JP7031110B2 - 立体造形用液体セット - Google Patents
立体造形用液体セット Download PDFInfo
- Publication number
- JP7031110B2 JP7031110B2 JP2020169250A JP2020169250A JP7031110B2 JP 7031110 B2 JP7031110 B2 JP 7031110B2 JP 2020169250 A JP2020169250 A JP 2020169250A JP 2020169250 A JP2020169250 A JP 2020169250A JP 7031110 B2 JP7031110 B2 JP 7031110B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- dimensional model
- dimensional
- hydrogel
- manufactured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Description
また、立体物を造形する手法としては、熱溶融積層法(FDM:Fused Deposition Molding)、インクジェッティング、バインダージェッティング、マテリアルジェッティング、光造形(SLA:Stereo Lithography Apparatus)、粉末焼結積層造形(SLS:Selective Laser Sintering)などが知られている。これらの中でも、近年、マテリアルジェッティングにより液状の光硬化性樹脂を造形物の必要箇所に像形成し、これを多層化することで三次元の立体物を造形する方式が開発されている。
また、本発明は、複雑かつ精細な立体造形物を簡便に効率よく製造可能な立体造形物の製造方法を提供することを目的とする。
また、本発明は、複雑かつ精細な立体造形物を簡便に効率よく製造可能な立体造形物の製造方法を提供することができる。
本発明の立体造形物の製造方法は、硬化性材料を含む液体からなる液膜を硬化させてなる層を複数積層する立体造形物の製造方法であって、前記硬化性材料を含む液体として溶媒及び前記硬化性材料を含む第1の液体と、前記第1の液体とは組成の異なる第2の液体と、を用いて、前記第1の液体及び前記第2の液体を付与する位置と付与量とを制御することにより、硬化後の圧縮応力及び弾性率が異なる複数の領域を有する前記液膜を形成し、更に必要に応じてその他の工程を含む。
ゲルは、液体と固体の中間の性質を有し、有機高分子化合物などの三次元網目の中に溶媒を安定的に取り込んだものであり、医薬、医療、食品、農業、工業などの各種分野に幅広く利用されている。
前記ゲルの中でも、溶媒として水を主成分とするゲル(以下、「ハイドロゲル」とも称することがある)は、高い含水率により生体適合性を持ち、医療分野への応用が期待されている。
また、生体の代替物(例えば、軟骨、眼球等の硝子体等)へと適用するにあたり、複雑かつ精細な構造を持ち、立体造形物中の硬さを自由に制御できるゲル状又は軟質な前記ハイドロゲル等からなる立体造形物に対するニーズは高まりつつある。
しかしながら、複雑かつ精細な構造を三次元データから再現できる立体造形物の製造方法や、造形物中の硬さを自由に制御できる方法は未だ提供されていないのが現状である。立体造形物の作製には、薄層を積み上げて構成する、従来のインクジェット光立体造形方式を用いることが好ましいが、得られる立体造形物中の硬さを自由に制御することは極めて困難であることを見出した。
前記立体造形物の大きさとしては、1層あたりの平均厚みが、10μm以上50μm以下が好ましい。前記平均厚みが、10μm以上50μm以下であると、精度よく、また、剥離することもなく造形することが可能であり、立体造形物の高さ分だけ積層することができる。
前記硬化後の圧縮応力及び弾性率が連続的に異なる複数の領域としては、第1の工程において得られる、同一の膜内、膜間などが挙げられる。これらの中でも、第1の工程において得られる膜の同一の膜内において前記硬化後の圧縮応力及び弾性率が連続的に異なることが好ましい。
前記第1の液体及び前記第2の液体を付与する位置と付与量としては、形成された膜、同一膜内等において異なっていれば特に制限はなく、目的に応じて適宜選択することができる。
また、前記立体造形物の製造方法としては、後述する立体造形用液体セットにおける第1の液体及び第2の液体を付与する液体付与工程と、前記形成された膜を硬化させる膜硬化工程と、を含む態様も好適に用いることができる。
前記立体造形物の製造方法における各工程について詳細に説明する。
前記第1の工程は、溶媒及び硬化性材料を含む第1の液体、並びに第1の液体とは組成が異なる第2の液体を、同一領域に付与する工程(液体付与工程)である。
前記第1の工程は、第1の液体及び第2の液体を付与する液体付与手段により好適に行うことができる。
これらの中でも、前記ディスペンサー方式は、液滴の定量性に優れるが、付与面積が狭くなる。前記スプレー方式は、簡便に微細な吐出物を形成でき、付与面積が広く、付与性に優れるが、液滴の定量性が悪く、スプレー流による飛散が発生する。前記インクジェット方式は、前記スプレー方式に比べ、液滴の定量性が良く、前記ディスペンサー方式に比べ、付与面積が広くできる利点があり、複雑な立体造形物を精度良くかつ効率よく形成することができる。このため、本発明においては、前記インクジェット方式を用いることが好ましい。
前記第1の液体は、溶媒、及び硬化性材料を含み、更に必要に応じてその他の成分を含んでなる。
前記第1の液体は、前記第2の液体とは組成が異なる。
前記溶媒としては、例えば、水、アルコール、ケトン、エーテル、エステル、炭化水素などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記アルコールとしては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、1-ヘキサノール、1-オクタノール、2-エチル-1-ヘキサノール、アリルアルコール、ベンジルアルコール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-(メトキシエトキシ)エタノール、1-メトキシ-2-プロパノール、ジプロピレングリコールモノメチルエーテル、ジアセトンアルコール、エチルカルビトール、ブチルカルビトールなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記ケトンとしては、例えば、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、ジイソブチルケトン、シクロヘキサノンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記エーテルとしては、例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,4-ジオキサン、テトラヒドロフラン、1,2-ジエトキシエタンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記エステルとしては、例えば、酢酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、酢酸エチル、酢酸プロピル、酢酸ブチル、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、ヒドロキシエチルメタクリレート、ヒドロキシエチルアクリレート、γーブチロラクトン、メタクリル酸メチル、イソブチルアクリレート、シクロヘキシルアクリレート、2-エトキシエチルアクリレート、トリフルオロエチルアクリレート、メタクリル酸グリシジルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記炭化水素としては、例えば、n-ヘキサン、シクロヘキサン;ベンゼン;トルエン;キシレン;ソルベントナフサ;スチレン;ジクロロメタン、トリクロロエチレン等のハロゲン化炭化水素などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、水、トルエンが好ましい。
前記硬化性材料としては、硬化性を有していれば特に制限はなく、目的に応じて適宜選択することができるが、光重合性官能基を有する化合物が好ましく、重合性モノマーがより好ましい。
前記重合性モノマーとしては、特に制限はなく、目的に応じて適宜選択することができるが、(メタ)アクリロイル基、ビニル基、アリル基等の、ラジカルを発生する光重合開始剤で硬化可能なエチレン性の不飽和基を含む化合物;エポキシ基等の、酸を発生する光酸発生剤で硬化可能な環状エーテル基を含む化合物が好ましく、硬化性の点から、エチレン性の不飽和基を含む化合物がより好ましい。
前記エチレン性の不飽和基を含む化合物としては、例えば、(メタ)アクリルアミド基を有する化合物、(メタ)アクリレート化合物、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物、アリル基を有する化合物などが挙げられる。
前記単官能重合性モノマーとしては、例えば、アクリルアミド、N-置換アクリルアミド誘導体、N,N-ジ置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N,N-ジ置換メタクリルアミド誘導体、2-エチルヘキシル(メタ)アクリレート(EHA)、2-ヒドロキシエチル(メタ)アクリレート(HEA)、2-ヒドロキシプロピル(メタ)アクリレート(HPA)、カプロラクトン変性テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、トリデシル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、エトキシ化ノニルフェノール(メタ)アクリレートなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、アクリロイルモルホリンが好ましい。
前記単官能重合性モノマーの含有量としては、第1の液体全量に対して、0.5質量%以上20質量%以下が好ましい。
前記多官能重合性モノマーとしては、例えば、二官能重合性モノマー、三官能以上の重合性モノマーなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記二官能重合性モノマーとしては、例えば、トリプロピレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート,ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジ(メタ)アクリレート(MANDA)、ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート(HPNDA)、1,3-ブタンジオールジ(メタ)アクリレート(BGDA)、1,4-ブタンジオールジ(メタ)アクリレート(BUDA)、1,6-ヘキサンジオールジ(メタ)アクリレート(HDDA)、1,9-ノナンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート(DEGDA)、ネオペンチルグリコールジ(メタ)アクリレート(NPGDA)、トリプロピレングリコールジ(メタ)アクリレート(TPGDA)、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールエステルジ(メタ)アクリレート、プロポキシ化オペンチルグリコールジ(メタ)アクリレート、エトキシ変性ビスフェノールAジ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、ポリエチレングリコール400ジ(メタ)アクリレート、メチ
レンビスアクリルアミドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記軟質立体造形物としては、水溶性有機ポリマーと、層状粘土鉱物の分散物とが複合化して形成された三次元網目構造の中に、水及び前記水に溶解する成分が包含されている、有機-無機複合ハイドロゲルであることが好ましい。
この場合、前記第1の液体としては、水及びハイドロゲル前駆体を含有することが好ましい。前記水及びハイドロゲル前駆体を含む第1の液体は、「軟質成形体用材料」とも称される。
前記水としては、例えば、イオン交換水、限外濾過水、逆浸透水、蒸留水等の純水、超純水などが挙げられる。
前記水は、保湿性付与、抗菌性付与、導電性付与、圧縮応力、弾性率の調整などの目的に応じて有機溶媒等のその他の成分を溶解又は分散させてもよい。
前記ハイドロゲル前駆体は、鉱物、及び重合性モノマーを含有し、更に必要に応じて、その他の成分を含有してなる。
前記鉱物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水に分散可能な鉱物などが挙げられる。
前記水に分散可能な鉱物としては、例えば、層状粘土鉱物の分散物などが挙げられる。
前記層状粘土鉱物の分散物とは、水中で一次結晶のレベルで均一に分散可能な層状粘土鉱物を意味する。
前記鉱物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、第1の液体全量に対して、1質量%以上40質量%以下が好ましい。
前記ハイドロゲル前駆体における前記重合性モノマーとしては、前記第1の液体における硬化性材料としての前記重合性モノマーと同様のものを用いることができる。
前記重合性モノマーは、重合すると有機ポリマーとなる。
前記有機ポリマーとしては、ハイドロゲル前駆体を用いる点から、水溶性有機ポリマーが好ましい。
前記水溶性有機ポリマーとしては、例えば、アミド基、アミノ基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基等を有する水溶性有機ポリマーなどを挙げられる。
前記アミド基、前記アミノ基、前記水酸基、前記テトラメチルアンモニウム基、前記シラノール基、前記エポキシ基等を有する水溶性有機ポリマーは、水系のゲルの強度を保つために有利な構成成分である。
前記第1の工程において形成される膜における前記第1の液体の含有量(質量%)としては、特に制限はなく、目的に応じて適宜選択することができ、前記第1の液体の付与量により制御することができる。
なお、前記第1の液体の付与量は、前記第1の液体の液滴の体積に前記第1の液体の液滴数を掛けることにより算出することができる。
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、安定化剤、表面処理剤、重合開始剤、着色剤、粘度調整剤、乾燥防止剤、接着性付与剤、酸化防止剤、老化防止剤、架橋促進剤、紫外線吸収剤、可塑剤、防腐剤、分散剤、重合促進剤などが挙げられる。
前記安定化剤としては、前記鉱物を分散安定させ、ゾル状態を保つために用いられる。
また、液滴吐出方式では液体としての特性安定化のために必要に応じて安定化剤が用いられる。
前記安定化剤としては、例えば、高濃度リン酸塩、グリコール、非イオン界面活性剤などが挙げられる。
前記非イオン界面活性剤としては、適宜合成してもよく、市販品を用いてもよい。前記市販品としては、例えば、商品名:LS106(花王株式会社製)などが挙げられる。
前記表面処理剤としては、例えば、ポリエステル樹脂、ポリ酢酸ビニル樹脂、シリコーン樹脂、クマロン樹脂、脂肪酸エステル、グリセライド、ワックスなどが挙げられる。
前記重合開始剤としては、例えば、熱重合開始剤、光重合開始剤などが挙げられる。これらの中でも、保存安定性の点から、活性エネルギー線を照射することによりラジカル又はカチオンを生成する光重合開始剤が好ましい。
前記光重合開始剤としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ジクロロベンゾフェノン、p,p-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-プロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン-n-ブチルエーテル、ベンジルメチルケタール、チオキサントン、2-クロロチオキサントン、2-ヒドロキシ-2-メチル-1-フェニル-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、メチルベンゾイルフォーメート、1-ヒドロキシシクロヘキシルフェニルケトン、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジ-tert-ブチルペルオキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記光重合開始剤としては、市販品を用いてもよく、前記市販品としては、例えば、Irgacure184(BASF社製)などが挙げられる。
前記熱重合開始剤は、前記光重合開始剤と同様に、前記第1の液体の保存安定性の点から前記第2の液体に含まれることが好ましい。また、重合促進剤を含有することが好ましい。
また、前記光重合開始剤の合計の含有量としては、前記立体造形用液体セット全量に対して、1質量%以下が好ましい。前記含有量が、1質量%以下であると、前記第1の液体と前記第2の液体とが混合した後において硬化反応の阻害を防止できる。
前記着色剤としては、前記第1の液体、及び前記第2の液体のいずれにも含有させることができるが、前記第2の液体に含有させることが好ましい。
前記着色剤としては、前記第2の液体中に溶解又は安定に分散し、更に熱安定性に優れた染料、顔料等が適している。これらの中でも、溶解性染料(Solvent Dye)が好ましい。また色の調整等で2種類以上の着色剤を適時混合してもよい。
前記ブラック染料としては、例えば、MS BLACK VPC(三井東圧株式会社製)、AIZEN SOT BLACK-1、AIZEN SOT BLACK-5(以上、保土谷化学株式会社製)、RESORIN BLACK GSN 200%、RESOLIN BLACK BS(以上、バイエルジャパン社製)、KAYASET BLACK A-N(日本化薬株式会社製)、DAIWA BLACK MSC(ダイワ化成株式会社製)、HSB-202(三菱化成株式会社製)、NEPTUNE BLACK X60、NEOPEN BLACK X58(BASF社製)、Oleosol Fast BLACK RL(田岡化学工業株式会社製)、Chuo BLACK80、Chuo BLACK80-15(以上、中央合成化学株式会社製)などが挙げられる。
(以上、日本化薬株式会社製)、DAIWA Yellow 330HB(ダイワ化成株式会社製)、HSY-68(三菱化成株式会社製)、SUDAN Yellow 146、NEOPEN Yellow 075(以上、BASF社製)、Oil Yellow 129(中央合成化学株式会社製)などが挙げられる。
赤又はマゼンタ顔料としては、例えば、Pigment Red 3、5、19、22、31、38、43、48:1、48:2、48:3、48:4、48:5、49:1、53:1、57:1、57:2、58:4、63:1、81、81:1、81:2、81:3、81:4、88、104、108、112、122、123、144、146、149、166、168、169、170、177、178、179、184、185、208、216、226、257、Pigment Violet 3、19、23、29、30、37、50、88、Pigment Orange 13、16、20、36などが挙げられる。
緑顔料としては、例えば、Pigment Green 7、26、36、50などが挙げられる。
黄顔料としては、例えば、Pigment Yellow 1、3、12、13、14、17、34、35、37、55、74、81、83、93、94、95、97、108、109、110、137、138、139、153、154、155、157、166、167、168、180、185、193などが挙げられる。
黒顔料としては、例えば、Pigment Black 7、28、26などが挙げられる。
前記粘度調整剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロピレングリコールなどが挙げられる。
前記乾燥防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グリセリンなどが挙げられる。
前記分散剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチドロン酸などが挙げられる。
前記重合促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、N,N,N’,N’-テトラメチルエチレンジアミンなどが挙げられる。
前記表面張力が、20mN/m以上であると、吐出安定性を向上でき、45mN/m以下であると、造形用の吐出ノズル等に液体を充填しやすくなる。
なお、前記表面張力は、例えば、表面張力計(自動接触角計DM-701、協和界面科学株式会社製)などを用いて測定することができる。
前記粘度が、3mPa・s以上20mPa・s以下であると、吐出安定性を向上できる。
なお、前記粘度は、例えば、回転粘度計(VISCOMATE VM-150III、東機産業株式会社製)などを用いて25℃の環境下で測定することができる。
前記第2の液体は、前記第1の液体とは組成が異なり、立体造形時における第1の液体に含有される成分の濃度コントロールをする機能を有する。即ち、本発明においては、第1の液体と第2の液体を同一領域に成膜し両者を混合させる。この際、前記第1の液体及び前記第2の液体を付与する位置と付与量とを制御することにより、成膜中の硬化性材料濃度を調整するものである。
前記第2の液体は、溶媒を含有することが好ましく、さらに必要に応じて、光重合開始剤、熱重合開始剤、鉱物、架橋剤、その他の成分を含有してなる。
前記溶媒としては、前記第1の液体と同様のものを用いることができる。
前記重合性モノマーとしては、前記第1の液体と同様のものを用いることができる。
しかし、第1の液体に重合開始剤等の添加剤を加えた際に、第1の液体に含まれる硬化性材料(重合性モノマー等)と反応して、保存安定性が悪化することがある。その場合、添加剤を第2の液体に添加し、第1の液体と第2の液体とを吐出後に混合させることで硬化性材料に重合開始剤等の添加剤の効果を与えることができることから、第2の液体には硬化性材料(重合性モノマー等)を含有しないことが好ましい。
前記光重合開始剤、及び前記熱重合開始剤としては、前記第1の液体と同様のものを用いることができる。
前記光重合開始剤、及び前記熱重合開始剤としては、前記第1の液体中に含有させることもできるが、保存安定性の点から、前記第2の液体に含有させることが好ましい。
また、前記光重合開始剤に加え、熱重合開始剤を含有させることで、光重合開始剤だけでは重合反応が完結しない場合に、熱重合開始剤により重合反応を進行させることで反応を完結することができる。また、重合促進剤を含有することが好ましい。
前記第1の液体に熱重合開始剤が含まれると、重合性モノマーと反応してしまい液体の保存安定性が損なわれるため、重合性モノマーが含まれない第2の液体に熱重合開始剤が含まれることが好ましい。
前記鉱物としては、前記第1の液体と同様のものを用いることができる。
前記架橋剤としては、例えば、N,N’-メチレンビスアクリルアミド、ポリエチレングリコールジアクリレートなどが挙げられる。
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、前記第1の液体と同様のものを用いることができる。
前記表面張力が、20mN/m以上であると、吐出安定性を向上でき、45mN/m以下であると、造形用の吐出ノズル等に液体を充填しやすくなる。
なお、前記表面張力は、例えば、表面張力計(自動接触角計DM-701、協和界面科学株式会社製)などを用いて測定することができる。
前記粘度が、3mPa・s以上20mPa・s以下であると、吐出安定性を向上できる。
なお、前記粘度は、例えば、回転粘度計(VISCOMATE VM-150III、東機産業株式会社製)などを用いて25℃の環境下で測定することができる。
前記第1の工程において形成される膜における前記第2の液体の含有量(質量%)としては、特に制限はなく、目的に応じて適宜選択することができ、前記第2の液体の付与量により制御することができる。
なお、前記第2の液体の付与量は、前記第2の液体の液滴の体積に前記第2の液体の液滴数を掛けることにより算出することができる。
前記第1の液体及び前記第2の液体における保存前粘度(初期粘度)と50℃で2週間放置した後(保存後粘度)との粘度変化率としては、20%以下が好ましく、10%以下がより好ましい。
前記粘度変化率が、20%以下であると、前記第1の液体及び前記第2の液体の保存安定性が適正であり、例えば、前記第2の液体の付与をインクジェット法により行った際に吐出安定性が良好となる。
前記第1の液体、及び前記第2の液体をポリプロピレン製広口瓶(50mL)に入れて、50℃の恒温槽中に2週間放置した後、恒温槽から取り出して室温(25℃)になるまで放置して、粘度測定を行う。恒温槽に入れる前の第1の液体、及び前記第2の液体の粘度を保存前粘度、恒温槽から取り出した後の第1の液体、及び前記第2の液体の粘度を保存後粘度とし、下記式により粘度変化率を算出する。なお、前記保存前粘度及び前記保存後粘度は、R型粘度計(東機産業株式会社製)を用いて、25℃で測定することができる。
粘度変化率(%)=[(保存後粘度)-(保存前粘度)]/(保存前粘度)×100
前記第1の液体及び前記第2の液体の保存後粘度は、25℃で、3mPa・s以上10mPa・s以下が好ましい。
前記第2の液体に、前記第1の液体に含まれる硬化性材料と反応し保存安定性を低下させる(通常は粘度上昇が大きく、ゲル化する変化が起こる)材料を添加することにより、造形時の製膜直後に膜がゲル化し、造形精度が向上するなどの効果を付与することができる。
前記第2の工程は、前記第1の工程により形成された液膜を硬化させ、硬化した膜を積層させることで、領域毎に圧縮応力及び弾性率を変えられる立体造形物を造形する工程(膜硬化工程)である。硬化後の膜は、硬化性材料が他の成分と共に構造体を形成した状態になっている。前記第2の工程(膜硬化工程)は、前記第2の手段(膜硬化手段)により好適に行うことができる。
前記紫外線(UV)照射ランプの種類としては、例えば、高圧水銀灯、超高圧水銀灯、メタルハライドなどが挙げられる。
前記超高圧水銀灯は点光源であるが、光学系と組み合わせて光利用効率を高くしたDeepUVタイプは、短波長領域の照射が可能である。
前記メタルハライドは、波長領域が広いため着色物に有効であり、Pb、Sn、Fe等の金属のハロゲン化物が用いられ、光重合開始剤の吸収スペクトルに合わせて選択できる。硬化に用いられるランプとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、FusionSystem社製のHランプ、Dランプ、Vランプ等のような市販されているものも使用することができる。
LEDの発光波長としては特に制限するものではなく、一般的には365nm、375nm、385nm、395nm、405nmのものがあるが、造形物への色の影響を考慮すると、開始剤の吸収が大きくなるように、短波長発光の方が有利である。
UV-LEDは、一般的に用いられる紫外線照射ランプ(高圧水銀灯、超高圧水銀灯、メタルハライドランプ)、電子線などにくらべ、硬化時にサンプルに与える熱エネルギーが小さく、サンプルの熱損傷が小さくなる。
特に、本発明で造形するハイドロゲルは、水を蓄えた状態で存在することで、その特徴を発現するため、この効果は顕著なものである。
前記第3の工程は、第2の工程により硬化した硬化性材料で構成される立体造形物を支持するための硬質成形体となる第3の液体を、前記第1の液体及び前記第2の液体とは異なる領域に付与して成膜する工程であり、第3の手段により実施することができる。
前記第3の手段としての第3の液体を付与する手段としては、前記立体造形物の製造装置における前記第1の手段と同様の手段を用いることができる。
前記第3の液体は、立体造形物を支持するための硬質成形体となる液体である(「硬質成形体用材料」とも称することがある)。前記第3の液体は、硬化性材料を含有し、重合開始剤を含有することが好ましく、更に必要に応じてその他の成分を含有してなるが、水や層状粘度鉱物は含まない。
前記第3の液体としては、前記第1の液体及び前記第2の液体とは組成の異なることが好ましい。
前記第3の液体を付与する方法としては、前記第3の液体からなる液滴が適切な精度で目的の場所に付与できる方式であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、液滴吐出方式などが挙げられる。前記液滴吐出方式としては、例えば、ディスペンサー方式、インクジェット方式などが挙げられる。
前記第1の工程で用いられる第1の液体と第2の液体を用い、同様に立体造形物を支持するための構造体(以下、支持体構造物)を作製する。この支持体構造物は作製する立体造形物と圧縮応力や弾性率が大きく異なる構造体であり、先ほどの場合と同様に、第2の工程で硬化し、造形した後に除去される。
支持体構造物は、立体造形物を造形する際にそれを支え、かつ、造形後には除去されるものであるから、必要最低限の強度を有すれば良い。あるいは、支持体造形物の除去性を高めることは、立体造形物の生産性を高めることになるため、弾性率が低く、外的な力により容易に崩壊する様な方式を採用しても良い。
いずれにせよ、目的とする立体造形物を構成する第1および第2の液体を用い、立体造形物とは物性値の異なる構造体を作製することが肝要である。簡便的には、支持体構造物における第1の液体に対する第2の液体の比率を、造形が成立する範囲で、目的とする立体造形物の割合から大きくシフトさせればよい。
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、剥離工程、成形体の研磨工程、成形体の清浄工程などが挙げられる。
特に、第3の工程で硬化された膜を平滑化させる工程を導入することが望ましい。
第2の工程、第3の工程で製膜、硬化された膜は、全ての領域が狙いの膜厚(層厚)になっているとは限らない。
インクジェット方式の場合は不吐出があったり、インクジェット方式/ディスペンサー方式共に、ドット間段差などが生じることがあり、高精度な積層構造物を形成するためには、不十分な場合がある。
これを補償するためには、層を形成した直後にメカ的に平滑化する(均す)、メカ的に削り取る、平滑度を検知して次の層の積層時に製膜量をドットレベルで調整する、などの方法が考えられる。
本発明で使用するハイドロゲルは、対象とする造形物が内臓等であるため、その硬度は比較的柔らかい。このため平滑化に際しては、層を形成した直後にメカ的に均す平滑化方法が有効に使用することが出来る。
メカ的に平滑化する方法とは、例えば、ブレード形状の部材で均す、ローラー形状の部材で均すなどの方法が挙げられる。
図24においてはローラー形状の平滑化部材20、21を示し、図25においてはブレード形状の平滑化部材22、23を示した。
この入力されたデータに基づいて、造形しようとする三次元形状の造形方向を決める。造形方向は特に制限はないが、通常はZ方向(高さ方向)が最も低くなる方向を選ぶ。
さらに、連続したドットを形成することで、所定の質量比(A液:B液)が所定の領域にあるA液及びB液の混合液膜を作製することができる。そして、A液及びB液の混合液膜に紫外線(UV)光を照射することで硬化して、図20のように所定の領域に所定の質量比(A液:B液)を有するハイドロゲル膜を形成することができる。
このように立体造形した水を主成分として含むハイドロゲル造形体である立体造形物は、図22のようにハイドロゲル内で異なるA液及びB液の質量比(A液:B液)を有し、連続的に圧縮応力、及び弾性率を変えることができる。
また図24および図25に示す様に、インクジェットヘッドおよびUV光照射機(14,15)に隣接して、平滑化部材(20、21、22、23)を設けることにより、一層ごとの平滑化、層厚の制御も可能になり、本発明の造形において非常に有効な手段である。
本発明の立体造形用液体セットは、前記第1の液体と、前記第2の液体とを含んでなり、更に必要に応じてその他の成分を含んでなる。
前記第1の液体としては、溶媒として水、硬化性材料として重合性モノマーを含み、鉱物をさらに含むことが好ましく、さらに重合開始剤を含むことがより好ましい。
前記重合性モノマーとしては、前記立体造形物の製造方法における第1の液体の重合性モノマーと同様のものを用いることができる。
前記第2の液体としては、架橋剤、及び鉱物の少なくともいずれかを含むことが好ましく、さらに重合開始剤を含むことがより好ましい。
前記架橋剤としては、前記立体造形物の製造方法における第2の液体の架橋剤と同様のものを用いることができる。
前記鉱物としては、前記立体造形物の製造方法における第2の液体の鉱物と同様のものを用いることができる。
前記第1の液体及び前記第2の液体における重合開始剤としては、前記立体造形物の製造方法における第2の液体の重合開始剤と同様のものを用いることができる。
前記ハイドロゲル造形体としては、本発明の立体造形物の製造方法により製造され、80%歪み圧縮応力及び弾性率の少なくともいずれかが、連続的な勾配を有する。
<A液の作製>
減圧脱気を30分間実施したイオン交換水を純水として用いた。
次に、得られた分散液に、硬化性材料として、活性アルミナのカラムを通過させ重合禁止剤を除去したアクリロイルモルホリン(ACMO、KJケミカルズ株式会社製)22質量%を添加した。更に、架橋剤としてN,N’-メチレンビスアクリルアミド(MBAA、東京化成工業株式会社製)0.2質量%を添加した。乾燥防止剤としてグリセリン(阪本薬品工業株式会社製)10.2質量%、及び界面活性剤としてLS106(花王株式会社製)0.3質量%を添加して混合した。
次に、重合促進剤としてN,N,N’,N’-テトラメチルエチレンジアミン(TEMED、東京化成工業株式会社製)0.4質量%添加した後に、光重合開始剤として4質量%Irgacure184(BASF社製)メタノール溶液(光重合開始剤液)0.6質量%を添加して撹拌混合した。撹拌混合の後、減圧脱気を10分間実施した。続いて、ろ過を行うことで、不純物等を除去し、均質なA液を得た。
得られたA液について、以下のようにして、表面張力及び粘度を測定した。表面張力は30.0mN/m、粘度は25℃で6.5mPa・sであった。
得られたA液について、表面張力計(自動接触角計DM-701、協和界面科学株式会社製)を用いて、懸滴法により表面張力を測定した。
得られたA液について、回転粘度計(VISCOMATE VM-150III、東機産業株式会社製)で25.0℃の環境で測定した。
<B液~I液の作製>
第1の液体及び第2の液体の作製例1において、下記表1に示す組成、及び含有量に変更した以外は、第1の液体及び第2の液体の作製例1と同様にして、B液~I液を得た。
得られたB液~I液について、第1の液体及び第2の液体の作製例1と同様にして、表面張力及び粘度を測定した。
・トルエン:溶媒(和光純薬工業株式会社製)
・プロピレングリコール:粘度調整剤(和光純薬工業株式会社製)
・グリセリン:乾燥防止剤(阪本薬品工業株式会社製)
・LS106:界面活性剤(花王株式会社製)
・エチドロン酸:分散剤(東京化成工業株式会社製)
・光重合開始剤液:Irgacure184(BASF社製)を4質量%/メタノール96質量%
・熱重合開始剤液1:ペルオキソ二硫酸ナトリウムを2質量%/純水98質量%
・熱重合開始剤液2:2,2’-アゾビス(2,4-ジメチルバレロニトリル)
・ラポナイトXLG:層状粘土鉱物(RockWood社製)
・アクリロイルモルホリン(ACMO):KJケミカルズ株式会社製
・N,N-ジメチルアクリルアミド(DMAA):KJケミカルズ株式会社製
・N,N’-メチレンビスアクリルアミド(MBAA):東京化成工業株式会社製
・N,N,N’,N’-テトラメチルエチレンジアミン(TEMED):重合促進剤、
東京化成工業株式会社製
第1の液体としてA液を用い、第2の液体としてB液を用いた。
A液、及びB液を用いて、以下(1)工程~(4)工程のようにして図1に示すような水を主成分として含むハイドロゲル造形体である立体造形物を得た。
(1)はじめにA液とB液の質量比(A液:B液)を2:1にして混合して縦30mm×横30mm×高さ8mmの型に高さが2mmになるまで、つまり7.2立方cm流し込み、27℃下で6時間静置することでハイドロゲルの第1層を作製した。
(2)次に、A液とB液の質量比(A液:B液)を1:1にして混合して縦30mm×横30mm×高さ8mmの型にはじめに作製したハイドロゲルの第1層の上から同様に7.2立方cm流し込み、27℃下で6時間静置することで第2層を作製した。
(3)さらに、A液とB液の質量比(A液:B液)を1:2にして混合して縦30mm×横30mm×高さ8mmの型に前記2層のハイドロゲルの上から同様に7.2立方cm流し込み、27℃下で6時間静置することで第3層を作製した。
(4)最後に、A液とB液の質量比(A液:B液)を1:3にして混合して縦30mm×横30mm×高さ8mmの型に前記3層のハイドロゲルの上から同様に7.2立方cm流し込み、27℃下で12時間静置することで、第4層を作製し、水を主成分として含むハイドロゲル造形体である立体造形物を得た。
得られたハイドロゲルの構造を図1に模式的に示した。
なお、図1、及び図2において弾性率の大小を濃度の濃淡で示しており、弾性率の大きい層ほど濃度をより濃くなるように示している。
第1の液体としてA液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
A液、及びB液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、300dpi×300dpiとなるように吐出した。吐出する液滴の体積を制御して質量比(A液:B液)を図3に示すように変えて水を主成分として含むハイドロゲル造形体である立体造形物を作製した。図3は、水を主成分として含むハイドロゲル造形体である立体造形物における1領域のA液とB液との液滴の体積を制御した混合比分布を示している。
この水を主成分として含むハイドロゲル造形体である立体造形物について20%圧縮時の弾性率を測定した。前記弾性率の測定は、万能試験機(株式会社島津製作所製、AG-I)、ロードセル1kN、1kN用圧縮治具を用いて、直径1mmの円柱状の金属を水を主成分として含むハイドロゲル造形体である立体造形物に押しこみ、ロードセルに掛かる圧縮に対する応力をコンピュータに記録し、変位量に対する応力をプロットし、弾性率を測定した。また、押しこむ領域は、図3において、水を主成分として含むハイドロゲル造形体である立体造形物の領域(x,y)のx,yともに0~20までの2mm×2mmの領域ごとに測定した。
第1の液体としてA液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
A液、及びB液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、300dpi×300dpiとなるように吐出した。吐出する液滴の液滴数を変更して、各領域の質量比(A液:B液)を図5に示すように変えて水を主成分として含むハイドロゲル造形体である立体造形物を作製した。図5は、水を主成分として含むハイドロゲル造形体である立体造形物における1領域のA液とB液との液滴の液滴数を変更した混合比分布を示している。
具体的には、第1の液体用、及び第2の液体用のヘッドを4ヘッドずつ用いてA液とB液とを吐出した。1領域に吐出する液体の総付与量が144pLとなるように制御した。
また、液滴の体積1滴は36pLとし、1領域の液滴数が4滴になるように吐出した。例えば、1領域に対するA液の液滴数:B液の液滴数が、それぞれ1:3、2:2、3:1、4:0になるように液体の液滴数を制御して水を主成分として含むハイドロゲル造形体である立体造形物を含む膜を形成し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させた。100層同様に膜を形成した後に硬化して、3次元の水を主成分として含むハイドロゲル造形体である立体造形物を作製した。層間剥離しない、縦20mm×横20mm×高さ2mmの水を主成分として含むハイドロゲル造形体である立体造形物を得た。
得られた水を主成分として含むハイドロゲル造形体である立体造形物について20%圧縮時の弾性率を測定した。
ここで、実施例2と同様にして、20%圧縮時の弾性率を測定した。測定結果を下記表3及び図6に示した。
図5の各質量比(A液:B液)の膜の領域と図6における20%圧縮時の弾性率の値の領域とは対応している。
前記表3及び図6の結果から、A液とB液との質量比(A液:B液)、すなわち液滴の液滴数を、図5のように変更することで、図6に示すように20%圧縮時の弾性率を簡便に変えられることが分かった。
また、実施例1とは異なり、面内において連続的に弾性率が異なる複数の領域を有する水を主成分として含むハイドロゲル造形体である立体造形物を作製することができた。
第1の液体としてF液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
F液、及びB液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、300dpi×300dpiで吐出した。吐出する液滴の体積を制御して質量比(F液:B液)を図7に示すように変更して水を主成分として含むハイドロゲル造形体である立体造形物を作製した。図7は水を主成分として含むハイドロゲル造形体である立体造形物における1領域のF液とB液との液滴の体積を変更した混合比分布を示している。
具体的には、第1の液体用、及び第2の液体用のヘッドを4ヘッドずつ用いてF液とB液とを吐出した。1領域に吐出する液体の総付与量が144pLとなるように制御した。
例えば、F液の液滴の体積:B液の液滴の体積が、24pL:120pL、48pL:96pL、72pL:72pLになるように液体の体積を変更して水を主成分として含むハイドロゲル造形体である立体造形物の液膜を形成し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させた。100層同様に液膜を形成した後に硬化して、水を主成分として含むハイドロゲル造形体である立体造形物を作製した。層間剥離しない、縦20mm×横20mm×高さ2mmの水を主成分として含むハイドロゲル造形体である立体造形物を得た。
ここで、実施例2と同様にして、得られた水を主成分として含むハイドロゲル造形体である立体造形物の20%圧縮時の弾性率を測定した。弾性率の測定した結果を下記表3及び図8に示した。図8は、図7に示し水を主成分として含むハイドロゲル造形体である立体造形物における縦2mm×横2mmの領域ごとの弾性率の値(MPa)を示しており、図7の各質量比(F液:B液)の膜の領域と図8における20%圧縮時の弾性率の値の領域とは対応している。
下記表3及び図8の結果から、F液とB液との質量比(F液:B液)を変更することで異なる弾性率を得られることが分かった。
第1の液体としてA液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
A液、及びB液を、実施例1と同様にして、下記表3に示すように、A液とB液との質量比(A液:B液)を変更して混合し、縦30mm×横30mm×高さ8mmの型に流し込み、27℃下で12時間静置することで水を主成分として含むハイドロゲル造形体である立体造形物を作製した。
実施例1における20%圧縮時の弾性率と同様の方法により、70%圧縮時の圧縮応力、80%圧縮時の圧縮応力、及び20%圧縮時の弾性率を測定した。
ここで70%圧縮時の圧縮応力、及び80%圧縮時の圧縮応力により、水を主成分として含むハイドロゲル造形体である立体造形物の靭性を評価することができる。測定結果を図9に示した。
この立体造形用液体セットの各液体の付与する付与量を制御することで、硬化後の弾性率が異なる複数の領域を有する水を主成分として含むハイドロゲル造形体である立体造形物を形成することができることが分かった。
第1の液体としてC液(造形体用液)を用い、第2の液体としてD液(希釈用液)を用いた。
C液、及びD液を用いて、実施例1と同様にして、下記表3に示すように、C液とD液との質量比(C液:D液)を制御して混合し、30mm×30mm×8mmの型に流し込み、27℃下で12時間静置することで水を主成分として含むハイドロゲル造形体である立体造形物を作製した。実施例1と同様にして、作製した水を主成分として含むハイドロゲル造形体である立体造形物の70%圧縮時の圧縮応力、80%圧縮時の圧縮応力、及び20%圧縮時の弾性率を測定した。結果を下記表3及び図10に示した。
図10に示したように、D液の割合が高いと、水を主成分として含むハイドロゲル造形体である立体造形物の圧縮応力を高くすることができた。つまり、C液と、D液との質量比(C液:D液)を制御することで水を主成分として含むハイドロゲル造形体である立体造形物の圧縮応力、及び弾性率を容易に変えることができることが分かった。
そして、この立体造形用液体セットの各液体の付与する付与量を制御することで、硬化後の弾性率が異なる複数の領域を有する立体造形物を形成することができることが分かった。
第1の液体としてA液(造形体用液)を用い、第2の液体としてE液(希釈用液)を用いた。
A液及びE液を用いて、実施例1と同様にして、下記表3に示すように、A液とE液との質量比(A液:E液)を制御して混合し、縦30mm×横30mm×高さ8mmの型に流し込み、27℃下で12時間静置することで水を主成分として含むハイドロゲル造形体である立体造形物を作製した。実施例5と同様にして、水を主成分として含むハイドロゲル造形体である立体造形物の70%圧縮時の圧縮応力、80%圧縮時の圧縮応力、及び20%圧縮時の弾性率を測定した。結果を下記表3及び図11に示した。
図11に示すように、E液の割合が高いと、水を主成分として含むハイドロゲル造形体である立体造形物の圧縮応力を低くすることができた。つまり、A液と、E液との質量比(A液:E液)を制御することで水を主成分として含むハイドロゲル造形体である立体造形物の圧縮応力を容易に変えることができることが分かった。
そして、この立体造形用液体セットの各液体の付与量を制御することで、硬化後の弾性率が異なる複数の領域を有する水を主成分として含むハイドロゲル造形体である立体造形物を形成することができることが分かった。
非接触ディスペンサー(Cyber Jet 2、武蔵エンジニアリング株式会社製)を2連ヘッドで用いた。Cyber Jet 2を2連ヘッドで用いることにより、2液の混合比をショット数で正確に管理できる。
第1の液体としてA液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
ディスペンサー1からA液を、ディスペンサー2からB液を1滴あたり0.03mgで吐出した。吐出する液滴の液滴数を変更して質量比(A液:B液)を図12に示すように変えて水を主成分として含むハイドロゲル造形体である立体造形物を作製した。図12は水を主成分として含むハイドロゲル造形体である立体造形物における1領域のA液とB液の液滴の体積を変更した混合比分布を示している。
具体的には、1領域(縦5mm×横5mm×高さ5mm)に吐出する液体の質量が0.09mgすなわち3滴分となるように調整した。例えば、A液の液滴数:B液の液滴数=3:0、2:1、1:2となるように液体の液滴の体積を変化させて吐出し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させることで3次元の水を主成分として含むハイドロゲル造形体である立体造形物を作製した。層間剥離しない、縦15mm×横15mm×高さ5mmの水を主成分として含むハイドロゲル造形体である立体造形物を得た。この水を主成分として含むハイドロゲル造形体である立体造形物について、実施例2と同様にして、20%圧縮時の弾性率を測定した。なお、直径1mmの円柱状の金属の押しこむ領域は水を主成分として含むハイドロゲル造形体である立体造形物の領域(x,y)のx,yともに0~15までの2.5mm×2.5mmの領域ごとに測定した。測定した結果を表3及び図13に示した。
図13の結果から、A液とB液の質量比(A液:B液)、すなわち液滴の液滴数を図12のように変更することで図13に示すように弾性率を簡便に変えられることが分かった。
また、実施例1とは異なり、面内において連続的に圧縮応力が異なる領域を有する水を主成分として含むハイドロゲル造形体である立体造形物を作製することができた。
第1の液体としてG液(造形体用液)を用い、第2の液体としてH液(希釈用液)を用いた。
実施例2と同様にして、G液、及びH液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、吐出した。吐出する液滴の体積を変更して質量比(G液:H液)を図14に示すように変更してオイルゲルを作製した。図14はオイルゲルにおける1領域のG液とH液の液滴の体積を変更した混合比分布を示している。
具体的には、G液、及びH液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)4ヘッドずつ充填し、G液とH液を吐出した。1領域に吐出する液体の総付与量が144pLとなるように調整した。例えば、G液の液滴の体積:H液の液滴の体積が24pL:120pL、48pL:96pL、72pL:72pLのように液体の液滴の体積を変更してオイルゲルの液膜を形成し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させた。100層同様に液膜を形成した後に硬化して、3次元のオイルゲル立体造形物を作製した。層間剥離しない、縦20mm×横20mm×高さ2mmのオイルゲルを得た。
このオイルゲルについて実施例2と同様の測定方法で20%圧縮時の弾性率を測定した。測定した結果を下記表3及び図15に示す。図15は、図14に示したオイルゲルにおける縦2mm×横2mmの領域ごとの弾性率の値(MPa)を示しており、図14の各質量比(G液:H液)の膜の領域と図15における20%圧縮時の弾性率の値の領域とは対応している。
G液とH液の混合比を変えることで異なる弾性率を得られることが分かる。
第1の液体としてG液(造形体用液)を用い、第2の液体としてI液(希釈用液)を用いた。実施例2と同様にして、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、吐出した。
吐出する液滴の体積を変更して液滴の質量比(G液:I液)を図16に示すように変えてオイルゲルを作製した。図16はオイルゲルにおける1領域のG液とI液の液滴の体積を変更した混合比分布を示している。
具体的には、G液、及びI液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)4ヘッドずつ充填し、G液とI液を吐出した。1領域に吐出する液体の総付与量が144pLとなるように調整した。例えば、G液の液滴の体積:I液の液滴の体積が、24pL:120pL、48pL:96pL、72pL:72pLのように液体の液滴の体積を変更してオイルゲルの液膜を形成し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させた。100層同様に液膜を形成した後に硬化して、3次元のオイルゲル立体造形物を作製した。層間剥離しない、縦20mm×横20mm×高さ2mmのオイルゲルを得た。
このオイルゲルについて実施例2と同様にして、20%圧縮時の弾性率を測定した。測定した結果を表3及び図17に示す。図17は、図16に示したオイルゲルにおける縦2mm×横2mmの領域ごとの弾性率の値(MPa)を示しており、図16の各質量比(G液:I液)の膜の領域と図17における弾性率の値の領域とは対応している。
G液とI液の混合比を変更することで異なる弾性率を得られることが分かる。
ここでG液:I液=1:0の領域と、G液:I液=1:1の領域で得られたオイルゲルの重合率を熱重量分析装置(Rigaku社製、Thermo plus TG8120)により測定した。具体的には、前記領域のオイルゲルから縦2mm×横2mm×高さ2mmの立方体を切り出して熱重量分析によりポリマー含有率を測定することで重合率を求めた。G液:I液=1:0の領域では重合率は92%であったのに対し、G液:I液=1:1の領域では重合率は97%と上昇しており、熱重合開始剤の効果を確認できた。
第1の液体としてA液(造形体用液)を用い、第2の液体としてB液(希釈用液)を用いた。
実施例2と同様にして、前記A液、及び前記B液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)に充填し、300dpi×300dpiで吐出した。吐出した液滴の体積、すなわち、質量比(A液:B液)を1:1にして水を主成分として含むハイドロゲル造形体である立体造形物を作製した。図18は、水を主成分として含むハイドロゲル造形体である立体造形物における1領域のA液とB液の液滴の体積が1:1であることを示している。
具体的には、G液、及びI液を、インクジェットヘッド(リコーインダストリー株式会社製、MH5420)4ヘッドずつ充填し、A液とB液を吐出した。1領域に吐出する液体の総付与量が144pLとなるように調整した。A液の液滴の体積:B液の液滴の体積が72pL:72pLのように液体の液滴の体積を一定にして水を主成分として含むハイドロゲル造形体である立体造形物の液膜を形成し、紫外線照射機(ウシオ電機株式会社製、SPOT CURE SP5-250DB)で350mJ/cm2の光量を照射して硬化させた。100層同様に液膜を形成した後に硬化して、3次元の水を主成分として含むハイドロゲル造形体である立体造形物を作製した。層間剥離しない、縦20mm×横20mm×高さ2mmの水を主成分として含むハイドロゲル造形体である立体造形物を得た。
得られた水を主成分として含むハイドロゲル造形体である立体造形物について、実施例2と同様にして、20%圧縮時の弾性率を測定した。測定した結果を下記表3及び図19に示す。
図18の各混合比の膜の領域と図19における弾性率の値の領域とは対応している。
ここで、A液とB液の質量比(A液:B液)を一定にすると、一様な20%弾性率を有する水を主成分として含むハイドロゲル造形体である立体造形物ができた。
実施例2、及び実施例3とは異なり、弾性率が異なる複数の領域を有する水を主成分として含むハイドロゲル造形体である立体造形物は作製できなかった。
第1の液体としてA液、第2の液体としてB液を用いた。
実施例2の場合と同様に、図20に示す装置を用い、A液とB液の混合比が2:1になる領域と、1:2になる領域を打ち分けて、縦20mm×横20mm×高さ2mmの立体造形物となる様に積層を行った。造形条件は、実施例2に準じた。
図23に示す装置を用い、実施例11に準じて縦20mm×横20mm×高さ2mmの立体造形物を作製した。
図23に示す装置に用いる光源は、UV-LED(Integration社製、SubZero-LED 365nm)であり、350mJ/cm2の光量になるように調整して使用した。
図24に示す装置を用い、実施例11に準じて縦20mm×横20mm×高さ2mmの立体造形物を作製した。
図24に示す装置に用いる光源は、UV-LED(Integration社製、SubZero-LED 365nm)であり、350mJ/cm2の光量になるように調整して使用した。
平滑化部材は逆転方向に回転させて使用した。
[造形体の成形性]
目視にて造形物全体の形状、組成が異なる領域での不具合の有無を観察した。
(評価基準)
◎ : 良好
○ : 普通
× : 不良
図26に示した様に、実施例11-13で造形した造形体における水平方向および垂直方向の寸法を10か所測定した。この10か所のバラつき度合いを求め評価を行った。
(評価基準)
◎ : 良好
○ : 普通
× : 不良
第1の液体としてA液、第2の液体としてB液を用いた。
図23に示す装置を用いて、図27に示す立体造形物および支持体構造物を形成した。立体造形物の領域はA液とB液の混合比が2:1、支持体構造物の領域はA液とB液の混合比が1:5の比率で形成した。
造形の際、支持体構造物の領域は立体造形物を支持できるだけの最低限の強度を保った。
造形後、図28に示す様に、支持体構造物を破壊しながら剥離することで、立体造形物を取り出すことが出来た。
<1> 硬化性材料を含む液体からなる液膜を硬化させてなる層を複数積層する立体造形物の製造方法であって、
前記硬化性材料を含む液体として溶媒及び前記硬化性材料を含む第1の液体と、前記第1の液体とは組成の異なる第2の液体と、を用いて、前記第1の液体及び前記第2の液体を付与する位置と付与量とを制御することにより、硬化後の圧縮応力及び弾性率が異なる複数の領域を有する前記液膜を形成することを特徴とする立体造形物の製造方法である。
<2> 前記第1の液体と前記第2の液体とを含む複数の液体を、それらの付与量比を変えて同一位置に付与することを繰り返し、同一層となる液膜内に圧縮応力及び弾性率の異なる複数の領域を作製する前記<1>に記載の立体造形物の製造方法である。
<3> 前記第1の液体及び前記第2の液体の付与方法が、液滴吐出方式である前記<1>又は<2>に記載の立体造形物の製造方法である。
<4> 前記第1の液体の付与量及び前記第2の液体の付与量が、付与する液滴の体積の変更により調節される前記<1>から<3>のいずれかに記載の立体造形物の製造方法である。
<5> 前記第1の液体の付与量及び前記第2の液体の付与量が、付与する液滴の液滴数の変更により調節される前記<1>から<3>のいずれかに記載の立体造形物の製造方法である。
<6> 前記第2の液体が、前記硬化性材料を含まない前記<1>から<5>のいずれかに記載の立体造形物の製造方法である。
<7> 溶媒及び硬化性材料を含む第1の液体と、前記第1の液体とは組成の異なる第2の液体と、を有することを特徴とする立体造形用液体セットである。
<8> 前記第1の液体中の前記溶媒が、水を含み、前記第1の液体中の前記硬化性材料が、重合性モノマーを含み、前記第1の液体が、鉱物をさらに含む前記<7>に記載の立体造形用液体セットである。
<9> 前記第2の液体が、架橋剤、及び鉱物の少なくともいずれかを含む前記<7>から<8>のいずれかに記載の立体造形用液体セットである。
<10> 前記鉱物が、層状粘土鉱物の分散物である前記<8>又は<9>に記載の立体造形用液体セットである。
<11> 前記第1の液体及び第2の液体の少なくともいずれかが、重合開始剤を含む前記<7>から<10>のいずれかに記載の立体造形用液体セットである。
<12> 前記第2の液体が、前記第1の液体中の前記重合性モノマーとは異なる重合性モノマーを含む前記<7>から<11>のいずれかに記載の立体造形用液体セットである。
<13> 前記第2の液体が、前記第1の液体中の前記重合性モノマーと同じ重合性モノマーを含む前記<7>から<11>のいずれかに記載の立体造形用液体セットである。
<14> 前記第2の液体が、前記硬化性材料を含まない前記<7>から<11>のいずれかに記載の立体造形用液体セットである。
<15> 前記第1の液体及び第2の液体とは組成の異なる第3の液体をさらに有する前記<7>から<14>のいずれかに記載の立体造形用液体セットである。
<16> 前記<7>から<15>のいずれかに記載の立体造形用液体セットにおける第1の液体及び第2の液体を付与する液体付与工程と、前記液体付与工程により形成された液膜を硬化させる膜硬化工程と、を含むことを特徴とする立体造形物の製造方法である。
<17> 前記<7>から<15>のいずれかに記載の立体造形用液体セットにおける第1の液体及び第2の液体を付与する液体付与手段と、
前記液体付与手段により形成された液膜を硬化させる膜硬化手段と、を有することを特徴とする立体造形物の製造装置である。
<18> 前記液体付与手段が、液滴吐出方式である前記<17>に記載の立体造形物の製造装置である。
<19> 前記膜硬化手段がUV-LEDである前記<17>又は<18>に記載の立体造形物の製造装置である。
<20> 硬化された液膜を平滑化する手段を有する前記<17>から<19>のいずれかに記載の立体造形物の製造装置である。
<21> 80%歪み圧縮応力及び弾性率の少なくともいずれかが、連続的な勾配を有することを特徴とするハイドロゲル造形体である。
<22> 前記80%歪み圧縮応力が、10kPa以上10,000kPa以下である前記<21>に記載のハイドロゲル造形体である。
<23> 硬化性材料を含む液体からなる液膜を硬化させてなる層を複数積層する立体造形物の製造方法であって、前記硬化性材料を含む液体として溶媒及び前記硬化性材料を含む第1の液体と、前記第1の液体とは組成の異なる第2の液体とを用いて、前記第1の液体及び前記第2の液体を付与する位置と付与量とを制御することにより、立体造形物とそれを支持する支持体構造物のいずれをも形成することを特徴とする立体造形物の製造方法である。
11 造形体液用インク噴射ヘッドユニット
12 希釈液用インク噴射ヘッドユニット
14、15 UV-LED照射機
16 造形体支持基板
17 ステージ
18 造形体
20、21 平滑化部材(ローラ形状)
22、23 平滑化部材(ブレード形状)
30 立体造形物
31、32 支持体構造物
Claims (6)
- 溶媒及び硬化性材料を含む第1の液体と、前記第1の液体とは組成の異なる第2の液体と、を有し、前記第1の液体中の前記溶媒が、水を含み、前記第1の液体中の前記硬化性材料が、活性エネルギー線硬化性化合物である重合性モノマーを含み、前記第1の液体が、鉱物をさらに含み、前記第2の液体が、前記硬化性材料を含まないことを特徴とするインクジェット方式による立体造形物の造形に用いられる立体造形用液体セット。
- 前記第2の液体が、架橋剤、及び鉱物の少なくともいずれかを含む請求項1に記載の立体造形用液体セット。
- 前記鉱物の含有量が、前記第1の液体全量に対して1質量%以上40質量%以下である請求項1又は2に記載の立体造形用液体セット。
- 前記鉱物が、層状粘土鉱物の分散物である請求項1から3のいずれかに記載の立体造形用液体セット。
- 前記第1の液体及び前記第2の液体の少なくともいずれかが、重合開始剤を含む請求項1から4のいずれかに記載の立体造形用液体セット。
- 前記第1の液体及び前記第2の液体とは組成の異なる第3の液体をさらに有する請求項1から5のいずれかに記載の立体造形用液体セット。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015135174 | 2015-07-06 | ||
JP2015135174 | 2015-07-06 | ||
JP2015231140 | 2015-11-26 | ||
JP2015231140 | 2015-11-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063311A Division JP6775760B2 (ja) | 2015-07-06 | 2016-03-28 | 立体造形用液体セット、立体造形物の製造方法、立体造形物の製造装置、及びハイドロゲル造形体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021000839A JP2021000839A (ja) | 2021-01-07 |
JP7031110B2 true JP7031110B2 (ja) | 2022-03-08 |
Family
ID=59058515
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063311A Active JP6775760B2 (ja) | 2015-07-06 | 2016-03-28 | 立体造形用液体セット、立体造形物の製造方法、立体造形物の製造装置、及びハイドロゲル造形体 |
JP2020169250A Active JP7031110B2 (ja) | 2015-07-06 | 2020-10-06 | 立体造形用液体セット |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063311A Active JP6775760B2 (ja) | 2015-07-06 | 2016-03-28 | 立体造形用液体セット、立体造形物の製造方法、立体造形物の製造装置、及びハイドロゲル造形体 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6775760B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3515687B1 (en) | 2016-09-22 | 2022-04-20 | Stratasys Ltd. | Method for solid freeform fabrication |
CN109996665A (zh) | 2016-09-22 | 2019-07-09 | 斯特拉塔西斯公司 | 用于固体自由成型制造的方法和系统 |
EP3732015B1 (en) * | 2017-12-28 | 2023-11-08 | Stratasys Ltd. | Method and system for additive manufacturing of peelable sacrificial structure |
JP7155579B2 (ja) * | 2018-03-30 | 2022-10-19 | 株式会社リコー | ハイドロゲル構造体、その製造方法、及び臓器モデル |
JP7183573B2 (ja) * | 2018-05-23 | 2022-12-06 | Dic株式会社 | 有機無機複合ヒドロゲル前駆体組成物、及び有機無機複合ヒドロゲル |
JP7131253B2 (ja) * | 2018-09-27 | 2022-09-06 | 日本電気株式会社 | 造形用インク、造形方法、およびプログラム |
DE102018128418B3 (de) * | 2018-11-13 | 2019-11-14 | Nanoscribe Gmbh | Verwendung eines Dispenser-Aufsatzes und Dispenser-Aufsatz für eine Vorrichtung zum Schreiben von 3D-Strukturen mittels Laserlithografie |
JP7441413B2 (ja) * | 2019-02-22 | 2024-03-01 | 株式会社リコー | 立体造形物、立体造形物の製造方法、立体造形用液体セット、立体造形物の製造装置 |
EP3698945B1 (en) | 2019-02-22 | 2022-05-18 | Ricoh Company, Ltd. | Solid freeform fabrication object, method of manufacturing solid freeform fabrication object, liquid set for solid freeform fabrication, and device for manufacturing solid freeform fabrication object |
JP7466840B2 (ja) | 2020-07-31 | 2024-04-15 | 株式会社リコー | ハイドロゲル立体造形用組成物、ハイドロゲル立体造形物の造形方法、及びハイドロゲル立体造形用組成物セット |
JP7543767B2 (ja) | 2020-08-07 | 2024-09-03 | 株式会社リコー | 臓器モデルおよびトレーニングシステム |
KR102421003B1 (ko) * | 2020-11-30 | 2022-07-15 | (주)링크솔루션 | 경화제를 함유한 지지체 조성물을 이용한 3d 프린팅 장치 및 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030207959A1 (en) | 2000-03-13 | 2003-11-06 | Eduardo Napadensky | Compositions and methods for use in three dimensional model printing |
JP2005035299A (ja) | 2003-07-18 | 2005-02-10 | Hewlett-Packard Development Co Lp | 固体の3次元物体を自由造形するためのインクジェット噴射可能な反応性ポリマーシステム |
JP2009298146A (ja) | 2008-05-15 | 2009-12-24 | Fujifilm Corp | 三次元造形物の製造方法、三次元造形用材料及び三次元造形物 |
JP2013194084A (ja) | 2012-03-16 | 2013-09-30 | Kawamura Institute Of Chemical Research | 有機無機複合ヒドロゲル |
WO2015067569A1 (en) | 2013-11-05 | 2015-05-14 | Espci Innov | Self-healing thermally conductive polymer materials |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003011237A (ja) * | 2001-07-03 | 2003-01-15 | Kuraray Co Ltd | 立体造形物の製造方法 |
JP4974144B2 (ja) * | 2006-11-20 | 2012-07-11 | 国立大学法人 東京医科歯科大学 | ゲルの製造方法及びそのための装置 |
JP5632597B2 (ja) * | 2008-09-02 | 2014-11-26 | 地方独立行政法人東京都立産業技術研究センター | 弦楽器、弦楽器の製造方法及び弦楽器製造装置 |
JP6256044B2 (ja) * | 2014-01-23 | 2018-01-10 | 株式会社リコー | 立体造形物の製造方法 |
-
2016
- 2016-03-28 JP JP2016063311A patent/JP6775760B2/ja active Active
-
2020
- 2020-10-06 JP JP2020169250A patent/JP7031110B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030207959A1 (en) | 2000-03-13 | 2003-11-06 | Eduardo Napadensky | Compositions and methods for use in three dimensional model printing |
JP2005035299A (ja) | 2003-07-18 | 2005-02-10 | Hewlett-Packard Development Co Lp | 固体の3次元物体を自由造形するためのインクジェット噴射可能な反応性ポリマーシステム |
JP2009298146A (ja) | 2008-05-15 | 2009-12-24 | Fujifilm Corp | 三次元造形物の製造方法、三次元造形用材料及び三次元造形物 |
JP2013194084A (ja) | 2012-03-16 | 2013-09-30 | Kawamura Institute Of Chemical Research | 有機無機複合ヒドロゲル |
WO2015067569A1 (en) | 2013-11-05 | 2015-05-14 | Espci Innov | Self-healing thermally conductive polymer materials |
Also Published As
Publication number | Publication date |
---|---|
JP6775760B2 (ja) | 2020-10-28 |
JP2021000839A (ja) | 2021-01-07 |
JP2017105154A (ja) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7031110B2 (ja) | 立体造形用液体セット | |
US20210078243A1 (en) | Method of manufacturing three-dimensional object, liquid set for manufacturing three-dimensional object, device for manufacturing three-dimensional object, and gel object | |
JP6720476B2 (ja) | 立体造形用液体セット、立体造形物の製造方法、及び立体造形物 | |
JP6256044B2 (ja) | 立体造形物の製造方法 | |
JP7165190B2 (ja) | 低プリントスルー深さの3dプリント用インク | |
JP6825313B2 (ja) | 立体造形物の製造方法、及び製造装置 | |
TWI685415B (zh) | 模型材用組成物 | |
JP6819671B2 (ja) | 活性エネルギー線硬化型組成物、立体造形物の製造方法、及び立体造形物の製造装置 | |
JP6870275B2 (ja) | 立体造形用支持材、立体造形物の製造方法、及び立体造形物の製造装置 | |
JP6930176B2 (ja) | 立体造形用組成物のセット、立体造形物の製造方法、及び立体造形装置 | |
JP7013959B2 (ja) | 立体造形物の製造方法、立体造形物、液体セット、及び立体造形装置 | |
JP6848211B2 (ja) | 立体造形物の製造方法及び製造装置 | |
JP6938860B2 (ja) | 形状支持用液体、及び立体造形物の製造方法 | |
JP2020033452A (ja) | 活性エネルギー線硬化型液体、活性エネルギー線硬化型液体セット、造形物の製造方法、及び造形物製造装置 | |
JP6451822B2 (ja) | 造形装置、及び造形体 | |
JP2017213812A (ja) | 立体造形物の製造方法 | |
JP7391228B2 (ja) | 三次元プリント用途のための水溶性ワックス状支持材料 | |
US11597139B2 (en) | Solid freeform fabrication object, method of manufacturing solid freeform fabrication object, liquid set for solid freeform fabrication, and device for manufacturing solid freeform fabrication object | |
JP6733305B2 (ja) | 立体造形物の製造方法及びゲル構造物の造形装置、並びにこれに用いるゲル構造物造形用液体セット | |
JP7441413B2 (ja) | 立体造形物、立体造形物の製造方法、立体造形用液体セット、立体造形物の製造装置 | |
JP2021024886A (ja) | 活性エネルギー線硬化型組成物、硬化物、および硬化物の製造方法 | |
JP7052397B2 (ja) | 立体造形物用組成物、立体造形物の製造装置、及び立体造形物の製造方法 | |
JP7466840B2 (ja) | ハイドロゲル立体造形用組成物、ハイドロゲル立体造形物の造形方法、及びハイドロゲル立体造形用組成物セット | |
JP2022086720A (ja) | 立体造形物の製造方法、立体造形物製造用プログラム、および立体造形物の製造装置 | |
JP2022086729A (ja) | 立体造形用セットおよび立体造形物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201009 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220206 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7031110 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |