JP7029317B2 - 回転機械 - Google Patents

回転機械 Download PDF

Info

Publication number
JP7029317B2
JP7029317B2 JP2018043508A JP2018043508A JP7029317B2 JP 7029317 B2 JP7029317 B2 JP 7029317B2 JP 2018043508 A JP2018043508 A JP 2018043508A JP 2018043508 A JP2018043508 A JP 2018043508A JP 7029317 B2 JP7029317 B2 JP 7029317B2
Authority
JP
Japan
Prior art keywords
variable
breaker
vibration
variable breaker
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018043508A
Other languages
English (en)
Other versions
JP2019157713A (ja
JP2019157713A5 (ja
Inventor
和幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2018043508A priority Critical patent/JP7029317B2/ja
Priority to US16/281,427 priority patent/US10876421B2/en
Priority to DE102019202875.6A priority patent/DE102019202875A1/de
Priority to CN201910163016.7A priority patent/CN110242364B/zh
Publication of JP2019157713A publication Critical patent/JP2019157713A/ja
Publication of JP2019157713A5 publication Critical patent/JP2019157713A5/ja
Application granted granted Critical
Publication of JP7029317B2 publication Critical patent/JP7029317B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • F01D25/06Antivibration arrangements for preventing blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/26Antivibration means not restricted to blade form or construction or to blade-to-blade connections or to the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/14Preswirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Description

本発明は、回転機械に関する。
蒸気タービンは、軸線回りに回転するロータと、ロータに取り付けられた複数の動翼と、ロータ及び動翼を外側から覆うケーシングと、ケーシングの内面に取り付けられた複数の静翼と、を備えている。軸線方向の一方側から高温高圧の蒸気が流入することで、動翼にエネルギーが付加され、回転軸は回転する。この回転エネルギーによって、蒸気タービンに接続された発電機等が駆動される。
ここで、上記のような蒸気タービンでは、ロータの円滑な回転を実現するため、動翼の先端部(シュラウド)とケーシングの内周面との間には、一定のクリアランスが設けられることが一般的である。しかしながら、当該クリアランスを流通する蒸気は、動翼や静翼に衝突することなく下流側に流れ去ってしまうことから、ロータの回転駆動に際しては何ら寄与するところがない。加えて、クリアランスを流通する蒸気は、スワール成分(周方向の速度成分)を含んでいる。このようなスワール成分によって、クリアランス内部における圧力分布が不均一になり、その結果としてロータに振動を生じる可能性がある。したがって、スワール成分を低減することが可能な技術が望まれている。
このような技術の一例として、例えば下記特許文献1に記載された装置が知られている。特許文献1に記載された装置では、動翼のシュラウドの上流側に位置する静翼のノズル部に、蒸気の流れ方向を案内する案内羽根が設けられている。この案内羽根によって、上述のスワール成分が低減され、ロータの振動を抑制できるとされている。
特開2006-104952号公報
ところで、スワール成分を含む漏洩蒸気は、ロータとの間で生じる摩擦力によって、ロータの回転を促す(補助する)ことが知られている。しかしながら、上記特許文献1の構成では、ロータの振動抑制が実現できる一方で、スワール成分が減少することに伴って、上記の摩擦力も減少する。その結果として、ロータを周方向に回転させる力が弱くなり、案内羽根が無い場合に比べてタービン出力が低下してしまう。したがって、必要な際にのみスワール成分を低減することが可能な装置が望まれている。
本発明は上記課題を解決するためになされたものであって、振動を抑制することができるとともに出力低下が抑えられた蒸気タービンを提供することを目的とする。
本発明の第一の態様によれば、回転機械は、軸線回りに回転する回転軸と、該回転軸から径方向外側に向かって延びて、周方向に間隔をあけて複数が設けられた動翼と、該動翼を径方向外側から囲むとともに、動翼の先端を収容するキャビティをなす凹部が形成されたケーシングと、前記凹部の底部及び動翼の先端の一方から延びて他方との間でクリアランスを形成するシール部と、前記キャビティ内に突出した突出位置と、前記ケーシング内に収容された収容位置との間で変位可能に、前記ケーシングに設けられた可変ブレーカと、を備え、前記ケーシングの凹部には、前記可変ブレーカを収容可能な収容溝が形成され、前記可変ブレーカは、前記収容溝内に収容された状態である収容位置と、前記収容溝から径方向内側に突出した状態である突出位置との間で変位可能に支持されており、前記可変ブレーカは、前記軸線に対する径方向に延びる回動軸回りに回動可能である。
この構成によれば、可変ブレーカが突出位置にある場合には、当該可変ブレーカによってキャビティ内のスワール成分を低減・阻止することができる。一方で、可変ブレーカが収容位置にある場合には、スワール成分はキャビティ内を円滑に流れる。この際、スワール成分が動翼の先端を回転方向に引きずることによって、スワール成分のエネルギーの一部をロータの回転エネルギーとして回収することができる。
このように上記の構成によれば、回転軸に振動が生じた場合には振動を収束させるために必要な最低限の可変ブレーカを突出位置に変位させ、振動が収束した場合には可変ブレーカを収容位置に変位させることができる。これにより、蒸気タービンの出力低下を最小限に抑えつつ、スワール成分に起因する振動を抑制することができる。
また、この構成によれば、可変ブレーカを回動軸回りに回動させるのみで、可変ブレーカを突出位置に変位させることができる。これにより、スワール成分を低減することができる。さらに、可変ブレーカに回転力を付加できるものであればいかなるものも駆動源として適用することができる。したがって、装置の構成が簡素化され、コストを低廉化することができる。一方で、可変ブレーカを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力でタービンを運転することができる。
本発明のの態様によれば、前記可変ブレーカは、前記ケーシングから前記キャビティ内に向かって前記軸線に対する径方向に進退動可能であってもよい。
この構成によれば、可変ブレーカは、キャビティ内に向かって軸線に対する径方向に進退動する。ここで、キャビティ内では、軸線に対する周方向の成分を含む流れ(スワール成分)が形成されている。したがって、可変ブレーカが突出位置にある場合には、当該可変ブレーカによってスワール成分を効率的に遮ることができる。一方で、可変ブレーカを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力でタービンを運転することができる。
本発明のの態様によれば、前記可変ブレーカは、前記ケーシングから前記キャビティ内に向かって前記軸線方向に進退動可能であってもよい。
この構成によれば、可変ブレーカは、キャビティ内に向かって軸線方向に進退動する。ここで、キャビティ内では、軸線に対する周方向の成分を含む流れ(スワール成分)が形成されている。したがって、可変ブレーカが突出位置にある場合には、当該可変ブレーカによってスワール成分を効率的に遮ることができる。一方で、可変ブレーカを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力でタービンを運転することができる。
本発明のの態様によれば、前記ケーシングには前記軸線に対する径方向に延びる固定溝が形成され、前記可変ブレーカが前記突出位置にある時に、該可変ブレーカの少なくとも一部は前記固定溝によって周方向に変位不能に固定されていてもよい。
この構成によれば、可変ブレーカが突出位置にある場合、当該可変ブレーカの少なくとも一部が固定溝によって周方向に変位不能に固定される。したがって、可変ブレーカは、周方向から衝突するスワール成分に対して十分に抗することができる。言い換えると、可変ブレーカがスワール成分によって吹き飛ばされたり、折れ曲がったりする可能性を低減することができる。
本発明の他の態様によれば、前記可変ブレーカは、前記軸線に対する周方向に等間隔をあけて複数設けられていてもよい。
この構成によれば、可変ブレーカが周方向に等間隔をあけて複数設けられていることから、可変ブレーカが突出位置にある場合であっても、ケーシング内における周方向の圧力分布を均一化することができる。即ち、可変ブレーカの配置に起因する周方向の圧力アンバランスを抑制できる。
本発明のの態様によれば、回転機械は、前記回転軸の振動を検知する振動検知部と、該振動検知部によって振動が検知された場合に前記可変ブレーカを前記突出位置に変位させるとともに、振動が検知されない場合には前記可変ブレーカを前記収容位置に変位させる制御装置と、をさらに備えてもよい。
本発明の第二の態様によれば、回転機械は、軸線回りに回転する回転軸と、該回転軸から径方向外側に向かって延びて、周方向に間隔をあけて複数が設けられた動翼と、該動翼を径方向外側から囲むとともに、動翼の先端を収容するキャビティをなす凹部が形成されたケーシングと、前記凹部の底部及び動翼の先端の一方から延びて他方との間でクリアランスを形成するシール部と、前記キャビティ内に突出した突出位置と、前記ケーシング内に収容された収容位置との間で変位可能に、前記ケーシングに設けられた可変ブレーカと、を備え、前記ケーシングの凹部には、前記可変ブレーカを収容可能な収容溝が形成され、前記可変ブレーカは、前記収容溝内に収容された状態である収容位置と、前記収容溝から径方向内側に突出した状態である突出位置との間で変位可能に支持されており、前記回転軸の振動を検知する振動検知部と、該振動検知部によって振動が検知された場合に前記可変ブレーカを前記突出位置に変位させるとともに、振動が検知されない場合には前記可変ブレーカを前記収容位置に変位させる制御装置と、をさらに備えてもよい。
この構成によれば、回転軸の振動が検知された場合には、可変ブレーカを突出位置に変位させることでスワール成分が低減され、当該振動を抑制することができる。さらに、振動が収束した場合には、可変ブレーカを収容位置に変位させることで、蒸気タービンの出力低下を回避することができる。即ち、スワールブレーカを設置しないタービンと同等の出力でタービンを運転することができる。
本発明のの態様によれば、前記回転軸の振動を検知する振動検知部と、該振動検知部によって振動が検知された場合に前記可変ブレーカを前記突出位置に変位させるとともに、振動が検知されない場合には前記可変ブレーカを前記収容位置に変位させる制御装置と、を備え、前記制御装置は、前記回転軸の振動の強度に応じて、前記突出位置に変位させる前記可変ブレーカの個数を決定してもよい。
この構成によれば、回転軸の振動の強度に応じて、突出位置に変位させる可変ブレーカの個数が決定される。即ち、振動の強度が高い場合にはより多くの可変ブレーカを突出位置に変位させることができる。これにより、早期に振動を収束させることができる。一方で、振動の強度が低い場合には最小限の個数の可変ブレーカを突出位置に変位させることで、蒸気タービンの出力低下を抑制しつつ、振動を収束させることができる。
本発明のの態様によれば、前記制御装置は、前記回転軸の振動の強度が高くなるに従って、前記収容位置から前記突出位置に変位させる前記可変ブレーカの個数を増加させ、かつ複数の前記可変ブレーカが周方向に等間隔となるように前記突出位置に変位させてもよい。
この構成によれば、振動の強度が高い場合にはより多くの可変ブレーカを突出位置に変位させることができる。これにより、早期に振動を収束させることができる。加えて、可変ブレーカが周方向に等間隔をあけて配置されることから、可変ブレーカが突出位置にある場合であっても、ケーシング内における周方向の圧力分布を均一化することができる。即ち、可変ブレーカの配置に起因する周方向の圧力アンバランスを抑制できる。
本発明によれば、振動を抑制できるとともに出力の低下を最小限に抑えることができる。
本発明の第一実施形態に係る蒸気タービンの構成を示す図である。 本発明の第一実施形態に係る可変ブレーカの拡大図である。 本発明の第一実施形態に係る可変ブレーカを径方向から見た図である。 本発明の第一実施形態に係る蒸気タービンの軸線方向における断面図である。 本発明の第一実施形態に係る制御装置のハードウェア構成を示す図である。 本発明の第一実施形態に係る制御装置の構成を示す機能ブロック図である。 本発明の第一実施形態に係る制御装置の処理を示すフローチャートである。 本発明の第一実施形態の変形例に係る制御装置の処理を示すフローチャートである。 本発明の第一実施形態に係る可変ブレーカの変形例を示す図である。 本発明の第一実施形態に係る可変ブレーカのさらなる変形例を示す図である。 本発明の第二実施形態に係る可変ブレーカを径方向から見た図である。 本発明の第三実施形態に係る可変ブレーカを径方向から見た図である。 本発明の第四実施形態に係る可変ブレーカを径方向から見た図である。 本発明の第一実施形態に係る可変ブレーカの変形例を示す図である。
[第一実施形態]
本発明の第一実施形態について図面を参照して説明する。図1に示すように、蒸気タービン1は、軸線O方向に沿って延びる蒸気タービンロータ3(回転軸)と、蒸気タービンロータ3を外周側から覆う蒸気タービンケーシング2(ケーシング)と、蒸気タービンロータ3の軸端11を軸線O回りに回転可能に支持するジャーナル軸受4、及びスラスト軸受5と、を備えている。
蒸気タービンロータ3は複数の動翼30を有している。蒸気タービンロータ3の周方向に一定の間隔をもって複数の動翼30が配列される。軸線O方向においても、一定の間隔を持って複数の動翼30の列が配列される。動翼30は、翼本体31と、動翼シュラウド34(シュラウド)と、を有している。翼本体31は、蒸気タービンロータ3の外周面から径方向外側に向かって突出している。翼本体31は、径方向から見て翼型の断面を有する。翼本体31の先端部(径方向外側の端部)には、動翼シュラウド34が設けられている。
蒸気タービンケーシング2は、蒸気タービンロータ3を外周側から覆う略筒状をなしている。蒸気タービンケーシング2の軸線O方向一方側には、蒸気を取り込む蒸気供給管12が設けられている。蒸気タービンケーシング2の軸線O方向他方側には、蒸気を排出する蒸気排出管13が設けられている。以降の説明では、蒸気排出管13から見て蒸気供給管12が位置する側を上流側と呼び、蒸気供給管12から見て蒸気排出管13が位置する側を下流側と呼ぶ。
蒸気タービンケーシング2の内周面に沿って複数の静翼21が設けられている。静翼21は、静翼台座24を介して蒸気タービンケーシング2の内周面に接続される羽根状の部材である。さらに、静翼21の先端部(径方向内側の端部)には、静翼シュラウド22が設けられている。動翼30と同様に、静翼21は内周面上で周方向及び軸線O方向に沿って複数配列される。動翼30は、隣り合う複数の静翼21の間の領域に入り込むようにして配置される。
蒸気タービンケーシング2の内部において、静翼21と動翼30が配列された領域は、作動流体である蒸気Sが流通する主流路20を形成する。蒸気タービンケーシング2の内周面と動翼シュラウド34との間には、軸線Oに対する径方向外側に向かって凹む凹部50が周方向全域にわたって形成されている。凹部50は、動翼30の先端(動翼シュラウド34)を収容するキャビティをなしている。即ち、凹部50は、動翼シュラウド34の体積に比べて十分に大きな容積を有している。
蒸気Sは、上流側の蒸気供給管12を介して、上述のように構成された蒸気タービン1に供給される。その後、蒸気タービンロータ3の回転に伴って静翼21と動翼30の列を通過し、やがて下流側の蒸気排出管13を通じて後続の装置(不図示)に向かって排出される。ここで、静翼21と動翼30の列を通過する際、前述の凹部50にも蒸気Sは流入する。
ジャーナル軸受4は、軸線Oに対する径方向への荷重を支持する。ジャーナル軸受4は、蒸気タービンロータ3の両端に1つずつ設けられている。スラスト軸受5は、軸線O方向への荷重を支持する。スラスト軸受5は、蒸気タービンロータ3の上流側の端部にのみ設けられている。
図2は、凹部50の周辺を拡大して示している。動翼シュラウド34の先端(シュラウド外周面341)と、凹部50における内周側を向く面(凹部底面51)との間には、これらシュラウド外周面341及び凹部底面51の少なくとも一方に設けられ、他方に向かって突出するシールフィン6が設けられている。シールフィン6は、主流路20を流れる蒸気(主蒸気S1)から分岐して凹部50に向かう蒸気の流れ(副流S2)を阻止するために設けられている。
本実施形態では、シュラウド外周面341に1つのシールフィン6(シュラウド側シールフィン61)が設けられ、凹部内周面51に2つのシールフィン6(凹部側シールフィン62)が設けられている。シュラウド側シールフィン61は、2つの凹部側シールフィン62同士の間に配置されている。シュラウド側シールフィン61と凹部底面51との間、及び凹部側シールフィン62とシュラウド外周面341との間には、それぞれ径方向に広がるわずかな隙間(クリアランス)が形成されている。
図2及び図3に示すように、凹部50における上流側に位置する面(凹部上流面52)には、可変ブレーカ70が設けられている。可変ブレーカ70は、上述の主蒸気S1から分岐して凹部50内を流れる副流S2に含まれるスワール成分Fs(旋回流成分)を遮るために設けられている。可変ブレーカ70は矩形板状をなしている。可変ブレーカ70は、軸線Oに対する径方向に延びる回動軸71回りに回動可能とされている。回動軸71は、凹部上流面52に取り付けられ、可変ブレーカ70の周方向一方側の端縁を支持している。
凹部上流面52には、可変ブレーカ70と同等の面積、深さ(軸線O方向における寸法)を要する収容溝40が形成されている。上述の回動軸71は、この収容溝40の周方向一方側の端縁に取り付けられている。可変ブレーカ70は、駆動源72(図4参照)から伝達された駆動力によって回動軸71回りに回動することで、収容溝40に収容された状態である収容位置と、凹部50内に突出した状態である突出位置との間で変位可能である。より具体的には、可変ブレーカ70は、径方向外側から見た場合、周方向他方側から一方側に向かって回動軸71回りに回動することが可能である。可変ブレーカ70の駆動源72としては、電動機や油圧モータ等が好適に用いられる。
以下の説明では、可変ブレーカ70が収容位置から突出位置に変位することを、「可変ブレーカ70を展開する」と呼ぶことがある。また、可変ブレーカ70が突出位置から収容位置に変位することを、「可変ブレーカ70を収容する」と呼ぶことがある。
展開された状態の可変ブレーカ70は、凹部上流面52に対して略垂直をなしている。言い換えると、展開された可変ブレーカ70は、凹部50内で、軸線O方向に延びている。一方で、収容された可変ブレーカ70は、収容溝40内に収まり、その下流側を向く面(ブレーカ主面73)は、凹部上流面52と面一をなす。言い換えると、可変ブレーカ70が収容溝40内にある時、可変ブレーカ70と凹部上流面52との間には段差等が形成されていない。
図4に示すように本実施形態では、凹部50内に、周方向に等間隔をあけて複数(4つ)の可変ブレーカ70が設けられている。(なお、図4では、動翼30を簡略化して描画している。即ち、動翼30の数は図4に示す例に限定されない。)各可変ブレーカ70に対応する駆動源72は、信号線Lによって制御装置90に接続されている。また、蒸気タービン1には、蒸気タービンロータ3の振動を検出する振動センサ80が設けられている。具体的には、振動センサ80は、ジャーナル軸受4又はスラスト軸受5に取り付けられている。振動センサ80は、検出した蒸気タービンロータ3の振動を電気信号として制御装置90に送出する。
制御装置90は、図5に示すように、CPU91(Central Processing Unit)、ROM92(Read Only Memory)、RAM93(Random Access Memory)、HDD94(Hard Disk Drive)、信号受信モジュール95(I/O:Input/Output)を備えるコンピュータである。信号受信モジュール95は、振動センサ80からの信号を受信する。信号受信モジュール95は、例えばチャージアンプ等を介して増幅された信号を受信してもよい。
図6に示すように、制御装置90のCPU91は予め自装置で記憶するプログラムを実行することにより、制御部81、振動検知部82、判定部83、駆動制御部84を有する。制御部81は制御装置90に備わる他の機能部を制御する。振動検知部82には、信号受信モジュールを介して上述の振動センサ80から受信した、蒸気タービンロータ3の振動に関する情報(振幅、周波数等)が入力される。判定部83は、蒸気タービンロータ3の振動が、予め記憶された閾値よりも大きいか小さいかを判定する。駆動制御部84は、判定部83の判定結果に基づいて、駆動源72に対して駆動信号を送出する。この駆動信号によって、駆動源72は可変ブレーカ70を展開・収容させる。
次に、本実施形態に係る蒸気タービン1の動作について説明する。蒸気タービン1を運転するに当たっては、外部の蒸気供給源(不図示)から、高温高圧の蒸気が蒸気供給管12を通じて蒸気タービンケーシング2の内部(主流路20)に供給される。蒸気は、主流路20に沿って、上流側から下流側に向かって流れる流れ(主蒸気S1)を形成する。主蒸気S1は、静翼21と動翼30が設けられた主流路20を通過することで、動翼30を介して蒸気タービンロータ3に回転力を与える。蒸気タービンロータ3の回転は軸端から取り出されて、発電機等(不図示)の外部機器を駆動する。
次いで、図2を参照して、凹部50近傍における蒸気の挙動について説明する。同図に示すように、主蒸気S1のうち、一部の成分は、主蒸気S1から逸脱して凹部50内に向かう流れ(副流S2)を形成する。副流S2は、ケーシング2に設けられた静翼21を通過する際に付与されたスワール成分Fs(旋回流成分)を含んでいる。図3に示すように、このスワール成分Fsは、上流側から下流側に向かうに従って、蒸気タービンロータ3の回転方向前方側(周方向一方側から他方側)に向かって流れる。
図7Aに示すように、蒸気タービン1が運転されている状態において、判定部83は、蒸気タービンロータ3の振動と閾値との大小を比較する(ステップS1)。判定部83において、蒸気タービンロータ3の振動が閾値よりも大きいと判定された場合(ステップS1:No)、駆動制御部84は、駆動源72に対して駆動信号を送出する。この駆動信号によって可変ブレーカ70が展開される(ステップS2)。これにより、凹部50内を流れる副流S2のスワール成分Fsが低減され、蒸気タービンロータ3の振動が抑制される。
一方で、判定部83において、蒸気タービンロータ3の振動が閾値よりも小さいと判定された場合(ステップS1:Yes)、駆動制御部84は、駆動源72に対して駆動信号を送出せず、制御を終了する。その後も、継続的又は断続的に上記のステップS1,S2を繰り返して実行することで、蒸気タービンロータ3の振動が監視される。
ところで、スワール成分Fsを含む副流S2は、蒸気タービンロータ3との間で生じる摩擦力によって、蒸気タービンロータ3の回転を促す(補助する)ことが知られている。上記の構成では、蒸気タービンロータ3の振動抑制が実現できる一方で、スワール成分Fsが減少することに伴って、上記の摩擦力も減少する。その結果として、蒸気タービンロータ3を周方向に回転させる力が弱くなり、蒸気タービン1の出力が低下する場合がある。
そこで、本実施形態に係る制御装置90は、蒸気タービンロータ3の振動の強度(ロータの不安定振動が懸念される周波数成分の振幅の大小)に応じて、展開させる可変ブレーカ70の個数を決定する。具体的には、振動が検知された初期の段階では、4つのうち、2つの可変ブレーカ70が駆動制御部84によって展開される。この時に展開される可変ブレーカ70は、軸線Oに対する直径方向に対向する一対の可変ブレーカ70である。即ち、凹部50内において、展開された可変ブレーカ70は、周方向に等間隔となっている。
上記の状態で、判定部83は再び蒸気タービンロータ3の振動強度を閾値と比較する。蒸気タービンロータ3の振動強度がなおも閾値よりも大きいと判定された場合には、残余の2つの可変ブレーカ70を展開する。即ち、4つの可変ブレーカ70が周方向に等間隔をあけて展開された状態となる。このように、本実施形態では、蒸気タービンロータ3の振動の強度が高くなるに従って、展開される可変ブレーカ70の個数が増加する。
その後も判定部83は振動強度と閾値との大小比較を断続的又は連続的に繰り返す。蒸気タービンロータ3の振動強度が閾値よりも小さいと判定された場合には、駆動制御部84は、直径方向に対向する2つの可変ブレーカ70を収容させる。なおも蒸気タービンロータ3の振動強度が閾値よりも小さいと判定された場合には、駆動制御部84によって残余の2つの可変ブレーカ70が収容される。
以上、説明したように、本実施形態に係る蒸気タービン1では、可変ブレーカ70が突出位置にある場合には、当該可変ブレーカ70によって凹部50内のスワール成分を低減・阻止することができる。一方で、可変ブレーカ70が収容位置にある場合には、スワール成分は凹部50内を円滑に流れるため、該スワール成分Fsが動翼の30先端を回転方向に引きずることによって、スワール成分のエネルギーの一部をロータの回転エネルギーとして回収することができる。即ち、上記の構成によれば、蒸気タービンロータ3に振動が生じた場合には可変ブレーカ70を突出位置に変位させ、振動が収束した場合には可変ブレーカ70を収容位置に変位させることができる。これにより、蒸気タービン1の出力低下を最小限に抑えつつ、スワール成分に起因する振動を抑制することができる。
さらに、上記の構成によれば、可変ブレーカ70を回動軸71回りに回動させるのみで、可変ブレーカ70を突出位置に変位させることができる。加えて、可変ブレーカ70に回転力を付加できるものであればいかなるものも駆動源72として適用することができる。したがって、装置の構成が簡素化され、コストを低廉化することができる。一方で、可変ブレーカ70を収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力で蒸気タービン1を運転することができる。
加えて、上記の構成によれば、振動センサ80によって蒸気タービンロータ3の振動が検知された場合には、可変ブレーカ70を突出位置に変位させることでスワール成分Fsが低減され、当該振動を抑制することができる。さらに、振動が収束した場合には、可変ブレーカ70を収容位置に変位させることで、蒸気タービン1の出力が低下することを抑制することができる。即ち、スワールブレーカを常設した場合に比べて、蒸気タービン1の出力低下を抑制することができる。
さらに、上記の構成によれば、可変ブレーカ70が周方向に等間隔をあけて複数設けられていることから、可変ブレーカ70が突出位置にある場合であっても、蒸気タービンケーシング2内における周方向の圧力分布を均一化することができる。即ち、可変ブレーカ70の配置に起因する周方向の圧力アンバランスを抑制できる。
加えて、上記の構成によれば、蒸気タービンロータ3の振動の強度に応じて、展開される可変ブレーカ70の個数が決定される。即ち、振動の強度が高い場合にはより多くの可変ブレーカ70を突出位置に変位させることができる。これにより、早期に振動を収束させることができる。一方で、振動の強度が低い場合には最小限の個数の可変ブレーカ70を展開させることで、蒸気タービン1の出力低下を最小限に抑えつつ、振動を収束させることができる。
以上、本発明の第一実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、周方向に4つの可変ブレーカ70が配置されている例について説明した。しかしながら、可変ブレーカ70の個数は4つに限定されず、5つ以上であってもよい。なお、周方向における圧力分布の均一化という観点からは、可変ブレーカ70の個数は偶数であることが望ましい。
さらに、上記実施形態では、各可変ブレーカ70は、収容位置と突出位置との間で選択的に変位可能であるとして説明した。しかしながら、可変ブレーカ70の回動量(位置・姿勢)を、収容位置と突出位置との間で連続的に変化させることも可能である。このような構成によれば、スワール成分Fsの低減量をより精緻に調節することができる。
また、上記実施形態では、可変ブレーカ70が、回動軸71回りに周方向他方側から一方側に向かって展開される構成について説明した。即ち、上記実施形態では、周方向一方側から他方側に向かって流れるスワール成分Fsに対して対向する方向に可変ブレーカ70が展開される。しかしながら、可変ブレーカ70の展開される方向は上記に限定されず、回動軸71回りに周方向一方側から他方側に向かって展開される構成を採ることも可能である。
加えて、上記実施形態では、凹部上流面52に可変ブレーカ70が配置される例について説明した。しかしながら、可変ブレーカ70の配置される位置は上記に限定されない。他の例として、図8に示すように、互いに隣り合うシールフィン6同士の間の空間に可変ブレーカ70を配置することも可能である。
さらに加えて、上記実施形態では、可変ブレーカ70が矩形板状をなしている例について説明した。しかしながら、可変ブレーカ70の形状は上記に限定されず、図9に示すように、径方向から見て、三角形状の断面を有する部材を可変ブレーカ70として用いることも可能である。
さらに、上記実施形態では、制御装置90が図7Aに示すステップS1,S2を実行する例について説明した。しかしながら、制御装置90の動作は上記に限定されず、他の例として図7Bに示す動作を制御装置90に実行させることも可能である。
図7Bの例では、制御装置90は、振動の発生有無に関わらず、はじめに全ての可変ブレーカ70が展開される(ステップS21)。次いで、判定部83が、蒸気タービンロータ3の振動強度と閾値とを比較する(ステップS22)。判定部83において、振動強度が閾値以下であると判定された場合(ステップS22:Yes)、制御装置90(駆動制御部84)は、任意のn個の可変ブレーカ70のみを閉状態とする(ステップS23)。なお、nの値は、蒸気タービン1の運転実績や出力に応じて適宜決定されることが望ましい。
ステップS23を実行した後に、再び判定部83は振動強度と閾値との比較を行う。この時、判定部83において、振動強度が閾値以上であると判定された場合(ステップS22:No)、ステップS23で収容した可変ブレーカ70の個数が過大であったために、蒸気タービンロータ3の振動が再発したとみなすことができる。そこで、制御装置90(駆動制御部84)は、収容される可変ブレーカ70の個数を1つ減らす。即ち、(n-1)個の可変ブレーカ70が収容状態となるように、1つの可変ブレーカ70を展開する(ステップS24)。
上記の構成によれば、蒸気タービンロータ3の振動を抑えるために必要な個数の可変ブレーカ70のみを展開することができる。即ち、蒸気タービンロータ3の振動を低減しつつ、蒸気タービン1の出力低下を最小限に抑えることが可能な運転条件をより高い精度で実現することができる。
さらに、上記実施形態では、回転機械として蒸気タービン1を例に説明をした。しかしながら、回転機械の態様は蒸気タービン1に限られず、遠心圧縮機やガスタービンであってもよい。
[第二実施形態]
次に、本発明の第二実施形態について、図10を参照して説明する。なお、上記第一実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、凹部底面51に、軸線Oに対する径方向に延びる収容溝41が形成されている。より具体的には、収容溝41は、凹部底面51における上流側の端縁に接して形成されている。収容溝41内には、矩形板状の可変ブレーカ70Bが収容可能である。
可変ブレーカ70Bは、収容溝41内に収容された状態である収容位置と、収容溝41から径方向内側に突出した状態である突出位置との間で変位可能とされている。即ち、可変ブレーカ70Bは、収容溝41から径方向に進退動することが可能である。突出位置にある可変ブレーカ70Bは、その径方向外側の端縁が、収容溝41によって支持されている。上記第一実施形態と同様に、本実施形態においても、凹部50内で周方向に等間隔をあけて複数の可変ブレーカ70Bが設けられている。
この構成によれば、可変ブレーカ70Bは、凹部50内に向かって軸線Oに対する径方向に進退動する。ここで、凹部50内では、軸線Oに対する周方向の成分を含む流れ(スワール成分)が形成されている。したがって、可変ブレーカ70Bが突出位置にある場合には、当該可変ブレーカ70Bによってスワール成分を効率的に遮ることができる。一方で、可変ブレーカ70Bを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力で蒸気タービン1を運転することができる。
以上、本発明の第二実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、可変ブレーカ70Bは、収容位置と突出位置との間で選択的に変位可能であるとして説明した。しかしながら、可変ブレーカ70Bの進出量を、収容位置と突出位置との間で連続的に変化させることも可能である。このような構成によれば、スワール成分Fsの低減量をより精緻に調節することができる。
さらに、上記実施形態では、回転機械として蒸気タービン1を例に説明をした。しかしながら、回転機械の態様は蒸気タービン1に限られず、遠心圧縮機やガスタービンであってもよい。
[第三実施形態]
続いて、本発明の第三実施形態について、図11を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、凹部上流面52に、軸線O方向に延びる収容溝42が形成されている。より具体的には、収容溝42は、凹部上流面52における径方向外側の端縁に接して形成されている。収容溝42内には、矩形板状の可変ブレーカ70Cが収容可能である。
可変ブレーカ70Cは、収容溝42内に収容された状態である収容位置と、収容溝42から下流側に突出した状態である突出位置との間で変位可能とされている。即ち、可変ブレーカ70Cは、収容溝42から軸線O方向に進退動することが可能である。突出位置にある可変ブレーカ70Bは、その上流側(軸線O方向一方側)の端縁が、収容溝42によって支持されている。上記の各実施形態と同様に、本実施形態においても、凹部50内で周方向に等間隔をあけて複数の可変ブレーカ70Cが設けられている。
この構成によれば、可変ブレーカ70Bは、凹部50内に向かって軸線O方向に進退動する。ここで、凹部50内では、軸線Oに対する周方向の成分を含む流れ(スワール成分)が形成されている。したがって、可変ブレーカ70Cが突出位置にある場合には、当該可変ブレーカ70Cによってスワール成分を効率的に遮ることができる。一方で、可変ブレーカ70Cを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力で蒸気タービン1を運転することができる。
以上、本発明の第三実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、可変ブレーカ70Cは、収容位置と突出位置との間で選択的に変位可能であるとして説明した。しかしながら、可変ブレーカ70Cの進出量を、収容位置と突出位置との間で連続的に変化させることも可能である。このような構成によれば、スワール成分の低減量をより精緻に調節することができる。
さらに、上記実施形態では、回転機械として蒸気タービン1を例に説明をした。しかしながら、回転機械の態様は蒸気タービン1に限られず、遠心圧縮機やガスタービンであってもよい。
[第四実施形態]
次に、本発明の第四実施形態について、図12を参照して説明する。なお、上記の各実施形態と同様の構成については同一の符号を付し、詳細な説明を省略する。同図に示すように、本実施形態では、上記第二実施形態と同様に、凹部底面51に、軸線Oに対する径方向に延びる収容溝41が形成されている。より具体的には、収容溝41は、凹部底面51における上流側の端縁に接して形成されている。収容溝41内には、矩形板状の可変ブレーカ70Dが収容可能である。
可変ブレーカ70Dは、収容溝41内に収容された状態である収容位置と、収容溝41から径方向内側に突出した状態である突出位置との間で変位可能とされている。即ち、可変ブレーカ70Dは、収容溝41から径方向に進退動することが可能である。さらに、凹部上流面52には、収容溝41と径方向に連通する固定溝43が形成されている。固定溝43は、軸線Oに対する径方向に延びており、可変ブレーカ70Dが突出位置にある時、その少なくとも一部が収容される。具体的には、可変ブレーカ70Dの上流側の端縁を含む部分が固定溝43に収容される。即ち、突出位置では、可変ブレーカ70Dは、収容溝41によって径方向外側から支持されるとともに、固定溝43によって上流側からも支持されている。
この構成によれば、可変ブレーカ70Bは、凹部50内に向かって軸線Oに対する径方向に進退動する。ここで、凹部50内では、軸線Oに対する周方向の成分を含む流れ(スワール成分)が形成されている。したがって、可変ブレーカ70Dが突出位置にある場合には、当該可変ブレーカ70Dによってスワール成分を効率的に遮ることができる。一方で、可変ブレーカ70Dを収容位置に収容した場合にはスワール成分が阻害されないため、スワールブレーカを設置しないタービンと同等の出力で蒸気タービン1を運転することができる。
加えて、この構成によれば、可変ブレーカ70Dが突出位置にある場合、当該可変ブレーカ70Dの少なくとも一部が固定溝43によって周方向に変位不能に固定される。したがって、可変ブレーカ70Dは、周方向から衝突するスワール成分に対して十分に抗することができる。言い換えると、可変ブレーカ70Dがスワール成分によって吹き飛ばされたり、折れ曲がったりする可能性を低減することができる。
以上、本発明の第四実施形態について説明した。なお、本発明の要旨を逸脱しない限りにおいて、上記の構成に種々の変更や改修を施すことが可能である。例えば、上記実施形態では、可変ブレーカ70Dは、収容位置と突出位置との間で選択的に変位可能であるとして説明した。しかしながら、可変ブレーカ70Dの進出量を、収容位置と突出位置との間で連続的に変化させることも可能である。このような構成によれば、スワール成分の低減量をより精緻に調節することができる。
さらに、図13に示すように、固定溝43を上記の第三実施形態で説明した可変ブレーカ70Cに適用することも可能である。同図に示すように、固定溝44は、凹部底面51に形成されており、収容溝42と径方向に連通している。固定溝44は、軸線Oに対する径方向に延びており、可変ブレーカ70Cが突出位置にある時、その少なくとも一部が収容される。即ち、突出位置では、可変ブレーカ70Cは、収容溝42によって径方向外側から支持されるとともに、固定溝44によって上流側からも支持されている。
さらに、上記実施形態では、回転機械として蒸気タービン1を例に説明をした。しかしながら、回転機械の態様は蒸気タービン1に限られず、遠心圧縮機やガスタービンであってもよい。
1…蒸気タービン
2…蒸気タービンケーシング
3…蒸気タービンロータ
4…ジャーナル軸受
5…スラスト軸受
6…シールフィン
11…軸端
12…蒸気供給管
13…蒸気排出管
20…主流路
24…静翼台座
30…動翼
31…翼本体
34…動翼シュラウド
40,41,42…収容溝
43,44…固定溝
50…凹部
51…凹部底面
52…凹部上流面
61…シュラウド側シールフィン
62…凹部側シールフィン
70…可変ブレーカ
71…回動軸
72…駆動源
73…ブレーカ主面
80…振動センサ
81…制御部
82…振動検知部
83…判定部
84…駆動制御部
90…制御装置
91…CPU
92…ROM
93…RAM
94…HDD
95…I/O
L…信号線
O…軸線
S1…主蒸気
S2…副流

Claims (9)

  1. 軸線回りに回転する回転軸と、
    該回転軸から径方向外側に向かって延びて、周方向に間隔をあけて複数が設けられた動翼と、
    該動翼を径方向外側から囲むとともに、前記動翼の先端を収容するキャビティをなす凹部が形成されたケーシングと、
    前記凹部の底部及び前記動翼の先端の一方から延びて他方との間でクリアランスを形成するシール部と、
    前記キャビティ内に突出した突出位置と、前記ケーシング内に収容された収容位置との間で変位可能に、前記ケーシングに設けられた可変ブレーカと、
    を備え、
    前記ケーシングの前記凹部には、前記可変ブレーカを収容可能な収容溝が形成され、
    前記可変ブレーカは、前記収容溝内に収容された状態である収容位置と、前記収容溝から径方向内側に突出した状態である突出位置との間で変位可能に支持されており、
    前記可変ブレーカは、前記軸線に対する径方向に延びる回動軸回りに回動可能である回転機械。
  2. 前記回転軸の振動を検知する振動検知部と、
    該振動検知部によって振動が検知された場合に前記可変ブレーカを前記突出位置に変位させるとともに、振動が検知されない場合には前記可変ブレーカを前記収容位置に変位させる制御装置と、
    をさらに備える請求項に記載の回転機械。
  3. 軸線回りに回転する回転軸と、
    該回転軸から径方向外側に向かって延びて、周方向に間隔をあけて複数が設けられた動翼と、
    該動翼を径方向外側から囲むとともに、前記動翼の先端を収容するキャビティをなす凹部が形成されたケーシングと、
    前記凹部の底部及び前記動翼の先端の一方から延びて他方との間でクリアランスを形成するシール部と、
    前記キャビティ内に突出した突出位置と、前記ケーシング内に収容された収容位置との間で変位可能に、前記ケーシングに設けられた可変ブレーカと、
    を備え、
    前記ケーシングの前記凹部には、前記可変ブレーカを収容可能な収容溝が形成され、
    前記可変ブレーカは、前記収容溝内に収容された状態である収容位置と、前記収容溝から径方向内側に突出した状態である突出位置との間で変位可能に支持されており、
    前記回転軸の振動を検知する振動検知部と、
    該振動検知部によって振動が検知された場合に前記可変ブレーカを前記突出位置に変位させるとともに、振動が検知されない場合には前記可変ブレーカを前記収容位置に変位させる制御装置と、
    をさらに備える回転機械。
  4. 前記可変ブレーカは、前記ケーシング内から前記キャビティ内に向かって前記軸線に対する径方向に進退動可能である請求項に記載の回転機械。
  5. 前記可変ブレーカは、前記ケーシング内から前記キャビティ内に向かって前記軸線方向に進退動可能である請求項に記載の回転機械。
  6. 前記ケーシングには前記軸線に対する径方向に延びる固定溝が形成され、前記可変ブレーカが前記突出位置にある時に、該可変ブレーカの少なくとも一部は前記固定溝によって周方向に変位不能に固定されている請求項4又は5に記載の回転機械。
  7. 記制御装置は、前記回転軸の振動の強度に応じて、前記突出位置に変位させる前記可変ブレーカの個数を決定する請求項2から6のいずれか一項に記載の回転機械。
  8. 前記制御装置は、前記回転軸の振動の強度が高くなるに従って、前記収容位置から前記突出位置に変位させる前記可変ブレーカの個数を増加させ、かつ複数の前記可変ブレーカが周方向に等間隔となるように前記突出位置に変位させる請求項に記載の回転機械。
  9. 前記可変ブレーカは、前記軸線に対する周方向に等間隔をあけて複数設けられている請求項1から8のいずれか一項に記載の回転機械。
JP2018043508A 2018-03-09 2018-03-09 回転機械 Active JP7029317B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018043508A JP7029317B2 (ja) 2018-03-09 2018-03-09 回転機械
US16/281,427 US10876421B2 (en) 2018-03-09 2019-02-21 Rotary machine
DE102019202875.6A DE102019202875A1 (de) 2018-03-09 2019-03-04 Rotationsmaschine
CN201910163016.7A CN110242364B (zh) 2018-03-09 2019-03-05 旋转机械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043508A JP7029317B2 (ja) 2018-03-09 2018-03-09 回転機械

Publications (3)

Publication Number Publication Date
JP2019157713A JP2019157713A (ja) 2019-09-19
JP2019157713A5 JP2019157713A5 (ja) 2021-04-08
JP7029317B2 true JP7029317B2 (ja) 2022-03-03

Family

ID=67701816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043508A Active JP7029317B2 (ja) 2018-03-09 2018-03-09 回転機械

Country Status (4)

Country Link
US (1) US10876421B2 (ja)
JP (1) JP7029317B2 (ja)
CN (1) CN110242364B (ja)
DE (1) DE102019202875A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6808872B1 (ja) * 2020-04-28 2021-01-06 三菱パワー株式会社 シール装置及び回転機械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523469A1 (de) 1985-07-01 1987-01-08 Bbc Brown Boveri & Cie Beruehrungsfreie spaltdichtung fuer turbomaschinen
JP2006104952A (ja) 2004-09-30 2006-04-20 Toshiba Corp 流体機械の旋回流防止装置
JP2010106834A (ja) 2008-10-29 2010-05-13 General Electric Co <Ge> 蒸気タービン用の熱作動式クリアランス減少
JP2011052645A (ja) 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd タービン

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1426857A1 (de) * 1964-06-11 1968-12-19 Siemens Ag Spaltabdichtung fuer Maschinen mit umlaufenden Schaufeln
US4370094A (en) * 1974-03-21 1983-01-25 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Method of and device for avoiding rotor instability to enhance dynamic power limit of turbines and compressors
JPS53122002A (en) * 1977-03-31 1978-10-25 Hitachi Ltd Seal device
JPS5669403A (en) * 1979-11-12 1981-06-10 Hitachi Ltd Structure for preventing vibration of rotor of axial-flow machine
JPS6123804A (ja) * 1984-07-10 1986-02-01 Hitachi Ltd タ−ビン段落構造
JP2007120476A (ja) 2005-10-31 2007-05-17 Toshiba Corp 流体機械の旋回流防止装置
JP2010159667A (ja) 2009-01-07 2010-07-22 Toshiba Corp 軸流タービン
JP2011141015A (ja) * 2010-01-08 2011-07-21 Mitsubishi Heavy Ind Ltd シール装置及びこれを備えた流体機械
JP2012007594A (ja) * 2010-06-28 2012-01-12 Mitsubishi Heavy Ind Ltd シール装置及びこれを備えた流体機械
JP5730085B2 (ja) * 2011-03-17 2015-06-03 三菱日立パワーシステムズ株式会社 ロータ構造
JP2013076341A (ja) 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd 蒸気タービンのシール構造
JP5865798B2 (ja) * 2012-07-20 2016-02-17 株式会社東芝 タービンのシール装置および火力発電システム
JP5985351B2 (ja) * 2012-10-25 2016-09-06 三菱日立パワーシステムズ株式会社 軸流タービン
JP2014141912A (ja) 2013-01-23 2014-08-07 Mitsubishi Heavy Ind Ltd 回転機械
WO2014162767A1 (ja) 2013-04-03 2014-10-09 三菱重工業株式会社 回転機械
JP6726986B2 (ja) * 2016-03-02 2020-07-22 三菱日立パワーシステムズ株式会社 シール装置、回転機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523469A1 (de) 1985-07-01 1987-01-08 Bbc Brown Boveri & Cie Beruehrungsfreie spaltdichtung fuer turbomaschinen
JP2006104952A (ja) 2004-09-30 2006-04-20 Toshiba Corp 流体機械の旋回流防止装置
JP2010106834A (ja) 2008-10-29 2010-05-13 General Electric Co <Ge> 蒸気タービン用の熱作動式クリアランス減少
JP2011052645A (ja) 2009-09-03 2011-03-17 Mitsubishi Heavy Ind Ltd タービン

Also Published As

Publication number Publication date
CN110242364A (zh) 2019-09-17
US20190277151A1 (en) 2019-09-12
US10876421B2 (en) 2020-12-29
CN110242364B (zh) 2021-12-17
DE102019202875A1 (de) 2019-09-12
JP2019157713A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
US7775763B1 (en) Centrifugal pump with rotor thrust balancing seal
JP5230968B2 (ja) 動翼振動ダンパシステム
JP6133748B2 (ja) インペラ及びこれを備える回転機械
JP6131177B2 (ja) シール構造、及び回転機械
EP1704792B1 (en) Hair dryer
JP5314256B2 (ja) 回転流体機械のシール装置および回転流体機械
US6966755B2 (en) Compressor airfoils with movable tips
JP5681384B2 (ja) タービンエンジン用のロータブレード
JP2008057416A (ja) 軸流タービン
JP7029317B2 (ja) 回転機械
JP5567036B2 (ja) 低ギャップ損失および低拡散器損失を備えたガスタービンのための軸流ターボコンプレッサ
US9816528B2 (en) Fluid-flow machine
JP4848440B2 (ja) 軸流タービン
JP6366310B2 (ja) シール構造、動翼、及び回転機械
JP5815919B2 (ja) エンジン構成要素を冷却するための方法及びシステム
JP6512553B2 (ja) ターボ機械
JP2009036118A (ja) 軸流排気型タービン
JP2006233857A (ja) タービン動翼およびこれを備えたタービン
JP2010001868A (ja) 遠心圧縮機
KR20190118650A (ko) 가변 정익 및 압축기
JP5951534B2 (ja) 蒸気タービン
JP6916755B2 (ja) 回転機械
JP2006144575A (ja) 軸流形回転流体機械
JP2021080880A (ja) 蒸気タービン
JP6930896B2 (ja) タービン及び動翼

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220218

R150 Certificate of patent or registration of utility model

Ref document number: 7029317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150