JP7018383B2 - 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合 - Google Patents

高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合 Download PDF

Info

Publication number
JP7018383B2
JP7018383B2 JP2018504156A JP2018504156A JP7018383B2 JP 7018383 B2 JP7018383 B2 JP 7018383B2 JP 2018504156 A JP2018504156 A JP 2018504156A JP 2018504156 A JP2018504156 A JP 2018504156A JP 7018383 B2 JP7018383 B2 JP 7018383B2
Authority
JP
Japan
Prior art keywords
initiator
tert
peroxide
luperox
diperketal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018504156A
Other languages
English (en)
Other versions
JP2018528292A5 (ja
JP2018528292A (ja
Inventor
バン・エメルリク,ブリュノ
ウブ,セルジュ
ロリシュス,クリスチャン
ベルソン,アンヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of JP2018528292A publication Critical patent/JP2018528292A/ja
Publication of JP2018528292A5 publication Critical patent/JP2018528292A5/ja
Application granted granted Critical
Publication of JP7018383B2 publication Critical patent/JP7018383B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/38Mixtures of peroxy-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

発明の分野
本発明は、広い温度範囲で特定の過酸化物重合開始剤対の存在下での高圧重合(オートクレーブ又は管状)によるポリエチレン又はエチレンコポリマーの製造方法に関する。
従来技術
低密度ポリエチレン及びエチレンコポリマーは、一般に、非常に高圧下で、オートクレーブ又は管状反応器中で、エチレン、1つ以上の任意のコモノマー、及び一般に有機溶媒で希釈された1つ以上の有機過酸化物開始剤の連続的な導入によって製造される。反応器内の圧力は、一般に500~5000バールの間である。反応開始時の温度は、一般に80~250℃(摂氏温度)の間である。最大反応温度は一般に120~350℃の間である。
この種の方法で一般的に得られるポリマーへの転化の程度は、15%~25%程度である。同様に、このような方法の生産性は、使用される過酸化物開始剤1グラム当たりに製造されるポリエチレンのグラムで表され、一般に1000~3000g/gの間、より一般的には2500g/g未満である。
生産性の向上及びそれに伴うコストの追求は、ポリエチレン生産者の絶え間ない関心事である。同時にポリマーへの転化の有利な程度を保持しながら、高い生産性を有するポリエチレン製造方法に対する必要性が存在する。
2,2ビス-(tert-ブチルペルオキシ)ブタン開始剤の存在下でエチレンを重合する方法は、US2650913号から既知であるが、この開始剤は低い生産性をもたらす(この文献の例1及び下記の試験3を参照されたい)。
2,2-ジ(t-アミルペルオキシ)プロパンを開示する文献FR2946653号も知られているが、後者は開始剤として絶対に使用されない。
さらに、2,2-ジ(t-アミルペルオキシ)ブタンの使用を開示する文献US2008/0226891号、EP0273090号及びEP0259537号が知られているが、後者は、エチレンポリマー又はエチレンコポリマーからはかなり異なっているポリマーの製造に使用される。
最後に、出願人の名義で出願され、ジペルケタール型の特定の有機過酸化物が、方法の生産性を150~200℃の間の特定の開始温度範囲に対し3000g/gを超える値に増加させ得ることを示したEP2673307号が知られている。この文献は、その中の実施例により、LDPE(低密度ポリエチレン)用の高生産性開始剤としての2,2-ジ(tert-アミルペルオキシ)ブタン(イソドデカン中に50%に希釈されているLuperox(R) 520M50という名称の市販の形態で知られている)の特定の利益を示す。
上記過酸化物開始剤は、それが生産性を向上させ、生産性の向上のための追及がポリエチレン樹脂製造者にとっての主要な目標であるため、満足できるものである。
それにもかかわらず、生産性のさらに大きな改善を提案することが望ましい。
米国特許第2650913号明細書 仏国特許第2946653号明細書 米国特許出願公開第2008/0226891号明細書 欧州特許出願公開第0273090号明細書 欧州特許出願公開第0259537号明細書 欧州特許出願公開第2673307号明細書
当業者によって期待され得たものとは異なり、本出願人は驚くべきことに、以下の式
Figure 0007018383000001
[基Rは本質的にC1~C6アルキル基からなる]のジペルケタール有機過酸化物、即ち、150℃~185℃の間の1分間の半減期温度を有するこれらの2つの過酸化物の使用により、140℃~200℃の開始温度範囲で、使用された過酸化物に関し比消費量(注入された過酸化物1グラム当たり製造されるポリマーの質量)を低減することが可能であることを発見した。
この種の方法に従来使用されていた140℃~200℃の間の開始温度範囲では3000g/g以上の生産性が得られ、より良好な熱開始進行のために、即ち、典型的には295~305℃の非常に高い温度(Tmax=重合発熱によって達せられる最高温度)に達することを可能にする過酸化物、例えば、ジ-tert-ブチルペルオキシドによるより良好な生産性のために200℃~290℃の間の高い反応温度(重合温度)で生産性を増大させる可能性がそこから浮上する。
したがって、本発明は、ポリエチレン又はエチレンコポリマーを製造する方法であって、
- 以下の式のジペルケタール過酸化物化合物から選択される第1の過酸化物重合開始剤、
Figure 0007018383000002
[式中、R、R、R、R、R及びR基は、置換又は非置換の直鎖状、分岐状又は環状のC1~C10アルキル基からなる]
- 第1の開始剤以外の式(I)のジペルケタール過酸化物からなる第2の開始剤
の存在下でエチレンのラジカル重合又は共重合の工程を含む、該方法に関する。
特に、本発明は140℃~200℃の範囲の開始温度で1200~3000バールの範囲の圧力で式(I)
Figure 0007018383000003
[式中、R、R、R、R、R及びR基はC1~C6アルキル基からなる]
のジペルケタール過酸化物から選択される第1の過酸化物重合開始剤の存在下でエチレンをラジカル重合又は共重合する工程を含む、エチレン及び任意のコモノマーをオートクレーブ又は管状反応器に連続的に導入することによってポリエチレン又はエチレンコポリマーを製造する方法であって、
上記工程の間に式(I)のジペルケタール過酸化物からなる第2の開始剤が存在し、第1及び第2の過酸化物は過酸化物の混合物を形成し、示差走査熱量測定(DSC)曲線を用いて、0.1モル/リットル(mol.l-1)の濃度でn-ドデカン中で測定して150℃~185℃の間の1分間の半減期温度を有することを特徴とする該方法に関する。
半減期温度は、問題の過酸化物の熱安定性を特徴付けるのに役立つDSCデータから簡単に決定することができる。1分間の半減期温度は、示差走査熱量測定(DSC)曲線により、0.1モル/リットル(mol.l-1)の濃度でn-ドデカン中で測定される。
この技術を用いて記録された分解の熱力学曲線によって、アレニウス型の分解式による不安定物質の熱分解に関する動力学的パラメータを得ることが可能になる。
n次の動力学による処理の場合、3つのパラメータk(頻度因子)、E(活性化エネルギー)及びn(分解反応の次数)は、モデルと実験曲線との間の差を最小にするように関連付けられ、最適化される。
半減期温度Tは、時間t後に、熱的に不安定な物質の残量が初期量の半分に等しい温度である。
本明細書の残りの部分では、「1分間の半減期温度」という表現は、0.1モル/リットル(mol.l-1)の濃度でn-ドデカン中で行われる測定に関連して常に理解されることに留意すべきである。
「C1~C10アルキル基」、好ましくは「C1~C6アルキル基」という表現は、これが、少なくとも1個(1)の炭素原子及び10個(10)までの炭素原子、好ましくは6個(6)までの炭素原子を含む置換又は非置換の直鎖状、分岐状又は環状のアルカン由来の基であることを意味する。非分枝構造の場合、これは、通常、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基又はn-ヘキシル基を意味する。
一実施形態によれば、本発明はまた、1分間の半減期温度が0.1モル/リットル(mol.l-1)の濃度でn-ドデカン中で測定して160℃~170℃の間である場合に特に改善される。
好ましくは、第1の開始剤の1分間の半減期温度は、140℃~180℃の間、好ましくは150℃~170℃の間、さらにより優先的には155℃~165℃の間である。
好ましくは、第2の開始剤の1分間の半減期温度は、150℃~185℃の間、好ましくは155℃~175℃の間、さらにより優先的には160℃~170℃の間である。
したがって、本出願人は、150℃、153℃及び155℃の1分間の半減期温度をそれぞれ有する1,1-ジ(tert-アミルペルオキシ)シクロヘキサン(Luperox(R) 531M60)、1,1-ジ(tert-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン(Luperox(R) 231M50)及び1,1-ジ(tert-ブチルペルオキシ)シクロヘキサン(Luperox(R) 331M50)を試験した。これらの過酸化物の1つを、例えば、2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)と組み合わせた結果は良好であり、即ち、生産性の「ブースター」効果がはっきりと観察されるが、2つの組み合わされたジペルケタールが両者とも160℃~170℃の間の1分間の半減期温度を有する場合ほど良好ではない。
ここで、3つの上記ジペルケタール過酸化物は、これらの成分に対し、式(I)の基R及びRが環を形成するよう連結されるように中心炭素系環を含むことに留意されたい。
同様に、それぞれ175℃及び173℃の1分間の半減期温度を有するエチル3,3-ジ(tert-ブチルペルオキシ)ブチレート(Luperox(R) 233M50)及びエチル3,3-ジ(tert-アミルペルオキシ)ブチレート(Luperox(R) 533M65)に対し、例えば、2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)との組み合わせは、良好な結果をもたらし、即ち、生産性の「ブースター」効果ははっきりと観察されたが、2つの組み合わされたジペルケタールの両方が160℃~170℃の間の1分間の半減期温度を有する場合ほど良好ではないことが出願人によって観察された。
最後に、出願人は、163℃の1分間の半減期温度を有するn-ブチル-4,4-ジ(tert-ブチルペルオキシ)バレレート(Luperox(R) 230)と2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)との組み合わせを試験したことに留意されたい。観察された結果は満足できるものであり、換言すれば、生産性の「ブースター」効果が観察されるが、n-ブチル-4,4-ジ(tert-ブチルペルオキシ)バレレートは、モノマーのエチレン分圧を低下させる目的で不活性ガスを導入することにより、工業用途で、非生産的又は問題となりがちであるかなりの量の(CO)を放出する。したがって、一般に、Luperox(R) 230のようなエステル官能基を有する有機過酸化物は、「ブースター」効果の欠如ではなく、COの有害な放出のために、本発明の文脈内で先験的に保持されるものではない。
本出願人は、使用された2つの有機過酸化物が、2つの中心基R又はRにおいて、炭素1つだけ互いに構造的に異なる場合、本発明に対する非常に有意な改良を見出した。これは、以下に、対2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)及び2,2-(ジ-tert-アミルペルオキシ)プロパン(以下の全ての例において、イソドデカン中で50重量%まで希釈される)によって提示されるが、この効率関係は、他のジペルケタール有機過酸化物対を用いて実験室で確認された。
第1の開始剤の基R又はRが第2の開始剤の対応する基R又はRとそれぞれ炭素1つだけ異なる場合、2つのジペルケタール間のこの特に有利な構造的関係が確立される。
分子構造におけるこの小さな差異によって、顕著に優れた転化効率(過酸化物がモノマー開始反応によって特定の数のポリマー鎖を開始させる能力)を予測することが不可能であったことに留意されたい。
本発明の他の特徴又は実施形態を以下に示す。
- 好ましくは、基R及びRは、置換又は非置換の直鎖状、分岐状又は環状のC1~C10アルキル基、好ましくは置換又は非置換の直鎖状、分岐状又は環状のC1~C6アルキル基である。
- 基R~Rの少なくとも1個、好ましくは少なくとも2個、好ましくは少なくとも3個、好ましくは少なくとも4個、好ましくは少なくとも5個、好ましくは少なくとも6個は、置換又は非置換の直鎖状、分枝状又は環状のC1~C6アルキル基である。
- 好ましくは、基R~Rの少なくとも1個、好ましくは少なくとも2個、好ましくは少なくとも3個、好ましくは少なくとも4個、好ましくは少なくとも5個、好ましくは少なくとも6個は直鎖状である。
- 好ましくは、基R~Rの少なくとも1個、好ましくは少なくとも2個、好ましくは少なくとも3個、好ましくは少なくとも4個、好ましくは少なくとも5個、好ましくは少なくとも6個は置換されていない。
- 好ましくは、基R~Rの少なくとも1個、好ましくは少なくとも2個、好ましくは少なくとも3個、好ましくは少なくとも4個、好ましくは少なくとも5個、好ましくは少なくとも6個は直鎖状かつ置換されていない。
- 有利には、2つの前記開始剤の基R、R、R及びRはそれぞれメチル基からなる。
- 好ましくは、基Rはメチル基からなる。
- 好ましくは、基R、R、R、R及びRはそれぞれメチル基からなる。
- 本発明の好ましい態様によれば、2つの前記開始剤の基R及びRはそれぞれ、C2~C5、好ましくはC2~C4のアルキル基からなる。
- 本発明の別の有利な態様によれば、2つの前記開始剤のR基は、C1~C2アルキル基を表す。
- 本発明によって提供される好ましい解決策によれば、第1の重合開始剤は2,2-ジ(tert-アミルペルオキシ)ブタンである。
- 同様に、本発明によって提供される好ましい解決策によれば、第2の重合開始剤は、2,2-ジ(tert-アミルペルオキシ)プロパンである。
- 好ましくは、第1の重合開始剤は2,2-ジ(tert-アミルペルオキシ)ブタンであり、第2の重合開始剤は2,2-ジ(tert-アミルペルオキシ)プロパンである。
- 有利には、2つのジペルケタール過酸化物/開始剤の混合/割合は、2~50モル%の間(2つのペルケタール過酸化物の全てが混合物の100%を表す)、好ましくは10~40モルの間、さらにより優先的には15~35モル%の間の第2の開始剤の割り当てを有する。
- 好ましくは、第1及び第2の開始剤の総割合は、最終ポリエチレン又はエチレンコポリマーの重量に対して1~10000ppmの間、好ましくは10~1000ppmの間、さらにより優先的には50~150ppmの間である。
第1及び第2の開始剤は、一緒に又は別々に反応混合物に添加することができる。
第1及び第2の開始剤は好ましくは一緒に添加され、それらは好ましくは過酸化物の混合物を形成する。
重合又は共重合は、少なくとも1つの追加の過酸化物開始剤の存在下で行うこともできる。好ましくは、少なくとも1つの追加の過酸化物開始剤は、式(I)の化合物ではない。
特に、少なくとも1つの追加の過酸化物開始剤は、本特許出願の独立請求項の定義によるジペルケタールではない。
この追加の過酸化物開始剤は、tert-ブチルペルオキシネオデカノエート、tert-ブチルペルオキシピバレート、tert-アミルペルオキシピバレート、ビス(3,5,5-トリメチルヘキサノイル)ペルオキシド、ジラウロイルペルオキシド、ジデカノイルペルオキシド、tert-アミルペルオキシ-2-エチルヘキサノエート、tert-ブチルペルオキシ-2-エチルヘキサノエート、tert-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、tert-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、tert-ブチルペルオキシベンゾエート、tert-ブチルペルオキシアセテート、ジ-tert-ブチルペルオキシド及びジ-tert-アミルペルオキシドからなる群から選択することができる。
重合又は共重合は、好ましくは酸化防止剤;UV保護剤;使用時に最終外観を改善する機能を有する加工剤、例えば、脂肪酸アミド、ステアリン酸及びその塩、エチレンビス(ステアラミド)又はフルオロポリマー;防曇剤;アンチブロッキング剤、例えば、シリカ又はタルク;充填剤、例えば、炭酸カルシウム、及びナノ充填剤、例えば、クレー;カップリング剤、例えば、シラン;架橋剤、例えば、過酸化物;帯電防止剤;核形成剤;顔料;染料;可塑剤;流動化剤及び難燃性添加剤、例えば水酸化アルミニウム又は水酸化マグネシウムからなる群から選択される少なくとも1つの添加剤の存在下で実施することができる。
これらの添加剤は、一般に、最終ポリエチレン又はエチレンコポリマーの重量に対して10ppm~100000ppmの間の含量で使用される。特に、可塑剤、流動化剤及び難燃性添加剤は、10000ppmを十分に上回る量に達することができる。
改善された生産性の結果とは別に、本発明による方法はさらに多くの利点を有し、その網羅的でないリストを以下に示す。
- 単一の配合物中に導入することができる過酸化物の対を開始剤の配合物/希釈物に単純に加えることによる加工の容易さ;
- 本発明の文脈内で使用される有機過酸化物は、同じファミリーの過酸化物(ジペルケタール)であり、したがってペルエステルによる場合より低いCO生成(代替効果によるエチレン転化に有害な不活性ガス)及びより高い転化率という同じ利点を有する;
- 第2のジペルケタール過酸化物(場合により用語「ブースター」によって指定される)の添加により損なわれない、使用される第1のジペルケタール過酸化物(主なもの)のより低い比消費量;むしろ、第2のジペルケタール過酸化物の添加により、使用される2つの過酸化物の量を約5~10%(第1のジペルケタール過酸化物だけの使用と比較して)低減することが可能になる。
- 既存の高圧重合技術との適合性、換言すれば、現在のオートクレーブ又は管状処理又は装置の調整は、本発明による方法を実施するために必要ではない。
重合又は共重合は、500~3500バール、好ましくは500~3000バール、好ましくは1200~3000バール、さらにより優先的には1200~2600バールの範囲の圧力で行われる。
高圧重合は、一般に、オートクレーブ又は管状反応器中で行われる。反応温度は、一般に100℃~330℃の間、好ましくは120℃~300℃の間、さらにより優先的には140℃~200℃の間である。
管状反応器が使用される場合、エチレン及び任意のコモノマーの混合物は、好ましくは、管状反応器の頂部に導入される。開始剤又は開始剤の混合物は、好ましくは、エチレン及び任意のコモノマーの混合物が導入される位置の後に、反応器の頂部で高圧ポンプによって注入される。
エチレン及び任意のコモノマーの混合物は、反応器の少なくとも1つの他の点で注入されてもよく、この注入の後に開始剤又は開始剤の混合物の別の注入が続いてもよい。その結果多点注入技術が参照される。多点注入技術が使用される場合、混合物は、注入される混合物全体に対する反応器入口で注入される混合物の重量比が10~90%になるように優先的に注入される。
使用される高圧管状重合又は共重合のための他の方法は、例えば、US2006/0149004A1号又はUS2007/0032614A1号に記載されているものである。
高圧ラジカル重合を実施するためにオートクレーブ反応器を使用することも可能である。
オートクレーブ反応器は、一般に、攪拌器が配置された円筒形反応器からなる。反応器は、互いに直列に接続されたいくつかのゾーンに分けることができる。有利には、反応器中の滞留時間は30~120秒の間である。優先的には、反応器の長さ/直径比は3~25の間である。エチレン単独及び任意のコモノマーが50~120℃の間の温度で反応器の第1のゾーンに注入される。反応ゾーンが150~200℃の間の温度に達すると、この第1の反応ゾーンに開始剤も注入される。反応中、反応は発熱性であるので、温度は150~320℃の間であり得る。反応器がマルチゾーン反応器である場合には、反応しなかったエチレン及び任意のコモノマーの流れ並びに形成されたポリマーも次の反応ゾーンを通過する。各反応ゾーンにおいて、エチレン、任意のコモノマー及び開始剤は、140~200℃の間の開始温度で注入することができる。開始後のゾーンの温度は140~320℃の間である。反応器の圧力は、500~3500バールの間、好ましくは500~3000バールの間、優先的には1200~3000バール、さらにより優先的には1200~2600バールの範囲である。
本発明は、以下の非限定的な実施例及び実験によって説明される。
本文の残りの部分では、以下の実験及び試験において、2つのシナリオの間に徹底的な区別がなされるべきであることに留意すべきである。第一に、異なる性能、特に異なる比消費量につながるそれらの異なる開始温度に起因して、モノペルオキシド開始剤系及び本発明による組合せた過酸化物の二成分混合物の場合、第二に過酸化物の三成分混合物の場合。
tert-ブチルペルオキシピバレート(市販の形態Luperox(R) 11M75で知られている)及びtert-ブチルペルオキシ-2-エチルヘキサノエート(市販の形態Luperox(R) 26で知られている)のような反応性の高い過酸化物を組み込んだ三成分開始系は、本発明に従ったジペルケタール単独型の開始系よりも低い温度で熱的に分解される。
このような反応性過酸化物は、たとえその使用によって異なるグレードの樹脂/ポリマーを達成することが可能であったとしても、過酸化物のより高い消費を費やして使用されることは当業者には知られている。結果として、一方では180℃に近い開始温度で試験されたジペルケタール開始系、即ち、実施例1~4、及び他方で145℃に近い温度で試験されたペルエステル+ペルケタール、即ち、実施例5~8の個々の性能は実験条件を越えて互いに比較することはできないが、同じ実験条件でのみ比較することができる。
したがって、本発明に従うためには、初期温度約180℃及びP=1800バールの(過酸化物の)二成分系の状況において、結果は以下の通りでなければならない。
- 最高到達温度:これは(本発明に従うために)250℃を超えなければならない。
- 最高温度に達するのに要する時間:本発明に従うために、21秒以下;
- 転化率:本発明に従うために、10%より大きい;
- 本発明に従うために、0.18g未満の消費されたペルオキシド/生成された樹脂のkgである純粋な過酸化物の全体的な比消費量。
145℃の初期温度、1800バールに置かれた(過酸化物の)三成分系の状況において、その結果は以下の通りでなければならない。
- 最高到達温度:これは(本発明に従うために)235℃を超えなければならない。
- 最高温度に達するのに要する時間:本発明に従うために、19秒未満;
- 転化率:本発明に従うために、11%より大きい;
- 本発明に従うために、0.32g未満/kgの純粋な過酸化物の全体的な比消費量。
簡潔かつ単純にするために、本出願人が行った実験及び試験の一部のみがここに示されていることに留意すべきである。それにもかかわらず、本出願人は当然ながら、実際に一般的な言葉でも正確な言葉でも請求された本発明を定義することを可能にする全ての実験及び試験を実際に実施し、必要に応じてこのデータを提供することができる。
[実施例1]:
実施例1により、2,2-(ジ-tert-アミルペルオキシ)プロパン又は2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)のいずれかによるエチレンの重合反応速度の比較が可能になる。
オートクレーブ型の435ml(ミリリットル)の高圧攪拌反応器中で、1800barの圧力に達するまでエチレンを注入する。次いで、反応器の壁の温度を、反応器の壁に配置されたヒーターロッドによって180℃に固定する。撹拌は1000rpm(1分当たりの回転)である。
反応器中の反応媒体の温度を2つの熱電対によって測定する。
予めエチレンが充填された反応器に入る前に反応を開始しないように、様々な流れ(過酸化物+ヘプタン+プロパンアルデヒド)を低温(25℃)で反応器の上流で混合する。
2,2-(ジ-tert-アミルペルオキシ)プロパン(エチレン供給原料量216.62gを含む反応器の全内容物に対して2.26モルppmの濃度に相当する4.3mg)又は2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)(4.6mg、即ち、2.26モルppm)をヘプタン及びプロパンアルデヒド(0.654gのヘプタン、注入希釈溶媒、及び0.502gのプロパンアルデヒド、移動剤)で希釈し、高圧ポンプによって注入する。重合は、過酸化物が初期温度180℃(開始温度)で注入されるとすぐに誘発される。
この冷却されていない反応器の実験時間は20分である。
反応器の出口で、エチレン/ポリエチレン混合物を3バールに直接減圧し、ポリマーを回収容器に通すことによってポリマーを未反応エチレンから分離する。
重合後に回収されたポリマーの量を秤量によって決定し、それにより転化率(含まれるモノマーのグラム数当たりの生成される樹脂のグラム数)及び過酸化物の比消費量を表すことが可能になる。
この実施例では、次の結果が記録された。
2,2-(ジ-tert-アミルペルオキシ)プロパン(イソドデカン中で50重量%に希釈)については、以下が得られた。
最高到達温度:284℃
最高温度に達するのに要する時間:26s(秒)
転化率:15.84%
比消費量又は「CS」は、g/得られたLDPE(低密度ポリエチレン)のkg(グラム/キログラム)=0.126g/kg PEで表される純粋な過酸化物として表される。
生成した低密度ポリエチレンLDPEの量:34.5g
イソドデカン中に50重量%まで希釈した2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)については、以下が得られた。
最高到達温度:256℃
最高温度に達するのに要する時間:15s
転化率:11.95%
CS=0.176g/kg
生成したLDPEの量:26.05g
この実施例1によれば、2つのジペルケタール、即ち、Luperox(R) 520M50及び2,2-(ジ-tert-アミルペルオキシ)プロパンの各々の等モル、結果的に等価の(活性酸素)の投与量により、Luperox(R) 520M50の代わりに2,2-(ジ-tert-アミルペルオキシ)プロパンを使用した場合、より大きな転化率及びより少ない比消費量が観察される。
しかし、2,2-(ジ-tert-アミルペルオキシ)プロパンによる反応速度は、管状又はオートクレーブ産業用途において非常に有害であろう40%を超えて増加する、Tmaxに達するのに要する時間で示されるように、はるかに遅い。
[実施例2]
この実施例は本発明によるものである。
この実施例は、2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)及び2,2-(ジ-tert-アミルペルオキシ)プロパンの混合物の試験に関する。
この過酸化物の約30モル%の割合が2,2-(ジ-tert-アミルペルオキシ)ブタンで置き換えられている以外は、実施例1に記載の手順を2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)で再現する。
より具体的には、1.59モルppm(100万分の1)のLuperox(R) 520M50及び0.7モルppmのジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパン(2つのペルケタールのそれぞれについて純粋な過酸化物として表されるモルppm)、即ち、3.2mgのLuperox(R) 520M50及び1.3mgの2,2-(ジ-tert-アミルペルオキシ)プロパンを混合する。
観察された結果は次の通りである。
最高到達温度:260℃
最高温度に達するのに要する時間:19s
転化率:13.13%
CS=0.159g/kg
生成されたLDPEの量:28.45g
ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパン(純粋な用語で表される)による約30モル%のLuperox(R) 520M50(純粋な用語で表される)の置換により、Tmaxに達することは迅速なままでありLuperox(R) 520M50による転化率を約2%上昇させ、そのことにより約9%(26.05gの代わりに28.45g)の生産の改善が可能になる。
Luperox(R) 520/2,2-(ジ-tert-アミルペルオキシ)プロパンの組み合わせにより、ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパン単独で観察されたように、最高の発熱性のピークを顕著に遅らせることなく、より高い転化率及びLuperox(R) 520M50単独よりも約10%低い比消費量が可能になる。
[実施例3]
この実施例も本発明によるものである。
この実施例は、ペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)及びジペルケタール2,2-ジ(-tert-ブチルペルオキシ)ブタン(Luperox(R) 220M50)を用いて二成分混合物を試験することに関する。
この実施例は、特に、構造(I)及びLuperox(R) 520M50に近い1分間の半減期温度(HLT)の全てのペルケタールが、特に「ブースター」効果が実際に存在する場合でさえ、ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンほどLuperox(R) 520M50の良好な「ブースター」ではないという事実を実証する。
この過酸化物の一部を2,2-(ジ-tert-ブチルペルオキシ)ブタン(Luperox(R) 220M50)で置き換えた以外は、2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)を用いて実施例1に記載した手順を再現する。
より具体的には、1.52モルppmのLuperox(R) 520M50及び0.66モルppmのLuperox(R) 220M50を混合して均質な混合物を形成する。
観察された結果は次の通りである。
最高到達温度:261℃
最高温度に達するのに要する時間:21s
転化率:12.1%
CS=0.163g/kg
生成されたLDPEの量:26.3g
[実施例4]
この実施例の過酸化物混合物は本発明によるものではない。
この実施例は、1分間のHLTは165℃というジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンの1分間のHLTと同等であるにも関わらず、不十分な「ブースタ」であるペルエステルtert-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、即ち、Luperox(R) 270(Luperox(R) 520M50と組み合わせて)による二成分混合物の試験に関する。
Luperox(R) 270の過酸化物単官能性に起因して、この過酸化物Luperox(R) 520M50の実施例3(約47モル%)より高いモル比を、tert-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート(Luperox(R) 270)でに置き換えた以外は、2,2-(ジ-tert-アミルペルオキシ)プタン(Luperox(R) 520M50)を用いて実施例1に記載の手順を再現する。
より具体的には、1.49モルppmのLuperox(R) 520M50及び1.34モルppmのLuperox(R) 270を混合して均一な混合物を形成する。
この合成により、過酸化物tert-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート(Luperox(R) 270)の割合が高いにもかかわらず、最高温度、転化率及び比消費量が、実施例2の2,2-(ジ-tert-アミルペルオキシ)ブタン(Luperox(R) 520M50)中の30%の2,2-(ジ-tert-アミルペルオキシ)プロパンの混合物と比較して劣っていることが特に示される。
観察された結果は次の通りである。
最高到達温度:255℃
最高温度に達するのに要する時間:19s
転化率:11.92%
CS=0.209g/kg
生成されたLDPEの量:26g
[実施例5]
この実施例の過酸化物混合物は本発明によるものではない。
この実施例は、過酸化物(1つは約240℃でTmaxに達することを可能にし、他方は約250℃でTmaxに達することを可能にし、開始温度は145℃である)の2つの全濃度で20/56/24(は純粋なtert-ブチルペルオキシピバレートとして表す)というそれぞれの目標モル比でペルエステルLuperox(R) 11M75/Luperox(R) 26/Luperox(R) 270(tert-ブチルペルオキシピバレート/tert-ブチルペルオキシ-2-エチルヘキサノエート/tert-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート)のカクテル/三成分混合物で再現された実施例1に記載された手順によるLDPEの製造に関する。
試験は、1800バールでエチレンを充填したが、反応性ペルエステルLuperox(R) 11M75(tert-ブチルペルオキシピバレートをイソドデカン中で75%まで希釈する)及びLuperox(R) 26の存在により、開始温度を180℃の代わりに145℃に調節した、実施例1と同じバッチ式反応器で行った。
観察された結果(約240℃でのTmax、実施例の開始時に定義された19/57/23のモル比の場合)は次の通りである。
合計ppm重量 78.36(純粋な過酸化物)
最高到達温度:239℃
最高温度に達するのに要する時間:13.5s
転化率:11%
純粋な過酸化物における全CS=0.678g/kg
生成されたLDPEの量:24.5g
観察された結果(約250℃でのTmax、実施例の開始時に定義された20/56/24のモル比の場合)は次の通りである。
合計ppm重量 126.18(含まれる純粋な過酸化物)
最高到達温度:249℃
最高温度に達するのに要する時間:14.7s
転化率:12.29%
純粋な過酸化物における全CS=0.967g/kg
生成されたLDPEの量:27.7g
これらの重合は、15秒未満というTmaxの急速な到達時間(これはこの装置及びこの三成分過酸化物の20/56/24モル組成に対する従来の転化率である)を示すが、非常に高い比消費量を示す。
[実施例6]
この実施例の過酸化物混合物は本発明によるものではない。
この実施例は、過酸化物(1つは約240℃でTmaxに達することを可能にし、他方は約250℃でTmaxに達することを可能にし、開始温度は145℃である)の2つの全濃度で約23(純粋)/65/12(純粋なジペルケタール)という目標モル比でペルエステル及びジペルケタール、即ち、Luperox(R) 11M75/Luperox(R) 26/Luperox(R) 520M50(tert-ブチルペルオキシピバレート/tert-ブチルペルオキシ-2-エチルヘキサノエート/2,2-(ジ-tert-アミル)ブタン)のカクテル/三成分混合物によるが、実施例1に記載された手順によるLDPEの製造に関する。
観察された結果(約240℃でのTmax、実施例の開始時に定義された22/66/12のモル比の場合)は次の通りである。
合計ppm重量 45.88(含まれる純粋な過酸化物)
最高到達温度:240℃
最高温度に達するのに要する時間:16s
転化率:14.10%
純粋な過酸化物における全CS=0.325g/kg
生成されたLDPEの量:31.7g
観察された結果(約250℃でのTmax、実施例の開始時に定義された23/65/12のモル比の場合)は次の通りである。
合計ppm重量 77.91(含まれる純粋な過酸化物)
最高到達温度:254℃
最高温度に達するのに要する時間:13.5s
転化率:14.91%
純粋な過酸化物における全CS=0.523g/kg
生成されたLDPEの量:33.5g
高温の過酸化物Luperox(R) 270をジペルケタールLuperox(R) 520に置き換えた三成分過酸化物混合物を用いて実施したこれらの重合は、いまだ15秒程度のTmaxに達する短い時間を示しているが、事実上半減した比消費量に対する転化率の改善を示す。
[実施例7]
この実施例の過酸化物混合物は本発明によるものではない。
この実施例は、過酸化物(1つは約240℃でTmaxに達することを可能にし、他方は約250℃でTmaxに達することを可能にし、開始温度は145℃である)の2つの全濃度で23(純粋)/65/12(純粋なジペルケタールで表される)というモル比でペルエステル及びジペルケタール、即ち、Luperox(R) 11M75/Luperox(R) 26/ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンのカクテル/三成分混合物によるが、実施例1に記載された手順によるLDPEの製造に関する。
観察された結果(約240℃でのTmax、実施例の開始時に定義された23/65/12のモル比の場合)は次の通りである。
合計ppm重量 31.55(含まれる純粋な過酸化物)
最高到達温度:238℃
最高温度に達するのに要する時間:22.7s
転化率:13.44%
純粋な過酸化物における全CS=0.234g/kg
生成されたLDPEの量:30.2g
観察された結果(約250℃でのTmax、実施例の開始時に定義された23/65/12のモル比の場合)は次の通りである。
合計ppm重量 41.23(含まれる純粋な過酸化物)
最高到達温度:246℃
最高温度に達するのに要する時間:20.5s
転化率:14.50%
純粋な過酸化物における全CS=0.284g/kg
生成されたLDPEの量:32.5g
高温の過酸化物Luperox(R) 270をジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンで置き換えた過酸化物混合物を用いて実施したこれらの重合は、Luperox(R) 520(実施例6のもの)で得られた転化の程度に匹敵する転化の程度によって見られる良好な反応性及び実施例6の比消費量と比較してさらに改善された比消費量にもかかわらず、同じレベルではあるが、実施例5の合成又は実施例6のLuperox(R) 520と比較して少なくとも5秒の遅れを持って到達するTmaxを依然として示す。
本発明によるジペルケタールは、特にペルエステルLuperox(R) 270と比較して、より良好な転化率を可能にするが、全てのジペルケタールが迅速に反応するわけではない。したがって、Luperox(R) 520は、非常に近い分子構造及び1分間のHLT分解温度にもかかわらず、ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンよりもはるかに迅速である。
[実施例8]
この実施例の過酸化物混合物は本発明によるものではない。
この実施例は、過酸化物(1つは約240℃でTmaxに達することを可能にし、他方は約250℃でTmaxに達することを可能にし、開始温度は145℃である)で23(純粋)/64/13(純粋なジペルケタール)の2つの全濃度というモル比でペルエステル及びジペルケタール、即ち、Luperox(R) 11M75/Luperox(R) 26/Luperox(R) 220M50のカクテル/三成分混合物によるが、実施例1に記載された手順によるLDPEの製造に関する。
観察された結果(約240℃でのTmax、実施例の開始時に定義された23/64/13のモル比の場合)は次の通りである。
合計ppm重量 41.77(含まれる純粋な過酸化物)
最高到達温度:244℃
最高温度に達するのに要する時間:19.2s
転化率:13.81%
純粋な過酸化物における全CS=0.353g/kg
生成されたLDPEの量:31.1g
観察された結果(約250℃でのTmax、実施例の開始時に定義された23/64/13のモル比の場合)は次の通りである。
合計ppm重量 58.14(含まれる純粋な過酸化物)
最高到達温度:259℃
最高温度に達するのに要する時間:18.5s
転化率:15.71%
純粋な過酸化物における全CS=0.434g/kg
生成されたLDPEの量:35.4g
高温の過酸化物Luperox(R) 270をジペルケタールLuperox(R) 220M50で置き換えた三成分過酸化物混合物を用いて行われたこれらの重合は、転化率及び比消費量の点で、ジペルケタールを使用する優位性をもう一度示すが、Luperox(R) 220M50の分子構造及び1分間のHLTがLuperox(R) 520M50のものと再び近いが、実施例7については、Luperox(R) 520M50を三成分混合物のジペルケタールとして選択した場合(実施例6)よりもTmaxに達するのに要する時間はより長いままである。
実施例5、6及び7によれば、ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンは、比消費量が全体的に約65%減少したにもかかわらず、約15秒~20秒を超えるというTmaxのシフトが大きすぎるために、慣用のLuperox(R) 270に取って代わることを可能にしないようである。Luperox(R) 520M50のみが、反応速度を低下させることなく、転化率及び三成分カクテル中の過酸化物の比消費量の約50%というかなりの減少との両方の利点でペルエステルLuperox(R) 270に取って代わることができる。しかし、本出願人は、実施例7により、140~290℃の高い反応温度範囲のための唯一のジペルケタールとしてのジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンの使用が不可能であり、本発明は、最適な生産性(短い反応時間で高い転化率)を可能にするために、好ましくはLuperox(R) 520M50の大部分を含むべきであることを示す。
[実施例9]
開始剤のカクテル中で使用される、本発明による過酸化物混合物の実施例。
Luperox(R) 520M50の一部を2,2-(ジ-tert-アミルペルオキシ)プロパンで置き換えて行った重合と比較するために、実施例1に記載の手順にしたがって、しかし同じ開始剤に基づくが、開始剤Luperox(R) 11M75/Luperox(R) 26/Luperox(R) 520M50(tert-ブチルペルオキシピバレート/tert-ブチルペルオキシ-2-エチルヘキサノエート/ジペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタン)のカクテルに基づいて、LDPEの重合を行った。
[実施例9a]
この実施例の参考として、LDPEの製造を、実施例1に記載の手順に従ったが、開始温度145℃で約250℃でTmaxに達することが可能である過酸化物の全濃度において、23.1(純粋)/65.1/11.8(純粋なジペルケタールとして表される)のモル比で、ペルエステル及びジペルケタールのカクテル/三成分混合物、具体的にはLuperox(R) 11M75/Luperox(R) 26/Luperox(R) 520M50(tert-ブチルペルオキシピバレート/tert-ブチルペルオキシ-2-エチルヘキサノエート/ジペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタン)を用いてLDPEの製造を実施した。
実施例9の参照重合
観察された結果は次の通りである。
合計ppm重量 48.4(含まれる純粋な過酸化物)
最高到達温度:250℃
最高温度に達するのに要する時間:14s
転化率:15.32%
純粋な過酸化物における全CS=0.316g/kg
生成されたLDPEの量:34.5g
次いで、この重合を、以下の実施例に記載した過酸化物のカクテルで行われたものと比較した。
[実施例9b]
実施例9の本発明による重合:実施例9のような過酸化物のカクテルを用いるが、約1/3モルのペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタンを約1/3モルのジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンに置き換えた重合
注入されたカクテルの以下の組成物、即ち、それぞれ23(純粋)/65.4/8/3.6のモル比でLuperox(R) 11M75/Luperox(R) 26/Luperox(R) 520M50(tert-ブチルペルオキシピバレート/tert-ブチルペルオキシ-2-エチルヘキサノエート/2,2-(ジ-tert-アミルペルオキシ)プロパン)を用いて実施例1の手順を再現し、2つの最後のジペルケタール過酸化物は、それらはイソドデカン中の50%希釈の形態で含まれているが、純粋なものとして表される。
観察された結果は次の通りである。
合計ppm重量 51.55(含まれる純粋な過酸化物)
最高到達温度:251℃
最高温度に達するのに要する時間:13.5s
転化率:16.83%
純粋な過酸化物における全CS=0.306g/kg
生成されたLDPEの量:37.9g
実施例9bは、ペルエステル及び2,2-(ジ-tert-アミルペルオキシ)ブタンのような高生産性のジペルケタール過酸化物開始剤から構成された3成分カクテルにより開始された重合において、約1/3モルの2,2-(ジ-tert-アミルペルオキシ)ブタンの代わりに2,2-(ジ-tert-アミルペルオキシ)プロパンを使用すると、反応速度を一定に保ちながら転化率を1.5%超増加させることが可能になることを示すのに対し、実施例7は、2,2-(ジ-tert-アミルペルオキシ)プロパンによる2,2-(ジ-tert-アミルペルオキシ)ブタンの完全な置換により、重合反応の延長がもたらされ、これは製造上許容されない。したがって、実施例9bは、ペルエステル成分及びジペルケタール成分を含有する開始剤のカクテル中に、ジペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタンと共に、優勢でない割合のペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンを導入する利点を示す。
[実施例9c]
実施例9の本発明による重合:実施例9の参照のような過酸化物のカクテルを用いるが、約12モル%のペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタンを約12モル%のジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンに置き換えた重合
以下のカクテル、即ち、それぞれ22.8(純粋)/64.7/11/1.5のモル比でLuperox(R) 11/Luperox(R) 26/ジペルケタール2,2-(ジ-tert-アミルペルオキシブタン/ジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパン)を用いて実施例1の手順を再現し、2つの最後のジペルケタール過酸化物は、それらはイソドデカン中の50%希釈の形態で含まれているが、純粋なものとして表される。
観察された結果は次の通りである。
合計ppm重量 60.23(含まれる純粋な過酸化物)
最高到達温度:249℃
最高温度に達するのに要する時間:14s
転化率:15.81%
純粋な過酸化物における全CS=0.311g/kg
生成されたLDPEの量:33.6g
実施例9cは、ペルエステル成分及びジペルケタール成分を含む開始剤のカクテル中にジペルケタール2,2-(ジ-tert-アミルペルオキシ)ブタンと共に優勢でない割合のジペルケタール2,2-(ジ-tert-アミルペルオキシ)プロパンを導入する利点を再び示す。
実施例9bに示されたものよりも転化率及び樹脂の生産性の増加は少ないが、2,2-ジ(ジ-tert-アミルペルオキシ)ブタンと共に約30モル%の代わり12モル%の2,2-(ジ-tert-アミルペルオキシ)プロパンを用いた実施例9cは、半分の程度の割合の転化率という転化率の増加をさらに可能にする

Claims (20)

  1. ポリエチレン又はエチレンコポリマーを製造する方法であって、
    - 以下の式のジペルケタール過酸化物化合物から選択される第1の過酸化物重合開始剤、
    Figure 0007018383000004
    [式中、R、R及びR基は、エチル基からなり、基R、R、R、R及びRはメチル基である]
    - 前記第1の開始剤以外の式(I)のジペルケタール過酸化物からなる第2の開始剤[式中、R、R及びR基は、C1~C2アルキル基からなり、基R、R、R、R及びRはメチル基である]の存在下でエチレンのラジカル重合又は共重合の工程を含む、方法。
  2. 前記第1の開始剤の1分間の半減期温度は、140℃~180℃の間であることを特徴とする、請求項1に記載の方法。
  3. 前記第1の開始剤の1分間の半減期温度は、150℃~170℃の間であることを特徴とする、請求項1又は2に記載の方法。
  4. 前記第1の開始剤の1分間の半減期温度は、155℃~165℃の間であることを特徴とする、請求項1から3のいずれか一項に記載の方法。
  5. 前記第2の開始剤の1分間の半減期温度は、150℃~185℃の間であることを特徴とする、請求項1から4のいずれか一項に記載の方法。
  6. 前記第2の開始剤の1分間の半減期温度は、155℃~175℃の間であることを特徴とする、請求項1から5のいずれか一項に記載の方法。
  7. 前記第2の開始剤の1分間の半減期温度は、160℃~170℃の間であることを特徴とする、請求項1から6のいずれか一項に記載の方法。
  8. 前記ラジカル重合又は共重合の工程が、500~3500バールの間の圧力で実施されることを特徴とする、請求項1から7のいずれか一項に記載の方法。
  9. 前記ラジカル重合又は共重合の工程が、1200~3000バールの間の圧力で実施されることを特徴とする、請求項1から8のいずれか一項に記載の方法。
  10. 前記ラジカル重合又は共重合の工程が、1200~2600バールの範囲の圧力で実施されることを特徴とする、請求項1から9のいずれか一項に記載の方法。
  11. 前記ラジカル重合又は共重合の工程が、100℃~330℃の間の温度で実施されることを特徴とする、請求項1から10のいずれか一項に記載の方法。
  12. 前記ラジカル重合又は共重合の工程が、120℃~300℃の間の温度で実施されることを特徴とする、請求項1から11のいずれか一項に記載の方法。
  13. 前記ラジカル重合又は共重合の工程が、140℃~200℃の間の温度で実施されることを特徴とする、請求項1から12のいずれか一項に記載の方法。
  14. 前記第1の開始剤が2,2-ジ(tert-アミルペルオキシ)ブタンであることを特徴とする、請求項1から13のいずれか一項に記載の方法。
  15. 前記第2の開始剤が2,2-ジ(tert-アミルペルオキシ)プロパンであることを特徴とする、請求項1から14のいずれか一項に記載の方法。
  16. 前記2つのジペルケタール過酸化物の混合物が、2~50モル%の間の第2の開始剤の割り当てを有することを特徴とする、請求項1から15のいずれか一項に記載の方法。
  17. 前記2つのジペルケタール過酸化物の混合物が、10~40モル%の間の第2の開始剤の割り当てを有することを特徴とする、請求項1から16のいずれか一項に記載の方法。
  18. 前記2つのジペルケタール過酸化物の混合物が、15~35モル%の間の第2の開始剤の割り当てを有することを特徴とする、請求項1から17のいずれか一項に記載の方法。
  19. 前記重合又は共重合が、1つ以上の追加の過酸化物開始剤の存在下で実施されることもできることを特徴とする、請求項1から18のいずれか一項に記載の方法。
  20. 前記重合又は共重合が、酸化防止剤;UV保護剤;加工剤;防曇剤;アンチブロッキング剤;充填剤;カップリング剤;架橋剤;帯電防止剤;核形成剤;顔料;染料;可塑剤;流動化剤及び難燃性添加剤からなる群から選択される少なくとも1つの添加剤の存在下で実施されることを特徴とする、請求項1から19のいずれか一項に記載の方法。
JP2018504156A 2015-09-29 2016-09-29 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合 Active JP7018383B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1559145 2015-09-29
FR1559145A FR3041645B1 (fr) 2015-09-29 2015-09-29 Polymerisation radicalaire de l'ethylene amorcee par un couple de peroxydes organiques a haute productivite
PCT/FR2016/052470 WO2017055748A1 (fr) 2015-09-29 2016-09-29 Polymérisation radicalaire de l'éthylène amorcée par un couple de peroxydes organiques à haute productivité

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021011660A Division JP2021088710A (ja) 2015-09-29 2021-01-28 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合

Publications (3)

Publication Number Publication Date
JP2018528292A JP2018528292A (ja) 2018-09-27
JP2018528292A5 JP2018528292A5 (ja) 2019-11-21
JP7018383B2 true JP7018383B2 (ja) 2022-02-10

Family

ID=54707984

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018504156A Active JP7018383B2 (ja) 2015-09-29 2016-09-29 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合
JP2021011660A Pending JP2021088710A (ja) 2015-09-29 2021-01-28 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021011660A Pending JP2021088710A (ja) 2015-09-29 2021-01-28 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合

Country Status (16)

Country Link
US (1) US10189921B2 (ja)
EP (1) EP3356429B1 (ja)
JP (2) JP7018383B2 (ja)
KR (1) KR101942692B1 (ja)
CN (1) CN108026216B (ja)
BR (1) BR112017026325B1 (ja)
CO (1) CO2018002984A2 (ja)
ES (1) ES2751726T3 (ja)
FR (1) FR3041645B1 (ja)
IL (1) IL256565B (ja)
MX (1) MX362883B (ja)
MY (1) MY183260A (ja)
RU (1) RU2742275C1 (ja)
SA (1) SA518390892B1 (ja)
SG (1) SG11201802172RA (ja)
WO (1) WO2017055748A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3090640B1 (fr) * 2018-12-21 2021-12-31 Arkema France Utilisation d’au moins un hémi-peroxyacétal, seul ou association avec d’autres peroxydes, pour amorcer la polymérisation ou la copolymérisation d’éthylène sous haute pression

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064113A (ja) 2001-08-23 2003-03-05 Kayaku Akzo Corp アクリル樹脂の製造方法
JP2010150352A (ja) 2008-12-24 2010-07-08 Nof Corp ラジカル重合型熱硬化性樹脂用硬化剤及びそれを含む成形材料
JP2010520936A5 (ja) 2008-02-12 2011-03-10
JP2014505152A (ja) 2011-02-10 2014-02-27 アルケマ フランス 有機過酸化物によって開始する生産性の高いエチレンのフリーラジカル重合

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2650913A (en) * 1950-03-23 1953-09-01 Monsanto Chemicals 2, 2-bis-(tertiary butyl peroxy) butane catalyst for ethylene polymerization
US3671651A (en) * 1968-05-07 1972-06-20 Pennwalt Corp Peroxy compounds containing a haloformate group
US3706818A (en) * 1968-07-17 1972-12-19 Pennwalt Corp Processes using polyperoxides affording sequential free radical generation
US4804775A (en) * 1986-09-09 1989-02-14 Pennwalt Corporation Process for reducing residual monomers in low viscosity polymer-polyols
JPS63168415A (ja) * 1987-01-02 1988-07-12 ペンウオルト・コ−ポレ−シヨン t−アルキルヒドロペルオキシドを用いたアクリル酸誘導体モノマ−の溶液重合方法
DE4038625A1 (de) * 1990-12-04 1992-06-11 Basf Ag Substanz- und suspensionspolymerisate auf der basis von methylmethacrylat
RU2255095C1 (ru) * 2004-03-09 2005-06-27 Открытое акционерное общество "Ангарский завод полимеров" (ОАО АЗП) Способ получения полиэтилена
JP5415289B2 (ja) * 2007-03-09 2014-02-12 ダウ グローバル テクノロジーズ エルエルシー 低密度ポリエチレンポリマーを生成するためのフリーラジカル開始剤系および高圧フリーラジカル重合法
FR2946653B1 (fr) * 2009-06-15 2012-08-03 Arkema France Procede de fabrication d'une composition melange-maitre comprenant un peroxyde organique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064113A (ja) 2001-08-23 2003-03-05 Kayaku Akzo Corp アクリル樹脂の製造方法
JP2010520936A5 (ja) 2008-02-12 2011-03-10
JP2010150352A (ja) 2008-12-24 2010-07-08 Nof Corp ラジカル重合型熱硬化性樹脂用硬化剤及びそれを含む成形材料
JP2014505152A (ja) 2011-02-10 2014-02-27 アルケマ フランス 有機過酸化物によって開始する生産性の高いエチレンのフリーラジカル重合

Also Published As

Publication number Publication date
FR3041645A1 (fr) 2017-03-31
EP3356429B1 (fr) 2019-09-11
CN108026216A (zh) 2018-05-11
US20180273660A1 (en) 2018-09-27
US10189921B2 (en) 2019-01-29
IL256565A (en) 2018-02-28
BR112017026325A2 (pt) 2018-08-21
MX2018002770A (es) 2018-04-13
BR112017026325B1 (pt) 2021-11-09
EP3356429A1 (fr) 2018-08-08
JP2018528292A (ja) 2018-09-27
KR20180063035A (ko) 2018-06-11
KR101942692B1 (ko) 2019-01-25
ES2751726T3 (es) 2020-04-01
IL256565B (en) 2021-03-25
FR3041645B1 (fr) 2017-09-08
MX362883B (es) 2019-02-22
SA518390892B1 (ar) 2023-02-28
SG11201802172RA (en) 2018-04-27
CO2018002984A2 (es) 2018-05-31
CN108026216B (zh) 2021-04-20
MY183260A (en) 2021-02-18
WO2017055748A1 (fr) 2017-04-06
JP2021088710A (ja) 2021-06-10
RU2742275C1 (ru) 2021-02-04

Similar Documents

Publication Publication Date Title
JP6161680B2 (ja) 有機過酸化物によって開始する生産性の高いエチレンのフリーラジカル重合
TWI604888B (zh) 用於氯乙烯單體(vcm)聚合之聚乙烯醇(pvoh)分散劑
TW200902561A (en) A free radical initiator system and a high pressure, freeradical polymerization process for producing a low density polyethylene polymer
JP2016532002A (ja) ヨウ素移動重合によるクロロトリフルオロエチレンベースのブロックコポリマーの合成
TW201623340A (zh) 懸浮聚合用分散安定劑及乙烯系樹脂之製造方法
JP7018383B2 (ja) 高い生産性で2つの有機過酸化物によって開始されるエチレンのラジカル重合
JP3866659B2 (ja) 高圧法によるエチレンポリマーの製造法
TW201827126A (zh) 製備聚乙烯之方法
KR20210106403A (ko) 고압 하에서 에틸렌의 중합 또는 공중합을 촉진하기 위한 적어도 하나의 헤미-퍼옥시아세탈 단독 또는 다른 퍼옥사이드와의 조합의 용도
JP4825393B2 (ja) 合成ガスから誘導された一酸化炭素含有ポリマー
JP2006036914A (ja) マレイミド・オレフィン共重合体の製造方法
FR3061180A1 (fr) Utilisation d'au moins un compose phenolique pour stabiliser des reactions de copolymerisation d'ethylene
JPS591516A (ja) 塩化ビニル−プロピレン共重合法
JPH04270707A (ja) 塩化ビニル系重合体の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190924

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210128

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20210209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210415

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7018383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150