JP7014774B2 - 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築 - Google Patents

組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築 Download PDF

Info

Publication number
JP7014774B2
JP7014774B2 JP2019510736A JP2019510736A JP7014774B2 JP 7014774 B2 JP7014774 B2 JP 7014774B2 JP 2019510736 A JP2019510736 A JP 2019510736A JP 2019510736 A JP2019510736 A JP 2019510736A JP 7014774 B2 JP7014774 B2 JP 7014774B2
Authority
JP
Japan
Prior art keywords
rhsa
expression
pdi
genetically engineered
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019510736A
Other languages
English (en)
Other versions
JP2019516401A (ja
Inventor
グオドン、チャン
シン、ドウ
シャオボ、シオン
ウェンチャオ、ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Protgen Ltd
Original Assignee
Shenzhen Protgen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Protgen Ltd filed Critical Shenzhen Protgen Ltd
Publication of JP2019516401A publication Critical patent/JP2019516401A/ja
Priority to JP2022005006A priority Critical patent/JP7448977B2/ja
Application granted granted Critical
Publication of JP7014774B2 publication Critical patent/JP7014774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0051Oxidoreductases (1.) acting on a sulfur group of donors (1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y502/00Cis-trans-isomerases (5.2)
    • C12Y502/01Cis-trans-Isomerases (5.2.1)
    • C12Y502/01008Peptidylprolyl isomerase (5.2.1.8), i.e. cyclophilin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/04Intramolecular oxidoreductases (5.3) transposing S-S bonds (5.3.4)
    • C12Y503/04001Protein disulfide-isomerase (5.3.4.1), i.e. disufide bond-forming enzyme
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

本発明は、ヒト血清アルブミンの組換え生産に関し、特に、本発明は、酵母細胞でヒト血清アルブミンと1以上のヒト血清アルブミン発現促進因子を共発現させることによりヒト血清アルブミンを高生産するための方法に関する。
ヒト血清アルブミン(HSA)は、ヒト血中で最も豊富なタンパク質であり、全血漿タンパク質の約60%を占める。HSAは重要な生理学的機能を有し、血液の浸透圧を維持することができ、内因性および外因性物質を輸送するための重要な担体であり、重要な血液バッファー成分である。加えて、HSAはまた細胞培養培地の添加成分、医薬賦形剤などとして使用することもでき、重要な応用価値を有する。現在のところ、HSAには2つの主要な供給源があり、一つは血漿からの抽出である。中国での血漿の不足ならびにAIDSおよび肝炎などのウイルス感染のリスクのために、この方法によって得られるHSAは、巨大な市場需要を満たすことができない。もう一つは生物工学技術を用いた組換え製法である。生物工学技術によって組換え生産されたヒト血清アルブミンは、組換えヒト血清アルブミン(rHSA)と呼ばれる。この場合、酵母によりrHSAを発現させる技術が最も広く研究され、完成している。米国特許第5,683,893号には、酵母でのrHSA発現を増強するためにピキア(Pichia)アルコールオキシダーゼ(AOX)プロモーターを変異させる方法が開示されている。2005年4月29日出願の中国特許出願第200510068171.9号には、rHSA酵母株の構築および発酵の方法が開示され、その発現レベルは10g/L培地上清に達し得る。しかしながら、上記の方法はなお低いrHSA発現、長い発酵時間および低い生産効率という欠点を持ち、従って、より生産性の高い遺伝子工学操作株を構築するための新たな方法を見つけることが必要である。
ピキア属は、核生物のタンパク質に対して翻訳後修飾を有し、従って、外来タンパク質は発現後に適切に折り畳まれ、組み立てられ、細胞外に分泌され得る。一方、ピキア属は、高密度発酵に関して、単一の炭素源としてメタノールを効果的に利用することができる。従って、ピキア属は、外来タンパク質の発現に広く使用されている。しかしながら、ピキア属は一般に、長い発酵サイクル、高い生産コストを有し、汚染およびタンパク質分解を受けやすい。よって、発酵時間の短縮とコストの軽減がこの発現系の研究のホットスポットとなっている。
酵母の小胞体(ER)は、本来の立体配座へのタンパク質の折りたたみとグリコシル化およびリン酸化などの翻訳後修飾の重要なサイトである。小胞体に多数の折り畳まれてないタンパク質が存在すると、アンフォールディングタンパク質応答(UPR)が誘導され、これが次に分子シャペロンおよび折りたたみ酵素の下流発現、ならびに小胞体関連タンパク質分解経路を活性化する。自己調節機構として、UPRは酵母成長および分泌タンパク質の発現に重要な役割を果たす(Graham Whyteside, et al. FEBS Letters 2011; 585: 1037-1041)。転写アクチベーターHAC1は、酵母UPRのレギュレーターとして働き、対象タンパク質の発現および分泌の補助に重要な役割を果たす結合タンパク質KAR2、タンパク質ジスルフィドイソメラーゼ(PDI)、小胞体オキシドレダクチン-1(ERO1)、およびペプチジル-プロリルシス-トランスイソメラーゼ(PPI)などの、UPRに関連する一連のタンパク質の発現を調節する。2013年3月22日出願の中国特許出願第201310095971.4号には、対象タンパク質の発現レベルを増強するためにPDIをアスペルギルス・ニガー(Aspergillus niger)α-グルコシダーゼと共発現させる方法が開示されている。2007年5月16日出願の中国特許出願第200780026864.9号には、メタノール資化酵母オガタエア・ミヌータ(Ogataea minuta)のHAC1の発現を増強する方法が開示され、得られた遺伝子工学操作株は高タンパク質分泌能を有する。Tiziana Lodiらは、クルイベロミセス・ラクティス(Kluyveromyces lactis)におけるrHSAの分泌に寄与することを報告している(Tiziana Lodi. et al. AEM 2005; 71: 4359-4363)。さらに、ピキア属でのKAR2との共発現は、ヒト単鎖抗体フラグメント(A33scFv)の発現を倍加させた(Leonardo M. Damasceno, et al. Appl Microbiol Biotechnol, 2007; 74: 381-389)。
本発明は、組換えヒト血清アルブミンを高発現させる方法であって、酵母宿主細胞で(a)ヒト血清アルブミン遺伝子と(b)1以上のrHSA発現促進因子遺伝子を共発現させる工程を含んでなる方法を提供する。
外因性のヒト血清アルブミン遺伝子とrHSA発現促進因子遺伝子が酵母宿主細胞に導入されると、rHSAの発現レベルが著しく増強される。
本発明はまた、組換えヒト血清アルブミンを高発現させるための遺伝子工学操作された真菌であって、酵母であり、(a)ヒト血清アルブミン遺伝子と(b)1以上のrHSA発現促進因子遺伝子を含んでなる遺伝子工学操作された真菌も提供する。
いくつかの実施形態では、酵母はピキア属であり、好ましくは、酵母はピキア・パストリス(Pichia pastoris)である。
いくつかの実施形態では、rHSA発現促進因子は、転写アクチベーターHAC1、結合タンパク質KAR2、タンパク質ジスルフィドイソメラーゼ(PDI)、小胞体オキシドレダクターゼ(ERO1)、およびペプチジル-プロリルシス-トランスイソメラーゼ(PPI)からなる群から選択される。
本発明のいくつかの実施形態では、以下の組合せが酵母宿主細胞で共発現される:
rHSAとERO1;
rHSAとPDI;
rHSAとPDIとHAC1;
rHSAとPPIとKAR2;または
rHSAとPDIとPPIとHAC1。
いくつかの実施形態では、本発明のヒト血清アルブミン遺伝子は、プラスミドにより酵母宿主細胞に形質転換され得、rHSA発現促進因子遺伝子は1、2またはそれを超えるプラスミドにより酵母宿主細胞に形質転換され得る。
いくつかの実施形態では、本発明の遺伝子工学操作された真菌内の宿主ゲノムにおいて元のrHSA発現促進因子遺伝子を不活化する必要はなく、従って、得られた遺伝子工学操作された真菌は、宿主細胞内に移入されたHSA遺伝子およびrHSA発現促進因子遺伝子と元のrHSA発現促進因子遺伝子の両方を含むことができる。
本発明のいくつかの実施形態では、本発明の遺伝子工学操作された真菌はrHSAを高発現することができ、共発現株におけるrHSAの発現レベルは18.2g/L発酵上清まで著しく増大し、これはrHSAの大規模工業生産の確かな基盤を築くものである。
図1は、HSAをコードするDNA配列を示す。 図2は、図1に示されるDNA配列によりコードされるHSAのアミノ酸配列を示す。 図3は、ピキアERO1をコードするDNA配列を示す。 図4は、図3に示されるDNA配列によりコードされるERO1のアミノ酸配列を示す。 図5は、ピキアHAC1をコードするDNA配列を示す。 図6は、図5に示されるDNA配列によりコードされるHAC1のアミノ酸配列を示す。 図7は、ピキアPDIをコードするDNA配列を示す。 図8は、図7に示されるDNA配列によりコードされるPDIのアミノ酸配列を示す。 図9は、ピキアPPIをコードするDNA配列を示す。 図10は、図9に示されるDNA配列によりコードされるPPIのアミノ酸配列を示す。 図11は、ピキアKAR2をコードするDNA配列を示す。 図12は、図11に示されるDNA配列によりコードされるKAR2のアミノ酸配列を示す。 図13は、rHSAピキア分泌発現ベクターを示す。 図14は、pPICZα-ERO1ピキア発現ベクターを示す。 図15は、pPIC6-HAC1ピキア発現ベクターを示す。 図16は、pPICZα-PDIピキア発現ベクターを示す。 図17は、pPIC6-PPIピキア発現ベクターを示す。 図18は、pPIC6-KAR2ピキア発現ベクターを示す。 図19は、rHSA共発現株の振盪フラスコ発現の電気泳動の結果を示す。
発明の詳細な説明
用語「rHSA発現促進因子」は、本明細書で使用する場合、rHSAの発現を促進し得る種々のタンパク質因子を指し、その供給源は特定の種に限定されない。具体的には、分子シャペロン活性を有するタンパク質、例えば、KAR2;折りたたみ酵素、例えば、PDI;および転写レギュレーター、例えば、HAC1などが含まれる。
本発明に特に好適な特定のrHSA発現促進因子としては、転写アクチベーターHAC1、結合タンパク質KAR2、タンパク質ジスルフィドイソメラーゼ(PDI)、小胞体オキシドレダクターゼ(ERO1)、およびペプチジル-プロリルシス-トランスイソメラーゼ(PPI)などが含まれる。
「rHSA発現促進因子」の供給源は、特定の種に限定されない。例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)由来のrHSA発現促進因子,例えば、PDIがピキア属で十分に機能し得る。
当業者ならば、「rHSA発現促進因子」がまた、上記発現促進因子に比べてアミノ酸配列に1または複数のアミノ酸残基の置換、付加または欠失を有し、かつ、実質的に類似の生物学的機能を有するタンパク質または活性フラグメントも含むことを認識するであろう。それにはまた、これらのタンパク質またはそれらの活性フラグメントを含有する修飾産物、融合タンパク質および複合体も含まれる。
好ましくは、rHSA発現促進因子は、宿主細胞に由来する。例えば、ピキア由来のrHSA発現促進因子は、発現のためにピキア宿主細胞に好ましく導入される。
当業者ならば、異なるタイプの促進因子の異なる組合せは異なる技術的効果を生み得ることを認識するであろう。例えば、転写レギュレーターHAC1と折りたたみ酵素PDIの同時付加はPDI単独よりも良好なrHSA発現をもたらす。
rHSA発現促進因子は、単独でまたは組み合わせて導入され得る。
例えば、本発明のいくつかの実施形態では、rHSA発現促進因子(ERO1、HAC1、KAR2、PDI、PPIなどを含む)は、宿主細胞に単独で導入され、rHSAと共発現され、発現を著しく増強する。例えば、PDIとrHSAの共発現は、rHSAの発現レベルに、発現促進因子が使用されない場合の発現レベルに比べて160%の増強をもたらす。
本発明のいくつかの実施形態では、rHSA発現促進因子は、対で宿主細胞に導入され得る。例えば、PDIとHAC1の組合せは、rHSAの発現レベルに、発現促進因子が使用されない場合の発現レベルに比べて2倍近くの増強をもたらした。
本発明のいくつかの実施形態では、3以上のrHSA発現促進因子が宿主細胞に導入され得る。例えば、本発明の特定の実施形態では、rHSAは、宿主細胞で3つの発現促進因子PDI、PPIおよびHAC1とともに共発現され、rHSAの発現レベルを著しく増強する。
本発明のいくつかの実施形態では、本発明者は、ピキアGS115株のERO1、HAC1、KAR2、PDI、およびPPI遺伝子を遺伝子工学技術によりクローニングし、誘導発現ベクターを構築した。これらのタンパク質とrHSAの共発現により、高発現および高効率を有する遺伝子工学操作された酵母真菌を得るために多様な組合せがスクリーニングされた。
1.HSAのクローニングおよび発現ベクターの構築
発現ベクターpPIC9K(Invitrogenから購入)は、外来タンパク質分泌および発現させるために使用できる酵母α-因子シグナルペプチドを保持している。以下のプライマーをGenBankによって公開されているNM_000477.5の配列に従って設計した:(酵素切断部位に下線が施されている)
HSAフォワード:CCGCTCGAGAAAAGAGACGCTCACAAGAGTGAGGT(配列番号1)
HSAリバース:CCGGAATTCTTATAAGCCTAAGGCAGCTTGACTTGC(配列番号2)
ヒト肝臓cDNAライブラリーを、特定の条件下でポリメラーゼ連鎖反応(PCR)を行うために鋳型として使用した:94℃で3分変性;94℃で30秒変性、55℃で30秒アニーリング、72℃で2分伸長、合計30サイクル;対で、72℃で10分伸長。得られたPCR産物をXhoIおよびEcoRIで酵素消化し、pPIC9Kベクターに挿入してベクターpPIC9K-HSAを得、構造を図13に示す。HSA DNA配列をシーケンシングにより確認し、結果を図1に示す。対応するアミノ酸配列を図2に示す。
2.rHSA酵母分泌および発現株の構築およびスクリーニング
本発明では、ピキアGS115(Invitrogenから購入)を宿主株として使用し、pPIC9K-HSAベクターをSalI消化により線状化し、GS115株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115染色体のHIS4遺伝子座に組み込まれ、形質転換株に対し、2mg/mLジェネティシン(G418)を含有するYPD(酵母抽出物ペプトンデキストロース)固体培地を用いた抗生物質富化スクリーニングを行い、rHSAを分泌可能な酵母株GS115-rHSAを得た。
3.ピキアERO1遺伝子のクローニングおよびベクター構築
ピキアERO1遺伝子のDNA配列をNCBIデータベースから取得し、遺伝子増幅のために以下のプライマーを設計した:(酵素切断部位に下線が施されている)
EROフォワード:CGGTTCGAAAGCATGAACCCTCAAATCCCTTT(配列番号3)
EROリバース:GCTGGCGGCCGCTTACAAGTCTACTCTATATGTGG(配列番号4)
ピキアGS115株のゲノミクスを鋳型として用い、ERO1遺伝子をPCRにより得、SnaBIおよびNotIの両方で酵素消化し、発現ベクターpPICZα(Invitrogenから購入)に挿入してベクターpPICZα-ERO1を得、構造を図14に示す。図3に示されるように、ERO1 DNA配列をシーケンシングにより確認した。対応するアミノ酸配列を図4に示す。
4.ピキアHAC1遺伝子のクローニングおよびベクター構築
ピキアHAC1遺伝子のDNA配列をNCBIデータベースから取得し、遺伝子増幅のために以下のプライマーを設計した:(酵素切断部位に下線が施されている)
HACフォワード:CGGTTCGAAACGATGCCCGTAGATTCTTCT(配列番号5)
HACリバース:GCTGGCGGCCGCCTATTCCTGGAAGAATACAAAGTC(配列番号6)
酵母RNA抽出および逆転写の方法は文献を参照した(J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 第3版)。ピキアGS115のcDNAを鋳型として用い、HAC1遺伝子をPCRにより得、SnaBIおよびNotIの両方で酵素消化し、発現ベクターpPIC6(Invitrogenから購入)に挿入してベクターpPIC6-HAC1を得、構造を図15に示す。HAC1 DNA配列をシーケンシングにより確認し、結果を図5に示す。対応するアミノ酸配列を図6に示す。
5.ピキアPDI遺伝子のクローニングおよびベクター構築
ピキアPDI遺伝子のDNA配列をNCBIデータベースから取得し、遺伝子増幅のために以下のプライマーを設計した:(酵素切断部位に下線が施されている)
PDIフォワード:CGGTTCGAAACGATGCAATTCAACTGGAATATT(配列番号7)
PDIリバース:GCTGGCGGCCGCTTAAAGCTCGTCGTGAGCGTCTGC(配列番号8)
ピキアGS115のゲノミクスを鋳型として用い、PDI遺伝子をPCRにより得、SnaBIおよびNotIの両方で酵素消化し、発現ベクターpPICZα(Invitrogenから購入)に挿入してベクターpPICZα-PDIを得、構造を図16に示す。PDI DNA配列をシーケンシングにより確認し、結果を図7に示す。対応するアミノ酸配列を図8に示す。
6.ピキアPPI遺伝子のクローニングおよびベクター構築
ピキアPPI遺伝子のDNA配列をNCBIデータベースから取得し、遺伝子増幅のために以下のプライマーを設計した:(酵素切断部位に下線が施されている)
PPIフォワード:CGGTTCGAAACGATGGAATTAACCGCATTGCGCAGC(配列番号9)
PPIリバース:GCTGGCGGCCGCTTACAACTCACCGGAGTTGGTGATC(配列番号10)
ピキアGS115株を鋳型として用い、PPI遺伝子をPCRにより得、SnaBIおよびNotIの両方で酵素消化し、発現ベクターpPIC6(Invitrogenから購入)に挿入してベクターpPIC6-PPIを得、構造を図17に示す。DNA配列をシーケンシングにより確認し、配列を図9に示す。対応するアミノ酸配列図10に示す。
7.ピキアKAR2遺伝子のクローニングおよびベクター構築
ピキアKAR2遺伝子のDNA配列をNCBIデータベースから取得し、遺伝子増幅のために以下のプライマーを設計した:(酵素切断部位に下線が施されている)
KAR2フォワード:CGGTTCGAAACGATGCTGTCGTTAAAACCATCT(配列番号11)
KAR2リバース:GCTGGCGGCCGCCTATGATCATGATGAGTTGTAG(配列番号12)
ピキアGS115株のゲノミクスを鋳型として用い、KAR2遺伝子をPCRにより得、SnaBIおよびNotIの両方で酵素消化し、発現ベクターpPIC6(Invitrogenから購入)に挿入してベクターpPIC6-KAR2を得、構造を図18に示す。DNA配列をシーケンシングにより確認し、配列を図11に示す。対応するアミノ酸配列を図12に示す。
8.ERO1およびrHSA共発現株の構築およびスクリーニング
rHSA分泌および発現株GS115-rHSAを原株として使用し、上記で構築したpPICZα-ERO1ベクターをSacI消化により線状化し、GS115-rHSA株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA株の染色体5’AOX部位に組み込まれた。形質転換株に対し、2mg/mLゼオシンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、ERO1およびrHSA共発現酵母株GS115-rHSA-ERO1を得た。
9.HAC1およびrHSA共発現株の構築およびスクリーニング
rHSA分泌および発現株GS115-rHSAを原株として使用し、実施例4で構築されたpPIC6-HAC1ベクターをSacI消化により線状化し、GS115-rHSA株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA株の染色体5’AOX部位に組み込まれた。形質転換株に対し、1mg/mLブラストサイジンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、HAC1およびrHSA共発現酵母株GS115-rHSA-HAC1を得た。
10.PDIおよびrHSA共発現株の構築およびスクリーニング
rHSA分泌および発現株GS115-rHSAを原株として使用し、上記で構築されたpPICZα-PDIベクターをSacI消化により線状化し、GS115-rHSA株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA株の染色体5’AOX部位に組み込まれた。形質転換株に対し、2mg/mLゼオシンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、PDIおよびrHSA共発現酵母株GS115-rHSA-PDIを得た。
11.PPIおよびrHSA共発現株の構築およびスクリーニング
rHSA分泌および発現株GS115-rHSAを原株として使用し、実施例6で構築されたpPIC6-PPIベクターをPmeI消化により線状化し、GS115-rHSA株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA株の染色体5’AOX部位に組み込まれた。形質転換株に対し、1mg/mLブラストサイジンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、PPIおよびrHSA共発現酵母株GS115-rHSA-PPIを得た。
12.KAR2およびrHSA共発現株の構築およびスクリーニング
rHSA分泌および発現株GS115-rHSAを原株として使用し、実施例7で構築されたpPIC6-KAR2ベクターをPmeI消化により線状化し、GS115-rHSA株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA株の染色体5’AOX部位に組み込まれた。形質転換株に対し、1mg/mLブラストサイジンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、KAR2およびrHSA共発現酵母株GS115-rHSA-KAR2を得た。
13.HAC1、PDIおよびrHSA共発現株の構築およびスクリーニング
発現株GS115-rHSA-PDIを原株として使用し、上記で構築されたpPIC6-HAC1ベクターをSacI消化により線状化し、GS115-rHSA-PDI株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA-PDI株の染色体5’AOX部位に組み込まれた。形質転換株に対し、1mg/mLブラストサイジンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、HAC1、PDIおよびrHSA共発現酵母株GS115-rHSA-PDI-HAC1を得た。
14.PPI、PDIおよびrHSA共発現株の構築およびスクリーニング
実施例10でスクリーニングされた発現株GS115-rHSA-PDIを原株として使用し、実施例6で構築されたpPIC6-PPIベクターをPmeI消化により線状化し、GS115-rHSA-PDI株に電気形質転換した。適格な調製および電気形質転換のための方法は文献を参照した(James M. Cregg, Pichia Protocols, 第2版)。挿入配列はGS115-rHSA-PDI株の染色体5’AOX部位に組み込まれた。形質転換株に対し、1mg/mLブラストサイジンを含有するYPD固体培地を用いた抗生物質富化スクリーニングを行い、PPI、PDIおよびrHSA共発現酵母株GS115-rHSA-PDI-PPIを得た。
15.振盪フラスコ内でのrHSA共発現株の誘導発現
上記の実施例でスクリーニングされたGS115-rHSA-ERO1、GS115-rHSA-HAC1、GS115-rHSA-PDI、GS115-rHSA-PPI、GS115-rHSA-KAR2、GS115-rHSA-PDI-HAC1およびGS115-rHSA-PDI-PPI株の単一コロニーを個別に採取し、2mlのMGY培地(1.34%酵母窒素源ベース;1.0%グリセロール;4.0×10-5ビオチン)に植え込み、30℃で16時間培養した。遠心分離後、葉状体を採取し、培養のために20mlのBMMY培地(1.0%酵母抽出物;2.0%ペプトン;0.1Mリン酸カリウムバッファー、pH6.0;1.34%酵母窒素源ベース;0.5%無水メタノール)に打つし、72時間発現誘導し、12時間ごとに50μlの無水メタノールを加えた。誘導の終了後、SDS-PAGE電気泳動のために培養上清を採取した(図19)。対照株(GS115-rHSA)と比較したところ、rHSAの発現レベルは7つの共発現株の全てで向上していた。Quantity Oneソフトウエアを用いて分析を行い、発現比を表1に示す。
Figure 0007014774000001
16.rHSA共発現株の発酵
GS115-rHSA株ならびに実施例15でスクリーニングされたGS115-rHSA-ERO1、GS115-rHSA-HAC1、GS115-rHSA-PDI、GS115-rHSA-PPI、GS115-rHSA-KAR2、GS115-rHSA-PDI-HAC1およびGS115-rHSA-PDI-PPI株を、5リットル発酵槽を用いて発酵させ、発酵条件はInvitrogenにより公開されている「ピキア発酵法ガイドライン」を参照した。発酵は80時間の誘導発現後に終了し、培養上清を採取してrHSAの発現レベルを分析した。結果を表2に示す。固定発酵時間が80時間であった場合、共発現株におけるrHSAの発現レベルは18.2g/L発酵上清まで著しく増大し、これはrHSAの大規模工業生産の基盤を築くものであった。
Figure 0007014774000002

Claims (12)

  1. 組換えヒト血清アルブミン(rHSA)を高発現させる方法であって、酵母宿主細胞で(a)ヒト血清アルブミン遺伝子と(b)2種のrHSA発現促進因子遺伝子を共発現させる工程を含んでなり、前記2種のrHSA発現促進因子遺伝子がタンパク質ジスルフィドイソメラーゼ(PDI)および転写アクチベーターHAC1、または、タンパク質ジスルフィドイソメラーゼ(PDI)およびペプチジル-プロリルシス-トランスイソメラーゼ(PPI)である、方法。
  2. 酵母がピキア属である、請求項1に記載の方法。
  3. 酵母がピキア・パストリスである、請求項1に記載の方法。
  4. HSA発現促進因子遺伝子が酵母宿主細胞に導入される、請求項1~のいずれか一項に記載の方法。
  5. ヒト血清アルブミン遺伝子がプラスミドにより酵母宿主細胞に形質転換される、請求項1~のいずれか一項に記載の方法。
  6. rHSA発現促進因子遺伝子が1個または2個のプラスミドにより酵母宿主細胞に形質転換される、請求項1~のいずれか一項に記載の方法。
  7. 組換えヒト血清アルブミン(rHSA)を高発現する遺伝子工学操作された真菌であって、酵母であり、かつ、(a)ヒト血清アルブミン遺伝子と(b)2種のrHSA発現促進因子遺伝子を含んでなり、前記2種のrHSA発現促進因子遺伝子がタンパク質ジスルフィドイソメラーゼ(PDI)および転写アクチベーターHAC1、または、タンパク質ジスルフィドイソメラーゼ(PDI)およびペプチジル-プロリルシス-トランスイソメラーゼ(PPI)である、遺伝子工学操作された真菌。
  8. 酵母がピキア属である、請求項に記載の遺伝子工学操作された真菌。
  9. 酵母がピキア・パストリスである、請求項に記載の遺伝子工学操作された真菌。
  10. HSA発現促進因子遺伝子が遺伝子工学操作された真菌に導入されている、請求項のいずれか一項に記載の遺伝子工学操作された真菌。
  11. ヒト血清アルブミン遺伝子がプラスミドにより遺伝子工学操作された真菌に形質転換された、請求項10のいずれか一項に記載の遺伝子工学操作された真菌。
  12. rHSA発現促進因子遺伝子が1個または2個のプラスミドにより遺伝子工学操作された真菌に形質転換された、請求項11のいずれか一項に記載の遺伝子工学操作された真菌。
JP2019510736A 2016-05-04 2017-05-04 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築 Active JP7014774B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022005006A JP7448977B2 (ja) 2016-05-04 2022-01-17 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610289898.8 2016-05-04
CN201610289898 2016-05-04
PCT/CN2017/083079 WO2017190671A1 (zh) 2016-05-04 2017-05-04 高效表达重组人血清白蛋白工程菌的构建

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022005006A Division JP7448977B2 (ja) 2016-05-04 2022-01-17 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Publications (2)

Publication Number Publication Date
JP2019516401A JP2019516401A (ja) 2019-06-20
JP7014774B2 true JP7014774B2 (ja) 2022-02-01

Family

ID=60202777

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019510736A Active JP7014774B2 (ja) 2016-05-04 2017-05-04 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築
JP2022005006A Active JP7448977B2 (ja) 2016-05-04 2022-01-17 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022005006A Active JP7448977B2 (ja) 2016-05-04 2022-01-17 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Country Status (8)

Country Link
US (1) US20190330707A1 (ja)
EP (1) EP3453763B1 (ja)
JP (2) JP7014774B2 (ja)
CN (2) CN112831501A (ja)
AU (1) AU2017259656B2 (ja)
CA (1) CA3023046A1 (ja)
IL (1) IL262752B (ja)
WO (1) WO2017190671A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043355A (ja) * 2016-05-04 2022-03-15 シェンチェン、プロトゲン、リミテッド 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988803A (zh) * 2019-05-16 2019-07-09 齐智 一种高效生产重组人血清白蛋白的发酵方法
CN111363688A (zh) * 2020-03-16 2020-07-03 通化安睿特生物制药股份有限公司 一种提高重组人白蛋白表达质量减少降解的方法和用途
CN112143662B (zh) * 2020-08-31 2023-01-06 浙江工业大学 一种重组毕赤酵母工程菌及在制备嘌呤中的应用
CN112898407B (zh) * 2021-01-25 2022-07-12 南京医科大学 重组驼源血清白蛋白的制备方法
CN118222605A (zh) * 2024-02-22 2024-06-21 通化安睿特生物制药股份有限公司 一种高表达重组白蛋白的菌株及其构建方法
CN118147180A (zh) * 2024-05-09 2024-06-07 芝诺(苏州)生物科技有限公司 一种代谢工程改造毕赤酵母合成人乳铁蛋白的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515962A (ja) 2003-12-23 2007-06-21 ノボザイムス、デルタ、リミテッド 遺伝子発現法
JP2014525255A (ja) 2011-08-31 2014-09-29 ヴェーテーウー・ホールディング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング タンパク質発現
WO2016017693A1 (ja) 2014-07-30 2016-02-04 第一三共株式会社 タンパク質の改良高分泌生産方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0638771A (ja) * 1990-10-31 1994-02-15 Tonen Corp ヒトプロテインジスルフィドイソメラーゼ遺伝子の発現方法および該遺伝子との共発現によるポリペプチドの製造方法
EP0509841A3 (en) * 1991-04-18 1993-08-18 Tonen Corporation Co-expression system of protein disulfide isomerase gene and useful polypeptide gene and process for producing the polypeptide using its system
JPH06189769A (ja) * 1992-10-30 1994-07-12 Green Cross Corp:The 変異型aox2プロモーター、それを担持するベクター、形質転換体および異種蛋白質の製造方法
US5521086A (en) * 1993-09-16 1996-05-28 Cephalon, Inc. Secretion sequence for the production of a heterologous protein in yeast
CN101665798B (zh) * 2008-09-06 2012-11-21 浙江我武生物科技股份有限公司 一种制备重组人血清白蛋白与干扰素α融合蛋白的方法
CN102643847A (zh) * 2011-02-17 2012-08-22 华东理工大学 多基因共表达体系及含二硫键功能性蛋白的生产方法
CN102766648B (zh) * 2012-07-25 2013-07-31 浙江大学 人血清白蛋白与白介素1受体拮抗剂融合蛋白的表达系统
CN104152484B (zh) * 2014-08-13 2017-04-05 青岛蔚蓝生物集团有限公司 一种提高毕赤酵母分泌型外源蛋白表达量的方法
US20190330707A1 (en) 2016-05-04 2019-10-31 Shenzhen Protgen Ltd. Construction of engineering bacteria for high expression of recombinant human serum albumin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515962A (ja) 2003-12-23 2007-06-21 ノボザイムス、デルタ、リミテッド 遺伝子発現法
JP2014525255A (ja) 2011-08-31 2014-09-29 ヴェーテーウー・ホールディング・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング タンパク質発現
WO2016017693A1 (ja) 2014-07-30 2016-02-04 第一三共株式会社 タンパク質の改良高分泌生産方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Guerfal, M. et al.,The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins.,Microbial cell factories,2010年,Vol. 9:49,pp. 1-12
Zhang, W. et al.,Enhanced Secretion of Heterologous Proteins in Pichia pastoris Following Overexpression of Saccharomyces cerevisiae Chaperone Proteins,Biotechnol. Prog.,2006年,Vol. 22,pp. 1090-1095

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043355A (ja) * 2016-05-04 2022-03-15 シェンチェン、プロトゲン、リミテッド 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築
JP7448977B2 (ja) 2016-05-04 2024-03-13 シェンチェン、プロトゲン、リミテッド 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築

Also Published As

Publication number Publication date
AU2017259656A1 (en) 2018-12-20
EP3453763A4 (en) 2019-11-27
JP2019516401A (ja) 2019-06-20
CN109415735A (zh) 2019-03-01
WO2017190671A1 (zh) 2017-11-09
JP2022043355A (ja) 2022-03-15
CN109415735B (zh) 2020-11-13
EP3453763B1 (en) 2021-12-22
AU2017259656B2 (en) 2023-01-12
IL262752B (en) 2022-01-01
US20190330707A1 (en) 2019-10-31
IL262752A (en) 2018-12-31
CN112831501A (zh) 2021-05-25
EP3453763A1 (en) 2019-03-13
JP7448977B2 (ja) 2024-03-13
CA3023046A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP7014774B2 (ja) 組換えヒト血清アルブミンの高発現のための遺伝子工学操作された細菌の構築
Çelik et al. Production of recombinant proteins by yeast cells
JP5027812B2 (ja) トリプシンの変異体によるインスリン前駆体の切断
KR101262682B1 (ko) 유전자 발현 기술
ES2358086T3 (es) Promotores aox1 mutantes.
JP5631533B2 (ja) 遺伝子発現技術
CN1150313C (zh) 多肽的生产方法
KR20070009269A (ko) 재조합단백질 생산용 단백질융합인자 라이브러리 및이로부터 획득된 단백질융합인자
RU2015135980A (ru) Клетки-хозяева и способы использования
EP2684948A1 (en) Method for producing heterologous protein using yeast having knocked out vps gene
Kang et al. Hansenula polymorpha
US20190010194A1 (en) Methanol-utilizing yeast-derived novel protein and method for producing protein of interest using same
JP7239205B2 (ja) 新規宿主細胞及びそれを用いた目的タンパク質の製造方法
EP3750998A1 (en) Codon optimized precursor gene and signal peptide gene of human insulin analogue
Felber et al. Strains and molecular tools for recombinant protein production in Pichia pastoris
US11365419B2 (en) Host cell and method for producing target protein using same
EP1109922A1 (en) Method for the production of heterologous polypeptides in transformed yeast cells
WO2024133538A1 (en) Host cells with pat1 knockout for increased specific protein productivity
Juarez Contreras Expression and Purification of Snake Antivenom Peptide in Pichia Pastoris
CN117777276A (zh) 一种促进马克斯克鲁维酵母分泌表达人乳铁蛋白的方法
CN1605592A (zh) 蛋白酶抗性人睫状神经营养因子突变体及其生产方法和用途
Sreenivas et al. Nagaraja Govindappa, Yogesh Basavaraju, Komal Kanojia, Niveditha Mallikarjun, et al.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120