JP7032227B2 - ポリフェニレンスルフィド樹脂組成物からなる成形品 - Google Patents

ポリフェニレンスルフィド樹脂組成物からなる成形品 Download PDF

Info

Publication number
JP7032227B2
JP7032227B2 JP2018089666A JP2018089666A JP7032227B2 JP 7032227 B2 JP7032227 B2 JP 7032227B2 JP 2018089666 A JP2018089666 A JP 2018089666A JP 2018089666 A JP2018089666 A JP 2018089666A JP 7032227 B2 JP7032227 B2 JP 7032227B2
Authority
JP
Japan
Prior art keywords
pps resin
molded product
weight
polymerization
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018089666A
Other languages
English (en)
Other versions
JP2019195909A (ja
Inventor
峻右 近藤
成紀 尾藤
貴樹 森岡
隆行 中野
由紀子 中野
明幸 川人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Toyota Motor Corp
Kojima Industries Corp
Original Assignee
Toray Industries Inc
Toyota Motor Corp
Kojima Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc, Toyota Motor Corp, Kojima Industries Corp filed Critical Toray Industries Inc
Priority to JP2018089666A priority Critical patent/JP7032227B2/ja
Publication of JP2019195909A publication Critical patent/JP2019195909A/ja
Application granted granted Critical
Publication of JP7032227B2 publication Critical patent/JP7032227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、高い寸法精度を維持したまま、ウエルド部の機械的強度に優れるポリフェニレンスルフィド樹脂組成物からなる成形品に関する。
ポリフェニレンスルフィド樹脂(以下、PPS樹脂と略すこともある。)は、剛性等の機械的特性、耐熱性、耐熱水性、耐薬品性、電気絶縁性および成形加工性をバランスよく備えているため、電気・電子部品、水廻り部品および自動車部品などに広く用いられている。
一般的に、PPS樹脂の機械強度の向上のために、PPS樹脂とガラス繊維の複合化が有効であるが、ガラス繊維との複合化においては、成形品にそりが発生する等の課題がある。そのため、そり低減を目的に、扁平形状の断面を有するガラス繊維を充填したPPS樹脂組成物の検討が行われている。
特許文献1には、薄肉部で高い弾性率及び寸法安定性を示す成形品を得ることを目的に、PPS樹脂に扁平な断面形状を有するガラス繊維を充填したPPS樹脂組成物からなる成形品が記載されている。
特許文献2には、リブを有する成形品において、ひけの発生が抑制された平面性に優れたPPS樹脂射出成形品を得ることを目的に、直鎖状のPPS樹脂に扁平な断面形状を有する繊維状強化剤を配合してなるPPS樹脂組成物が記載されている。
特許文献3には、そりを低減した成形品を得ることができるガラス繊維強化熱可塑性樹脂組成物を提供することを目的に、PPS樹脂にSiO含有量が57~63重量%である扁平な断面形状を有するガラス繊維を配合してなる組成物が記載されている。
特許文献4には、高低温衝撃特性が改良されたPPS樹脂インサート成形品を得ることを目的に、PPS樹脂に扁平な断面形状を有する繊維状強化剤、熱可塑性エラストマーを配合した樹脂組成物と金属又は無機固体とをインサート成形してなるインサート成形品が記載されている。
特許文献5には、機械的物性に優れ、樹脂の流れ方向の成型収縮率と樹脂の流れに直角な方向の成型収縮率をほぼ等しくし、且つ収縮率を低下させる等の寸法安定性が著しく良好な成形品を得ることを目的に、熱可塑性樹脂に扁平な断面形状を有するガラス繊維を配合してなる熱可塑性樹脂組成物が記載されている。
特許文献6、7には、耐高電圧性に優れ同時に機械的強度、寸法安定性に優れた耐高電圧部品製造用樹脂組成物、およびそれからなる耐高電圧部品を得ることを目的に、熱可塑性樹脂に扁平な断面形状を有する繊維状強化剤を配合した樹脂組成物、およびそれからなる高耐電圧部品が記載されている。
一方、本発明で対象とする成形品は、例えばモーターにおける円筒形状のステータコアの端面に装着され、ステータコアの内周に設けられている絶縁紙を保護する等の機能を果たす成形品である。この種の樹脂製品の成形においては、その平面度や真円度といった寸法精度を高めることが望まれる。
特許文献8には、キャビティ内の樹脂圧および温度の均一化を共に図り、樹脂製品の寸法精度を向上させる金型装置が記載されている。
国際公開第2008/038512号 特開2006-328291号公報 特開2015-105359号公報 特開2005-161693号公報 特開平7-18186号公報 特開2009-235305号公報 特開2008-285511号公報 特開2016-150461号公報
近年、ハイブリッドカーや電気自動車の普及に伴い、例えばモーターのステータコアに装着されるカフサといった、新たな樹脂製品が増加している。また、省スペース化のニーズとも相まって、こうした樹脂製品の形状は、小型化・複雑化している。複雑形状の樹脂製品を成形するためには、多数のゲートを金型内に設置する必要があり、樹脂製品に発生するウエルド部も、必然的に多くなる傾向にある。
こうしたウエルド部の増加に伴い、ガラス繊維の配向がより複雑となることから、樹脂製品に発生するそりは、大きくなる傾向にある。PPS樹脂に充填するフィラー量を増やすことで、寸法精度は向上するが、ウエルド強度は低下する。また、小型化・複雑化することに伴い、例えば、樹脂製品に銅線を巻きつけることにより発生する応力や、高低温環境下で繰り返し使用されることにより発生する応力により、ウエルド部でクラックが発生するなどの懸念がある。
従って、近年のこうした用途に用いられる成形品には、高い寸法精度を維持したまま、ウエルド部の機械的強度に優れる樹脂組成物からなる成形品が求められる。
しかしながら、特許文献1に記載の成形品は、薄肉部の厚みが最大でも1.4mmと薄く、1.4mmを超える成形品の、寸法精度やウエルド部の機械的強度を向上させることはできなかった。特許文献2に記載の成形品は、そり変形の防止、機械的強度の補強のために設けたリブを有する成形品の、ひけの発生を抑制した平面性に優れるPPS樹脂組成物射出成形品であるが、円環形状であって、円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品が、寸法精度を向上できることや、ウエルド部の機械的強度を向上させることは見出されていない。特許文献3に記載の樹脂組成物は、強度や弾性率に優れたガラス繊維を使用し、そりを低減した成形品を得る方法であるが、本発明において求められるような寸法精度を有しウエルド部の機械的強度を向上させた成形品は見出されていない。特許文献4に記載の成形品は、熱可塑性エラストマーを配合した樹脂組成物からなる成形品であるが、本発明において求められるような寸法精度や、ウエルド部の機械的強度に関しては、不十分である。特許文献5に記載の熱可塑性樹脂組成物は、扁平な断面形状を有するガラス繊維を配合してなる樹脂組成物であるものの、本発明のような円環形状であって、円環形状周りにゲートが等間隔に配置されて成形されることにより、成形品の寸法精度や、ウエルド部の機械的強度を向上できることは見出されていない。特許文献6、7に記載の耐電圧部品は、扁平な断面形状を有するガラス繊維を配合してなる樹脂組成物からなる成形品であるが、本発明のような円環形状であって、円環形状周りにゲートが等間隔に配置されて成形されることにより、成形品の寸法精度や、ウエルド部の機械的強度を向上できることは見出されていない。更に、特許文献8に記載の金型装置は、本発明のような、PPS樹脂に扁平な断面形状を有するガラス繊維を配合した樹脂組成物での検討は実施されておらず、寸法精度や、ウエルド部の機械的強度が向上した成形品は見出されていない。
そこで本発明の課題は、上記のような従来技術における問題点に鑑み、高い寸法精度を維持したまま、ウエルド部の機械的強度に優れる、ポリフェニレンスルフィド樹脂組成物からなる成形品を提供することにある。
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、本発明に至った。 すなわち本発明は、下記の成形品を提供するものである。
(1)(A)ポリフェニレンスルフィド樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維50~150重量部を配合してなるポリフェニレンスルフィド樹脂組成物からなる円環形状の成形品であって、該成形品の薄肉部の厚みが1.5mm以上であり、かつ前記円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品であることを特徴とする、モーターのステータコアに装着される成形品。
(2)前記ポリフェニレンスルフィド樹脂組成物の降温結晶化温度が230℃以上である、(1)記載の成形品。
本発明では、特定組成のPPS樹脂組成物を用い、かつ、円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品であることで、高い寸法精度を維持したまま、高いウエルド部の機械的強度をも有する成形品が得られるという新規な特性、効果を見いだしたものである。本発明のPPS樹脂組成物からなる成形品は、円環形状で、薄肉部の厚みが1.5mm以上の成形品に、特に、例えば、ハイブリッドカーや電気自動車等に使用されるモーターのステータコアに装着されるカフサと呼ばれる樹脂組成物からなる成形品に、特に有用である。
本発明の一実施態様に係る円環形状の成形品の斜視図である。 図1の成形品が円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品であることを示す、成形品とゲートの斜視図である。 寸法精度評価用の成形品の概略正面図(a)および概略側面図(b)である。
以下、本発明について実施の形態とともに詳細に説明する。なお、本発明において「重量」とは「質量」を意味する。
本発明における樹脂組成物は、耐熱性が必要とされるため、ポリフェニレンスルフィド樹脂(以下、PPS樹脂と略すこともある。)組成物からなる。
(1)PPS樹脂
本発明で用いられる(A)PPS樹脂は、下記構造式で示される繰り返し単位を有する重合体である。
Figure 0007032227000001
耐熱性の観点からは上記構造式で示される繰り返し単位を含む重合体を70モル%以上、更には90モル%以上含む重合体が好ましい。また、PPS樹脂はその繰り返し単位の30モル%未満程度が、下記の構造を有する繰り返し単位等で構成されていてもよい。
Figure 0007032227000002
本発明で用いられる(A)PPS樹脂の溶融粘度は、優れた溶融流動性を有する樹脂組成物を得る観点から、5~50Pa・s(310℃、剪断速度1,216/s)の範囲が好ましく、10~45Pa・sの範囲がより好ましく、10~40Pa・sの範囲が更に好ましい。また、溶融粘度の異なる2種以上のPPS樹脂を併用して用いてもよい。なお、本発明における(A)PPS樹脂の溶融粘度は、310℃、剪断速度1,216/sの条件下、東洋精機社製キャピログラフを用いて測定した値である。
以下に、本発明に用いる(A)PPS樹脂の製造方法について説明するが、上記構造と特性を有するPPSが得られれば下記方法に限定されるものではない。但し、ジクロロベンゼンと硫黄源を主たるモノマー(90モル%以上)とし、非プロトン性極性溶媒存在下で重合する方法が、生産安定性の点で最も好ましい。
次に、製造に使用するポリハロゲン芳香族化合物、スルフィド化剤、重合溶媒、分子量調節剤、重合助剤および重合安定剤の内容について説明する。
[ポリハロゲン化芳香族化合物]
本発明で用いられるポリハロゲン化芳香族化合物とは、1分子中にハロゲン原子を2個以上有する化合物をいう。具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3.5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼンなどのポリハロゲン化芳香族化合物が挙げられ、好ましくは、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3.5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼンなどのポリクロロベンゼンが好ましく用いられ、更にp-ジクロロベンゼンが特に好ましく用いられる。また、異なる2種以上のポリハロゲン化芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジクロロベンゼンで代表されるp-ジハロゲン化芳香族化合物を主要成分とすることが好ましい。
ポリハロゲン化芳香族化合物の使用量は、加工に適した粘度とオリゴマー低溶出性のPPS樹脂を得る点から、スルフィド化剤1モル当たり0.8から1.023モル、好ましくは0.8から1.020モル、更に本発明に有用な重合度と低オリゴマー性を両立させる意味からは、0.9から1.015モルの範囲が有用である。
[スルフィド化剤]
本発明で用いられるスルフィド化剤としては、アルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
アルカリ金属水硫化物の具体例としては、例えば水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、アルカリ金属水硫化物とアルカリ金属水酸化物からアルカリ金属硫化物を調整し、これを重合槽に移して用いることができる。
あるいは、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素からアルカリ金属硫化物を調整し、これを重合槽に移して用いることができる。
本発明において、仕込みスルフィド化剤の量は、脱水操作などにより重合反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。
なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができ、アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。
スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいが、この使用量はアルカリ金属水硫化物1モルに対し0.90から1.50モル、好ましくは0.90から1.30モル、更に好ましくは0.95から1.20モルの範囲が例示できる。
[重合溶媒]
本発明では重合溶媒として有機極性溶媒を用いる。具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンなどのN-アルキルピロリドン類、N-メチル-ε-カプロラクタムなどのカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホン、テトラメチレンスルホキシドなどに代表されるアプロチック有機溶媒、およびこれらの混合物などが挙げられ、これらはいずれも反応の安定性が高いために好ましく使用される。これらのなかでも、特にN-メチル-2-ピロリドン(以下、NMPと略記することもある)が好ましく用いられる。
有機極性溶媒の使用量は、スルフィド化剤1モル当たり2.0モルから10モル、好ましくは2.25から6.0モル、より好ましくは2.5から5.5モルの範囲が選択される。
[分子量調節剤]
本発明においては、生成するPPS樹脂の末端を形成させるか、あるいは重合反応や分子量を調節するなどのために、モノハロゲン化合物(必ずしも芳香族化合物でなくともよい)を、上記ポリハロゲン化芳香族化合物と併用することができる。モノハロゲン化化合物としては、モノハロゲン化ベンゼン、モノハロゲン化ナフタレン、モノハロゲン化アントラセン、ベンゼン環を2個以上含むモノハロゲン化化合物、モノハロゲン化複素環式化合物、などを挙げることができる。なかでも、経済性の観点からするとモノハロゲン化ベンゼンが好ましい。また、異なる2種以上のモノハロゲン化化合物を組み合わせて用いることも可能である。
[重合助剤]
本発明においては、重合度調節のために重合助剤を用いることも好ましい態様の一つである。ここで重合助剤とは得られるPPS樹脂の粘度を増大させる作用を有する物質を意味する。このような重合助剤の具体例としては、例えば有機カルボン酸塩、水、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩およびアルカリ土類金属リン酸塩などが挙げられる。これらは単独であっても、また2種以上を同時に用いることもできる。なかでも、有機カルボン酸塩、水、およびアルカリ金属塩化物が好ましく、更にはナトリウム、リチウムのカルボン酸塩および/または水が特に好適に用いられる。
上記アルカリ金属カルボン酸塩とは、一般式R(COOM)n(式中、Rは、炭素数1~20を有するアルキル基、シクロアルキル基、アリール基、アルキルアリール基またはアリールアルキル基である。Mは、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれるアルカリ金属である。nは1~3の整数である。)で表される化合物である。アルカリ金属カルボン酸塩は、水和物、無水物または水溶液としても用いることができる。アルカリ金属カルボン酸塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、およびそれらの混合物などを挙げることができる。
アルカリ金属カルボン酸塩は、有機酸と、水酸化アルカリ金属、炭酸アルカリ金属塩および重炭酸アルカリ金属塩よりなる群から選ばれる一種以上の化合物とを、ほぼ等化学当量ずつ添加して反応させることにより形成させてもよい。上記アルカリ金属カルボン酸塩の中で、リチウム塩は反応系への溶解性が高く助剤効果が大きいが高価であり、カリウム、ルビジウムおよびセシウム塩は反応系への溶解性が不十分であると思われるため、安価で、重合系への適度な溶解性を有する酢酸ナトリウムが最も好ましく用いられる。
これらアルカリ金属カルボン酸塩を重合助剤として用いる場合の使用量は、加工に適した粘度とオリゴマー低溶出性のPPS樹脂を得る点から、仕込みスルフィド化剤1モルに対し、通常0.01モル~2モルの範囲であり、本発明に有用な重合度と低オリゴマー性を両立させる意味からは、0.010~0.088モルの範囲が好ましい。上記範囲の場合、前述した溶融粘度が好ましい範囲にあるPPS樹脂を得ることが出来る。
また、水を重合助剤として用いる場合の添加量は、仕込みスルフィド化剤1モルに対し、通常0.3モル~15モルの範囲であり、より高い重合度を得る意味においては0.6~10モルの範囲が好ましく、1~5モルの範囲がより好ましい。これら重合助剤は2種以上を併用することももちろん可能であり、例えばアルカリ金属カルボン酸塩と水を併用すると、それぞれより少量で高分子量化が可能となる。
これら重合助剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、重合助剤としてアルカリ金属カルボン酸塩を用いる場合は前工程開始時或いは重合開始時に同時に添加することが、添加が容易である点からより好ましい。また水を重合助剤として用いる場合は、ポリハロゲン化芳香族化合物を仕込んだ後、重合反応途中で添加することが効果的である。
[重合安定剤]
本発明においては、重合反応系を安定化し、副反応を防止するために、重合安定剤を用いることもできる。重合安定剤は、重合反応系の安定化に寄与し、望ましくない副反応を抑制する。副反応の一つの目安としては、チオフェノールの生成が挙げられ、重合安定剤の添加によりチオフェノールの生成を抑えることができる。重合安定剤の具体例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物、およびアルカリ土類金属炭酸塩などの化合物が挙げられる。そのなかでも、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムなどのアルカリ金属水酸化物が好ましい。上述のアルカリ金属カルボン酸塩も重合安定剤として作用するので、本発明で使用する重合安定剤の一つに入る。また、スルフィド化剤としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいことを前述したが、ここでスルフィド化剤に対して過剰となるアルカリ金属水酸化物も重合安定剤となり得る。
これら重合安定剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合安定剤は、仕込みスルフィド化剤1モルに対して、通常0.02~0.2モル、好ましくは0.03~0.1モル、より好ましくは0.04~0.09モルの割合で使用することが好ましい。この割合が少ないと安定化効果が不十分であり、逆に多すぎても経済的に不利益であり、ポリマー収率が低下する傾向となる。
重合安定剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、前工程開始時或いは重合開始時に同時に添加することが、添加が容易である点からより好ましい。
次に、本発明に用いる(A)PPS樹脂の製造方法について、前工程、重合反応工程、回収工程、および後処理工程と、順を追って具体的に説明する。
[前工程]
本発明に用いる(A)PPS樹脂の製造方法において、スルフィド化剤は通常水和物の形で使用されるが、ポリハロゲン化芳香族化合物を添加する前に、有機極性溶媒とスルフィド化剤を含む混合物を昇温し、過剰量の水を系外に除去することが好ましい。
また、上述したように、スルフィド化剤として、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで、あるいは重合槽とは別の槽で調製されるスルフィド化剤も用いることができる。この方法には特に制限はないが、望ましくは不活性ガス雰囲気下、常温~150℃、好ましくは常温から100℃の温度範囲で、有機極性溶媒にアルカリ金属水硫化物とアルカリ金属水酸化物を加え、常圧または減圧下、少なくとも150℃以上、好ましくは180~260℃まで昇温し、水分を留去させる方法が挙げられる。この段階で重合助剤を加えてもよい。また、水分の留去を促進するために、トルエンなどを加えて反応を行ってもよい。
重合反応における、重合系内の水分量は、仕込みスルフィド化剤1モル当たり0.3~10.0モルであることが好ましい。ここで重合系内の水分量とは重合系に仕込まれた水分量から重合系外に除去された水分量を差し引いた量である。また、仕込まれる水は、水、水溶液、結晶水などのいずれの形態であってもよい。
[重合反応工程]
本発明においては、有機極性溶媒中でスルフィド化剤とポリハロゲン化芳香族化合物とを200℃以上290℃未満の温度範囲内で反応させることによりPPS樹脂を製造する。
重合反応工程を開始するに際しては、望ましくは不活性ガス雰囲気下、常温~240℃、好ましくは100~230℃の温度範囲で、有機極性溶媒とスルフィド化剤とポリハロゲン化芳香族化合物を混合する。この段階で重合助剤を加えてもよい。これらの原料の仕込み順序は、順不同であってもよく、同時であってもさしつかえない。
かかる混合物を通常200℃~290℃の範囲に昇温する。昇温速度に特に制限はないが、通常0.01~5℃/分の速度が選択され、0.1~3℃/分の範囲がより好ましい。一般に、最終的には250~290℃の温度まで昇温し、その温度で通常0.25~50時間、好ましくは0.5~20時間反応させる。最終温度に到達させる前の段階で、例えば200℃~260℃で一定時間反応させた後、270~290℃に昇温する方法は、より高い重合度を得る上で有効である。この際、200℃~260℃での反応時間としては、通常0.25時間から20時間の範囲が選択され、好ましくは0.25~10時間の範囲が選択される。
なお、より高重合度のポリマーを得るためには、複数段階で重合を行うことが有効である場合がある。複数段階で重合を行う際は、245℃における系内のポリハロゲン化芳香族化合物の転化率が、40モル%以上、好ましくは60モル%に達した時点であることが有効である。
また、ポリハロゲン化芳香族化合物(ここではPHAと略記)の転化率は、以下の式で算出した値である。PHA残存量は、通常、ガスクロマトグラフ法によって求めることができる。
(a)ポリハロゲン化芳香族化合物をアルカリ金属硫化物に対しモル比で過剰に添加した場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)-PHA過剰量(モル)〕
(b)上記(a)以外の場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)〕
[回収工程]
本発明で用いる(A)PPS樹脂の製造方法においては、重合終了後に、重合体、溶媒などを含む重合反応物から固形物を回収する。本発明で用いる(A)PPS樹脂は、公知の如何なる回収方法を採用してもよい。
例えば、重合反応終了後、徐冷して粒子状のポリマーを回収する方法を用いてもよい。この際の徐冷速度には特に制限は無いが、通常0.1℃/分~3℃/分程度である。徐冷工程の全行程において同一速度で徐冷する必要もなく、ポリマー粒子が結晶化析出するまでは0.1~1℃/分、その後1℃/分以上の速度で徐冷する方法などを採用してもよい。上記回収方法を用いる場合、前述したクロロホルム抽出量が好ましい範囲にあるPPS樹脂を得ることが出来る。
また、上記の回収を急冷条件下に行うことも好ましい方法の一つであり、この回収方法の好ましい一つの方法としてはフラッシュ法が挙げられる。フラッシュ法とは、重合反応物を高温高圧(通常250℃以上、8kg/cm2 以上)の状態から常圧もしくは減圧の雰囲気中へフラッシュさせ、溶媒回収と同時に重合体を粉末状にして回収する方法であり、ここでいうフラッシュとは、重合反応物をノズルから噴出させることを意味する。フラッシュさせる雰囲気は、具体的には例えば常圧中の窒素または水蒸気が挙げられ、その温度は通常150℃~250℃の範囲が選択される。
なかでも、より優れた低オリゴマー性を発現させるためには、後述の有機溶媒による洗浄効果を上げるために、重合反応終了後、徐冷して粒子状のポリマーを回収する方法が好ましく用いられる。
[後処理工程]
本発明で用いられる(A)PPS樹脂は、上記重合、回収工程を経て生成した後、酸処理、熱水処理または有機溶媒による洗浄を施されたものであってもよい。
酸処理を行う場合は次のとおりである。本発明でPPS樹脂の酸処理に用いる酸は、PPS樹脂を分解する作用を有しないものであれば特に制限はなく、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸およびプロピル酸などが挙げられ、なかでも酢酸および塩酸がより好ましく用いられるが、硝酸のようなPPS樹脂を分解、劣化させるものは好ましくない。
酸処理の方法は、酸または酸の水溶液にPPS樹脂を浸漬せしめるなどの方法があり必要により適宜撹拌または加熱することも可能である。例えば、酢酸を用いる場合、pH4の水溶液を80~200℃に加熱した中にPPS樹脂粉末を浸漬し、30分間撹拌することにより十分な効果が得られる。処理後のpHは4以上例えばpH4~8程度となってもよい。酸処理を施されたPPS樹脂は残留している酸または塩などを除去するため、水または温水で数回洗浄することが好ましい。洗浄に用いる水は、酸処理によるPPS樹脂の好ましい化学的変性の効果を損なわない意味で、蒸留水、脱イオン水であることが好ましい。
熱水処理を行う場合は次のとおりである。本発明において使用するPPS樹脂を熱水処理するにあたり、熱水の温度を100℃以上、より好ましくは120℃以上、更に好ましくは150℃以上、特に好ましくは170℃以上とすることが好ましい。100℃未満ではPPS樹脂の好ましい化学的変性の効果が小さいため好ましくない。
本発明の熱水洗浄によるPPS樹脂の好ましい化学的変性の効果を発現するため、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作に特に制限は無く、所定量の水に所定量のPPS樹脂を投入し、圧力容器内で加熱、撹拌する方法、連続的に熱水処理を施す方法などにより行われる。PPS樹脂と水との割合は、水の多い方が好ましいが、通常、水1リットルに対し、PPS樹脂200g以下の浴比が選択される。
また、処理の雰囲気は、末端基の分解は好ましくないので、これを回避するため不活性雰囲気下とすることが望ましい。更に、この熱水処理操作を終えたPPS樹脂は、残留している成分を除去するため温水で数回洗浄するのが好ましい。
有機溶媒で洗浄する場合は次のとおりである。本発明でPPS樹脂の洗浄に用いる有機溶媒は、PPS樹脂を分解する作用などを有しないものであれば特に制限はなく、例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチルイミダゾリジノン、ヘキサメチルホスホラスアミド、ピペラジノン類などの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホン、スルホランなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール・フェノール系溶媒およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などが挙げられる。これらの有機溶媒のうちでも、N-メチル-2-ピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどの使用が好ましく、特に優れたオリゴマー除去効果を得る意味では、N-メチル-2-ピロリドンの使用が特に好ましい。また、これらの有機溶媒は、1種類または2種類以上の混合で使用される。
有機溶媒による洗浄の方法としては、有機溶媒中にPPS樹脂を浸漬せしめるなどの方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でPPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温~300℃程度の任意の温度が選択できる。洗浄温度が高くなる程洗浄効率が高くなる傾向があるが、通常は常温~150℃の洗浄温度で十分効果が得られる。圧力容器中で、有機溶媒の沸点以上の温度で加圧下に洗浄することも可能である。また、洗浄時間についても特に制限はない。洗浄条件にもよるが、バッチ式洗浄の場合、通常5分間以上洗浄することにより十分な効果が得られる。また連続式で洗浄することも可能である。かかる有機溶媒による洗浄は、高いオリゴマー除去効果が得られることから、本発明で用いるPPS樹脂の製造に好適なプロセスである。
本発明においては、上記のようにして得られたPPS樹脂を、アルカリ土類金属塩を含む水による洗浄による処理を施してもよい。PPS樹脂を、アルカリ土類金属塩を含む水で洗浄する場合の具体的方法としては、以下の方法を例示することができる。アルカリ土類金属塩の種類としては特に制限は無いが、酢酸カルシウム、酢酸マグネシウムなどの水溶性有機カルボン酸のアルカリ土類金属塩、水酸化カルシウム、水酸化マグネシウムなどのアルカリ土類金属水酸化物が好ましい例として挙げられ、特に酢酸カルシウム、酢酸マグネシウムなどの水溶性有機カルボン酸のアルカリ土類金属塩が好ましい。水の温度は、室温~200℃であることが好ましく、50~90℃であることがより好ましい。上記水中におけるアルカリ土類金属塩の使用量は乾燥PPS樹脂1kgに対し0.1g~50gであることが好ましく、0.5g~30gであることがより好ましい。洗浄時間としては0.5時間以上が好ましく、1.0時間以上がより好ましい。また好ましい洗浄浴比(乾燥PPS樹脂単位重量当たりのアルカリ土類金属塩を含む温水使用重量)は洗浄時間、温度にもよるが、乾燥PPS1kg当たり、上記アルカリ土類金属を含む温水を5kg以上用いて洗浄することが好ましく、10kg以上用いて洗浄することがより好ましい。上限としては特に制限はなく、高くてもよいが、使用量と得られる効果の点から100kg以下であることが好ましい。かかる温水洗浄は複数回行ってもよい。
本発明において用いるPPS樹脂は、重合終了後に酸素雰囲気下においての加熱または過酸化物などの架橋剤を添加しての加熱により、架橋状PPSとして用いることも可能である。
熱酸化処理による架橋を目的として乾式熱処理する場合には、その温度は160~260℃が好ましく、170~250℃の範囲がより好ましい。また、酸素濃度は5体積%以上、更には8体積%以上とすることが望ましい。酸素濃度の上限には特に制限はないが、50体積%程度が限界である。処理時間は、0.5~100時間が好ましく、1~50時間がより好ましく、2~25時間が更に好ましい。加熱処理の装置は通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よく、しかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。
また、熱酸化処理による架橋を抑制し、揮発分除去を目的として乾式熱処理を行うことが可能である。その温度は130~250℃が好ましく、160~250℃の範囲がより好ましい。また、この場合の酸素濃度は5体積%未満、更には2体積%未満とすることが望ましい。処理時間は、0.5~50時間が好ましく、1~20時間がより好ましく、1~10時間が更に好ましい。加熱処理の装置は通常の熱風乾燥機でもまた回転式あるいは撹拌翼付の加熱装置であってもよいが、効率よく、しかもより均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。
本発明で好ましく用いられるPPS樹脂においては、熱酸化処理前と熱酸化処理後のメルトフローレート(ASTM D-1238-70に従って、温度315.5℃、荷重5000gにて測定)の差が100~300g/10分であることが好ましい。熱酸化処理前と熱酸化処理後のメルトフローレートの差が100g/10分以上となる熱酸化処理を行うことで、得られるPPS樹脂を含む組成物の、機械強度を向上させることができるため、好ましい。熱酸化処理前と熱酸化処理後のメルトフローレートの差が300g/10分以下とすることで、得られるPPS樹脂を含む組成物の衝撃強度を向上させることができるため、好ましい。
本発明で好ましく用いられるPPS樹脂の熱酸化処理前のメルトフローレートは、10~7000g/10分であることが好ましい。10g/10分以上のPPS樹脂を用いることで、機械強度に優れるPPS樹脂を得ることができ、また、7000g/10分以下のPPS樹脂を用いることで、成形性に優れるPPS樹脂を得ることができるため、好ましい。
中でも、本発明においては下記(1)、(2)の特徴を有するPPS樹脂が、ウエルド強度の点で、特に好ましく用いられる。
(1)真空下、320℃で2時間加熱溶融した際に揮発するガス発生量が0.3重量%以下であり、好ましくは0.28重量%以下、更に好ましくは0.22重量%以下であることが望ましい。かかる性質を有するPPS樹脂は上記の洗浄や熱酸化処理を適切に適用することにより得られる。ガス発生量を0.3重量%以下にすることで、揮発性成分が減少し、ウエルド強度が向上するため好ましい。熱酸化処理後のガス発生量の下限については、少ないことが好ましいが、好ましい下限は0.01重量%である。0.01重量%以上とすることで、熱酸化処理の時間が長くなりすぎるのを防ぎ、経済的にも不利となることを防ぐことができる。また、熱酸化処理する時間の長期化により、ゲル化物が生じ易くなり、成形不良を引き起こす一因となるため、それを防ぐ意味においても好ましい。
なお、上記ガス発生量とは、PPS樹脂を真空下で加熱溶融した際に揮発するガスが、冷却されて液化または固化した付着性成分の量を意味しており、PPS樹脂を真空封入したガラスアンプルを、管状炉で加熱することにより測定されるものである。ガラスアンプルの形状としては、腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmである。具体的な測定方法としては、PPS樹脂を真空封入したガラスアンプルの胴部のみを320℃の管状炉に挿入して2時間加熱することにより、管状炉によって加熱されていないアンプルの首部で揮発性ガスが冷却されて付着する。この首部を切り出して秤量した後、付着したガスをクロロホルムに溶解して除去する。次いで、この首部を乾燥してから再び秤量する。ガスを除去した前後のアンプル首部の重量差よりガス発生量を求める。
(2)250℃で5分間、20倍重量の1-クロロナフタレンに溶解して、ポアサイズ1μmのPTFEメンブランフィルターで熱時加圧濾過した際の残渣量が4.0重量%以下、好ましくは3.5重量%以下、更に好ましくは3.0重量%以下であることが望ましい。残渣量を4.0重量%以下とすることで、揮発性成分が減少し、ウエルド強度、耐不凍液性が向上するため好ましい。残渣量の下限については特に制限しないが、1.5重量%以上、好ましくは1.7重量%以上が好ましい。残渣量を1.5重量%以上とすることで、熱酸化処理による架橋を進行させ、溶融時の揮発成分を低減させる効果が得られる。かかる性質を有するPPS樹脂は上記の熱酸化処理を適切に適用することにより得られる。
なお、上記残渣量は、PPS樹脂を約80μm厚にプレスフィルム化したものを試料とし、高温濾過装置および空圧キャップと採集ロートを具備したSUS試験管を用いて測定されるものである。具体的には、まずSUS試験管にポアサイズ1μmのメンブランフィルターをセットした後、約80μm厚にプレスフィルム化したPPS樹脂および20倍重量の1-クロロナフタレンを秤量して密閉する。これを250℃の高温濾過装置にセットして5分間加熱振とうする。次いで空圧キャップに空気を含んだ注射器を接続してから注射器のピストンを押し出し、空圧による熱時濾過を行う。残渣量の具体的な定量方法としては、濾過前のメンブランフィルターと濾過後に150℃で1時間真空乾燥したメンブランフィルターの重量差より求める。
例えば、上記のごとき製造法を採用することで、優れたウエルド強度を備えたPPS樹脂組成物に好適なPPS樹脂を得ることが可能であり、本発明にはかかるPPS樹脂を用いることが好ましい。上記の製造方法で得られるPPS樹脂を、本発明のPPS樹脂組成物に配合されるPPS樹脂として配合することが好ましいが、PPS樹脂の少なくとも10重量%をこのようなPPS樹脂とすることで、PPS樹脂組成物に優れた耐熱性、高ウエルド強度を備えることができる。PPS樹脂組成物に配合されるPPS樹脂の少なくとも30重量%をこのようなPPS樹脂とすることが好ましく、50重量%以上が更に好ましい。
本発明のPPS樹脂組成物における(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維の配合量は、(A)PPS樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維を50~150重量部である。優れたウエルド強度、流動性、および寸法精度を並立させる意味において必要である。
扁平な断面形状とは、繊維方向に対して垂直な断面における長径/短径比が1を超える非円形の断面形状を指す。
扁平な断面形状を有するガラス繊維は、その断面の長径が10~80μmであることが好ましく、ガラス繊維の紡糸が容易となり、ガラス繊維の強度を高く維持することができる。より好ましくは、15μm以上、50μm以下である。また、その断面の短径が2~20μmであることが好ましく、より好ましくは4μm以上、15μm以下である。ここでいう長径および短径とは、扁平な断面形状を有するガラス繊維に外接する最小面積の長方形を想定したときに、その長方形の長辺の長さ(長径)および短辺の長さ(短径)を指す。
なお、ガラス繊維断面の長径/短径比(扁平率)は、走査型電子顕微鏡により観察し、無作為に選択した50本のガラス繊維の断面の長径と短径を測定してその比を算出し、その数平均を算出することにより求めた値である。
扁平な断面形状を有するガラス繊維は、同等の断面積で円形状の断面形状を有するガラス繊維に比べて比表面積が大きい。また、ガラス繊維が成形品の流れ方向へ配向しやすいため、成形時のガラス繊維同士の衝突が少なく、折損がより抑制される。また、配向により、成形品において、そりがより低減される。また、機械強度、ウエルド強度、衝撃強度、高温剛性に優れる成形品を得ることができる。
扁平な断面形状を有するガラス繊維の扁平率(長径/短径)は、1.3~10が好ましい。平均扁平率が1.3以上であると、比表面積が増大してPPS樹脂との接着効果が向上するため、成形品の機械強度、ウエルド強度、衝撃強度、高温剛性をより向上させることができる。また、成形収縮率や線膨張係数を低減させることができ、そりをより低減させることができる。2.0以上がより好ましい。一方、平均扁平率が10以下であると、ガラス繊維の割れを抑制することができ、機械強度、ウエルド強度、衝撃強度、高温剛性をより向上させることができる。5.0以下がより好ましい。
扁平な断面形状の具体例としては、楕円形状、長円形状、まゆ形状、半円形状、円弧形状、またはこれらの類似形状などが挙げられる。好ましくは楕円形状、長円形状、まゆ形状であり、更に好ましくは長円形状である。ここでいう長円形状とは、楕円形状とは異なるものであり、角丸四角形や、長方形と2つの半円の組み合わせでできる形状など、2つ以上の平行な直線部分と円の一部を2箇所以上に有する形状を意味する。長円形状の断面形状を有するガラス繊維を用いた場合、楕円形状やまゆ形状の断面を有する形状のものに比べ、強度や寸法精度がより高くなるため好ましい。
(A)PPS樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維が50重量部未満の場合は、組成物としての適切な寸法精度が得られないため好ましくない。また(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維が150重量部を超える場合は、組成物の溶融流動性が低下し、適切な成形加工性が得られず、また、優れたウエルド強度も得られないため好ましくない。更に、特に(A)PPS樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維を50~150重量部の範囲である必要があり、60~140重量部の範囲が特に好適である。(A)PPS樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維が60~140重量部の範囲では、優れた耐熱性と組成物としての適切なウエルド強度、流動性、寸法安定性を兼ね備えるため特に好ましい。
かかる(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維としては、具体的には、ガラス繊維、ガラスミルドファイバー、ガラスフラットファイバー、異形断面ガラスファイバー、ガラスカットファイバー、扁平ガラス繊維などが挙げられ、これらは2種類以上併用することも可能である。また、これらガラス繊維をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
更に、本発明のPPS樹脂組成物には、寸法精度や、機械的強度の向上を目的に、ステンレス繊維、アルミニウム繊維や黄銅繊維、ロックウール、PAN系やピッチ系の炭素繊維、カーボンナノチューブ、カーボンナノファイバー、炭酸カルシウムウィスカー、ワラステナイトウィスカー、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ほう酸アルミニウムウィスカー、窒化ケイ素ウィスカー、アラミド繊維、アルミナ繊維、炭化珪素繊維、アスベスト繊維、石膏繊維、セラミック繊維、ジルコニア繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケート、ハイドロタルサイトなどの珪酸塩、酸化珪素、ガラス粉、酸化マグネシウム、酸化アルミ(アルミナ)、シリカ(破砕状・球状)、石英、ガラスビーズ、ガラスフレーク、破砕状・不定形状ガラス、ガラスマイクロバルーン、二硫化モリブデン、酸化アルミニウム(破砕状)、透光性アルミナ(繊維状・板状・鱗片状・粒状・不定形状・破砕品)、酸化チタン(破砕状)、酸化亜鉛(繊維状・板状・鱗片状・粒状・不定形状・破砕品)などの酸化物、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、炭化珪素、カーボンブラックおよびシリカ、黒鉛、窒化アルミニウム、透光性窒化アルミニウム(繊維状・板状・鱗片状・粒状・不定形状・破砕品)、ポリリン酸カルシウム、グラファイト、金属粉、金属フレーク、金属リボン、金属酸化物などが挙げられ、ここで金属粉、金属フレーク、金属リボンの金属種の具体例としては銀、ニッケル、銅、亜鉛、アルミニウム、ステンレス、鉄、黄銅、クロム、錫などが例示できる。また、カーボン粉末、黒鉛、カーボンフレーク、鱗片状カーボン、フラーレン、グラフェンなどが挙げられ、これらは中空であってもよく、更にはこれら充填材を2種類以上併用することも可能である。また、これら非繊維状充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。好ましいものとしては、炭酸カルシウム、カーボンブラック、黒鉛が挙げられる。
更に、本発明のPPS樹脂組成物には、機械的強度、靱性などの向上を目的に、エポキシ基、アミノ基、イソシアネート基、水酸基、メルカプト基およびウレイド基の中から選ばれた少なくとも1種の官能基を有するアルコキシシラン化合物を添加することが好ましい。かかる化合物の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルエチルジメトキシシラン、γ-イソシアネートプロピルエチルジエトキシシラン、γ-イソシアネートプロピルトリクロロシランなどのイソシアネート基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシランなどのアミノ基含有アルコキシシラン化合物、およびγ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルトリエトキシシランなどの水酸基含有アルコキシシラン化合物などが挙げられる。なかでもエポキシ基、アミノ基、イソシアネート基、水酸基を有するアルコキシシランが優れたウエルド強度を得る上で特に好適である。かかるシラン化合物の好適な添加量は、(A)PPS樹脂100重量部に対し、0.1~3重量部の範囲が選択される。
本発明のPPS樹脂組成物は、本発明の効果を損なわない範囲において、更に他の樹脂をブレンドして用いてもよい。かかるブレンド可能な樹脂には特に制限はないが、その具体例としては、ナイロン6,ナイロン66,ナイロン610、ナイロン11、ナイロン12、芳香族系ナイロンなどのポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキシルジメチレンテレフタレート、ポリナフタレンテレフタレートなどのポリエステル樹脂、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリオレフィン系エラストマー、ポリエーテルエステルエラストマー、ポリエーテルアミドエラストマー、ポリアミドイミド、ポリアセタール、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリサルフォン樹脂、ポリアリルサルフォン樹脂、ポリケトン樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、四フッ化ポリエチレン樹脂、エポキシ基含有ポリオレフィン共重合体などが挙げられる。
なお、本発明のPPS樹脂組成物には、本発明の効果を損なわない範囲で他の成分、例えば前記以外の酸化防止剤や耐熱安定剤(ヒドロキノン系)、耐候剤(レゾルシノール系、サリシレート系、ベンゾトリアゾール系、ベンゾフェノン系、ヒンダードアミン系等)、離型剤および滑剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミド、ビス尿素およびポリエチレンワックス等)、顔料(硫化カドミウム、フタロシアニン、着色用カーボンブラック等)、染料(ニグロシン等)、可塑剤(p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等)、帯電防止剤(アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレートのような非イオン系帯電防止剤、ベタイン系両性帯電防止剤等)、難燃剤(例えば、赤燐、燐酸エステル、メラミンシアヌレート、ポリリン酸アンモニウム、臭素化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、臭素化エポキシ樹脂あるいはこれらの臭素系難燃剤と三酸化アンチモンとの組み合わせ等)、熱安定剤、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸リチウムなどの滑剤、ビスフェノールA型などのビスフェノールエポキシ樹脂、ノボラックフェノール型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などの強度向上材、紫外線防止剤、着色剤、難燃剤および発泡剤などの通常の添加剤を添加することができる。
本発明で用いるPPS樹脂組成物は、示差走査熱量計にて、340℃まで昇温し溶融させてから20℃/分の速度で降温した際に観察される結晶化に伴う発熱ピーク温度(降温結晶化温度、Tmc)が215℃以上であることが好ましく、230℃以上がより好ましい。215℃以上であると、成形品を金型から取り出した際の熱収縮による寸法変化が低減し、寸法精度に優れる成形品を得ることができる。
本発明のPPS樹脂組成物の調製方法には特に制限はないが、各原料を単軸あるいは2軸の押出機、バンバリーミキサー、ニーダーおよびミキシングロールなど通常公知の溶融混合機に供給して、280~380℃の温度で混練する方法などを代表例として挙げることができる。原料の混合順序にも特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練し、更に残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは2軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法などのいずれの方法を用いてもよい。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することももちろん可能である。
このようにして得られる本発明のPPS樹脂組成物は、射出成形、押出成形、ブロー成形、トランスファー成形など各種成形に供することが可能であるが、特に射出成形用途に適している。
以上のように、本発明に用いられるPPS樹脂組成物は、寸法精度に優れるだけでなく、ウエルド部の機械的強度について均衡して優れている。そのため、円環形状の成形品であって、該成形品の薄肉部の厚みが1.5mm以上であり、かつ円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品に有用である。
その他本発明のPPS樹脂組成物の適用可能な用途としては、例えばセンサー、LEDランプ、民生用コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭、事務電気製品部品への適用も可能である。その他、オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量センサー、水道メーターハウジングなどの水廻り部品;バルブオルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンシオメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、ウォーターポンプハウジング、エンジン冷却モジュール、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、車速センサー、ケーブルライナーなどの自動車・車両関連部品など各種用途が例示できる。
以下に実施例を示し、本発明を更に具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。
[参考例で製造したPPS樹脂の評価方法]
(1)ガス発生量
腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmのガラスアンプルにPPS樹脂3gを計り入れてから真空封入した。このガラスアンプルの胴部のみを、アサヒ理化製作所製のセラミックス電気管状炉ARF-30Kに挿入して320℃で2時間加熱した。アンプルを取り出した後、管状炉によって加熱されておらず揮発ガスの付着したアンプルの首部をヤスリで切り出して秤量した。次いで付着ガスを5gのクロロホルムで溶解して除去した後、60℃のガラス乾燥機で1時間乾燥してから再度秤量した。ガスを除去した前後のアンプル首部の重量差をガス発生量(重量%)とした。
(2)残渣量
空圧キャップと採集ロートを具備したセンシュー科学製のSUS試験管に、予め秤量しておいたポアサイズ1μmのPTFEメンブランフィルターをセットし、約80μm厚にプレスフィルム化したPPS樹脂100mgおよび1-クロロナフタレン2gを計り入れてから密閉した。これをセンシュー科学製の高温濾過装置SSC-9300に挿入し、250℃で5分間加熱振とうしてPPS樹脂を1-クロロナフタレンに溶解した。空気を含んだ20mLの注射器を空圧キャップに接続した後、ピストンを押出して溶液をメンブランフィルターで濾過した。メンブランフィルターを取り出し、150℃で1時間真空乾燥してから秤量した。濾過前後のメンブランフィルター重量の差を残渣量(重量%)とした。
(3)メルトフローレート(MFR)
測定温度315.5℃、5000g荷重とし、ASTM-D1238-70に準ずる方法で測定した。
[参考例1]PPSの重合(PPS-1)
撹拌機および底に弁のついたオートクレーブに、47.5%水硫化ナトリウム8267.4g(70.0モル)、96%水酸化ナトリウム2925.0g(70.2モル)、N-メチル-2-ピロリドン(NMP)13860.0g(140.0モル)、酢酸ナトリウム1894.2g(23.1モル)、およびイオン交換水10500.0gを仕込み、常圧で窒素を通じながら240℃まで約3時間かけて徐々に加熱し、水14772.1gおよびNMP280.0gを留出したのち、反応容器を160℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.08モルであった。また、硫化水素の飛散量は仕込みアルカリ金属硫化物1モル当たり0.023モルであった。
次に、p-ジクロロベンゼン(p-DCB)10646.7g(72.4モル)、NMP6444.9g(65.1モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら、200℃から270℃まで0.6℃/分の速度で昇温し、270℃で70分保持した。オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
得られた固形物およびイオン交換水53リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ポアサイズ10~16μmのガラスフィルターで吸引濾過した。次いで70℃に加熱した60リットルのイオン交換水をポアサイズ10~16μmのガラスフィルターに注ぎ込み、吸引濾過してPPS樹脂ケーク18000g(その内PPS樹脂7550gが含まれる)を得た。
前記PPS樹脂ケーク18000g、イオン交換水40リットル、および酢酸43gを撹拌機付きオートクレーブに仕込み、オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持して酸処理を施した。酸処理時のpHは7であった。オートクレーブ冷却後、内容物をポアサイズ10~16μmのガラスフィルターで濾過した。次いで、70℃に加熱した60リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。得られたケークを窒素気流下120℃で4時間乾燥し、酸処理を施したPPS樹脂の粉末を得た。次いで、このPPS樹脂粉末を容積100リットルの撹拌機付き加熱装置に入れ、200℃、酸素濃度21%で2時間熱酸化処理を施した。なお、熱酸化処理は、空気1.96リットル/分の空気雰囲気下で行い架橋状PPS-1を得た。得られたポリマーのガス発生量は0.16重量%、残渣量1.9重量%、MFRは554g/10分であった。
[参考例2]PPSの重合(PPS-2)
撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.27kg(70.00モル)、96%水酸化ナトリウム2.91kg(69.80モル)、N-メチル-2-ピロリドン(NMP)11.45kg(115.50モル)、およびイオン交換水10.5kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.78kgおよびNMP0.28kgを留出した後、反応容器を200℃に冷却した。仕込みアルカリ金属硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は、仕込みアルカリ金属硫化物1モル当たり0.02モルであった。
その後200℃まで冷却し、p-ジクロロベンゼン10.48kg(71.27モル)、NMP9.37kg(94.50モル)を加え、反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から270℃まで昇温した。270℃で100分反応した後、オートクレーブの底栓弁を開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく撹拌して大半のNMPを除去した。
得られた固形物およびイオン交換水76リットルを撹拌機付きオートクレーブに入れ、70℃で30分洗浄した後、ガラスフィルターで吸引濾過した。次いで70℃に加熱した76リットルのイオン交換水をガラスフィルターに注ぎ込み、吸引濾過してケークを得た。
得られたケークおよびイオン交換水90リットルを撹拌機付きオートクレーブに仕込み、pHが7になるよう酢酸を添加した。オートクレーブ内部を窒素で置換した後、192℃まで昇温し、30分保持した。その後オートクレーブを冷却して内容物を取り出した。
内容物をガラスフィルターで吸引濾過した後、これに70℃のイオン交換水76リットルを注ぎ込み吸引濾過してケークを得た。得られたケークを窒素気流下、120℃で乾燥することにより、乾燥PPSを得た。
これをMFR値が500g/10分となるまで酸素気流下200℃で熱処理し、架橋状PPS-2を得た。得られたポリマーのガス発生量は0.39重量%、残渣量4.3重量%であった。
[実施例および比較例で用いた配合材]
本実施例および比較例に用いた配合物は以下の通りである。
(A)PPS樹脂
PPS-1:参考例1に記載の方法で重合したPPS樹脂
PPS-2:参考例2に記載の方法で重合したPPS樹脂
(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維
B:扁平GF(日東紡績(株)社製、CSG 3PA-830S、3mm長、扁平率:4.0(長径28μm/短径7μm))
(C)無機充填材(比較例:本発明の(B)成分に該当しないガラス繊維)
C:チョップドストランド(日本電気硝子(株)社製、T-760H、3mm長、平均繊維径:10.5μm)
(D)添加剤
D:ポリエーテルエーテルケトン(ビクトレックスエムシー社製、PEEK450-PF)
[樹脂組成物からなる成形品の測定評価方法]
本発明の実施例および比較例における測定評価方法は以下の通りである。
(1)流動性
1mm厚み(1mmt)のスパイラルフロー金型を用いて、シリンダー温度320℃、金型温度140℃、射出速度230mm/sec、射出圧力98MPa、射出時間5sec、冷却時間15secの条件で成形し、流動長測定(単位:mm)を行なった(使用射出成形機:住友重機製”SE-30D”)。この値が大きいほど流動性に優れる。
(2-1)ウエルド強度-1
両端にゲートを有し、試験片中央部付近にウエルドラインを有するASTM4号ダンベル片(1.6mmt)を、射出成形機を用いてシリンダー温度320℃、金型温度135℃の条件で成形した。成形片を100本成形し金型を強制的に汚染させた後、測定用のサンプルを10本取得し、試験速度:10mm/min、つかみ具間距離:64mmの条件で引張強度測定を行なった(単位:MPa)。
(2-2)ウエルド強度-2
住友重機製射出成形機(SE-130EV)を使用して、図1に示す円環形状の成形品1を成形した。この成形品1は、前述のハイブリッドカーや電気自動車等に使用されるモーターのステータコアに装着されるカフサと呼ばれる成形品に相当し、成形品1の薄肉部の厚みは1.5mm以上である。また、成形品1は、とくに、図2に例示するように、円環形状周りに周方向に等間隔に配置された成形用のゲート2を介して成形された成形品である。成形条件は、シリンダー温度320℃、金型温度130℃、その他条件は一般的な成形条件で成形した。成形後、切削したテストピースを島津製作所製のオートグラフを用いて引張り、破断強度を測定した(単位:N)。800N以上の強度があれば合格とした。
(3-1)寸法精度-1
住友重機製射出成形機(SE-100DU)を使用して、図3に示す寸法精度-1評価用の成形品3を成形した。成形品3は、成形用のゲート4を介して成形された成形品である。成形条件は、シリンダー温度320℃、金型温度130℃、その他条件は一般的な成形条件で成形した。該成形品3のMD方向(図の上下方向)、及びTD方向(MD方向と直交する方向)の寸法を3点測定し、その平均値を算出した。金型の実寸法から測定した平均値を差し引き、金型の実寸法で除した値を成形収縮率とした。測定は、ミツトヨ社製三次元寸法測定機を使用し、JIS B0621に準拠して行なった。TD方向の成形収縮率から、MD方向の成形収縮率を差し引いた値を寸法精度とした。0.4%よりも小さければ実用上問題のない製品レベルといえるが、この値が小さいほど寸法精度に優れ、好ましい。0.4%よりも小さいものを○、0.35%よりも小さいものを◎、0.4%以上のもの×とした。
(3-2)寸法精度-2
平面度0.01以下の定盤に成形品を載せてシクネスゲージを用いて端部の隙間を測定し反り量を測定した(単位:mm)。0.3mm以下の反り量で合格とした。
[実施例1~3、比較例1~3]
シリンダー温度を320℃、スクリュー回転数を250rpmに設定した、26mm直径の中間添加口を有する2軸押出機(東芝機械(株)製TEM-26)を用いて、参考例1、2で得た(A)PPS樹脂を表1、表2に示す重量比で原料供給口から添加して溶融状態とし、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維(扁平GF)を表1、表2に示す重量比で中間添加口から供給し、吐出量35kg/時間で溶融混練してペレットを得た。このペレットを用いて前記の各特性を評価した。その結果を表1、表2に示す。
Figure 0007032227000003
Figure 0007032227000004
実施例1と比較例3との対比から判るように、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維を使用することで、流動性、ウエルド強度、寸法精度において、バランスよく優れることが判る。
実施例1と比較例2との対比から判るように、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維を配合し過ぎると、流動性が悪化し、また、ウエルド強度も悪化することが判る。また、実施例1と比較例1との対比から判るように、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維の配合量が少な過ぎると、寸法精度が低下することが判る。
実施例1と実施例2との対比から判るように、PPS-1を使用することで、ウエルド強度により優れることが判る。 更に、実施例1と実施例3との対比から判るように、(D)を配合することで、寸法精度により優れることが判る。
本発明のPPS樹脂組成物は、寸法精度に優れるだけでなく、ウエルド部の機械的強度について均衡して優れているため、円環形状であって、薄肉部の厚みが1.5mm以上であり、かつ円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品に有用である。
1:円環形状の成形品
2:ゲート
3:寸法精度-1評価用成形品
4:ゲート

Claims (1)

  1. (A)ポリフェニレンスルフィド樹脂100重量部に対し、(B)SiO含有量が52~56重量%である扁平な断面形状を有するガラス繊維50~150重量部を配合してなり、降温結晶化温度が230℃以上であるポリフェニレンスルフィド樹脂組成物からなる円環形状の成形品であって、該成形品の薄肉部の厚みが1.5mm以上であり、かつ前記円環形状周りに周方向に等間隔に配置された成形用のゲートを介して成形された成形品であることを特徴とする、モーターのステータコアに装着される成形品。
JP2018089666A 2018-05-08 2018-05-08 ポリフェニレンスルフィド樹脂組成物からなる成形品 Active JP7032227B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018089666A JP7032227B2 (ja) 2018-05-08 2018-05-08 ポリフェニレンスルフィド樹脂組成物からなる成形品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018089666A JP7032227B2 (ja) 2018-05-08 2018-05-08 ポリフェニレンスルフィド樹脂組成物からなる成形品

Publications (2)

Publication Number Publication Date
JP2019195909A JP2019195909A (ja) 2019-11-14
JP7032227B2 true JP7032227B2 (ja) 2022-03-08

Family

ID=68537149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089666A Active JP7032227B2 (ja) 2018-05-08 2018-05-08 ポリフェニレンスルフィド樹脂組成物からなる成形品

Country Status (1)

Country Link
JP (1) JP7032227B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114829504B (zh) * 2020-02-06 2023-09-15 日东纺绩株式会社 玻璃纤维强化树脂组合物及玻璃纤维强化树脂成型品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075229A (ja) 2013-10-11 2015-04-20 日本精工株式会社 ころ軸受用保持器、及びその製造方法、並びにころ軸受
JP2016166300A (ja) 2015-03-10 2016-09-15 帝人株式会社 ポリアリーレンスルフィド樹脂組成物
JP2017038420A (ja) 2015-08-06 2017-02-16 トヨタ自動車株式会社 回転電機
JP2017149797A (ja) 2016-02-22 2017-08-31 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2962926B2 (ja) * 1992-04-17 1999-10-12 ポリプラスチックス株式会社 ウエルド強度改善射出成形方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075229A (ja) 2013-10-11 2015-04-20 日本精工株式会社 ころ軸受用保持器、及びその製造方法、並びにころ軸受
JP2016166300A (ja) 2015-03-10 2016-09-15 帝人株式会社 ポリアリーレンスルフィド樹脂組成物
JP2017038420A (ja) 2015-08-06 2017-02-16 トヨタ自動車株式会社 回転電機
JP2017149797A (ja) 2016-02-22 2017-08-31 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品

Also Published As

Publication number Publication date
JP2019195909A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
KR101397817B1 (ko) 폴리페닐렌설파이드 수지 조성물, 그 제조 방법, 및 그 성형체
JP6885096B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP6405830B2 (ja) ポリフェニレンスルフィド樹脂組成物
JP6707810B2 (ja) ポリフェニレンスルフィド樹脂組成物からなる自動車用冷却モジュール
JP5742377B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP7067052B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP6809291B2 (ja) 無理抜き射出成形用ポリフェニレンスルフィド樹脂組成物
JP4887904B2 (ja) ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品
JP5276247B2 (ja) ポリアリーレンスルフィド樹脂組成物の製造方法
JP7081500B2 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法および成形体
JP7501359B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP2018141149A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP7032227B2 (ja) ポリフェニレンスルフィド樹脂組成物からなる成形品
JP7238429B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP2021172675A (ja) ポリフェニレンスルフィド樹脂組成物および成形体
JP7151086B2 (ja) ポリフェニレンスルフィド樹脂組成物
WO2021100758A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
WO2021100757A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
JP2009197214A (ja) ポリフェニレンサルファイド樹脂組成物および成形体
JP2021155694A (ja) ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
JP2020143274A (ja) ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP2020105261A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2021031613A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2016046095A (ja) ポリフェニレンスルフィド樹脂組成物からなる高耐電圧コネクター
JP2020169228A (ja) ポリフェニレンサルファイド樹脂組成物および成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7032227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150