JP7044462B2 - 電力変換装置、及びこれを備える空気調和機 - Google Patents

電力変換装置、及びこれを備える空気調和機 Download PDF

Info

Publication number
JP7044462B2
JP7044462B2 JP2016127250A JP2016127250A JP7044462B2 JP 7044462 B2 JP7044462 B2 JP 7044462B2 JP 2016127250 A JP2016127250 A JP 2016127250A JP 2016127250 A JP2016127250 A JP 2016127250A JP 7044462 B2 JP7044462 B2 JP 7044462B2
Authority
JP
Japan
Prior art keywords
switching
switching element
control
power supply
switching elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016127250A
Other languages
English (en)
Other versions
JP2018007326A (ja
Inventor
浩二 月井
敦 奥山
正博 田村
建司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2016127250A priority Critical patent/JP7044462B2/ja
Priority to CN201710068948.4A priority patent/CN107546991B/zh
Publication of JP2018007326A publication Critical patent/JP2018007326A/ja
Priority to JP2022042762A priority patent/JP7238186B2/ja
Application granted granted Critical
Publication of JP7044462B2 publication Critical patent/JP7044462B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

本発明は、交流電圧を直流電圧に変換する電力変換装置等に関する。
電車、自動車、空気調和機等には、交流電圧を直流電圧に変換する電力変換装置(直流電源装置、コンバータ)が搭載されている。そして、電力変換装置から出力される直流電圧をインバータによって所定周波数の交流電圧に変換し、この交流電圧をモータ等の負荷に印加するようになっている。このような電力変換装置において、高調波電流規制に準拠して高調波を抑制し、また、電力変換効率を高めて省エネルギ化を図ることが求められている。
例えば、特許文献1には、4つのダイオードがブリッジ接続されてなるブリッジ回路において、リアクトルに接続される側の2つのダイオードにスイッチング素子を並列接続した構成のコンバータ装置について記載されている。
特開2008-61412号公報
特許文献1に記載の技術では、電源電圧の半周期ごとに、所定のスイッチング素子をオン・オフすることで、短絡電流を1回だけ流すように制御される。しかしながら、例えば、負荷が比較的大きいときに1回だけ短絡電流を流すのでは力率の改善に不十分である。その一方で、短絡電流を流す回数を増やしすぎると、スイッチング損失が大きくなって効率が下がるため、電力変換のさらなる高効率化が求められている。
そこで、本発明は、高効率で電力変換を行う電力変換装置等を提供することを課題とする。
前記課題を解決するために、本発明は、ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、前記ブリッジ回路の出力側に接続され、前記ブリッジ回路から印加される電圧を平滑化して直流電圧にする平滑コンデンサと、複数の前記スイッチング素子を制御する制御部と、を備え、前記制御部は、複数の制御モードとして、前記平滑コンデンサを介した電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流制御と、複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を、前記交流電源の電圧の半サイクルごとに所定回数行う部分スイッチング制御と、複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を所定周期で繰り返す高速スイッチング制御と、を有し、前記制御部は、前記ブリッジ回路に流れる電流の大きさが第1閾値未満である場合、前記同期整流制御を実行し、前記ブリッジ回路に流れる電流の大きさが前記第1閾値以上、かつ、前記第1閾値よりも大きい第2閾値未満である場合、前記部分スイッチング制御を実行し、前記ブリッジ回路に流れる電流の大きさが前記第2閾値以上である場合、前記高速スイッチング制御を実行することを特徴とする。なお、その他については、実施形態の中で説明する。
本発明によれば、高効率で電力変換を行う電力変換装置等を提供できる。
本発明の第1実施形態に係る電力変換装置の構成図である。 ダイオード整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 ダイオード整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの回路電流isの流れを示す説明図である。 同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 同期整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの電流の流れを示す説明図である。 部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 交流電源電圧vsが正の極性の半サイクルにおいて、力率改善動作を行ったときの電流の流れを示す説明図である。 交流電源電圧vsが正の半サイクルにおける部分スイッチング制御の説明図である。 高速スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 交流電源電圧vsが正の半サイクルにおいて、高速スイッチング制御でのスイッチング素子Q1,Q2のオンデューティを示す説明図である。 高速スイッチング制御における交流電源電圧vsと回路電流isとの関係を示す説明図である。 高速スイッチング制御において、リアクトルによる電流位相の遅れを考慮しない場合と、電流位相の遅れを考慮した場合と、におけるスイッチング素子Q2のオンデューティを示す説明図である。 (a)は部分スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図であり、(b)は高速スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。 本発明の第2実施形態に係る空気調和機が備える室外機、室内機、及びリモコンの正面図である 空気調和機の構成図である。 負荷の大きさ、動作モード、及び機器の運転領域の関係を示す説明図である。 電力変換装置の制御部が実行する処理を示すフローチャートである。 本発明の第1の変形例に係る電力変換装置の構成図である。 本発明の第2の変形例に係る電力変換装置の構成図である。 本発明の第3の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第4の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の5の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第6の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第7の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第8の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第9の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の第10の変形例に係る電力変換装置において、高速スイッチング整流制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。 本発明の他の変形例に係る電力変換装置の制御モードの切替えに関する説明図である。
≪第1実施形態≫
<電力変換装置の構成>
図1は、第1実施形態に係る電力変換装置1の構成図である。
電力変換装置1は、交流電源Gから印加される交流電源電圧Vsを直流電圧Vdに変換し、この直流電圧Vdを負荷H(インバータ、モータ等)に出力するコンバータである。電力変換装置1は、その入力側が交流電源Gに接続され、出力側が負荷Hに接続されている。
図1に示すように、電力変換装置1は、ブリッジ回路10と、リアクトルL1と、平滑コンデンサC1と、電流検出部11と、交流電圧検出部12と、直流電圧検出部13と、負荷検出部14と、シャント抵抗R1と、制御部15と、を備えている。
ブリッジ回路10は、スイッチング素子Q1(第1スイッチング素子)と、スイッチング素子Q2(第2スイッチング素子)と、スイッチング素子Q3(第3スイッチング素子)と、スイッチング素子Q4(第4スイッチング素子)と、を備えている。
ブリッジ回路10は、その入力側が交流電源Gに接続され、出力側が負荷Hに接続されている。また、ブリッジ回路10のスイッチング素子Q1~Q4は、図1に示すように、ブリッジ形に接続されている。
スイッチング素子Q1~Q4は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、制御部15によってオン・オフが制御される。なお、スイッチング素子Q1~Q4としてMOSFETを用いることで、スイッチング損失を低減できるとともに、スイッチングを高速で行えるという利点がある。
また、スイッチング素子Q1は、その内部に寄生ダイオードD1を有している。寄生ダイオードD1は、スイッチング素子Q1のソースとドレインとの間に存在するpn接合の部分である。
なお、スイッチング素子Q1の飽和電圧(オン状態におけるドレイン・ソース間電圧)は、寄生ダイオードD1の順方向の電圧降下よりも低いことが好ましい。これによって、寄生ダイオードD1に電流を流すよりも、スイッチング素子Q1のソース・ドレインに電流を流すほうが電圧降下が小さくなり、ひいては、導通損失を低減できるからである。わかりやすくいうと、オフ状態のスイッチング素子Q1において寄生ダイオードD1に電流を流すよりも、オン状態のスイッチング素子Q1に電流を流すほうが導通損失が小さくなるようにしている。なお、他のスイッチング素子Q2~Q4についても同様のことがいえる。
図1に示すように、ブリッジ回路10は、スイッチング素子Q1,Q2が直列接続されてなる第1レグJ1と、スイッチング素子Q3,Q4が直列接続されてなる第2レグJ2と、が並列接続された構成になっている。
第1レグJ1において、スイッチング素子Q1のソースと、スイッチング素子Q2のドレインと、が接続され、その接続点N1は、配線haを介して交流電源Gに接続されている。なお、配線haは、その一端が交流電源Gに接続され、他端が前記した接続点N1に接続されている。
第2レグJ2において、スイッチング素子Q3のソースと、スイッチング素子Q4のドレインと、が接続され、その接続点N2は、配線hbを介して交流電源Gに接続されている。なお、配線hbは、その一端が交流電源Gに接続され、他端が前記した接続点N2に接続されている。
スイッチング素子Q1のドレインと、スイッチング素子Q3のドレインと、は互いに接続され、その接続点N3は、配線hcを介して負荷Hに接続されている。なお、配線hcは、その一端が負荷Hに接続され、他端が前記した接続点N3に接続されている。
スイッチング素子Q2のソースと、スイッチング素子Q4のソースと、は互いに接続され、その接続点N4は、配線hdを介して負荷Hに接続されている。なお、配線hdは、その一端がスイッチング素子Q2,Q4のソースに接続され、他端が負荷Hに接続されている。
リアクトルL1は、交流電源Gから供給される電力をエネルギとして蓄え、このエネルギを放出することで昇圧や力率の改善を行うものである。リアクトルL1は、交流電源Gとブリッジ回路10とを接続する配線haに設けられている。
平滑コンデンサC1は、ブリッジ回路10から印加される電圧を平滑化して直流電圧にするものであり、配線hc,hdを介してブリッジ回路10の出力側に接続されている。また、平滑コンデンサC1は、その正極が配線hcを介してスイッチング素子Q1,Q3のドレインに接続され、負極が配線hdを介してスイッチング素子Q2,Q4のソースに接続されている。
電流検出部11は、ブリッジ回路10に流れる電流を実効値(平均電流)として検出するものであり、配線hbに設けられている。電流検出部11として、例えば、カレントトランスを用いることができる。
交流電圧検出部12は、交流電源Gから印加される交流電源電圧Vsを検出するものであり、配線ha,hbに接続されている。
直流電圧検出部13は、平滑コンデンサC1の直流電圧Vdを検出するものであり、その正側が配線hcに接続され、負側が配線hdに接続されている。なお、直流電圧検出部13の検出値は、負荷Hに印加される電圧値が所定の目標値に達しているか否かの判定に用いられる。
負荷検出部14は、負荷Hに供給される電流を検出するものであり、この負荷Hに設置されている。負荷検出部14として、例えば、シャント抵抗を用いることができる。なお、負荷Hがモータである場合、負荷検出部14によってモータの回転速度を検出し、この回転速度から電流値を推定するようにしてもよい。
シャント抵抗R1は、配線hdを介して回路を流れる電流の瞬時値(瞬時電流)を検出するものであり、この配線hdに設けられている。
制御部15は、例えば、マイコン(Microcomputer:図示せず)であり、ROM(Read Only Memory)に記憶されたプログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が各種処理を実行するようになっている。制御部15は、前記したように、スイッチング素子Q1~Q4のオン・オフを制御する機能を有している。
図1に示すように、制御部15は、ゼロクロス判定部15aと、昇圧比制御部15bと、ゲイン制御部15cと、コンバータ制御部15dと、を備えている。
ゼロクロス判定部15aは、交流電圧検出部12の検出値に基づいて、交流電源電圧Vsの正負が切り替わったか(つまり、ゼロクロスに達したか)否かを判定する機能を有している。例えば、ゼロクロス判定部15aは、交流電源電圧Vsが正の期間中にはコンバータ制御部15dに‘1’の信号を出力し、交流電源電圧Vsが負の期間中にはコンバータ制御部15dに‘0’の信号を出力する。
昇圧比制御部15bは、負荷検出部14の検出値に基づいて、直流電圧Vdの昇圧比を設定し、その昇圧比をゲイン制御部15c及びコンバータ制御部15dに出力する機能を有している。
ゲイン制御部15cは、電流検出部11によって検出される回路電流isの実効値と、直流電圧Vdの昇圧比と、に基づいて、電流制御ゲインを設定する機能を有している。
コンバータ制御部15dは、電流検出部11、直流電圧検出部13、シャント抵抗R1、ゼロクロス判定部15a、昇圧比制御部15b、及びゲイン制御部15cから入力される情報に基づいて、スイッチング素子Q1~Q4のオン・オフを制御する。なお、コンバータ制御部15dが実行する処理については後記する。
<電力変換装置の制御モード>
次に、負荷(例えば、電流検出部11の検出値)の大きさに基づいて切り替えられる制御モードについて説明する。前記した制御モードには、「ダイオード整流制御」、「同期整流制御」、「部分スイッチング制御」、及び「高速スイッチング制御」が含まれる。
(1.ダイオード整流制御)
ダイオード整流制御は、4つの寄生ダイオードD1~D4を用いて全波整流を行う制御モードである。ダイオード整流制御は、例えば、負荷の大きさが比較的小さいときに実行されるが、これに限定されるものではない。
図2は、ダイオード整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
なお、図2(a)は、交流電源電圧vs(瞬時値)の波形であり、図2(b)は、回路電流is(瞬時値)の波形である。図2(c)~(f)は、スイッチング素子Q1~Q4の駆動パルスである。
図2(c)~(f)に示すように、コンバータ制御部15dは、スイッチング素子Q1~Q4の全てをオフ状態で維持することで、次に説明するように、寄生ダイオードD1~D4を介して回路電流isを流す。
図3は、ダイオード整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの回路電流isの流れを示す説明図である。交流電源電圧vsが正の半サイクルの期間では、図3の破線矢印で示すように、交流電源G→リアクトルL1→寄生ダイオードD1→平滑コンデンサC1→シャント抵抗R1→寄生ダイオードD4→交流電源Gの順に回路電流isが流れる。
また、交流電源電圧vsが負の半サイクルの期間では、図示はしないが、交流電源G→寄生ダイオードD3→平滑コンデンサC1→シャント抵抗R1→寄生ダイオードD2→リアクトルL1→交流電源Gの順に回路電流isが流れる。なお、回路電流isの波形は、図2(b)に示すとおりである。
このようなダイオード整流制御を低負荷時に行うことで、スイッチング素子Q1~Q4におけるスイッチング損失を低減できる。
(2.同期整流制御)
同期整流制御は、平滑コンデンサC1を介した電流経路に含まれるスイッチング素子のうち、平滑コンデンサC1の正極に接続されているスイッチング素子を、ブリッジ回路10に電流が流れている期間の少なくとも一部でオン状態とし、前記した電流経路に含まれないスイッチング素子をオフ状態で維持する制御モードである。なお、交流電源電圧vsが正の半サイクルの期間において、前記した「電流経路」は、図5の破線矢印で示す経路である。
本実施形態では、一例として、交流電源電圧vsの極性に同期させてスイッチング素子Q2,Q4のオン・オフを切り替えるとともに(図4(d)、(f)参照)、回路電流isが流れているか否かによってスイッチング素子Q1,Q3のオン・オフを切り替えるようにしている(図4(c)、(e)参照)。なお、同期整流制御は、例えば、負荷(電流検出部11の検出値等)が比較的小さいときに実行されるが、これに限定されるものではない。
図4は、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
同期整流制御においてコンバータ制御部15dは、シャント抵抗R1によって検出される回路電流isに同期させて、スイッチング素子Q1,Q3のオン・オフを切り替える。交流電源電圧vsが正の半サイクルの期間について説明すると(図4(a)参照)、コンバータ制御部15dは、回路電流isが流れているときには(図4(b)参照)、スイッチング素子Q1をオン状態とし(図4(c)参照)、回路電流isが流れていないときには、スイッチング素子Q1をオフ状態にする。なお、交流電源電圧vsが正の半サイクルの期間において、スイッチング素子Q3はオフ状態で維持される(図4(e)参照)。
また、コンバータ制御部15dは、交流電源電圧vsの極性の変化に同期させて、スイッチング素子Q2,Q4のオン・オフを切り替える。例えば、交流電源電圧vsが正の半サイクルの期間では(図4(a)参照)、コンバータ制御部15dは、スイッチング素子Q2をオフ状態にし(図4(d)参照)、スイッチング素子Q4をオン状態にする(図4(f)参照)。なお、交流電源電圧vsの極性は、ゼロクロス判定部15aによって判定(特定)される。
このように、スイッチング素子Q1,Q3は、回路電流isが流れているか否かによってオン・オフが切り替えられ、スイッチング素子Q2,Q4は、交流電源電圧vsの極性に同期させてオン・オフが切り替えられる。これは、次に説明するように、平滑コンデンサC1から交流電源G側への逆流電流を防ぐためである。
仮に、直流電圧Vdが交流電源電圧vsよりも高いときに、回路電流isが通流していない状態でスイッチング素子Q1,Q4を両方ともオン状態にすると、平滑コンデンサC1から交流電源G側に逆流電流が流れてしまう。
これに対して本実施形態では、前記した状態においてスイッチング素子Q1をオフにするため(図4(c)参照)、逆流電流が流れること防止できる。また、例えば、交流電源電圧vsが正の半サイクルではスイッチング素子Q2がオフ状態で維持されるため(図4(d)参照)、スイッチング素子Q2,Q4を介して逆流電流がループすることもない。
なお、交流電源電圧vsが直流電圧Vdよりも低くなった直後の所定時間dt(図4(b)参照)では、リアクトルL1のインダクタンスによって回路電流isが流れ続ける。ここで、前記した所定時間dtは、以下の(数式1)で表される。
Figure 0007044462000001
本実施形態では、図4(b)、(c)、(e)に示すように、交流電源電圧vsの絶対値が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さくなってからも所定時間dtは、平滑コンデンサC1の正極に接続されているスイッチング素子Q1(交流電源電圧vsが負の半サイクルでは、スイッチング素子Q3)をオン状態で維持するようにしている。これによって、所定時間dtにおいてもスイッチング素子Q1のソース・ドレインを介して回路電流isを流すことができる。したがって、寄生ダイオードD1を介して回路電流isを流す場合よりも損失が小さくなるため、高効率で電力変換を行うことができる。なお、所定時間dtは、事前の実験に基づいて計算してもよいし、また、リアルタイムで計算してもよい。
図5は、同期整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの電流の流れを示す説明図である。交流電源電圧Vsが正の半サイクルの期間では、図5の破線矢印で示すように、交流電源G→リアクトルL1→スイッチング素子Q1→平滑コンデンサC1→シャント抵抗R1→スイッチング素子Q4→交流電源Gの電流経路において回路電流isが流れる。このとき、スイッチング素子Q2,Q3は、オフ状態で維持される(図4(d)、(e)参照)。
また、交流電源電圧vsが負の半サイクルの期間では、図示はしないが、交流電源G→スイッチング素子Q3→平滑コンデンサC1→シャント抵抗R1→スイッチング素子Q2→リアクトルL1→交流電源Gの電流経路において回路電流isが流れる。このとき、スイッチング素子Q1,Q4は、オフ状態で維持されるる(図4(c)、(f)参照)。
このように同期整流制御では、スイッチング素子Q1,Q4には積極的に電流を流し、寄生ダイオードD1,D4にはほとんど電流を流さないようにしている。これによって、高効率で電力変換を行うことができる。また、後記する部分スイッチング制御や高速スイッチング制御と比較して、同期整流制御ではスイッチングの回数が少なくて済む。したがって、適度な力率を保ちながらもスイッチング損失を低減できるため、高効率で電力変換を行うことができる。
(3.部分スイッチング制御)
部分スイッチング制御は、スイッチング素子Q1~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする動作を所定回数行う制御モードである。部分スイッチング制御は、例えば、負荷Hの定格運転中に実行されるが、これに限定されるものではない。
図6は、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
交流電源電圧vsが正の半サイクルの期間について説明すると(図6(a)参照)、コンバータ制御部15dは、スイッチング素子Q1,Q2を所定回数・所定パルス幅で交互にオン・オフする。より詳しく説明すると、コンバータ制御部15dは、交流電源電圧vsの正・負が切り替わった直後に(図6(a)参照)、スイッチング素子Q1,Q2を交互にオン・オフする動作を所定回数行う(図6(c)、(d)参照)。また、コンバータ制御部15dは、交流電源電圧vsの極性に同期して、スイッチング素子Q3,Q4のオン・オフを制御する(図6(e)、(f)参照)。
以下では、部分スイッチング制御ついてわかりやすく説明するために、この部分スイッチング制御を「力率改善動作」と「同期整流動作」とに分けて説明する。
前記した「力率改善動作」とは、スイッチング素子Q1又はスイッチング素子Q2を一時的にオン状態にすることで、リアクトルL1を介して短絡電流isp(図7参照)を流す動作である。
前記した「同期整流動作」とは、交流電源電圧vsの極性に基づいてスイッチング素子Q1~Q4を制御し、平滑コンデンサC1を介して回路電流isを流す動作である。ちなみに、前記した同期整流モード(図4、図5参照)は、この「同期整流動作」を継続的に行う制御モードである。
詳細については後記するが、部分スイッチング制御では、前記した「同期整流動作」と「力率改善動作」とが交互に所定回数行われる。
まず、「力率改善動作」について説明する。
例えば、交流電源電圧vsが正の半サイクルの期間においてコンバータ制御部15dは、スイッチング素子Q3をオフ状態で維持するとともに(図6(e)参照)、スイッチング素子Q4をオン状態で維持する(図6(f)参照)。また、コンバータ制御部15dは、ブリッジ回路10に電流が流れ始める所定の区間tfにおいて、スイッチング素子Q2をオン(図6(d)参照)、スイッチング素子Q1をオフにする(図6(c)参照)。このときに流れる短絡電流ispの経路について、図7を参照して説明する。
図7は、交流電源電圧vsが正の極性の半サイクルにおいて、力率改善動作を行ったときの電流の流れを示す説明図である。
交流電源電圧vsが正の極性のときに力率改善動作を行うと、図7の破線矢印で示すように、交流電源G→リアクトルL1→スイッチング素子Q2→スイッチング素子Q4→交流電源G、の短絡経路において、短絡電流isp(力率改善電流)が流れる。このときリアクトルL1には、以下の(数式2)で表されるエネルギが蓄えられる。なお、(数式2)に示すIspは、短絡電流ispの実効値である。
Figure 0007044462000002
このように短絡電流ispを流すことで、電流波形の歪みを小さくし、電流波形を正弦波に近づけることができる(図6(b)参照)。したがって、電力変換装置1の力率を改善できるとともに、高調波電流に伴う高調波を抑制できる。
なお、交流電源電圧vsが負の極性である期間では、図示はしないが、交流電源G→スイッチング素子Q3→スイッチング素子Q1→リアクトルL1→交流電源Gの短絡経路において、短絡電流isp(力率改善電流)が流れる。
次に、「同期整流動作」について説明する。
図6(d)に示す所定の区間tfにおいて「力率改善動作」を行った後、コンバータ制御部15dは、所定の区間tgにおいて「同期整流動作」を行う。すなわち、コンバータ制御部15dは、スイッチング素子Q1をオフからオンに切り替えるとともに(図6(c)参照)、スイッチング素子Q2をオンからオフに切り替える(図6(d)参照)。なお、区間tgにおいてもスイッチング素子Q3はオフ状態で維持され(図6(e)参照)、スイッチング素子Q4はオン状態で維持される(図6(f)参照)。
このようにスイッチング素子Q1~Q4が制御されることで、リアクトルL1に蓄えられたエネルギが平滑コンデンサC1に放出され、平滑コンデンサC1の直流電圧が昇圧される。なお、同期整流動作における電流経路は、前記した同期整流モードにおける電流経路(図5の破線矢印を参照)と同様である。
このようにして「力率改善動作」と「同期整流動作」とを所定回数、交互に行った後、コンバータ制御部15dは、回路電流isが流れている区間thにおいて、スイッチング素子Q1をオン状態(図6(c)参照)、スイッチング素子Q2をオフ状態で維持する(図6(d))。つまり、コンバータ制御部15dは、交流電源電圧vsの絶対値が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さくなってから所定時間tdは、リアクトルL1に接続されているスイッチング素子Q1をオン状態で維持する。これによって、交流電源電圧vsが直流電圧Vdよりも低くなってからも、図5に示す電流経路で回路電流isを流すことができる。したがって、寄生ダイオードD1を介して回路電流isを流す場合よりも、スイッチング素子Q1の導通損失を低減し、高効率化を図ることができる。
例えば、負荷Hがモータである場合、回転速度の上昇に伴ってモータの誘起電圧が高くなり、モータが駆動しにくくなることがあるが、前記した「力率改善動作」及び「同期整流動作」を交互に行って昇圧することで、モータの回転速度の許容限度を高めることができる。
ちなみに、図6(c)に示すように、スイッチング素子Q1は、1ショット目の前の区間ta、及び、同期整流動作が継続される区間thの後の区間tbでは、オフ状態にされる。これは、前述した平滑コンデンサC1から逆流電流が流れることを防止するためである。なお、スイッチング素子Q1,Q2を交互にオン・オフする際のタイミングや回数は、適宜設定できる。
次に、部分スイッチング制御におけるスイッチング素子Q1~Q4の駆動パルスの設定について、さらに詳しく説明する。
図8は、交流電源電圧vsが正の半サイクルにおける部分スイッチング制御の説明図である。
なお、図8(a)~(f)の横軸は、時間である。図8(a)は、正の半サイクルにおける交流電源電圧vsである。図8(b)は、回路電流is、短絡電流isp、及び正弦波状の理想電流である。図8(c)、(d)(f)は、スイッチング素子Q2,Q4,Q1の駆動パルスである。図8の「理想電流」に示すように、正弦波状の回路電流isが交流電源電圧vsに対して同相で流れることが理想的である。この理想電流は、例えば、電流検出部11(図7参照)の検出値と、ゼロクロス判定部15a(図7参照)の判定結果と、に基づいて、ゲイン制御部15c(図7参照)によって求められる。
例えば、理想電流上の点P1(図8(b)参照)に関して、この点P1での傾きをdi(P1)/dtとおく。回路電流isがゼロの状態から、スイッチング素子Q2を時間ton1_Q2に亘ってオンする力率改善動作を行ったときの短絡電流ispの傾きをdi(ton1_Q2)/dtとおく。また、その後に時間toff1_Q2に亘ってオフして同期整流動作を行ったときの回路電流isの傾きをdi(toff1_Q2)/dtとおく。ここで、傾きdi(ton1_Q2)/dtと、傾きdi(toff1_Q2)/dtとの平均値が、点P1における傾きdi(P1)/dtと等しくなるようにスイッチング素子Q1,Q2のオン・オフが制御される。
また、点P1と同様に、点P2での電流の傾きをdi(P2)/dtとおく。そして、スイッチング素子Q2を時間ton2_Q2に亘ってオンする力率改善動作を行ったときの短絡電流ispの傾きをdi(ton2_Q2)/dtとおく。また、その後に時間toff2_Q2に亘ってスイッチング素子Q2をオフして同期整流動作を行ったときの回路電流isの傾きをdi(toff2_Q2)/dtとおく。点P1の場合と同様に、傾きdi(ton2_Q2)/dtと、傾きdi(toff2_Q2)/dtと、の平均値が、点P2における傾きdi(P2)/dtと等しくなるようにスイッチング素子Q1,Q2のオン・オフが制御される。交流電源電圧vsが正の半周期において、このような処理が所定回数繰り返される。なお、スイッチング素子Q2のスイッチング回数が多いほど、回路電流isを理想的な正弦波状の波形に近づけることができるが、スイッチング損失を考慮してスイッチング回数を設定することが望ましい。
なお、交流電源電圧vsが負の極性の半サイクルについても、前記と同様にしてスイッチング素子Q1,Q2の駆動パルスが設定される。
(4.高速スイッチング制御)
高速スイッチング制御は、スイッチング素子Q~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする動作を所定周期で繰り返す制御モードである。高速スイッチング制御は、例えば、負荷(電流検出部11の検出値等)が比較的大きい高負荷時に実行されるが、これに限定されるものではない。
図9は、高速スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
高速スイッチング制御では、部分スイッチング制御で説明した「力率改善動作」と「同期整流動作」とが所定周期で交互に繰り返される。
力率改善動作について、交流電源電圧vs(図9(a)参照)の正の半サイクルを例に説明すると、コンバータ制御部15dは、所定の区間tkにおいてスイッチング素子Q2をオン状態(図9(d)参照)、スイッチング素子Q1をオフ状態にする(図9(c)参照)。また、コンバータ制御部15dは、交流電源電圧vsが正の半サイクルにおいて、スイッチング素子Q3をオフ状態(図9(e)参照)、スイッチング素子Q4をオン状態で維持する(図9(f)参照)。これによって、リアクトルL1を介して短絡電流isp(図7参照)が流れるため、力率を改善できるとともに、高調波を抑制できる。
次に、同期整流動作について、交流電源電圧vs(図9(a)参照)の正の半サイクルを例に説明すると、コンバータ制御部15dは、例えば、前記した区間tkの後の区間tmにおいて、スイッチング素子Q1をオン状態、スイッチング素子Q2をオフ状態にする。これによって、リアクトルL1に蓄えられたエネルギが平滑コンデンサC1に放出されるため、平滑コンデンサC1の直流電圧Vdが昇圧される。また、寄生ダイオードD1を介して回路電流isを流す場合と比べて導通損失が低減されるため、電力変換を高効率で行うことができる。なお、同期整流動作時における電流経路は、図5と同様である。
また、交流電源電圧vsが負の半サイクルにおいても、同様にして、スイッチング素子Q1,Q2が交互にオン・オフされる(図9(c)、(d)参照)。また、交流電源電圧vsの極性に同期して、スイッチング素子Q3がオン状態(図9(e)参照)、スイッチング素子Q4がオフ状態にされる(図9(f)参照)。なお、スイッチング素子Q1,Q2のオンデューティは、回路電流isを正弦波に近づけるように適宜設定される。
また、交流電源電圧vsの正の半サイクルの初期において、交流電源電圧vsが直流電圧Vdよりも低い区間tj(図9(c)参照)では、逆流電流を防止するためにスイッチング素子Q1がオフ状態で維持される。
また、交流電源電圧vsが直流電圧Vdを下回ってから所定時間dtが経過するまでは、スイッチング素子Q1,Q2のスイッチングが継続される(図9(c)、(d))。これによって寄生ダイオードD1,D2に流れる電流を抑制し、高効率で電力変換を行うことができる。そして、前記した所定時間dtが経過した後の区間tnでは、逆流電流が流れないように、スイッチング素子Q1がオフ状態にされる(図9(c)参照)。
なお、高負荷時には比較的大きな回路電流isが流れるため、それに伴って高調波が発生しやすくなる。本実施形態では、高負荷時に高速スイッチング制御を行うことで、回路電流isを正弦波に近づけるようにしている。これによって、高調波を抑制できるとともに、力率を改善できる。
以下では、部分スイッチング制御と、高速スイッチング制御と、を含めて「スイッチング制御」という。この「スイッチング制御」は、スイッチング素子Q1~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする制御である。
次に、部分スイッチング制御及び高速スイッチング制御におけるデューティの設定について説明する。
電力変換装置1における回路電流is(瞬時値)は、以下の(数式3)で表される。ここで、Vsは交流電源電圧vsの実効値であり、Kpは電流制御ゲインであり、Vdは直流電圧であり、ωは角周波数である。
Figure 0007044462000003
上記の(数式3)を整理すると、以下の(数式4)になる。
Figure 0007044462000004
また、回路電流is(瞬時値)と、回路電流Is(実効値)と、の関係は、以下の(数式5)で表される。前記したように、回路電流is(瞬時値)はシャント抵抗R1によって検出され、回路電流Is(実効値)は電流検出部11によって検出される。
Figure 0007044462000005
(数式4)を変形して(数式5)に代入すると、電流制御ゲインKpは、以下の(数式6)で表される。なお、aは昇圧比である。
Figure 0007044462000006
ここで、(数式6)から、昇圧比aの逆数を右辺に移項すると、以下の(数式7)の関係が成り立つ。
Figure 0007044462000007
また、交流電源電圧vsが正の半サイクルにおいて、スイッチング素子Q2のオンデューティd(通流率)は、以下の(数式8)で表される。なお、交流電源電圧vsが負の半サイクルにおけるスイッチング素子Q1のオンデューティdについても同様である。
Figure 0007044462000008
以上より、(数式7)に示したKp・Isを制御することで、直流電圧Vdを交流電源電圧Vs(実効値)のa倍に昇圧できる。そのときのスイッチング素子Q2(又は、スイッチング素子Q1)のオンデューティdは、(数式8)で与えられる。
なお、昇圧比aは、負荷検出部14によって検出される負荷に基づき、昇圧比制御部15b(図7参照)によって設定される。例えば、負荷が大きいほど、昇圧比aも大きな値に設定される。
図10は、交流電源電圧vsが正の半サイクルにおいて、高速スイッチング制御でのスイッチング素子Q1,Q2のオンデューティを示す説明図である。
なお、図10の横軸は、交流電源電圧vsが正の半サイクルにおける時間(正の半サイクルの開始時からの経過時間)であり、縦軸は、スイッチング素子Q1,Q2のオンデューティd_Q1,d_Q2である。
また、図10の破線は、デッドタイムdtxを考慮しない場合のスイッチング素子Q1のオンデューティd_Q1である。実線は、デッドタイムdtxを考慮した場合のスイッチング素子Q1のオンデューティd_Q1である。二点鎖線は、スイッチング素子Q2のオンデューティd_Q2である。
破線で示すスイッチング素子Q1のオンデューティd_Q1は、例えば、交流電源電圧Vsに比例するように設定されている。二点鎖線で示すスイッチング素子Q2のオンデューティd_Q2は、1.0からスイッチング素子Q1のオンデューティd_Q1を減算した値として設定される。
(数式8)で説明したように、回路電流isが大きいほど、スイッチング素子Q2のオンデューティd_Q2は小さな値に設定され、スイッチング素子Q1のオンデューティd_Q1は大きな値に設定される。言い換えると、同期整流動作でオンされるスイッチング素子Q1のオンデューティd_Q1は、力率改善動作でオンされるスイッチング素子Q2のオンデューティd_Q2に対して逆特性になっている。
なお、ブリッジ回路10における上下短絡を回避するために、図10の実線で示すように、デッドタイムdtxを考慮した制御を行うことが望ましい。所定のデッドタイムdtx(図示せず)を付与すると、スイッチング素子Q1のオンデューティd_Q1は、このデッドタイムdts分だけ小さくなる。
図11は、高速スイッチング制御における交流電源電圧vsと回路電流isとの関係を示す説明図である。
図11の横軸は、交流電源電圧vsの正の半サイクルが開始された時点からの経過時間(時間)であり、縦軸は、交流電源電圧vs(瞬時値)及び回路電流is(瞬時値)である。
図11に示すように、高速スイッチング制御を行うことで、交流電源電圧vs及び回路電流isが正弦波状の波形になっており、また、交流電源電圧vsと回路電流isとが同相になっている。つまり、高速スイッチング制御を行うことで、力率が改善されていることがわかる。このような正弦波状の回路電流isを流すために、スイッチング素子Q2のオンデューティd_Q2は、以下の(数式9)で設定される。また、スイッチング素子Q1のオンデューティd_Q1は、以下の(数式10)で設定される。
Figure 0007044462000009
図12は、高速スイッチング制御において、リアクトルL1による電流位相の遅れ分を考慮しない場合と、電流位相の遅れ分を考慮した場合と、におけるスイッチング素子Q2のオンデューティd_Q2を示す説明図である。
図12の横軸は、交流電源電圧vsの正の半サイクルが開始された時点からの経過時間(時間)であり、縦軸は、高速スイッチング制御におけるスイッチング素子Q2のオンデューティである。
また、実線は、リアクトルL1による電流位相の遅れを考慮しない場合のスイッチング素子Q2のオンデューティである。破線は、リアクトルL1による電流位相の遅れを考慮した場合のスイッチング素子Q2のオンデューティである。図12の破線で示すように、スイッチング素子Q2のオンデューティを設定することで、リアクトルL1のインダクタンスが大きい場合であっても、正弦波状の回路電流isを流すことができる。
<制御モードの切替えについて>
コンバータ制御部15d(図1参照)は、例えば、負荷が比較的小さい低負荷領域では同期整流制御を行い、定格運転領域では部分スイッチング制御を行い、負荷が比較的大きい高負荷領域では高速スイッチング制御を行う。なお、負荷が非常に小さいときにダイオード整流制御を行ってもよいし、また、ダイオード整流を行わないようにしてもよい。
図13(a)は、部分スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。なお、図13(a)に示すピーク値is1は、部分スイッチング制御における回路電流isのピーク値である。
図13(b)は、高速スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。
なお、図13(b)に示すピーク値is2は、高速スイッチング制御における回路電流isのピーク値である。図13(b)に示すように、高速スイッチング制御における回路電流isのピーク値is2は、部分スイッチング制御における回路電流isのピーク値is2よりも小さくなっている。
仮に、前記したピーク値is1,is2が略同一となるように制御すると、部分スイッチング制御よりも高速スイッチング制御のほうが力率が高いため、高速スイッチング制御において直流電圧Vdが昇圧されすぎてしまう。これに対して本実施形態では、ピーク値is1>ピーク値is2となるように、スイッチング素子Q1,Q2のオンデューティが調整される。つまり、コンバータ制御部15dは、部分スイッチング制御及び高速スイッチング制御の一方から他方に切り替える際、平滑コンデンサC1の直流電圧Vdの変動を抑制するように、スイッチング素子Q1,Q2のオンデューティを調整する。これによって、部分スイッチング制御及び高速スイッチング制御の一方から他方に移行する際、直流電圧Vdの変動を抑制できる。
また、コンバータ制御部15dは、交流電源電圧vsのゼロクロス(正・負の切り替わり)のタイミングで、制御モードの切替えを行うことが好ましい。例えば、コンバータ制御部15dは、交流電源電圧vsのゼロクロスのタイミングで、部分スイッチング制御から高速スイッチング制御に切り替える。これによって、制御モードの切替時に、制御が不安定になったり、直流電圧Vdが変動したりすることを抑制できる。
<効果>
本実施形態よれば、低負荷時には同期整流制御を行うことで、スイッチング素子Q1~Q4に積極的に電流を流すようにしている。これによって、寄生ダイオードD1~D4での損失を抑制し、電力変換を高効率で行うことができる。
また、定格運転時には部分スイッチング制御が行われ、スイッチング素子Q1,Q2が所定回数、交互にスイッチングされる。これによって、昇圧、力率の改善、及び高調波の抑制を行うことができる。また、高速スイッチング制御と比べてスイッチング回数が少ないため、スイッチング損失を低減できる。
また、高負荷時には高速スイッチング制御を行って、スイッチング素子Q1,Q2を所定周期で交互にスイッチングするようにしている。これによって、昇圧、力率の改善、及び高調波の抑制を行うことができる。高速スイッチング制御では、前記したように、回路電流isが正弦波状になるため(図9(b)参照)、特に力率の改善や高調波の抑制に効果がある。
≪第2実施形態≫
第2実施形態は、電流検出部11の検出値Iと所定の閾値I1,I2との大小を比較し、その比較結果に基づいて制御モードを切り替える点が、第1実施形態とは異なっている。また、第2実施形態では、電力変換装置1の負荷Hが、空気調和機W(図15参照)の圧縮機41のモータ41aである点が、第1実施形態とは異なっている。なお、その他の構成(図1に示す電力変換装置1の構成や、各制御モードの内容)については、第1実施形態と同様である。したがって、第1実施形態と異なる部分について説明し、重複する部分については説明を省略する。
<空気調和機の構成>
図14は、第2実施形態に係る空気調和機Wが備える室内機U1、室外機U2、及びリモコンReの正面図である。
空気調和機Wは、冷媒回路4(図15参照)において周知のヒートポンプサイクルで冷媒を循環させることによって、空調(冷房運転、暖房運転、除湿運転等)を行う機器である。図14に示すように、空気調和機Wは、室内機U1と、室外機U2と、リモコンReと、を備えている。
室内機U1は、次に説明する室内熱交換器44(図15参照)、室内ファンF2等を備えている。
室外機U2は、次に説明する圧縮機41(図15参照)、室外熱交換器42、膨張弁43、室外ファンF1等を備えている。
なお、室内機U1と室外機U2とは、冷媒が通流する配管kを介して接続されるとともに、図示はしないが、通信線を介して接続されている。
リモコンReは、室内機U1との間で所定の信号(運転/停止指令、設定温度の変更、タイマの設定、運転モードの変更等)を送受信するものである。
図15は、空気調和機Wの構成図である。
図15に示すように、空気調和機Wは、電力変換装置1と、インバータ2と、冷媒回路4と、を備えている。なお、電力変換装置1の構成については、第1実施形態(図1参照)で説明したとおりである。
インバータ2は、電力変換装置1から印加される直流電圧を、例えば、PWM制御(Pulse Width Modulation)に基づいて交流電圧に変換する電力変換器である。
冷媒回路4は、圧縮機41と、室外熱交換器42と、膨張弁43と、室内熱交換器44と、が配管kを介して環状に順次接続された構成になっている。
圧縮機41は、モータ41aの駆動によって冷媒を圧縮する機器である。なお、モータ41aは、インバータ2から印加される交流電圧によって駆動する。
室外熱交換器42は、室外ファンF1から送り込まれる室内空気と、冷媒と、の熱交換が行われる熱交換器である。
膨張弁43は、室外熱交換器42又は室内熱交換器44から流れ込む冷媒を膨張させて減圧する減圧器である。
室内熱交換器44は、室内ファンF2から送り込まれる室内空気と、冷媒と、の熱交換が行われる熱交換器である。
そして、圧縮機41、室外熱交換器42、膨張弁43、及び室内熱交換器44が配管kを介して環状に順次接続されてなる冷媒回路4においてヒートポンプサイクルで冷媒を循環させるようになっている。
なお、空気調和機Wは、冷房用であってもよいし、また、暖房用であってもよい。また、冷房時と暖房時とで冷媒の流れる向きを切り替える四方弁(図示せず)を設けてもよい。
次に、電力変換装置1が備える電流検出部11(図1参照)の検出値(負荷)に基づいて、電力変換装置1の制御モードを切り替える処理について説明する。
図16は、負荷の大きさ、動作モード、及び機器の運転領域の関係を示す説明図である。
図16に示す「中間運転領域」は、負荷(つまり、電流検出部11の検出値:図1参照)が比較的小さい領域である。本実施形態では、負荷の大きさが閾値I1未満である場合に「同期整流制御」を行うことで、電力変換装置1の高効率化を図るようにしている。
図16に示す「定格運転領域」は、前記した「中間運転領域」よりも負荷が大きく、圧縮機41のモータ41a(つまり、図1に示す負荷H)を定格運転できる領域である。本実施形態では、負荷の大きさが閾値I1以上かつ閾値I2未満である場合に「部分スイッチング制御」を行うことで、昇圧、力率の改善、及び高調波の抑制を行うようにしている。
図16に示す「高負荷領域」は、負荷の大きさが比較的大きい領域である。例えば、外気温が非常に低いときに暖房運転を行う場合や、外気温が非常に高いときに冷房運転を行う場合の運転領域が「高負荷領域」に相当する。本実施形態では、負荷の大きさが閾値I2以上である場合に「高速スイッチング制御」を行うことで、昇圧、力率の改善、及び高調波の抑制を行うようにしている。なお、閾値I1,I2の大きさは、事前の実験やシミュレーションに基づいて適宜設定される。
<電力変換装置の動作>
図17は、電力変換装置1の制御部15が実行する処理を示すフローチャートである(適宜、図1を参照)。なお、図17の「START」時において、モータ41a(図15参照)が駆動しているものとする。
ステップS101において制御部15は、電流検出部11の検出値I(負荷)を読み込む。
ステップS102において制御部15は、ステップS101で読み込んだ検出値Iが閾値I1(第1閾値)未満であるか否かを判定する。つまり、制御部15は、電流の検出値Iが「中間運転領域」(図16参照)に含まれるか否かを判定する。
電流の検出値Iが閾値I1未満である場合(S102:Yes)、制御部15の処理はステップS103に進む。
ステップS103において制御部15は、同期整流制御を実行する。このように中間運転領域において同期整流制御を行うことで、第1実施形態で説明したように、電力変換を高効率で行うことができる。
また、ステップS102において電流の検出値Iが閾値I1以上である場合(S102:No)、制御部15の処理はステップS104に進む。
ステップS104において制御部15は、電流検出部11の検出値Iが閾値I2(第2閾値)未満であるか否かを判定する。つまり、制御部15は、電流の検出値Iが「定格運転領域」(図16参照)に含まれるか否かを判定する。ちなみに、前記した閾値I2は、閾値I1よりも大きな値である(図16参照)。
電流の検出値Iが閾値I2未満である場合(S104:Yes)、制御部15の処理はステップS105に進む。
ステップS105において制御部15は、部分スイッチング制御を実行する。このように定格運転領域において部分スイッチング制御を行うことで、第1実施形態で説明したように、昇圧、力率の改善、及び高調波の抑制を行うことができる。
また、ステップS104において電流検出部11の検出値Iが閾値I2以上である場合(S104:No)、制御部15の処理はステップS106に進む。
ステップS106において制御部15は、高速スイッチング制御を実行する。これによって、高負荷運転領域で大きな回路電流isが流れたとしても、力率を改善できるとともに、高調波を抑制できる。
ステップS103,S105,S106のいずれかの処理を行った後、制御部15の処理は「START」に戻る(RETURN)。
なお、電流の検出値Iが非常に小さい場合に、第1実施形態で説明したダイオード整流制御(図2,3参照)を行うようにしてもよい。
<効果>
本実施形態によれば、負荷の大きさに応じて制御モードを切り替えることで、電力変換装置1の高効率化を図るとともに、高調波を抑制できる。このような電力変換装置1を備えることで、エネルギ効率(つまり、APF:Annual Performance Factor)が高く、省エネ化を図った空気調和機Wを提供できる。
≪変形例≫
以上、本発明に係る電力変換装置1等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
≪第1の変形例≫
図18は、第1の変形例に係る電力変換装置1Aの構成図である。
図18に示す電力変換装置1Aは、第1実施形態で説明した電力変換装置1(図1参照)にリアクトルL2を追加した構成になっている。リアクトルL2は、接続点N2と交流電源Gとを接続する配線hbに設けられている。このようにリアクトルL2を設けることで、第1実施形態で説明した「力率改善動作」に伴うノイズを低減できる。
≪第2の変形例≫
図19は、第2の変形例に係る電力変換装置1Bの構成図である。
図19に示す電力変換装置1Bは、接続点N1を介してリアクトルL1に接続されるスイッチング素子Q1,Q2として、MOSFETではなく、IGBT(Insulated-Gate-Bipolar-Transistor)を用いている点が、第1実施形態(図1参照)とは異なっている。このようにスイッチング素子Q1,Q2としてIGBTを用いても、第1実施形態と同様の効果が奏される。なお、スイッチング素子Q1,Q2として、FRD(Fast-Recovery-Diode)を用いてもよい。
その他、スイッチング素子Q1~Q4として、オン抵抗の小さいスーパージャンクションMOSFET(SJMOSFET)を用いてもよい。特に、逆回復時間(time of reverse recovery:trr)が比較的短い高速trrタイプのものを用いることが好ましい。前記した「逆回復時間」とは、逆回復電流が流れる時間であり、「逆回復電流」とは、寄生ダイオードD1~D4に印加される電圧が順方向電圧から逆方向電圧に切り替わった瞬間に流れる電流である。例えば、逆回復時間が300nsec以下のSJMOSFETをスイッチング素子Q1~Q4として用いることで損失を低減し、さらなる高効率化を図ることができる。
また、スイッチング素子Q1~Q4として、オン抵抗が0.1Ω以下のものを用いることが好ましい。これによって、スイッチング素子Q1~Q4における導通損失を低減できる。
また、スイッチング素子Q1,Q2の逆回復時間は、スイッチング素子Q3,Q4よりも短いことが好ましい。前記したように、同期整流制御、部分スイッチング制御、高速スイッチングでは、スイッチング素子Q1,Q2のオン・オフが、交流電源電圧vsの半サイクルごとに所定回数行われる。したがって、スイッチング素子Q1,Q2として逆回復時間の短いものを用いることで、逆回復電流が流れる時間が短くなるため、スイッチング損失を低減できる。ちなみに、スイッチング素子Q3,Q4については、オン・オフする頻度がスイッチング素子Q1,Q2に比べて少ないため、逆回復時間が比較的長い安価な素子を用いても効率にそれほど影響はない。
また、スイッチング素子Q1~Q4として、例えば、SiC(Silicon Carbide)-MOSFETやGaN(Gallium nitride)を用いてもよい。これによって、電力変換装置1のエネルギ損失をさらに低減し、高効率化を図ることができる。
≪第3の変形例≫
図20は、第3の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図20に示す変形例では、同期整流制御においてスイッチング素子Q2,Q4(図20(d)、(f)参照)をオン状態にする期間が、第1実施形態(図4(d)、(f)参照)よりも短くなっている。例えば、図20に示す変形例では、交流電源電圧vsが正の半サイクルでは、その一部の区間(回路電流isが流れている期間の一部)でスイッチング素子Q4をオン状態にしている。なお、正の回路電流isが流れている期間の一部でスイッチング素子Q4がオフ状態であっても、寄生ダイオードD4を介して電流が流れるため、同期整流制御に支障が生じることはない。
≪第4の変形例≫
図21は、第4の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図21に示す変形例では、同期整流制御においてスイッチング素子Q1,Q3(図21(c)、(e)参照)をオン状態にする期間が、第1実施形態(図4(c)、(e)参照)よりも短くなっている。このようにスイッチング素子Q1,Q3を制御しても、同期整流制御を適切に行うことができる。
なお、同期整流制御において、交流電源電圧vsの極性に同期させてスイッチング素子Q3,Q4をオン・オフする処理に代えて、回路電流isが流れているか否かに応じてスイッチング素子Q3,Q4をオン・オフするようにしてもよい。
≪第5の変形例≫
図22は、第5の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図22に示す変形例では、部分スイッチング制御においてスイッチング素子Q3,Q4(図22(e)、(f)参照)をオン状態にする期間が、第1実施形態(図6(e)、(f)参照)よりも短くなっている。例えば、交流電源電圧vsが正の半サイクルでは、回路電流isが流れている期間の一部でスイッチング素子Q4をオン状態にしている。このようにスイッチング素子Q3,Q4を制御しても、部分スイッチング制御を適切に行うことができる。
≪第6の変形例≫
図23は、第6の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図23に示す変形例では、部分スイッチング制御においてスイッチング素子Q1,Q2(図23(c)、(d)参照)をオン状態にする期間が、第1実施形態(図6(c)、(d)参照)よりも短くなっている。例えば、交流電源電圧vsが正の半サイクルでは、回路電流が流れている期間の一部でスイッチング素子Q1をオン状態にしている。このようにスイッチング素子Q1,Q2を制御しても、部分スイッチング制御を適切に行うことができる。
≪第7の変形例≫
図24は、第7の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図24に示す変形例は、同期整流制御の実行中、スイッチング素子Q1,Q3(図24(c)、(e)参照)がオフ状態で維持されている点が、第1実施形態(図4(c)、(e)参照)とは異なっている。例えば、交流電源電圧vsが正の半サイクルにおいてスイッチング素子Q1がオフ状態で維持されても、寄生ダイオードD1を介して回路電流isが流れるため、同期整流制御に支障が生じることはない。
≪第8の変形例≫
図25は、第8の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図25に示す変形例は、同期整流制御の実行中、スイッチング素子Q2,Q4はオフ状態で維持され(図25(d)、(f)参照)、スイッチング素子Q1,Q3は交流電源電圧vsに同期してオン・オフされている点が(図25(c)、(e)参照)、第1実施形態(図4(c)~(f)参照)とは異なっている。このようにスイッチング素子Q1~Q4を制御しても、同期整流制御を適切に行うことができる。
なお、同期整流制御において、ブリッジ回路10に回路電流isが流れている期間のうち、交流電源電圧vsの絶対値|vs|が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さい期間では、この平滑コンデンサC1の正極に接続されているスイッチング素子Q1,Q3をオフ状態にしてもよい。これによって、ブリッジ回路10を介して逆流電流が流れることを防止できる。
また、スイッチング制御(部分スイッチング制御、高速スイッチング制御)を行う場合において、リアクトルL1を介して短絡電流ispが流れる短絡経路(例えば、図7の破線矢印を参照)に含まれるスイッチング素子のうち、リアクトルL1に接続されているスイッチング素子を、交流電源電圧vsの絶対値|vs|が平滑コンデンサC1の電圧よりも小さい期間ではオフ状態にするようにしてもよい。これによって、ブリッジ回路10に逆流電流が流れることを防止できる。
≪第9の変形例≫
図26は、第9の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図26に示す変形例は、部分スイッチング制御において、交流電源電圧vsが正の半サイクルではスイッチング素子Q1がオフ状態で維持され(図26(c)参照)、交流電源電圧vsが負の半サイクルではスイッチング素子Q2がオフ状態で維持される点が(図26(d)参照)、第1実施形態(図6(c)、(d)参照)とは異なっている。このようにしても、例えば、交流電源電圧vsが正の半サイクルでは寄生ダイオードD1を介して回路電流isが流れるため、部分スイッチング制御を適切に行うことができる。
≪第10の変形例≫
図27は、第10の変形例に係る電力変換装置において、高速スイッチング整流制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図27に示す変形例は、高速スイッチング制御において、交流電源電圧vsが正の半サイクルではスイッチング素子Q1がオフ状態で維持され(図27(c)参照)、交流電源電圧vsが負の半サイクルではスイッチング素子Q2がオフ状態で維持される点が(図27(d)参照)、第1実施形態(図9(c)、(d)参照)とは異なっている。このようにしても、高速スイッチング制御を適切に行うことができる。
その他、例えば、交流電源電圧vsが正の極性の場合、スイッチング素子Q1,Q3,Q4をオフ状態で維持し、スイッチング素子Q2によって高速スイッチングを行うようにしてもよい(交流電源電圧vsが負の極性の場合も同様)。このように制御しても、力率を改善できるとともに、高調波を抑制できる。
≪他の変形例≫
図28は、他の変形例に係る電力変換装置の制御モードの切替えに関する説明図である。
図28に示す「同期整流」は、同期整流モードを意味している。また、「同期整流+部分SW」は、部分スイッチング制御に、前記した同期整流動作が含まれる(つまり、力率改善動作と同期整流動作とを交互に行う)ことを意味している。「同期整流+高速SW」とは、高速スイッチング制御に同期整流動作が含まれることを意味している。
また、「ダイオード整流+部分SW」とは、部分スイッチング制御にダイオード整流動作が含まれることを意味している。前記した「ダイオード整流動作」とは、寄生ダイオードD1等を介して回路電流isを流す動作である。つまり、「ダイオード整流+部分SW」とは、力率改善動作とダイオード整流動作とを交互に行うことで、部分スイッチング制御を行うことを意味している。「ダイオード整流+高速SW」とは、高速スイッチング制御にダイオード整流動作が含まれることを意味している。
例えば、制御方法X1に示すように、負荷(例えば、電流検出部11の検出値)が閾値I1以上である場合には、同期整流動作を含む部分スイッチング制御を行い、負荷が閾値I1未満である場合には、同期整流制御を行うようにしてもよい。
また、例えば、制御方法X2で示すように、負荷が閾値I1以上である場合には、同期整流動作を含む高速スイッチング制御を行い、負荷が閾値I1未満である場合には、同期整流制御を行うようにしてもよい。
図28に示す制御方法X3は、第2実施形態で説明した制御方法(図16、図17参照)と同一である。
また、例えば、制御方法X4に示すように、負荷が閾値I1以上である場合には、ダイオード整流動作を含む部分スイッチング制御を行い、負荷が閾値I1未満である場合には、同期整流制御を行うようにしてもよい。このようにダイオード整流動作を行うことで、交流電源電圧vsの半サイクルにおいて、オン状態にするスイッチング素子が1つで済むため、制御の簡略化を図ることができる。
図28に示す他の制御方法X5~X8については説明を省略するが、効率・高調波の抑制・昇圧等を考慮して、制御方法を適宜設定すればよい。例えば、高効率化、高調波電流の抑制、及び昇圧が主目的である場合には、制御方法X1~X3のいずれかを選択すればよい。また、高効率化は主目的でなく、高調波電流の抑制及び昇圧が主目的である場合には、制御方法X4~X6を選択すればよい。
また、各実施形態では、電流検出部11(図1参照)の検出値に基づいて制御モードを切り替える場合について説明したが、これに限らない。すなわち、配線ha,hb(図1参照)に流れる電流と正の相関を有する「負荷」を、負荷検出部14(図1参照)によって検出し、この「負荷」の大きさに基づいて制御モードを切り替えるようにしてもよい。例えば、直流電圧検出部13の検出値(出力電圧)に基づいて、制御モードを切り替えるようにしてもよい。なお、負荷が大きくなるにつれて出力電圧も大きくなるため、複数の閾値によって分けられる負荷領域と出力電圧との関係は、図16と同様になる。
また、平滑コンデンサC1(図1参照)の出力側に接続されるインバータ2(図15参照)の電流値や、このインバータ2に接続されるモータ41a(図15参照)の回転速度、モータ41aの変調率に基づいて、制御モードを切り替えるようにしてもよい。前記した「変調率」とは、インバータ2の直流電圧に対するモータ41aの印加電圧(線間電圧)の実効値の比である。なお、負荷が大きくなるにつれてインバータ2に流れる電流(モータ41aの回転速度、変調率)も大きくなる。したがって、複数の閾値によって分けられる負荷領域と、インバータ2に流れる電流(モータ41aの回転速度、変調率)との関係は、図16と同様になる。
また、各実施形態では、シャント抵抗R1(図1参照)によって回路電流isを検出する構成について説明したが、これに限らない。例えば、シャント抵抗R1に代えて、高速の電流トランスを用いてもよい。
また、スイッチング素子Q1~Q4に、それぞれ、整流ダイオード(図示せず)を逆並列に接続してもよい。
また、各実施形態では、電力変換装置1が2レベルのコンバータである構成について説明したが、例えば、3レベルや5レベルのコンバータにも適用できる。
また、各実施形態では、負荷の大きさに応じて制御モードを切り替える処理について説明したが、電力変換装置1の用途や仕様によっては、負荷の大きさに関わらず、所定の制御モード(例えば、部分スイッチング制御)を実行するようにしてもよい。
また、各実施形態や変形例は、適宜組み合わせることができる。例えば、制御方法X1~X8(図28参照)のいずれかを用いて電力変換を行うことで、第2実施形態で説明した圧縮機41(図15参照)のモータ41aを駆動するようにしてもよい。
また、第2実施形態では、電力変換装置1が空気調和機W(図15参照)に搭載される場合について説明したが、これに限らない。例えば、電車、自動車、冷蔵庫、給湯機、洗濯機、乗り物、バッテリへの充電設備等に電力変換装置1を搭載してもよい。
また、前記した各構成、機能、処理部、処理手段などは、それらの一部又は全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報を、メモリ、ハードディスクなどの記録装置、又は、フラッシュメモリカード、DVD(Digital Versatile Disk)等の記録媒体に記録してもよい。
また、各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてもよい。
1,1A,1B 電力変換装置
10 ブリッジ回路
L1 リアクトル
C1 平滑コンデンサ
Q1 スイッチング素子(第1スイッチング素子)
Q2 スイッチング素子(第2スイッチング素子)
Q3 スイッチング素子(第3スイッチング素子)
Q4 スイッチング素子(第4スイッチング素子)
D1,D2,D3,D4 寄生ダイオード
J1 第1レグ
J2 第2レグ
11 電流検出部
12 交流電圧検出部
13 直流電圧検出部
14 負荷検出部
15 制御部
G 交流電源
H 負荷
ha 配線
N1,N2,N3,N4 接続点
W 空気調和機
2 インバータ
4 冷媒回路
41 圧縮機
41a モータ
42 室外熱交換器
43 膨張弁
44 室内熱交換器
k 配管

Claims (8)

  1. ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、
    前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、
    前記ブリッジ回路の出力側に接続され、前記ブリッジ回路から印加される電圧を平滑化して直流電圧にする平滑コンデンサと、
    複数の前記スイッチング素子を制御する制御部と、を備え、
    前記制御部は、複数の制御モードとして、
    前記平滑コンデンサを介した電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流制御と、
    複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を、前記交流電源の電圧の半サイクルごとに所定回数行う部分スイッチング制御と、
    複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を所定周期で繰り返す高速スイッチング制御と、を有し、
    前記制御部は、
    前記ブリッジ回路に流れる電流の大きさが第1閾値未満である場合、前記同期整流制御を実行し、
    前記ブリッジ回路に流れる電流の大きさが前記第1閾値以上、かつ、前記第1閾値よりも大きい第2閾値未満である場合、前記部分スイッチング制御を実行し、
    前記ブリッジ回路に流れる電流の大きさが前記第2閾値以上である場合、前記高速スイッチング制御を実行すること
    を特徴とする電力変換装置。
  2. ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、
    前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、
    前記ブリッジ回路の出力側に接続され、前記ブリッジ回路から印加される電圧を平滑化して直流電圧にする平滑コンデンサと、
    複数の前記スイッチング素子を制御する制御部と、を備え、
    前記制御部は、複数の制御モードとして、
    前記平滑コンデンサを介した電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流制御と、
    複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を、前記交流電源の電圧の半サイクルごとに所定回数行う部分スイッチング制御と、を有し、
    前記制御部は、
    前記ブリッジ回路に流れる電流の大きさが所定値未満である場合、前記同期整流制御を実行し、
    前記ブリッジ回路に流れる電流の大きさが前記所定値以上である場合、前記部分スイッチング制御を実行すること
    を特徴とする電力変換装置。
  3. ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、
    前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、
    前記ブリッジ回路の出力側に接続され、前記ブリッジ回路から印加される電圧を平滑化して直流電圧にする平滑コンデンサと、
    複数の前記スイッチング素子を制御する制御部と、を備え、
    前記制御部は、複数の制御モードとして、
    前記平滑コンデンサを介した電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流制御と、
    複数の前記スイッチング素子のうち、前記リアクトルに接続されている2つのスイッチング素子を交互にオン・オフする動作を所定周期で繰り返す高速スイッチング制御と、を有し、
    前記制御部は、
    前記ブリッジ回路に流れる電流の大きさが所定値未満である場合、前記同期整流制御を実行し、
    前記ブリッジ回路に流れる電流の大きさが前記所定値以上である場合、前記高速スイッチング制御を実行すること
    を特徴とする電力変換装置。
  4. 前記ブリッジ回路は、
    複数の前記スイッチング素子として、第1スイッチング素子、第2スイッチング素子、第3スイッチング素子、及び第4スイッチング素子を有し、
    前記第1スイッチング素子と前記第2スイッチング素子とが直列接続されてなる第1レグと、前記第3スイッチング素子と前記第4スイッチング素子とが直列接続されてなる第2レグと、が並列接続された構成であり、
    前記第1スイッチング素子と前記第2スイッチング素子との接続点は、前記リアクトルを介して前記交流電源に接続され、
    前記第3スイッチング素子と前記第4スイッチング素子との接続点は、前記交流電源に接続され、
    前記第1スイッチング素子と前記第3スイッチング素子との接続点は、前記平滑コンデンサの正極に接続され、
    前記第2スイッチング素子と前記第4スイッチング素子との接続点は、前記平滑コンデンサの負極に接続され、
    前記第1スイッチング素子及び前記第2スイッチング素子の逆回復時間は、前記第3スイッチング素子及び前記第4スイッチング素子の逆回復時間よりも短いこと
    を特徴とする請求項1から請求項のいずれか一項に記載の電力変換装置。
  5. 複数の前記スイッチング素子は、スーパージャンクションMOSFET、SiC-MOSFET、又はGaNであること
    を特徴とする請求項1から請求項のいずれか一項に記載の電力変換装置。
  6. 前記制御部は、前記交流電源の電圧のゼロクロスのタイミングで、前記制御モードの切替えを行うこと
    を特徴とする請求項に記載の電力変換装置。
  7. 前記制御部は、前記部分スイッチング制御及び前記高速スイッチング制御の一方から他方に切り替える際、前記平滑コンデンサの電圧の変動を抑制するように、複数の前記スイッチング素子のオンデューティを調整すること
    を特徴とする請求項に記載の電力変換装置。
  8. 請求項1から請求項のいずれか一項に記載の電力変換装置と、
    前記電力変換装置から印加される直流電圧を交流電圧に変換するインバータと、
    前記インバータから印加される交流電圧によって駆動するモータと、を備えるとともに、
    前記モータによって駆動する圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、を備えること
    を特徴とする空気調和機。
JP2016127250A 2016-06-28 2016-06-28 電力変換装置、及びこれを備える空気調和機 Active JP7044462B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016127250A JP7044462B2 (ja) 2016-06-28 2016-06-28 電力変換装置、及びこれを備える空気調和機
CN201710068948.4A CN107546991B (zh) 2016-06-28 2017-02-08 电力变换装置、以及具备电力变换装置的空调机
JP2022042762A JP7238186B2 (ja) 2016-06-28 2022-03-17 電力変換装置、及びこれを備える空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127250A JP7044462B2 (ja) 2016-06-28 2016-06-28 電力変換装置、及びこれを備える空気調和機

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022042762A Division JP7238186B2 (ja) 2016-06-28 2022-03-17 電力変換装置、及びこれを備える空気調和機

Publications (2)

Publication Number Publication Date
JP2018007326A JP2018007326A (ja) 2018-01-11
JP7044462B2 true JP7044462B2 (ja) 2022-03-30

Family

ID=60950064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127250A Active JP7044462B2 (ja) 2016-06-28 2016-06-28 電力変換装置、及びこれを備える空気調和機

Country Status (2)

Country Link
JP (1) JP7044462B2 (ja)
CN (1) CN107546991B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542786B (zh) * 2018-05-29 2022-04-26 中兴通讯股份有限公司 一种均流控制方法、装置、设备及计算机可读存储介质
CN108599549B (zh) * 2018-06-01 2020-04-21 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108696116B (zh) * 2018-06-01 2020-04-21 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809076B (zh) * 2018-06-01 2020-04-21 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809074B (zh) * 2018-06-01 2020-02-11 广东美的制冷设备有限公司 图腾柱pfc电路、脉冲控制方法、空调器及存储介质
CN108809122B (zh) * 2018-06-04 2020-08-04 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN108809121B (zh) * 2018-06-04 2020-08-04 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN108631627B (zh) * 2018-06-04 2020-10-20 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
US11811353B2 (en) 2018-08-08 2023-11-07 Mitsubishi Electric Corporation Load driving device, refrigeration cycle applicable apparatus, and air conditioner
CN112567618B (zh) 2018-08-24 2024-02-09 三菱电机株式会社 直流电源装置、马达驱动控制装置、送风机、压缩机及空气调和机
WO2020049782A1 (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 電力変換装置及び電力変換方法
US11804786B2 (en) 2018-09-28 2023-10-31 Mitsubishi Electric Corporation Power converting apparatus, motor driving apparatus, and air conditioner
WO2020066032A1 (ja) 2018-09-28 2020-04-02 三菱電機株式会社 電力変換装置、モータ駆動装置及び空気調和機
JP6982254B2 (ja) * 2018-10-31 2021-12-17 ダイキン工業株式会社 電力変換装置及び空気調和機
CN109768719B (zh) * 2019-01-21 2020-08-28 广东美的制冷设备有限公司 驱动控制电路板和空调器
JP7045346B2 (ja) * 2019-04-25 2022-03-31 株式会社Soken 電力変換装置の制御装置
CN109980914A (zh) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 功率因数校正电路和空调器
JP2022533375A (ja) * 2019-05-17 2022-07-22 広東美的制冷設備有限公司 力率改善回路及び空気調和機
CN109980915A (zh) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN110034671A (zh) * 2019-05-17 2019-07-19 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN110011530A (zh) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN110011531A (zh) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN112019123B (zh) * 2019-05-31 2022-04-26 广东美的制冷设备有限公司 运行控制方法、装置、电路、家电设备和计算机存储介质
WO2020237864A1 (zh) * 2019-05-31 2020-12-03 广东美的制冷设备有限公司 运行控制方法、电路、家电设备及计算机可读存储介质
CN112019032B (zh) * 2019-05-31 2022-04-19 广东美的制冷设备有限公司 运行控制方法、装置、电路、家电设备和计算机存储介质
CN112019029B (zh) * 2019-05-31 2021-12-28 广东美的制冷设备有限公司 运行控制方法、电路、家电设备及计算机可读存储介质
CN112019026B (zh) * 2019-05-31 2022-04-29 广东美的制冷设备有限公司 运行控制方法、装置、电路、家电设备和计算机存储介质
EP4024693A4 (en) * 2019-08-30 2022-08-24 Mitsubishi Electric Corporation POWER CONVERSION DEVICE, ENGINE DRIVE DEVICE AND AIR CONDITIONER
WO2021038881A1 (ja) * 2019-08-30 2021-03-04 三菱電機株式会社 空気調和機
DE112020006787T5 (de) * 2020-02-20 2023-01-19 Mitsubishi Electric Corporation Gleichstromversorgung, Kühlkreislaufvorrichtung, Klimaanlage und Kühlschrank

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153543A (ja) 2001-11-07 2003-05-23 Mitsubishi Electric Corp 電力供給装置、電動機駆動装置、電力供給装置の制御方法
JP2008061412A (ja) 2006-08-31 2008-03-13 Daikin Ind Ltd 空調機のコンバータ装置
JP2011151984A (ja) 2010-01-22 2011-08-04 Mitsubishi Electric Corp 直流電源装置、これを備えた冷凍サイクル装置、並びに、これを搭載した空気調和機及び冷蔵庫
JP4935251B2 (ja) 2006-08-31 2012-05-23 ダイキン工業株式会社 電力変換装置
WO2012117642A1 (ja) 2011-02-28 2012-09-07 三洋電機株式会社 電力変換装置、電力変換システム、およびモータインバータ
JP2014090570A (ja) 2012-10-30 2014-05-15 Mitsubishi Electric Corp 直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫
JP2015208109A (ja) 2014-04-21 2015-11-19 日立アプライアンス株式会社 直流電源装置およびそれを用いた空気調和機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880762B2 (ja) * 2008-09-26 2012-02-22 株式会社MERSTech 電力変換装置
CN101795076B (zh) * 2009-01-29 2015-04-15 富士电机株式会社 功率变换器以及控制功率变换器的方法
CN101728961B (zh) * 2009-12-09 2012-06-06 艾默生网络能源有限公司 一种ac/dc变换器
US8503199B1 (en) * 2010-01-29 2013-08-06 Power-One, Inc. AC/DC power converter with active rectification and input current shaping
CN102170238B (zh) * 2011-05-05 2013-02-20 天宝电子(惠州)有限公司 具有pfc功能的交流整流电路
CN203827172U (zh) * 2013-03-27 2014-09-10 三菱电机株式会社 逆流防止装置、电力变换装置以及冷冻空气调节装置
JP2015061322A (ja) * 2013-09-17 2015-03-30 株式会社日本自動車部品総合研究所 電力変換装置
JP2015211488A (ja) * 2014-04-24 2015-11-24 日立アプライアンス株式会社 昇圧回路及び空調調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153543A (ja) 2001-11-07 2003-05-23 Mitsubishi Electric Corp 電力供給装置、電動機駆動装置、電力供給装置の制御方法
JP2008061412A (ja) 2006-08-31 2008-03-13 Daikin Ind Ltd 空調機のコンバータ装置
JP4935251B2 (ja) 2006-08-31 2012-05-23 ダイキン工業株式会社 電力変換装置
JP2011151984A (ja) 2010-01-22 2011-08-04 Mitsubishi Electric Corp 直流電源装置、これを備えた冷凍サイクル装置、並びに、これを搭載した空気調和機及び冷蔵庫
WO2012117642A1 (ja) 2011-02-28 2012-09-07 三洋電機株式会社 電力変換装置、電力変換システム、およびモータインバータ
JP2014090570A (ja) 2012-10-30 2014-05-15 Mitsubishi Electric Corp 直流電源装置、冷凍サイクル装置、空気調和機および冷蔵庫
JP2015208109A (ja) 2014-04-21 2015-11-19 日立アプライアンス株式会社 直流電源装置およびそれを用いた空気調和機

Also Published As

Publication number Publication date
JP2018007326A (ja) 2018-01-11
CN107546991B (zh) 2020-03-06
CN107546991A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
JP7044462B2 (ja) 電力変換装置、及びこれを備える空気調和機
JP7104209B2 (ja) 電力変換装置、及びこれを備える空気調和機
JP6731829B2 (ja) 電力変換装置および空気調和機
JP6478881B2 (ja) 直流電源装置および空気調和機
JP6411701B1 (ja) 電力変換装置および冷凍空調機器
JP6798802B2 (ja) 直流電源装置および空気調和機
JP6431413B2 (ja) 電力変換装置、及びこれを備える空気調和機、並びに電力変換方法
JP6416690B2 (ja) 直流電源装置および空気調和機
JP2017055475A (ja) 直流電源装置および空気調和機
JP6671126B2 (ja) 直流電源装置および空気調和機
JP6982254B2 (ja) 電力変換装置及び空気調和機
JP6955077B2 (ja) 直流電源装置および空気調和機
JP7238186B2 (ja) 電力変換装置、及びこれを備える空気調和機
JP6906077B2 (ja) 直流電源装置および空気調和機
JP6884254B2 (ja) 電力変換装置および空気調和機
JP7333450B2 (ja) 電力変換装置及び空気調和機
JP6505264B2 (ja) 電力変換装置およびこれを用いた空気調和装置
JP7359925B2 (ja) 直流電源装置および空気調和機
JP6876386B2 (ja) 直流電源装置および空気調和機
WO2020090071A1 (ja) 電力変換装置、及び、これを備える空気調和機

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7044462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150