振動子各々に対する高電圧印加のタイミングを制御する回路である。
図4(a)は、送信部106の構成を示す機能ブロック図である。図4(a)に示すように、送信部106は、駆動信号発生部1061、遅延プロファイル生成部1062、駆動信号送信部1063を含む。
(1)駆動信号発生部1061
駆動信号発生部1061は、プッシュ波パルス発生部104又は検出波パルス発生部105からの送信制御信号のうち、プッシュ波送信振動子列Px又は検出波送信振動子列Txを示す情報、プッシュ波パルスpppnのパルス幅PWn、印加開始時刻PTnを示す情報、検出波パルスpwplのパルス幅、印加開始時刻を示す情報とに基づき、プローブ101に存する振動子101aの一部又は全部に該当する送信振動子から超音波ビームを送信させるためのパルス信号spを発生する回路である。
(2)遅延プロファイル生成部1062
遅延プロファイル生成部1062では、プッシュ波パルス発生部104又は検出波パルス発生部105から得られる送信制御信号のうち、プッシュ波送信振動子列Pxn又は検出波送信振動子列Txと送信焦点FPnの位置を示す情報とに基づき、超音波ビームの送信タイミングを決める印加開始時刻PTnからの遅延時間tpk(kは、1から振動子101aの数kmaxまでの自然数)を振動子毎に設定して出力する回路である。これにより、遅延時間分だけ振動子毎に超音波ビームの送信を遅延させて超音波ビームのフォーカシングを行う。
(3)駆動信号送信部1063
駆動信号送信部1063は、駆動信号発生部1061からのパルス信号spと遅延プロファイル生成部1062からの遅延時間tpkとに基づき、プローブ101に存する複数の振動子101a中、プッシュ波送信振動子列Pxに含まれる各振動子にプッシュ波を送信させるためのプッシュ波パルスpppを供給するプッシュ波送信処理を行う。プッシュ波送信振動子列Pxは、マルチプレクサ部107によって選択される。
図5(a)及び(b)は、プッシュ波パルスの印加タイミングを示す模式図である。
生体に物理的変位を起こすプッシュ波には、通常のBモード表示等に用いる送信パルスに比して格段に大きなパワーが求められる。即ち、パルサ(超音波発生器)に与える駆動電圧として、Bモード画像の取得では通常30~40Vでも成立する場合があるのに対して、プッシュ波では、例えば、50V以上を要する。また、Bモード画像の取得では、送信パルス長は数μsec程度であるが、プッシュ波には1送信あたり数百μsecの送信パルス長を必要とする。
本実施の形態では、図5(a)に示すように、駆動信号送信部1063から1回以上のnmax回のプッシュ波パルスpppnがそれぞれの印加開始時刻PTnに複数の振動子101aに送信される。プッシュ波パルスpppnは、図5(b)に示すように、所定のパルス幅PWn(時間長)を有し所定の電圧振幅(+V~-V)、所定周波数からなるバースト信号からなる。具体的には、パルス幅PWnは、例えば、100~200μsec、周波数は、例えば、6MHz、電圧振幅は、例えば、+50V~-50Vとしてもよい。しかしながら、印加条件は上記に限定されないことは言うまでもない。
また、図5(a)に示すように、プッシュ波パルスpppnごとの印加開始時刻PTnは、プッシュ波パルスpppnごとの印加開始時刻PTnの時間間隔PInが、プッシュ波パルスpppnの印加ごとに降順に増加する構成としている。プッシュ波パルスpppnごとのパルス幅PWnは、プッシュ波パルスpppnの印加順にかかわらず一定としてもよい。あるいは、プッシュ波パルスpppnごとのパルス幅PWnは、プッシュ波パルスpppnの印加ごとに降順に増加する構成としてもよい。
プッシュ波パルスpppnごとの印加開始時刻PTnにプッシュ波送信振動子列Pxに対し、振動子列の中心に位置する振動子に対して大きな遅延時間tpkを有する分布が適用されたプッシュ波パルスpppが送信される。これにより、プッシュ波送信振動子列Pxから送信焦点FPnに対応する被検体中の特定部位に超音波ビームが集束するプッシュ波ppnが送信させる。
また、駆動信号送信部1063は、プローブ101に存する複数の振動子101a中、検出波送信振動子列Txに含まれる各振動子に超音波ビームを送信させるための検出波パルスpwplを供給する検出波送信処理を行う。検出波送信振動子列Txは、マルチプレクサ部107によって選択される。しかしながら、検出波パルスpwpl供給に係る構成には上記に限定されず、例えば、マルチプレクサ部107を用いない構成としてもよい。
図6(a)は、検出波送信の概要を示す模式図である。検出波送信振動子列Txに含まれる振動子に対しては遅延時間tpkが適用されず、検出波送信振動子列Txに対して位相が等しい検出波パルスpwplが送信される。これにより、図6(a)に示すように、検出波送信振動子列Tx中の各振動子から被検体深さ方向に進行する平面波が送信させる。検出波が到達する被検体内の範囲に対応し検出波送信振動子列Txを含む平面内の領域が検出波照射領域Axとなる。
送信部106は、プッシュ波パルスppp送信後に、検出波パルス発生部105からの送信制御信号に基づき検出波パルスpwplを複数回送信する。1回のプッシュ波パルスppp送信後に、同一の検出波送信振動子列Txから複数回行われる一連の検出波パルスpwpl送信の各回を「送信イベント」と称呼する。
5.検出波受信部108
検出波受信部108は、複数回の検出波パルスpwplの各々に対応して複数の振動子101aにおいて時系列に受信された被検体組織からの反射波に基づき、検出波照射領域Ax内の複数の観測点Pijに対する音響線信号を生成して音響線信号フレームデータdsl(lは1からmまでの自然数、番号を区別しない場合は音響線信号フレームデータdslとする)のシーケンスを生成する回路である。すなわち、検出波受信部108は、検出波パルスpwplを送信した後、プローブ101で受信した反射波に基づき、複数の振動子101aで得られた電気信号から音響線信号を生成する。ここで、iは検出波照射領域Axにおけるx方向の座標を示す自然数であり、jはy方向の座標を示す自然数である。なお、「音響線信号」とは、受波信号(RF信号)を整相加算処理した信号である。
図4(b)は、検出波受信部108の構成を示す機能ブロック図である。検出波受信部108は、入力部1081、受波信号保持部1082、整相加算部1083を備える。
5.1 入力部1081
入力部1081は、マルチプレクサ部107を介してプローブ101と接続され、プローブ101において反射波に基づき受波信号(RF信号)を生成する回路である。ここで、受波信号rfk(kは1からnまでの自然数である)とは、検出波パルスpwplの送信に基づいて各振動子にて受信された反射波から変換された電気信号をA/D変換したいわゆるRF信号であり、受波信号rfkは各受波振動子rwkにて受信された超音波の送信方向(被検体の深さ方向)に連なった信号の列(受波信号列)から構成されている。
入力部1081は、受波振動子rwkの各々が得た反射波に基づいて、送信イベントごとに各受波振動子rwkに対する受波信号rfkの列を生成する。受波振動子列はプローブ101に存する複数の振動子101aの一部又は全部にあたる振動子列から構成されており、制御部116からの指示に基づきマルチプレクサ部107によって選択される。本例では、複数の振動子101aの全部が受波振動子列として選択される構成とした。これにより、反射検出波受信の概要を示す図6(b)に示すように、1回の受信処理により検出波照射領域Ax内全域に存する観測点からの反射波を全ての振動子を用いて受波して全ての振動子に対する受波振動子列を生成することができる。生成された受波信号rfkは、受波信号保持部1082に出力される。
5.2 受波信号保持部1082
受波信号保持部1082は、コンピュータ読み取り可能な記録媒体であり、例えば、半導体メモリ等を用いることができる。受波信号保持部1082は、送信イベントに同期して入力部1081から、各受信振動子rwkに対する受波信号rfkを入力し、1枚の音響線信号フレームデータが生成されるまでこれを保持する。
なお、受波信号保持部1082は、データ格納部115の一部であってもよい。
5.3 整相加算部1083
整相加算部1083では、送信イベントに同期して関心領域roi内の観測点Pijから、検出波パルス受信振動子列Rxに含まれる受信振動子Rpkが受信した受波信号rfkに遅延処理を施した後、全ての受信振動子Rpkについて加算して音響線信号dsを生成する回路である。検出波パルス受信振動子列Rxはプローブ101に存する複数の振動子101aの一部又は全部にあたる受信振動子Rpkから構成されており、制御部116からの指示に基づき整相加算部1083とマルチプレクサ部107によって選択される。本例では、反射波受信振動子列Rxとして、各送信イベントにおける検出波パルス送信振動子列Txを構成する振動子を少なくとも全て含む振動子列が選択される構成とした。
整相加算部1083は、受波信号rfkに対する処理を行うための遅延処理部10831、加算部10832を備える。
(1)遅延処理部10831
遅延処理部10831は、検出波パルス受信振動子列Rx内の受信振動子Rpkに対する受波信号rfkから、観測点Pijと受信振動子Rpk各々との間の距離の差を音速値で除した受信振動子Rpk各々への反射超音波の到達時間差(遅延量)により補償して、観測点Pijからの反射超音波に基づく受信振動子Rpkに対応する受信信号として同定する回路である。
図7は、遅延処理部10831において、超音波の伝播経路の計算方法の概要を示す模式図である。検出波パルス送信振動子列Txから放射され関心領域roi内の任意の位置にある観測点Pijにおいて反射され受信振動子Rpkに到達する超音波の伝播経路を示したものである。
a)送信時間の算出
検出波送信振動子列Tx(振動子列(101a)全体)から送信される検出波pwlは上述のとおり平面波である。したがって、遅延処理部10831は、送信イベントに対応して、観測点Pijまでの送信経路を、検出波送信振動子列Txから振動子列に垂直に発された検出波pwlが観測点Pijに到達するまでの最短経路401として算出し、これを音速で除して送信時間を算出する。
b)受信時間の算出
遅延処理部10831は、送信イベントに対応して、観測点Pijについて、観測点Pijで反射され検出波受信振動子列Rxに含まれる受信振動子Rpkに到達するまでの受信経路を算出する。観測点Pijでの反射波が受信振動子Rpkに戻っていくときの受信経路は、任意の観測点Pijから各受信振動子Rpkまでの経路402の長さは幾何学的に算出する。これを音速で除して受信時間を算出する。
c)遅延量の算出
次に、遅延処理部10831は、送信時間と受信時間とから各受信振動子Rpkへの総伝播時間を算出し、当該総伝播時間に基づいて、各受信振動子Rpkに対する受波信号列rfkに適用する遅延量を算出する。
d)遅延処理
次に、遅延処理部10831は、各受信振動子Rpkに対する受波信号列rfkから、遅延量に相当する受波信号rfk(遅延量を差引いた時間に対応する受波信号)を、観測点Pijからの反射波に基づく受信振動子Rpkに対応する信号として同定する。
遅延処理部10831は、送信イベントに対応して、受波信号保持部1082から受波信号rfkを入力として、関心領域roi内に位置する全ての観測点Pijについて、各受信振動子Rpkに対する受波信号rfkを同定する。
(2)加算部10832
加算部10832は、遅延処理部10831から出力される受信振動子Rpkに対応して同定された受波信号rfkを入力として、それらを加算して、観測点Pijに対する整相加算された音響線信号dsijを生成する回路である。
さらに、各受信振動子Rpkに対応して同定された受波信号rfkに対し、受信アポダイゼーション(重み数列)を乗じた後加算して、観測点Pijに対する音響線信号dsijを生成してもよい。受信アポダイゼーションは、検出波受振動子列Rx内の受信振動子Rpkに対応する受信信号に適用される重み係数の数列である。受信アポダイゼーションは、検出波受振動子列Rxの列方向の中心に位置する振動子に対する重みが最大となるよう設定され、受信アポダイゼーションの分布の中心軸は検出波受振動子列中心軸Rxoと一致し、分布は中心軸に対し対称な形状をなす。分布の形状は特に限定されない。
加算部10832は、関心領域roi内に存在する全ての観測点Pijについて音響線信号dsijを生成して音響線信号フレームデータdslを生成する。
そして、送信イベントに同期して検出波パルスpwplの送受信を繰り返し、全ての送信イベントに対する音響線信号フレームデータdslを生成する。生成された音響線信号フレームデータdslは、送信イベントごとにデータ格納部115に出力され保存される。
6.変位検出部109
変位検出部109は、音響線信号フレームデータdslのシーケンスから、検出波照射領域Ax内の組織の変位を検出する回路である。
図8は、変位検出部109、伝播情報解析部110、弾性率算出部111の構成を示す機能ブロック図である。
変位検出部109は、音響線信号フレームデータdslのシーケンスに含まれる変位検出の対象となる1フレームの音響線信号フレームデータdslと、基準となる1フレームの音響線信号フレームデータds0(以下、「基準音響線信号フレームデータds0」とする)とを、制御部116を介してデータ格納部115から取得する。基準音響線信号フレームデータds0とは、各送信イベントに対応する音響線信号フレームデータdslにおけるせん断波による変位を抽出するための基準となる信号であり、具体的には、プッシュ波パルスppp送信前に検出波照射領域Axから取得した音響線信号のフレームデータである。そして、変位検出部109は、音響線信号フレームデータdslと基準音響線信号フレームデータds0との差分から、音響線信号フレームデータdslの検出波照射領域Ax内の観測点Pijの変位(画像情報の動き)Ptijを検出し、変位Ptijを観測点Pijの座標と関連付けて変位量フレームデータptl(lは1からmまでの自然数、番号を区別しない場合は変位量フレームデータptlとする)を生成する。変位検出部109は、生成した変位量フレームデータptlをデータ格納部115に出力する。
7. 伝播情報解析部110
伝播情報解析部110は、変位量の時間変化特性に基づいて関心領域roi内の複数の観測点Pijから解析対象領域を決定し、関心領域roiの解析対象領域に対する変位量ピークフレームデータswfを算出し、伝播速度フレームデータvoを算出する回路である。伝播情報解析部110は、解析対象決定部1101、変位量ピーク抽出部1102、伝播速度変換部1103から構成される。
(1)解析対象決定部1101
解析対象決定部1101は、関心領域roiのx座標ごとに、当該x座標上に存在する複数の観測点Pijに対する変位Ptijの時間変化特性に基づいて、伝播情報解析の対象となる解析対象領域を決定する。本実施の形態では、解析対象領域は、伝播速度の算出対象とする複数の観測点Pijそれぞれの座標i,jの組み合わせを示す情報である。
具体的には、解析対象決定部1101は、変位量フレームデータptlをデータ格納部115から取得する。解析対象決定部1101は、観測点Pijごとに、変位データptijが極大となる時刻の近傍における変位の時間変化特性、より具体的には、変位量のピークの鋭さを示すパラメータを取得する。変位量ピークの鋭さを示すパラメータとは、例えば、変位データptijを時間の関数として評価した場合の、ガウス関数で近似化した際の分散値、ピークの半値半幅または半値全幅、変位データptijの大きさが所定の閾値以上である連続時間、などである。但し、変位量ピークの鋭さを示すパラメータは、変量の時間変化の急峻度を示すパラメータであれば任意の物であってよく、上述のものに限られない。そして、解析対象決定部1101は、iごとに、変位量のピークの鋭さが極大となる観測点Pijを特定し、特定されたijの組み合わせを、解析対象領域に含まれる観測点として決定する。
具体的には、関心領域roi内において基準となる観測点Pijを特定し、特定した観測点Pijの位置を指標としてi方向に隣接する観測線上に探索対象となる領域Rを設定し、領域Rにおいて変位量のピークの鋭さが最大となる観測点Pijを特定する、という動作を繰り返す。図15(a)は、基準となる観測点Pijを指標としてi方向に隣接する観測線上に探索対象となる領域Rを設定する動作を示す模式図である。なお、以下の説明において、i座標がI、j座標がJの観測点を観測点PIJと表記するが、IとJの値を明確にするために、明細書内では観測点P(I,J)と表記する場合がある。具体的には、i=Iである観測点P(Ip,Jq)を指標として、プッシュ波の送信焦点FPnから遠い側のi=I+1において、観測点P(Ip,Jq)のj座標Jqを指標に、幅が2×ΔJである、i=I+1、Jq-ΔJ≦j≦Jq+ΔJの範囲R(Ip+q,q)を設定し、当該領域R(Ip+q,q)を対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。なお、領域R(I,J)について、図面上ではRI,Jと略記する。
プッシュ波の送信焦点FPnがFp1のみの場合について、図15(b)を用いて説明する。図15(b)は、関心領域roiの範囲がI0≦i≦Ipmax、J0≦j≦Jmaxの領域であり、送信焦点Fp1のi座標がI0より小さい場合を示している。解析対象決定部1101は、まず、送信焦点Fp1に最近接するi=I0の観測線について、特定された観測点Pijに替えて、送信焦点Fp1の位置を指標として領域R(I0,j)を設定する。具体的には、送信焦点Fp1のj座標JFを指標として、座標(I0,JF)を中心とする領域R(I0,JF)を設定する。そして、領域R(I0,JF)を対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。次に、解析対象決定部1101は、i=I0の観測線に対して送信焦点Fp1から遠ざかる方向に隣接するi=I0+1の観測線について、特定されたi=I0の観測点Pijの位置を指標として領域R(I0+1,j)を設定し、領域R(I0+1,j)を対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。同様に、例えば、i=Ip-1の観測点P(Ip-1,a)の位置を指標として、i=Ipの観測線上の領域R(Ip,a)を設定し、領域R(Ip,Ja)を対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。同様に、i=Ipmax-1の観測点P(Ipmax-1,Jb)の位置を指標として、i=Ipmaxの観測線上の領域R(Ipmax,Jb)を設定し、領域R(Ipmax,Jb)を対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。これにより、I0≦i≦Ipmaxの全てのiに対して、観測点Pijが1つずつ特定される。
プッシュ波の送信焦点FPnが複数存在する場合の場合は、図15(c)の模式図に示すような動作となる。解析対象決定部1101は、まず、送信焦点Fpnに最近接するi=I0の観測線について、特定された観測点Pijに替えて、送信焦点Fpnのそれぞれの位置を指標として、送信焦点Fpnの数だけ、領域Rを設定する。具体的には、例えば、送信焦点Fpn-1のj座標JF(n-1)を指標として、座標(I0,JF(n-1))を中心とする領域R(I0,JF(n-1))を設定する。同様に、送信焦点Fpnのj座標JFnを指標として、座標(I0,JFn)を中心とする領域R(I0,JFn)を、送信焦点Fpn+1のj座標JF(n+1)を指標として、座標(I0,JF(n+1))を中心とする領域R(I0,JF(n+1))を、それぞれ設定する。設定された各領域Rのそれぞれを対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。次に、解析対象決定部1101は、送信焦点Fp1に最近接するi=I0+1の観測線について、特定されたi=I0の観測点Pijのそれぞれの位置を指標として領域Rを設定し、領域Rのそれぞれを対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。同様に、例えば、i=Ip-1の観測点P(Ip-1,Jc)、P(Ip-1,Je)、P(Ip-1,Jg)のそれぞれの位置を指標として、i=Ipの観測線上の領域R(Ip,Jc)、R(Ip,Je)、R(Ip,Jg)のそれぞれを設定する。そして、領域R(Ip,Jc)、R(Ip,Je)、R(Ip,Jg)のそれぞれを対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。同様に、i=Ipmax-1の観測点P(Ipmax-1,Jd)、P(Ipmax-1,Jf)、P(Ipmax-1,Jh)のそれぞれの位置を指標として、i=Ipmaxの観測線上の領域R(Ipmax,Jd)、R(Ipmax,Jf)、R(Ipmax,Jh)をそれぞれ設定する。そして、領域R(Ipmax,Jd)、R(Ipmax,Jf)、R(Ipmax,Jh)のそれぞれを対象として変位量ピークの鋭さが最大となる観測点Pijの特定を行う。これにより、I0≦i≦Ipmaxの全てのiに対して、観測点Pijが送信焦点Fpnの数ずつ特定される。
なお、上述の例では、送信焦点Fpnが関心領域roiの外部である場合について説明したが、送信焦点Fpnが関心領域roiの内部に存在してもよい。この場合には、送信焦点Fpnの座標が(Ifn,Jfn)であるとした場合、i=Ifn-1の観測線において座標(Ifn-1,Jfn)を中心とする領域R(Ifn-1,Jfn)を、i=Ifn+1の観測線において座標(Ifn+1,Jfn)を中心とする領域R(Ifn+1,Jfn)を、それぞれ設定して観測点Pijの特定を行い、i=Ifnから遠ざかるようにiが増加する方向とiが減少する方向の両方向に領域Rの設定と観測点Pijの特定とを繰り返す。
(2)変位量ピーク抽出部1102
変位量ピーク抽出部1102は、関心領域roiの解析対象領域内に存在する観測点Pijごとに、変位データptijが極大となる時刻atを特定し、当該時刻atの波面の位置を観測点Pijとして対応付けた変位量ピークフレームデータswfを生成してデータ格納部115に出力する。
(3)伝播速度変換部1103
伝播速度変換部1103は、変位量ピークフレームデータswfを、関心領域roiの解析対象領域内に存在する観測点Pijにおける伝播速度データvijに変換して、伝播速度フレームデータvoを作成してデータ格納部115に出力する。
8.弾性率算出部111
弾性率算出部111は、関心領域roi内の観測点Pijについて組織の弾性率を算出し、関心領域roiに対する弾性率フレームデータelfを算出する回路である。弾性率算出部111は、弾性率変換部1111から構成される。弾性率変換部1111は、伝播速度データvoを入力として、伝播速度データvを関心領域roi内の観測点Pijにおける弾性率データelに変換して、関心領域roiに対する弾性率フレームデータelfを生成してデータ格納部115に出力する。
9.その他の構成
データ格納部115は、生成された受波信号列rf、音響線信号フレームデータdslのシーケンス、変位量フレームデータptlのシーケンス、変位量ピークフレームデータswf、伝播速度フレームデータvl、弾性率フレームデータelを逐次記録する記録媒体である。
制御部116は、操作入力部102からの指令に基づき、超音波診断装置100内の各ブロックを制御する。制御部116にはCPU等のプロセッサを用いることができる。
また、図示しないが、超音波診断装置100は、プッシュ波パルスpppを送信することなく、送信部106及び検出波受信部108においてされた検出波の送受信に基づいて出力される音響線信号のうち、被検体の組織からの反射成分に基づき時系列に超音波画像(Bモード画像)を生成するBモード画像生成部を有する。Bモード画像生成部は、データ格納部115から音響線信号のフレームデータを入力して、音響線信号に対して包絡線検波、対数圧縮などの処理を実施してその強度に対応した輝度信号へと変換し、その輝度信号を直交座標系に座標変換を施すことでBモード画像のフレームデータを生成する。なお、Bモード画像生成のための音響線信号を取得するための送信部106及び検出波受信部108における超音波の送受信には公知の方法を用いることができる。生成されたBモード画像のフレームデータはデータ格納部115に出力され保存される。表示制御部113はBモード画像を表示画像として構成して表示部114に表示させる。
また、弾性率算出部111は、弾性率フレームデータelfが表す弾性率に基づいて、色情報をマッピングした弾性画像を生成し表示する構成としてもよい。例えば、弾性率が一定値以上の座標は赤、弾性率が一定値未満の座標は緑、弾性率が取得できなかった座標は黒、というように色分けした弾性画像を生成してもよい。操作者の利便性を向上することができる。弾性率算出部111は、生成した弾性率フレームデータelfと弾性画像とをデータ格納部115に出力し、制御部116は弾性画像を表示制御部113に出力する。さらに、表示制御部113は、弾性画像に対して画面表示用の画像データとなるよう幾何変換を行い、幾何変換後の弾性画像を表示部114に出力する構成としてもよい。
<超音波診断装置100の動作>
以上の構成からなる超音波診断装置100の統合SWSシーケンスの動作について説明する。
1.動作の概要
図9は、超音波診断装置100における統合SWSシーケンスの工程の概要を示す概略図である。超音波診断装置100によるSWSシーケンスは、基準検出波送受信を行い、以後の各送信イベントに対応するせん断波による変位を抽出するための基準音響線信号フレームデータds0を取得する工程(1a)、プッシュ波パルスpppn(n=1~nmax)を1回以上(nmax回)送信して被検体内の特定部位FPに集束するプッシュ波ppnを1回以上(nmax回)送信して被検体中にせん断波励起する工程(1b)、関心領域roiを通過する検出波pwplの送受信を複数(m)回繰り返す検出波パルスpwpl送受信する工程(1c)、せん断波伝播解析を行いせん断波の伝播速度vfと弾性率elfを算出する弾性率算出の工程(1d)から構成される。
2.SWSシーケンスの動作
以下、公知の方法に基づき被検体の組織からの反射成分に基づき組織が描画されたBモード画像が表示部114に表示された後の超音波弾性率計測処理の動作を説明する。
なお、Bモード画像のフレームデータは、プッシュ波パルスpppを送信されることなく、送信部106及び検出波受信部108においてされた超音波の送受信に基づいて被検体の組織からの反射成分に基づき時系列に音響線信号のフレームデータが生成され、音響線信号に対して包絡線検波、対数圧縮などの処理がされて輝度信号へと変換された後、輝度信号を直交座標系に座標変換して生成する。表示制御部113は被検体の組織が描画されたBモード画像を表示部114に表示させる。
図10は、超音波診断装置100における超音波弾性率算出の動作を示すフローチャートである。
[ステップS100~S140]
ステップS100では、表示部114にプローブ101によりリアルタイムに取得された被検体の断層画像であるBモード画像が表示されている状態において、関心領域設定部103は、操作入力部102から操作者により指定された情報を入力として、被検体内の解析対象範囲をあらわす関心領域roiをプローブ101の位置を基準に設定し、制御部116に出力する。
操作者による関心領域roiの指定は、例えば、表示部114にデータ格納部115に記録されている最新のBモード画像を表示し、タッチパネル、マウスなどの入力部(図示しない)を通して関心領域roiを指定することによりされる。なお、関心領域roiは、例えば、Bモード画像の全域を関心領域roiとしてもよいし、あるいは、Bモード画像の中央部分を含む一定範囲としてもよい。
ステップS120では、プッシュ波パルス発生部104は、制御部116から関心領域roiを示す情報を入力し、プッシュ波パルスpppn(n=1~nmax)の送信焦点FPnの位置とプッシュ波送信振動子列Pxnを設定する。本例では、図3(a)に示すように、プッシュ波送信振動子列Pxnは、プッシュ波の送信順位nによらず一定とし、複数の振動子101a全部とした。また、列方向送信焦点位置fxは検出波照射領域Axの列方向中心位置wcと一致し、深さ方向送信焦点位置fyn(n=1~nmax)は関心領域roiの内部に存在する構成とした。しかしながら、検出波照射領域Axと送信焦点FPとの位置関係は上記に限られず、被検体の検査すべき部位の形態等により適宜変更してもよい。
送信焦点FPの位置と、プッシュ波送信振動子列Pxを示す情報は、プッシュ波パルスpppのパルス幅PWn、印加開始時刻PTnとともに、送信制御信号として送信部106に出力される。
ステップS130では、送信部106は、検出波送信振動子列Txに含まれる振動子に検出波パルスpwp0を送信し、被検体内に向けて検出波pw0をさせ、検出波受信部108は、検出波pw0の反射波ecの受波を行い組織の変位の基準となる基準音響線信号フレームデータds0を生成する。基準音響線信号フレームデータds0はデータ格納部115に出力され保存される。音響線信号フレームデータの生成方法については後述する。
ステップS140では、送信部106は、プッシュ波送信振動子列Pxnに含まれる振動子に1回以上(nmax回)のプッシュ波パルスpppnを送信させることにより、当該振動子に送信焦点FPに対応する被検体中の特定部位に超音波ビームが集束するプッシュ波ppnを1回以上(nmax回)送信させる。
具体的には、送信部106は、プッシュ波パルス発生部104より取得した送信焦点FPnの位置とプッシュ波送信振動子列Pxnを示す情報、プッシュ波パルスpppnのパルス幅PWn、印加開始時刻PTnからなる送信制御信号に基づき送信プロファイルを生成する。送信プロファイルは、プッシュ波送信振動子列Pxnに含まれる各送信振動子に対するパルス信号spと遅延時間tpkからなる。そして、送信プロファイルに基づき各送信振動子にプッシュ波パルスpppnを供給する。各送信振動子は被検体内の特定部位に集束するパルス状のプッシュ波ppnを送信する。送信部106は、この動作を1回以上(nmax回)行う。
ここで、プッシュ波ppによるせん断波の生成について、図11(a)から(e)の模式図を用いて説明する。図11(a)から(e)は、プッシュ波ppによるせん断波の生成の様子を示す模式図である。図11(a)は、検出波照射領域Axに対応した被検体内の領域の、プッシュ波pp印加前における組織を示した模式図である。図11(a)から(e)において、個々の“○”は、被検体内の組織の一部を、破線の交点は、負荷がない場合の組織”○“の中心位置を、それぞれ示している。
ここで、プローブ101を皮膚表面600に密接させた状態で送信焦点FPに対応する被検体中の焦点部位601に対してプッシュ波ppを印加すると、図11(b)の模式図に示すように、焦点部位601に位置していた組織632が、プッシュ波ppの進行方向に押されて移動する。また、組織632からプッシュ波ppの進行方向側にある組織633は、組織632に押されてプッシュ波ppの進行方向に移動する。
次に、プッシュ波ppの送信が終了すると、組織632、633が元の位置に復元しようとするので、図11(c)の模式図に示すように、組織631~633がプッシュ波ppの進行方向に沿った振動を開始する。
すると、図11(d)の模式図に示すように、振動が組織631~633に隣接する、組織621~623および組織641~643に伝播する。
さらに、図11(e)の模式図に示すように、振動がさらに組織611~663および組織651~653に伝播する。したがって、被検体内において、振動が振動の方向と直交する向きに伝播する。すなわち、せん断波がプッシュ波ppの印加場所に発生し、被検体内を伝播する。
[ステップS150]
図10に戻って説明を続ける。
ステップS150では、関心領域roiに検出波パルスpwplを複数回送受信し、取得した音響線信号フレームデータdslのシーケンスを保存する。具体的には、送信部106は、検出波送信振動子列Txに含まれる振動子に被検体に向けて検出波パルスpwplを送信させ、検出波受信部108は、検出波パルス受信振動子列Rxに含まれる振動子により受信した反射波ecに基づき音響線信号フレームデータdslを生成する。最後のプッシュ波ppnmaxの送信終了の直後から、例えば、秒間1万回、上記処理を繰り返し行う。これにより、せん断波の発生直後から伝播が終わるまでの間、被検体の検出波照射領域Ax内の音響線信号フレームデータdslを繰り返し生成する。生成された音響線信号フレームデータdslのシーケンスはデータ格納部115に出力され保存される。
以下、ステップS150を詳細に説明する。
まず、検出波受信部108は、検出波照射領域Ax内に存在する任意の観測点Pijについて、送信された超音波が被検体中の観測点Pijに到達する送信時間を算出する。送信時間は、検出波送信振動子列Txから観測点Pijまでの最短経路を、超音波の音速csで除することにより算出される。
次に、検出波受信部108は、検出波パルス受信振動子列Rxを設定し、観測点Pijからの反射検出波が、検出波パルス受信振動子列Rxに含まれる受波振動子Rwkのそれぞれに到達する受信時間を算出する。受信時間は、観測点Pijから受波振動子Rwkまでの最短経路を、超音波の音速csで除することにより算出される。
そして、検出波受信部108は、送信時間と受信時間とから、観測点Pijごと、かつ、受波振動子Rwkごとの、遅延量を算出し、音響線信号フレームデータdslから、観測点Pijごとに、観測点Pijからの受信信号を同定する。
次に、検出波受信部108は、観測点Pijごとに同定した受信信号を重みづけ加算し、観測点Pijに対する音響線信号を算出する。ここで、重み付けは、検出波パルス受信振動子列Rxのx方向の中心に位置する振動子に対する重み付けが最大となるような、受信アポダイゼーションがなされる。
検出波受信部108は、算出した音響線信号をデータ格納部115に保存する。
[ステップS151]
ステップS151では、変位検出部109は、各送信イベントにおける関心領域roi内の観測点Pijの変位を検出する。
図12は、変位検出及びせん断波の伝播解析の動作を示す模式図である。
まず、変位検出部109は、ステップS130でデータ格納部115に保存された基準音響線信号フレームデータds0を取得する。上述したように、基準音響線信号フレームデータds0は、プッシュ波ppの送信前、すなわち、せん断波の発生前に取得された音響線信号フレームデータである。
次に、変位検出部109は、ステップS150でデータ格納部115に保存された各音響線信号フレームデータdslに対し、基準音響線信号フレームデータds0との差分から、当該音響線信号フレームデータdslが取得された時刻における、各画素の変位を検出する。
図12におけるA列は、基準音響線信号フレームデータds0、各送信イベントにて生成した音響線信号フレームデータdslを示し、B列は、ステップS150において、各送信イベントに対して算出する変位量フレームデータptlを示したものである。図12のA列及びB列に示すように、変位量フレームデータptlは、音響線信号フレームデータdslと基準音響線信号フレームデータds0を比較し、基準音響線信号フレームデータds0中の観測点Pijの音響線信号dsijが音響線信号フレームデータdslにおけるどの観測点P´ij´の音響線信号dsij´と類似するのかを検出して、観測点P´ij´の観測点Pijに対する位置変化量を算出することにより検出する。
具体的には、例えば、音響線信号フレームデータdslと基準音響線信号フレームデータds0との間で相関処理を行うことにより、観測点Pijに対応する観測点P´ij´を特定し、観測点間の距離j´-jを、観測点Pijにおける変位として特定する。
なお、変位の特定方法はi座標を同じくする2つの音響線信号間の相関処理に限られず、パターンマッチングであってもよい。
変位検出部109は、1フレームの音響線信号フレームデータdslに係る各観測点Pijの変位を当該観測点の座標ijと対応付けることで関心領域roi内の観測点の変位量データptijを生成し、生成した関心領域roiについての変位量フレームデータptlをデータ格納部115に出力する。
[ステップS152~S155]
伝播情報解析部110は、生成した変位量フレームデータptlをデータ格納部115に出力し保存する(ステップS151)。規定されている全ての送信イベントについてステップS151の処理が完了したか否かを判定し(ステップS152)、完了していない場合にはステップS151に戻り、次の検出波パルスpwplの送信イベントについての一連の処理を行い、完了している場合にはステップS153に進む。
ステップS153では、伝播情報解析部110は、関心領域roi内の複数の観測点Pijに対する変位Ptijの時間変化特性に基づいて、解析対象領域を決定する。次に、伝播情報解析部110は、解析対象領域内に存在する観測点について、変位が極大となった時刻を検出し、観測点Pijの位置と変位が極大となった時刻とを対応付けた変位量ピークフレームデータswfを生成する。さらに、伝播情報解析部110は、変位量ピークフレームデータswfを、関心領域roiの解析対象領域内に存在する観測点Pijにおける伝播速度データvijに変換して、伝播速度フレームデータvoを作成してデータ格納部115に出力する。ステップS153における、せん断波の伝播情報解析方法の詳細は後述する。
ステップS154では、弾性率算出部111は、関心領域roi内の観測点Pijについて弾性率データelijを算出し、関心領域roiに対する弾性率フレームデータelfを算出してデータ格納部115に出力する。ステップS154における、弾性率フレームデータelfの算出方法の詳細は後述する。
ステップS155では、弾性率算出部111は、弾性率フレームデータelfが表す弾性率に基づいて、色情報をマッピングした弾性画像を生成する。具体的には、例えば、弾性率が所定の閾値以上の観測点は赤色、弾性率が所定の閾値未満の観測点は緑色、弾性率が算出されていない観測点は黒色とする。なお、色情報のマッピングは上述の例に限らず、弾性率に応じて3色以上に塗り分けてもよいし、弾性率が算出されていない観測点はグレーや白であってもよい。また、弾性画像をBモード断層画像に重畳する場合には、弾性率が算出されていない観測点に重畳する色は透明(Bモード断層画像そのまま)であるとしてもよい。表示制御部113は、弾性画像に対して画面表示用の画像データとなるよう幾何変換を行い、幾何変換後の弾性画像を表示部114に出力する。
以上により、図10に示したSWSシーケンスの処理が終了する。以上の超音波弾性率計測処理により、SWSシーケンスによる弾性率フレームデータelfを算出することができる。
3.ステップS153における処理の詳細について
ステップS153では、伝播情報解析部110は、伝播情報解析部110は、関心領域roi内の複数の観測点Pijに対する変位Ptijの時間変化特性に基づいて、解析対象領域を決定する。次に、伝播情報解析部110は、解析対象領域内に存在する観測点について、変位が極大となった時刻を検出し、観測点Pijの位置と変位が極大となった時刻とを対応付けた変位量ピークフレームデータswfを生成する。さらに、伝播情報解析部110は、変位量ピークフレームデータswfを、関心領域roiの解析対象領域内に存在する観測点Pijにおける伝播速度データvijに変換して、伝播速度フレームデータvoを作成してデータ格納部115に出力する。
詳しくは、図13のフローチャートを用いて説明する。図13は、せん断波の伝播情報解析の動作を示すフローチャートである。
まず、観測点Pijのi座標を示すパラメータiを初期化する(ステップS1531)。次に、探索対象の領域R(i,J)を特定する(ステップS1532)。領域R(i,J)の特定は、上述したように、最初のiについてはプッシュ波の送信焦点Fpnのj座標に基づいて行い、2つ目以降のiについては、特定されたi=i-1の観測点P(i-1,j)に基づいて行う。
次に、領域R(i,J)に含まれる観測点Pijの変位量pを読み出す(ステップS1533)。そして、観測点Pijの変位量pの時間変化を示すパラメータdpを算出する(ステップS1534)。
以下、図14の模式図を示して説明する。
図14(a)は、観測線L1、L2、L3とその上に存在する複数の観測点、および、せん断波の進行方向との相対関係を模式的に示している。ここで、観測点L1とは、i座標がi=ia-1である観測点Pijが存在する直線状の領域である。同様に、観測点L2とはi座標がi=iaである観測点Pijが存在する直線状の領域、観測点L3とは、i座標がi=ia+1である観測点Pijが存在する直線状の領域である。ここで、せん断波とは、波の進行方向と波による振動の向きとは直交する波であるから、せん断波による変位は、波面の接線方向が最大となる。そのため、せん断波の進行方向S1と観測線L2とが略直交する観測点Piaaにおいては、せん断波による変位の向きは観測点L2の向きと略一致する。同様に、せん断波の進行方向S1と観測線L3とが略直交する観測点Pia+1bにおいては、せん断波による変位の向きは観測点L3の向きと略一致する。このとき、2つの観測点Piaaと観測点Pia+1 jbとを結ぶ線分はせん断波の経路と略一致するため、2つの観測点Piaaと観測点Pia+1 jbとの距離を、2つの観測点Piaaと観測点Pia+1 jbとにおける変位の最大時刻の時間差で除することにより、当該2つの観測点間におけるせん断波の速度を高精度に算出することができる。
なお、図14(a)においては、観測線L1、L2、L3は互いに平行かつ等間隔である場合を示しているが、観測線L1、L2、L3の関係はこの場合に限られない。例えば、観測線L1とL2との距離と、観測線L2とL3との距離が異なっていてもよいし、また、例えば観測線L1、L2、L3の間で、同一のj座標が示す深さが同一でなくてもよい。また、観測線L1~L3は平行ではなく、例えば、観測線L1、L2、L3は、ある1点で交差するような放射状に設定されていてもよい。さらに、観測線L1、L2、L3は直線ではなく曲線であってもよい。せん断波が水平方向(x方向)に伝播しない場合であっても、観測線をせん断波の進行方向に対して略直交となるように設定することで、せん断波の速度を高精度に算出することが可能となる。
そこで、解析対象決定部1101は、上述したような、せん断波の進行方向と観測線とが略直交する観測点Pijを解析対象領域に含まれる観測点として特定する。具体的には、解析対象決定部1101は、観測点Pijにおける観測点に沿った向きの変位量pの時間変化を示すパラメータdpを算出する。本実施の形態では、パラメータdpとして、変位量pを時間の関数として評価したときのピークの半値半幅をht[秒]としたとき、htの逆数1/htをパラメータdpとして用いる。これは、せん断波の伝播方向と観測線の向きとの一致度が高いほど、ピークが鋭くなるからである。せん断波の進行方向S1と観測線L2とが直交する観測点Piaaにおいては、せん断波による変位の向きが変位量pの向きと一致するため、変位量pの絶対値は大きくなり、また、急峻なピークが得られる。そのため、変位の時系列的な変化は、図14(b)のグラフに示すようにピークが高く、かつ、鋭い特性を有する。解析対象決定部1101は、観測点Piaaのような、せん断波の進行方向と観測線とが略直交する観測点を、解析対象領域に含まれる観測点として特定する。
これに対して、例えば、せん断波の進行方向S1と観測線L2とが略直交するとはいえない観測点Piacにおいては、せん断波による変位の向きd2と観測線L2の向き、すなわち変位量pの向きと角度θをなしている。したがって、変位量pの絶対値はcosθの値に比例して小さくなり、ピークも鈍くなる。また、観測点Piacを通過したせん断波は、観測点L3上の観測点Pia+1 jeを通過するが、同様に観測点Pia+1 jeにおいても、観測点Piacに最近接する観測点Pia+1 jdにおいても、変位量pのピークが鈍く、せん断波が観測点Pia+1 jdを通過したのか、観測点Pia+1 jeを通過したのかを特定できない。したがって、観測点Piacを通過したせん断波が次にどの観測点を通過したかを特定できず、せん断波の伝播距離を精度よく特定することができない。そのため、解析対象決定部1101は、観測点Piacのような、せん断波の進行方向と観測線とが略直交とはいえない観測点については、解析対象領域に含まれる観測点として特定しない。
解析対象決定部1101は、領域R(i,J)に含まれる全ての観測点についてパラメータdpを算出し(ステップS1534)、全ての領域R(i,J)のそれぞれについて、dpが最大となる観測点Pijを特定する(ステップS1535、1536)。そして、iをインクリメントし(S1539)、ステップS1535で特定した観測点Pijの座標に基づいて探索対象の領域R(i,J)を設定し(ステップS1532)、領域R(i,J)のそれぞれについて、dpが最大となる観測点Pijを特定する(ステップS1535、1536)、の動作を繰り返す(ステップS1537)。これにより、関心領域roi全体から解析対象領域を抽出する。
次に、伝播情報解析部110は、解析対象領域に含まれる観測点Pijのそれぞれについて、変位量が最大となる時刻atを特定し、観測点Pijの波面到達時刻Tijとして、変位量ピークフレームデータswfを作成してデータ格納部115に出力する。
図11のD列は、変位量が最大となる時刻を関数値としてプロットした変位量ピークフレームデータswfであり、破線で囲まれた複数の観測点は、波面の到達時間が同一である観測点を示している。
4.ステップS154における処理の詳細について
ステップS154では、弾性率算出部111は、関心領域roi内の解析対象領域に含まれる観測点Pijについて、変位量ピークフレームデータswfに基づいてせん断波の伝播速度、または、弾性率を算出し、弾性率フレームデータelfを算出する。
まず、伝播速度変換部1103は、データ格納部115から変位量ピークフレームデータswfを読み出し、以下のように伝播速度フレームデータvfoに変換する。図15は、波面の伝播速度の算出方法を示す模式図である。まず、波面速度変換部1103は、解析対象決定部1101によって特定された解析対象領域に含まれる複数の観測点を、観測点が特定された領域と、その領域の指標となった観測点との関係に基づいてグルーピングすることで、せん断波の伝播ルートを特定する。具体的には、観測点Pijの位置を基にi座標がi+1である領域R(i+1,j)を設定して領域R(i+1,j)から観測点P(i+1)j’を特定したとした場合に、観測点Pijと観測点P(i+1)j’とを対応付ける。すなわち、第1の観測点と、当該第1の観測点の位置に基づいて設定された領域から特定された第2の観測点とを対応付ける。対応付けられた観測点同士を結んだ線が、せん断波の伝播ルートとなる。具体的には、観測点P1j1に対し、観測点P1j1に基づいて設定された領域から特定された観測点P2J2を対応付ける。同様に、観測点P2j2に対し、観測点P2j2に基づいて設定された領域から特定された観測点P3J3を対応付ける。これにより、せん断波の伝播ルートとして、観測点P1J1-P2J2-P3J3-P4J4-P5J5-P6J6を結んだ折れ線を特定する。同様に、せん断波の伝播ルートとして、観測点P1J7-P2J8-P3J9-P4J10-P5J11-P6J12を特定する。
そして、伝播速度変換部1103は、対応付けられた2つの観測点間の距離を、各観測点の変位量ピーク時刻の差で除することにより、せん断波の速度を算出する。すなわち、
vij={T(i+1)j’-Tij}/d
ただし、Tijは観測点Pijの変位量ピーク時刻、T(i+1)j’は観測点P(i+1)j’の変位量ピーク時刻、dは、観測点Pijと観測点P(i+1)j’間の距離
弾性率変換部1111は、伝播速度フレームデータvfoを弾性率フレームデータelfに変換する。観測点Pijの弾性率Eijは、以下の式で算出できる。
Eij=K×vij2
ここで、Kは定数であり、およそ3である。
図12のE列は、各送信イベントに対して算出した波面到達時間フレームデータaから算出した伝播速度フレームデータvfである。
これにより、算出した弾性率Eijを、弾性率Eijを示すカラー情報に変換し、カラー情報を対応する観測点Pijの位置にマッピングすることで、弾性画像を形成することができる。
以上の手順により、弾性率算出部111は、弾性率フレームデータelfを生成してデータ格納部115に保存する(ステップS1554)。
以上によりせん断波伝播解析に基づく弾性率計測の計算処理を終了する。
<まとめ>
以上の構成により、せん断波の伝播方向が観測線に対してもっとも直交状態に近い観測点のみにおいて伝播解析が行われる。したがって、観測線に対して略直交するように伝播するせん断波、すなわち、観測線と波面とが略平行となるようなせん断波に対して、伝播解析の精度を高めることができる。さらに、観測線および観測点を碁盤の目型のメッシュ状ではなく、適切に設置することで、せん断波の伝播方向がいずれの方向であっても、伝播解析の精度を高めることが可能となる。したがって、上記構成によれば、伝播解析の精度向上を図ることが可能となる。
また、1つの観測線に対して解析対象領域に含まれる観測点Pijを特定した後、プッシュ波の送信焦点FPnより遠い側に隣接する観測線における観測点Pijを特定する際、その検索範囲をすでに特定された観測点Pijの近傍に限ってもよい。図16に示したように、観測点Pijを通過したせん断波は、観測点Pijにおいて観測線に略直交する向きに伝播するため、観測点Pijを通り、かつ、観測点Pijにおいて観測線に直交する直線上またはその近傍に、他の観測点が存在する可能性が高いためである。このような構成とすることで、演算量を削減することができる。
≪変形例≫
(1)実施の形態では、伝播解析の対象及び結果の表示を解析対象領域内に存在する観測点Pijと限定したが、以下のように行ってもよい。例えば、変位量のピークとなる時刻の検出、せん断波の伝播速度の算出、弾性率への変換を関心領域内の全ての観測点に対して行った上で、弾性画像に、解析対象領域や観測点Pijの変位量pの時間変化を示すパラメータdpを示す情報を重畳してもよい。例えば、図17(a)の弾性画像の拡大例に示すように、弾性画像上に解析対象領域を示す矢印を表示する、としてもよい。または、例えば、図17(b)の弾性画像の拡大例に示すように、弾性画像上に各観測点の変位量pの時間変化を示すパラメータdpを表示するとしてもよい。図17(b)の例では、変位量を時間の関数として評価したときのピークの半値半幅htの逆数1/htを最大値が100を超えないように規格化し、5刻みの値に丸めた値を表示している。または、図17(c)の弾性画像の拡大例のように、解析対象領域に含まれない観測点についても変位量のピークとなる時刻の検出、せん断波の伝播速度の算出、弾性率への変換を行った上で、パラメータdpが所定の基準に満たない観測点については色のマッピングを行わない、としてもよい。
(2)実施の形態では、観測点の変位量pの時間変化を示すパラメータdpとして、変位量を時間の関数として評価したときのピークの半値半幅htの逆数1/htを用いたが、上述したように、観測点の変位量pの時間変化におけるピークの鋭さ(急峻度)を示す任意の値を用いてよい。例えば、変位量を時間の関数として評価したときのピークの半値全幅の逆数であってもよいし、ガウス関数で近似したときの分散値であってもよいし、あるいは、基準となるピークとの一致度であってもよい。
(3)実施の形態では、超音波診断装置100がプッシュ波パルス送信の工程に先立って基準検出波パルス送受信の工程を行い、変位検出部が、音響線信号フレームデータdslと、基準検出波パルス送受信で形成された基準音響線信号フレームデータds0との差分に基づいて、観測点Pijの変位Ptijを検出し、変位Ptijを観測点Pijの座標と関連付けて変位量フレームデータptlを生成する、とした。しかしながら、組織の変位量の検出方法はこの場合に限られない。例えば、超音波診断装置は基準検出波パルス送受信の工程を行わず、基準音響線信号フレームデータds0の生成を行わない。そして、変位検出部は、音響線信号フレームデータdslと、1つ前の送信イベントで取得された音響線フレームデータds(l-1)との差分に基づいて、観測点Pijの変位Ptijの、送信イベント間での変化量ΔPtijを検出する。そして、観測点Pijごとに、変位Ptijにおける複数の送信イベント間の変化量ΔPtijを積算することで、観測点Pijの変位Ptijを生成する。そして、変位Ptijを観測点Pijの座標と関連付けて変位量フレームデータptlを生成する、としてもよい。なお、送信イベント間での変化量ΔPtijの検出は連続する2つの送信イベント間とは限らず、任意の2つの音響線信号フレームデータdslの差分から、観測点Pijの変位Ptijの変化量ΔPtijを算出してもよい。
(4)実施の形態および各変形例に係る超音波診断装置は、その構成要素の全部又は一部を、1チップ又は複数チップの集積回路で実現してもよいし、コンピュータのプログラムで実現してもよいし、その他どのような形態で実施してもよい。例えば、伝播解析部と評価部とを1チップで実現してもよいし、超音波信号取得部のみを1チップで実現し、変位検出部等を別のチップで実現してもよい。
集積回路で実現する場合、典型的には、LSI(Large Scale Integration)として実現される。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
また、集積回路化の手法はLSIに限るものではなく、専用回路、又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
さらには、半導体技術の進歩、又は派生する別技術により、LSIに置き換わる集積回路化の技術が登場すれば、当然その技術を用いて機能ブロックの集積化を行ってもよい。
また、各実施の形態および各変形例に係る超音波診断装置は、記憶媒体に書き込まれたプログラムと、プログラムを読み込んで実行するコンピュータとで実現されてもよい。記憶媒体は、メモリカード、CD-ROMなどいかなる記録媒体であってもよい。また、本発明に係る超音波診断装置は、ネットワークを経由してダウンロードされるプログラムと、プログラムをネットワークからダウンロードして実行するコンピュータとで実現されてもよい。
(5)以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない工程については、より好ましい形態を構成する任意の構成要素として説明される。
また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。
さらに、超音波診断装置においては基板上に回路部品、リード線等の部材も存在するが、電気的配線、電気回路について当該技術分野における通常の知識に基づいて様々な態様を実施可能であり、本発明の説明として直接的には無関係のため、説明を省略している。尚、上記示した各図は模式図であり、必ずしも厳密に図示したものではない。
≪補足≫
(1)実施の形態に係る超音波診断装置は、複数の振動子が列設されたプローブが接続可能に構成されており、前記プローブに被検体内に超音波ビームが集束するプッシュ波を送信させ、当該プッシュ波の音響放射圧により生じたせん断波の伝播速度を検出する超音波診断装置であって、前記複数の振動子から選択される複数の送信振動子を用いて、被検体内の1以上の送信焦点に集束するプッシュ波を送信させるプッシュ波パルス送信部と、前記プッシュ波の送信に続き、前記複数の振動子の一部または全部に検出波パルスを供給して前記複数の振動子に被検体内の解析対象範囲を示す関心領域を通過する検出波を複数回送信させる検出波パルス送信部と、前記複数回の検出波の各々に対応して前記複数の振動子にて時系列に受信された反射検出波に基づき、前記関心領域内の複数の観測点それぞれにおける組織の変位量を検出する変位検出部と、前記複数の観測点における組織の変位量の時間変化の急峻度に基づき、せん断波の伝播解析の対象となる解析対象領域を決定する解析対象決定部と、前記解析対象領域内に存在する複数の観測点における組織の変位量に基づいて、前記解析対象領域内に存在する観測点それぞれにおけるせん断波の伝播速度を算出する伝播情報解析部とを備えることを特徴とする。
また、実施の形態に係る超音波信号処理方法は、複数の振動子が列設されたプローブを用いて被検体内に超音波ビームが集束するプッシュ波を送信し、当該プッシュ波の音響放射圧により生じたせん断波の伝播速度を検出する超音波信号処理方法であって、前記複数の振動子から選択される複数の送信振動子を用いて、被検体内の1以上の送信焦点に集束するプッシュ波を送信させ、前記プッシュ波の送信に続き、前記複数の振動子の一部または全部に検出波パルスを供給して前記複数の振動子に被検体内の解析対象範囲を示す関心領域を通過する検出波を複数回送信させ、前記複数回の検出波の各々に対応して前記複数の振動子にて時系列に受信された反射検出波に基づき、前記関心領域内の複数の観測点それぞれにおける組織の変位量を検出し、前記複数の観測点における組織の変位量の時間変化の急峻度に基づき、せん断波の伝播解析の対象となる解析対象領域を決定し、前記解析対象領域内に存在する複数の観測点における組織の変位量に基づいて、前記解析対象領域内に存在する観測点それぞれにおけるせん断波の伝播速度を算出することを特徴とする。
本開示によれば、上記構成により、被検体内部において、せん断波の伝播方向が仮定した方向と同じ領域についてせん断波の伝播解析を行うため、せん断波の伝播方向のずれによる誤差を抑止し、伝播解析の精度を向上させることができる。また、せん断波の伝播方向を解析する必要がないため、伝播解析の演算量を低減させることができる。
(2)また、上記(1)の超音波診断装置は、前記伝播情報解析部は、前記解析対象領域内に存在する各観測点について、変位量の値が最大となる時刻を特定し、特定した時刻をせん断波が当該観測点を通過した時刻としてせん断波の速度を算出する、としてもよい。
これにより、変位量の値が最大となる時刻に基づいてせん断波の波面が特定できるため、演算量の少ない処理によって伝播解析を行うことができる。
(3)また、上記(1)または(2)の超音波診断装置は、前記解析対象決定部は、前記送信焦点が存在する深度を含む所定範囲の深度に存在する観測点における組織の変化量の時間変化に基づき、前記所定範囲の深度から前記解析対象領域を選択する。
これにより、送信焦点から伝播するせん断波が観測線に対して略直交する向きに通過する可能性が十分に高い領域のみを対象として解析対象領域の決定を行うことができるため、関心領域の全域で解析対象領域の決定を行う必要がなく、演算量を削減することができる。
(4)また、上記(1)または(2)の超音波診断装置は、前記解析対象決定部は、前記送信焦点に近い側に隣接する音響線上で決定された前記解析対象領域を含む所定範囲の深度に存在する観測点における組織の変化量の時間変化に基づき、前記所定範囲の深度から当該音響線上の解析対象領域を選択する、としてもよい。
これにより、すでに特定された観測点を通過したせん断波が到達しうる領域を対象として、せん断波の動きを追うように解析対象領域に含まれる観測点の探索を行うことができるため、関心領域の全域で解析対象領域の決定を行う必要がなく、演算量を削減することができる。
(5)また、上記(1)から(4)の超音波診断装置は、前記解析対象決定部は、深度の異なる複数の観測点のうち、組織の変位量の時間変化が最大である観測点が存在している深度を解析対象領域として決定する、としてもよい。
(6)また、上記(1)から(4)の超音波診断装置は、前記解析対象決定部は、深度の異なる複数の観測点のうち、組織の変位量の時間変化のプロファイルが所定のプロファイルに適合する観測点が存在している深度を解析対象領域として決定する、としてもよい。
これにより、せん断波の伝播方向と、伝播解析において観測線とせん断波の伝播方向とが略直交する観測点を、解析対象領域として抽出することができる。
(7)また、上記(1)から(6)の超音波診断装置は、前記プッシュ波パルス送信部は、深度の異なる複数の送信焦点に対し、深度の順に連続してプッシュ波を送信させる、としてもよい。
これにより、複数の送信焦点から伝播した複数のせん断波が合成されることで、波面形状が平面に近いせん断波となるため、解析対象領域が広域化し、広範囲にわたって精度の高い伝播解析が可能となる。
(8)また、上記(1)から(6)の超音波診断装置は、前記プッシュ波パルス送信部は、深度の異なる複数の送信焦点から一の送信焦点を選択してプッシュ波を送信し、前記変位検出部は、前記プッシュ波に対応して受信された反射検出波に基づき、前記関心領域内の一部または全部の観測点それぞれにおける組織の変位量を検出し、前記送信焦点を変更しながら前記プッシュ波パルス送信部によるプッシュ波送信と前記変異検出部による変位量の検出とを行い、前記関心領域内の全部の観測点における組織の変位量を検出するとしてもよい。
これにより、1回のプッシュ波の送信とそれに続く反射検出波に基づく変位量の検出により検出される変位量の精度が十分でない場合に、送信焦点を変更しながら当該動作を繰り返すことで、関心領域内の全部の観測点における組織の変位量を高精度に検出することができる。
(9)また、上記(1)から(8)の超音波診断装置は、前記せん断波の伝播速度に基づいて、前記解析対象領域内に存在する複数の観測点それぞれにおける、前記被検体の弾性率を示す情報を出力する画像出力部をさらに備える、としてもよい。
(10)また、上記(9)の超音波診断装置は、前記画像出力部は、前記関心領域内の複数の観測点相互の位置関係と、各観測点の弾性率を示す情報とを示す弾性画像を出力する、としてもよい。
これにより、せん断波の伝播解析に基づく弾性率の分布を画像として分かりやすく示すことができる。
(11)また、上記(10)の超音波診断装置は、前記伝播情報解析部は、さらに、前記関心領域に含まれ前記解析対象領域内に存在しない観測点について、せん断波の伝播速度を算出し、前記画像出力部は、前記弾性画像に、前記関心領域に含まれ前記解析対象領域内に存在しない観測点の弾性率を示す情報を出力する、としてもよい。
これにより、せん断波の伝播解析の精度が低い領域についても、弾性率を表示することができる。
(12)また、上記(9)または(10)の超音波診断装置は、前記解析対象決定部は、前記複数の観測点における組織の変位量の時間変化の急峻度を示すパラメータを算出し、前記画像出力部は、前記パラメータを前記弾性画像に重畳して出力する、としてもよい。
これにより、各観測点の弾性率について精度の高低を示すことができる。
(13)また、上記(10)の超音波診断装置は、前記解析対象決定部は、前記複数の観測点における組織の変位量の時間変化の急峻度を示すパラメータを算出し、前記画像出力部は、前記パラメータが所定の基準以上である観測点についてのみ、前記弾性画像に弾性率を示す情報を出力する、としてもよい。
これにより、解析対象領域以外の観測点のうち、弾性率の精度が高い観測点のみについて弾性率を示すことができる。
(14)また、上記(10)から(13)の超音波診断装置は、前記画像出力部は、前記解析対象領域に対応する観測点の位置を前記弾性画像に重畳して出力する、としてもよい。
これにより、弾性率の精度が高い観測点の位置を弾性率とともに示すことができる。
本開示に係る超音波診断装置、および、超音波信号処理方法は、超音波を用いた組織の硬さの測定に有用である。そのため、組織の硬さの測定精度を向上させることが可能となり、医療診断機器等において高い利用可能性を持つ。
100 超音波診断装置
101 プローブ
101a 振動子
102 操作入力部
103 関心領域設定部
104 プッシュ波パルス発生部
105 検出波パルス発生部
106 送信部
107 マルチプレクサ部
108 検出波受信部
109 変位検出部
110 伝播情報解析部
111 弾性率算出部
113 表示制御部
114 表示部
115 データ格納部
116 制御部
150 超音波信号処理回路
1000 超音波診断システム

Claims (15)

  1. 複数の振動子が列設されたプローブが接続可能に構成されており、前記プローブに被検体内に超音波ビームが集束するプッシュ波を送信させ、当該プッシュ波の音響放射圧により生じたせん断波の伝播速度を検出する超音波診断装置であって、
    前記複数の振動子から選択される複数の送信振動子を用いて、被検体内の1以上の送信焦点に集束するプッシュ波を送信させるプッシュ波パルス送信部と、
    前記プッシュ波の送信に続き、前記複数の振動子の一部または全部に検出波パルスを供給して前記複数の振動子に被検体内の解析対象範囲を示す関心領域を通過する検出波を複数回送信させる検出波パルス送信部と、
    前記複数回の検出波の各々に対応して前記複数の振動子にて時系列に受信された反射検出波に基づき、前記関心領域内の複数の観測点それぞれにおける組織の変位量を検出する変位検出部と、
    前記複数の観測点における組織の変位量の時間変化の急峻度に基づき、前記複数の観測点の中から変位量の時間変化におけるピークの鋭さが極大となる観測点を特定し、特定された観測点の組合せを解析対象領域に含まれる観測点として選択することにより、せん断波の伝播解析の対象となる解析対象領域を決定する解析対象決定部と、
    前記解析対象領域内に存在する複数の観測点における組織の変位量に基づいて、前記解析対象領域内に存在する観測点それぞれにおけるせん断波の伝播速度を算出する伝播情報解析部と
    を備えることを特徴とする超音波診断装置。
  2. 前記伝播情報解析部は、前記解析対象領域内に存在する各観測点について、変位量の値が最大となる時刻を特定し、特定した時刻をせん断波が当該観測点を通過した時刻としてせん断波の速度を算出する
    ことを特徴とする請求項1に記載の超音波診断装置。
  3. 前記解析対象決定部は、前記送信焦点が存在する深度を含む所定範囲の深度に存在する観測点における組織の変化量の時間変化に基づき、前記所定範囲の深度から前記解析対象領域を選択する
    ことを特徴とする請求項1または2に記載の超音波診断装置。
  4. 前記解析対象決定部は、前記送信焦点に近い側に隣接する音響線上で決定された前記解析対象領域を含む所定範囲の深度に存在する観測点における組織の変化量の時間変化に基づき、前記所定範囲の深度から当該音響線上の解析対象領域を選択する
    ことを特徴とする請求項1または2に記載の超音波診断装置。
  5. 前記解析対象決定部は、深度の異なる複数の観測点のうち、組織の変位量の時間変化が最大である観測点を解析対象領域に含まれると決定する
    ことを特徴とする請求項1から4のいずれか1項に記載の超音波診断装置。
  6. 前記解析対象決定部は、深度の異なる複数の観測点のうち、組織の変位量の時間変化のプロファイルが所定のプロファイルに適合する観測点を解析対象領域に含まれるとして決定する
    ことを特徴とする請求項1から4のいずれか1項に記載の超音波診断装置。
  7. 前記プッシュ波パルス送信部は、深度の異なる複数の送信焦点に対し、深度の順に連続してプッシュ波を送信させる
    ことを特徴とする請求項1から6のいずれか1項に記載の超音波診断装置。
  8. 前記プッシュ波パルス送信部は、深度の異なる複数の送信焦点から一の送信焦点を選択してプッシュ波を送信し、
    前記変位検出部は、前記プッシュ波に対応して受信された反射検出波に基づき、前記関心領域内の一部または全部の観測点それぞれにおける組織の変位量を検出し、
    前記送信焦点を変更しながら前記プッシュ波パルス送信部によるプッシュ波送信と前記変位検出部による変位量の検出とを行い、前記関心領域内の全部の観測点における組織の変位量を検出する
    ことを特徴とする請求項1から6のいずれか1項に記載の超音波診断装置。
  9. 前記せん断波の伝播速度に基づいて、前記解析対象領域内に存在する複数の観測点それぞれにおける、前記被検体の弾性率を示す情報を出力する画像出力部をさらに備える
    ことを特徴とする請求項1から6のいずれか1項に記載の超音波診断装置。
  10. 前記画像出力部は、前記関心領域内の複数の観測点相互の位置関係と、各観測点の弾性率を示す情報とを示す弾性画像を出力する
    ことを特徴とする請求項9に記載の超音波診断装置。
  11. 前記伝播情報解析部は、さらに、前記関心領域に含まれ前記解析対象領域内に存在しない観測点について、せん断波の伝播速度を算出し、
    前記画像出力部は、前記弾性画像に、前記関心領域に含まれ前記解析対象領域内に存在しない観測点の弾性率を示す情報を出力する
    ことを特徴とする請求項10に記載の超音波診断装置。
  12. 前記解析対象決定部は、前記複数の観測点における組織の変位量の時間変化の急峻度を示すパラメータを算出し、
    前記画像出力部は、前記パラメータを前記弾性画像に重畳して出力する
    ことを特徴とする請求項9または10に記載の超音波診断装置。
  13. 前記解析対象決定部は、前記複数の観測点における組織の変位量の時間変化の急峻度を示すパラメータを算出し、
    前記画像出力部は、前記パラメータが所定の基準以上である観測点についてのみ、前記弾性画像に弾性率を示す情報を出力する
    ことを特徴とする請求項10に記載の超音波診断装置。
  14. 前記画像出力部は、前記解析対象領域の位置を前記弾性画像に重畳して出力する
    ことを特徴とする請求項10から13のいずれか1項に記載の超音波診断装置。
  15. 複数の振動子が列設されたプローブを用いて被検体内に超音波ビームが集束するプッシュ波を送信し、当該プッシュ波の音響放射圧により生じたせん断波の伝播速度を検出する超音波信号処理方法であって、
    前記複数の振動子から選択される複数の送信振動子を用いて、被検体内の1以上の送信焦点に集束するプッシュ波を送信させ、
    前記プッシュ波の送信に続き、前記複数の振動子の一部または全部に検出波パルスを供給して前記複数の振動子に被検体内の解析対象範囲を示す関心領域を通過する検出波を複数回送信させ、
    前記複数回の検出波の各々に対応して前記複数の振動子にて時系列に受信された反射検出波に基づき、前記関心領域内の複数の観測点それぞれにおける組織の変位量を検出し、
    前記複数の観測点における組織の変位量の時間変化の急峻度に基づき、前記複数の観測点の中から変位量の時間変化におけるピークの鋭さが極大となる観測点を特定し、特定された観測点の組合せを解析対象領域に含まれる観測点として選択することにより、せん断波の伝播解析の対象となる解析対象領域を決定し、
    前記解析対象領域内に存在する複数の観測点における組織の変位量に基づいて、前記解析対象領域内に存在する観測点それぞれにおけるせん断波の伝播速度を算出する
    ことを特徴とする超音波信号処理方法。
JP2018083920A 2018-04-25 2018-04-25 超音波診断装置、および、超音波信号処理方法 Active JP7052530B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018083920A JP7052530B2 (ja) 2018-04-25 2018-04-25 超音波診断装置、および、超音波信号処理方法
US16/373,234 US20190328363A1 (en) 2018-04-25 2019-04-02 Ultrasound diagnostic apparatus and ultrasound signal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083920A JP7052530B2 (ja) 2018-04-25 2018-04-25 超音波診断装置、および、超音波信号処理方法

Publications (2)

Publication Number Publication Date
JP2019187777A JP2019187777A (ja) 2019-10-31
JP7052530B2 true JP7052530B2 (ja) 2022-04-12

Family

ID=68291862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083920A Active JP7052530B2 (ja) 2018-04-25 2018-04-25 超音波診断装置、および、超音波信号処理方法

Country Status (2)

Country Link
US (1) US20190328363A1 (ja)
JP (1) JP7052530B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720948B (zh) * 2019-11-12 2021-02-02 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法
CN114129189B (zh) * 2021-11-30 2023-02-03 深圳先进技术研究院 双频血管内超声换能器、血管壁杨氏模量计算方法和装置
CN114444550B (zh) * 2022-04-02 2022-07-29 中国人民解放军火箭军工程大学 结构化数据解析方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512026A (ja) 2009-11-25 2013-04-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 焦束されたスキャンラインビーム形成での超音波剪断波撮像
WO2013153968A1 (ja) 2012-04-11 2013-10-17 株式会社日立製作所 超音波診断装置
US20150164480A1 (en) 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
US20170360408A1 (en) 2016-06-16 2017-12-21 Konica Minolta, Inc. Ultrasound diagnostic device and ultrasound diagnostic device control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636262C2 (ru) * 2012-07-18 2017-11-21 Конинклейке Филипс Н.В. Способ и система для обработки данных ультразвуковой визуализации
KR20150070859A (ko) * 2013-12-17 2015-06-25 삼성전자주식회사 전단파를 이용하여 관심 영역에 대한 탄성 정보를 획득하는 방법 및 장치.
EP3240484B1 (en) * 2015-01-02 2019-03-27 Esaote S.p.A. Method for quantifying the elasticity of a material by ultrasounds
JP6384340B2 (ja) * 2015-01-28 2018-09-05 コニカミノルタ株式会社 超音波診断装置
US11138723B2 (en) * 2016-07-22 2021-10-05 Canon Medical Systems Corporation Analyzing apparatus and analyzing method
US11006926B2 (en) * 2018-02-27 2021-05-18 Siemens Medical Solutions Usa, Inc. Region of interest placement for quantitative ultrasound imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013512026A (ja) 2009-11-25 2013-04-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 焦束されたスキャンラインビーム形成での超音波剪断波撮像
US20130131511A1 (en) 2009-11-25 2013-05-23 Koninklijke Philips Electronics N.V. Ultrasonic shear wave imaging with focused scanline beamforming
WO2013153968A1 (ja) 2012-04-11 2013-10-17 株式会社日立製作所 超音波診断装置
US20150164480A1 (en) 2013-12-13 2015-06-18 Kabushiki Kaisha Toshiba Ultrasonic diagnosis apparatus, image processing apparatus, and image processing method
JP2015131097A (ja) 2013-12-13 2015-07-23 株式会社東芝 超音波診断装置、画像処理装置及び画像処理方法
US20170360408A1 (en) 2016-06-16 2017-12-21 Konica Minolta, Inc. Ultrasound diagnostic device and ultrasound diagnostic device control method
JP2017221512A (ja) 2016-06-16 2017-12-21 コニカミノルタ株式会社 超音波診断装置、及び超音波診断装置の制御方法

Also Published As

Publication number Publication date
US20190328363A1 (en) 2019-10-31
JP2019187777A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US11635514B2 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
JP6741012B2 (ja) 超音波診断装置、及び超音波信号処理方法
JP6601320B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
US20150133783A1 (en) Apparatus and method for ultrasonic diagnosis
JP6987496B2 (ja) 解析装置
JP6058295B2 (ja) 超音波診断装置、医用画像処理装置、医用画像処理方法、および医用画像処理プログラム
WO2015040710A1 (ja) 超音波診断装置、医用画像処理装置および医用画像処理方法
JP7052530B2 (ja) 超音波診断装置、および、超音波信号処理方法
JP2014028128A (ja) 超音波診断装置及び画像処理方法
US20200337679A1 (en) Ultrasonic signal processing apparatus, ultrasonic diagnostic apparatus, ultrasonic signal processing method, and ultrasonic signal processing program
JP6746895B2 (ja) 超音波診断装置、及び超音波信号処理方法
JP2017000364A (ja) 超音波診断装置、及び超音波画像処理方法
JP6358192B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
JP6861624B2 (ja) 超音波送受信装置および超音波送受信方法
JP2015109960A (ja) 超音波診断装置、超音波診断装置の制御器及び超音波診断装置の制御方法
US11540809B2 (en) Ultrasonic diagnostic apparatus and method for propagation speed analysis of shear wave and elastic modulus measurement of a tissue
JP7027924B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
JP6698511B2 (ja) 超音波信号処理装置、および、それを用いた超音波送受信装置
JP7010082B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
JP6672809B2 (ja) 超音波診断装置、及び超音波信号処理方法
JP7347445B2 (ja) 超音波信号処理装置、超音波診断装置、および、超音波信号処理方法
JP7302651B2 (ja) 超音波信号処理装置、超音波診断装置、超音波信号処理方法、およびプログラム
JP2020199162A (ja) 超音波診断装置、および、超音波診断装置の制御方法
JP2021058298A (ja) 超音波診断装置及びプログラム
JP2018061635A (ja) 超音波撮像装置及び硬さの算出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7052530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150