JP6988726B2 - 堆積物監視装置および真空ポンプ - Google Patents

堆積物監視装置および真空ポンプ Download PDF

Info

Publication number
JP6988726B2
JP6988726B2 JP2018142466A JP2018142466A JP6988726B2 JP 6988726 B2 JP6988726 B2 JP 6988726B2 JP 2018142466 A JP2018142466 A JP 2018142466A JP 2018142466 A JP2018142466 A JP 2018142466A JP 6988726 B2 JP6988726 B2 JP 6988726B2
Authority
JP
Japan
Prior art keywords
amount
motor
change
deposit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018142466A
Other languages
English (en)
Other versions
JP2020020272A (ja
Inventor
正人 小亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2018142466A priority Critical patent/JP6988726B2/ja
Publication of JP2020020272A publication Critical patent/JP2020020272A/ja
Application granted granted Critical
Publication of JP6988726B2 publication Critical patent/JP6988726B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

本発明は、堆積物監視装置および真空ポンプに関する。
エッチング装置などに代表される半導体製造装置にターボ分子ポンプを用いた場合、ターボ分子ポンプ内部に、プロセスガスに起因する生成物が堆積しやすい(例えば、特許文献1参照)。生成物堆積によりターボ分子ポンプの排気効率が低下すると、同一ガス流量を排気する場合でも排気に要するエネルギー(すなわちモータ消費電力)が生成物の堆積量に応じて増加する。特許文献1に記載の堆積物検知装置では、生成物堆積によるモータ電流値の変化に基づいてポンプ内の堆積物を検知し、報知を行うようにしている。
特許第5767632号公報
しかしながら、特許文献1の発明では、モータ電流値の変化のみで堆積物検知を行っているので、堆積物検知の精度が不十分である。
本発明の好ましい態様による堆積物監視装置は、ロータをモータで回転駆動してガスを排気する真空ポンプの堆積物監視装置であって、前記モータの消費電力の変化量、インバータ電流の変化量、前記真空ポンプを駆動制御するポンプ電源装置の入力電流値または消費電力の変化量、および、前記ロータの回転数の所定回転数に対する変化量の少なくとも一つを算出する演算部と、前記演算部で算出された変化量に基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する判定部とを備える。
さらに好ましい態様では、前記変化量の閾値を記憶する記憶部をさらに備え、前記判定部は、前記演算部で算出された変化量が前記閾値を超過した場合に、真空ポンプ内の堆積物が過剰であると判定する。
さらに好ましい態様では、前記モータを駆動するインバータと、前記インバータのスイッチング素子をオンオフ制御するPWM制御信号を生成するPWM信号生成部とを備え、前記演算部は、前記PWM信号生成部で生成された前記PWM制御信号に基づいて前記モータの消費電力の変化量を算出する。
さらに好ましい態様では、前記演算部は、複数の前記変化量の少なくとも一つとモータ電流値の変化量とを算出し、前記判定部は、前記演算部で算出された複数の前記変化量の少なくとも一つと、前記演算部で算出されたモータ電流値の変化量とに基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する。
さらに好ましい態様では、前記ロータは磁気軸受により非接触支持され、前記演算部は、前記モータの消費電力の変化量、前記インバータ電流の変化量、前記真空ポンプを駆動制御するポンプ電源装置の入力電流値または消費電力の変化量、前記ロータの回転数変化量および前記磁気軸受の電磁石電流値の変化量の少なくとも一つを算出する。
さらに好ましい態様では、前記磁気軸受は、前記ロータを挟んで対向対置される複数対の電磁石を有し、前記複数対の電磁石の各電磁石電流値に基づいて、前記複数対の電磁石から鉛直方向上側に配置された電磁石を推定する推定部を備え、前記演算部は前記推定部により推定された電磁石の電磁石電流値の変化量を算出する。
本発明の好ましい態様による真空ポンプは、ロータおよび前記ロータを回転駆動するモータを備えるポンプ本体と、前記ポンプ本体を駆動制御するポンプ電源装置と、上述した態様による堆積物監視装置と、を備える。
本発明によれば、真空ポンプ内の堆積物の過剰をより正確に判定することができる。
図1は、ターボ分子ポンプの概略構成を示す断面図である。 図2は、ポンプ電源装置の概略構成を示すブロック図である。 図3は、制御部の詳細を示すブロック図である。 図4は、複数のプロセスが行われる場合のモータ電力の時間的変化の一例を示す図である。 図5は、サンプリングされたモータ電力の分布を示す図である。 図6は、堆積量の変化に伴うモータ電力の変化を示す図である。 図7は、第2の実施の形態におけるポンプ電源装置の概略構成を示すブロック図である。 図8は、3つのプロセスが順に行われる場合のガス導入直後の回転数低下量を、模式的に示す図である。 図9は、磁気軸受電磁石の配置を示す模式図である。 図10は、横向き姿勢の場合の軸受電磁石の配置を示す図である。
以下、図を参照して本発明を実施するための形態について説明する。
−第1の実施の形態−
図1は本発明の一実施の形態を示す図であり、ターボ分子ポンプ1の概略構成を示す断面図である。ターボ分子ポンプ1は、真空排気を行うポンプ本体1aと、ポンプ本体1aを駆動制御するポンプ電源装置1bとを備えている。
ポンプ本体1aは、回転翼21と固定翼31とで構成されるターボポンプ段と、円筒部22とステータ32とで構成されるネジ溝ポンプ段とを有している。ネジ溝ポンプ段においては、ステータ32または円筒部22にネジ溝が形成されている。回転翼21および円筒部22はポンプロータ2aに形成されている。ポンプロータ2aはシャフト2bに締結されている。ポンプロータ2aとシャフト2bとによって回転体ユニット2が構成される。
軸方向に配置された複数段の回転翼21に対して、複数段の固定翼31が交互に配置されている。各固定翼31は、スペーサリング33を介してベース3上に載置される。ポンプケーシング30をベース3にボルト固定すると、積層されたスペーサリング33がベース3とポンプケーシング30の係止部30aとの間に挟持され、固定翼31が位置決めされる。
シャフト2bは、ベース3に設けられた磁気軸受34,35,36によって非接触支持される。詳細な図示は省略したが、各磁気軸受34〜36は電磁石と変位センサとを備えている。変位センサによりシャフト2bの浮上位置の変位が検出される。シャフト2bはモータ10により回転駆動される。モータ10は、ベース3に設けられたモータステータ10aと、シャフト2bに設けられたモータロータ10bとから成る。
磁気軸受が動作していない時には、シャフト2bは非常用のメカニカルベアリング37a,37bによって支持される。回転体ユニット2がモータ10により高速回転されると、ポンプ吸気口側のガスは、ターボポンプ段(回転翼21、固定翼31)およびネジ溝ポンプ段(円筒部22、ステータ32)により順に排気され、排気ポート38から排出される。
図2は、ポンプ電源装置1bの概略構成を示すブロック図である。外部からのAC入力は、ポンプ電源装置1bに設けられたDC電源40によって交流から直流に変換される。DC電源40は、インバータ41用の電源、励磁アンプ45用の電源、制御部44用の電源をそれぞれ生成する。モータ10に電流を供給するインバータ41には、複数のスイッチング素子が備えられている。これらのスイッチング素子のオンオフを制御部44によって制御することにより、モータ10が駆動される。
図2に示した複数の電磁石46は、各磁気軸受34,35,36に設けられている電磁石を示している。図1に示したターボ分子ポンプに用いられている磁気軸受は5軸制御型磁気軸受であって、ラジアル方向の磁気軸受34,35は各々2軸の磁気軸受であって、それぞれ2対(4個)の電磁石46を備えている。また、アキシャル方向の磁気軸受36は1軸の磁気軸受であって、1対(2個)の電磁石46を備えている。各電磁石46に対応して、変位センサ43がそれぞれ設けられている。各変位センサ43には、センサ回路42がそれぞれ設けられている。電磁石46に電流を供給する励磁アンプ45は、10個の電磁石46のそれぞれに対して設けられている。
モータ10の駆動および磁気軸受34〜36の駆動を制御する制御部44は、例えば、FPGA(Field Programmable Gate Array)等のデジタル演算器とその周辺回路により構成される。制御部44は、インバータ41に設けられている複数のスイッチング素子をオンオフ制御するためのPWM(Pulse Width Modulation)制御信号301をインバータ41へ入力する。モータ10の電流は電流検知部47で検出され、検出されたモータ電流情報307は制御部44に入力される。モータ10の電圧は電圧検知部48で検出され、検出されたモータ電圧情報308は制御部44に入力される。
制御部44は、励磁アンプ45に設けられたスイッチング素子をオンオフ制御するためのPWM制御信号303を各励磁アンプ45へ入力する。各励磁アンプ45は、各電磁石46の電磁石電流信号304を制御部44へ入力する。また、制御部44は、センサキャリア信号(搬送波信号)305を各センサ回路42へ入力する。各センサ回路42は、シャフト2bの変位により変調されたセンサ信号306を制御部44へ入力する。
図3は制御部44におけるモータ制御機能およびモータ電力推定機能を示すブロック図である。図3を参照してモータ10の消費電力(以下では、モータ電力と称す)に基づく堆積物監視について説明する。制御部44には、モータ駆動制御に関する正弦波駆動制御部400と、堆積物監視に関する演算部410,判定部411、記憶部412および報知部413とを備えている。正弦波駆動制御部400は、速度制御部401,Id・Iq設定部402,等価回路電圧変換部403,dq−2相電圧変換部404,2相-3相電圧変換部405,PWM信号生成部406および回転速度・磁極位置推定部407を備えている。本実施の形態では、モータ10はモータロータの回転位置を検出する回転センサを有しないセンサレスのモータであって、モータ電流情報307およびモータ電圧情報308に基づいて回転速度、磁極位置を推定している。
モータ10に流れる3相電流は電流検知部47により検出され、検出された電流検知信号はローパスフィルタ427に入力される。一方、モータ10の3相電圧は電圧検知部48により検出され、検出された電圧検知信号はローパスフィルタ428に入力される。ローパスフィルタ427を通過した電流検知信号(すなわちモータ電流情報307)およびローパスフィルタ428を通過した電圧検知信号(すなわちモータ電圧情報308)は、それぞれ正弦波駆動制御部400の回転速度・磁極位置推定部407に入力される。
回転速度・磁極位置推定部407は、電流検知信号および電圧検知信号に基づいて、モータ10の回転速度ωおよび磁極位置(電気角θ)を推定する。なお、ここでは回転速度ωおよび磁極位置(電気角θ)の推定演算の詳細は省略するが、例えば、特開2014−147170号公報等に記載されている。磁極位置は電気角θで表されるので、以下では、磁極位置のことを磁極電気角θと呼ぶことにする。算出された回転速度ωは速度制御部401,Id・Iq設定部402および等価回路電圧変換部403に入力される。また、算出された磁極電気角θはdq−2相電圧変換部404に入力される。
速度制御部401は、入力された目標回転速度ωiと推定された現在の回転速度ωとの差分に基づいて、PI制御(比例制御および積分制御)あるいはP制御(比例制御)を行い、電流指令Iを出力する。Id・Iq設定部402は、電流指令Iに基づき、回転座標dq系における電流指令Id,Iqを設定する。
等価回路電圧変換部403は、回転速度・磁極位置推定部407で算出された回転速度ωおよびモータ10の電気等価回路定数に基づいて、電流指令Id,Iqを回転座標dq系における電圧指令Vd,Vqに変換する。なお、等価回路はモータコイルの抵抗成分rおよびインダクタンス成分Lに分けられる。電気等価回路定数r、Lの値はモータ仕様等から得られ、予め記憶部412に記憶されている。
dq-2相電圧変換部404は、変換後の電圧指令Vd,Vqと回転速度・磁極位置推定部407から入力された磁極電気角θとに基づいて、回転座標dq系における電圧指令Vd,Vqを固定座標αβ系の電圧指令Vα,Vβに変換する。2相-3相電圧変換部405は、2相の電圧指令Vα,Vβを3相電圧指令Vu,Vv,Vwに変換する。PWM信号生成部406は、3相電圧指令Vu,Vv,Vwに基づいてインバータ41に設けられたスイッチング素子をオンオフ(導通または遮断)するためのPWM制御信号を生成し、出力する。インバータ41は、PWM信号生成部406から出力されたPWM制御信号に基づいてスイッチング素をオンオフし、モータ10に駆動電圧を印加する。
ポンプ本体1a内には、排気するガスに起因する生成物が堆積しやすい。特にポンプ下流領域に生成物が堆積した場合、ネジ溝ポンプ段の円筒部22とステータ32との隙間寸法は小さいので、ネジ溝ポンプ段における生成物の堆積量が過剰になると円筒部22とステータ32とが接触するおそれがある。一方、生成物がポンプ内に堆積すると排気性能が低下する。排気性能低下によってポンプ下流側圧力が上昇すると、ロータ回転維持に必要なモータ電力が上昇する。そのため、モータ電力の変化に基づいて生成物の堆積状況を推定することができる。
そこで、堆積量が過剰と判定されるモータ電力の閾値(以下では、過剰判定値と称する)を予め制御部44の記憶部412に記憶させておく。制御部44に設けられた演算部410は、モータ電流情報307およびモータ電圧情報308に基づいてモータ電力を算出する。判定部411は、演算部410で算出されたモータ電力の変化量が過剰判定値を超過したか否か、すなわち、生成物の堆積量が許容堆積量を超過したか否かを判定する。モータ電力の変化量が過剰判定値を超過した場合には、判定部411は、生成物堆積に関するメンテナンスが必要であることを知らせる報知信号を報知部413から出力させる。
ところで、一つのプロセスチャンバで複数のプロセスが順に行われる場合、プロセス毎に排気条件が異なるためモータ電力もプロセスに応じて異なることになる。そのため、モータ電力を堆積量の指標として使用する場合には、同一のポンプ使用条件(同一プロセス)におけるモータ電力を抽出する必要がある。
図4は、複数のプロセスが行われる場合のモータ電力の時間的変化の一例を示す図である。ラインL1はモータ電力を示す。なお、ラインL1上に示した複数の黒丸はサンプリングデータを示している。図4に示す例では、一回の処理において符号A、B、Cで示す3つのプロセスが行われ、それらが繰り返し実行されることになる。
A、B、Cの各プロセスは、ガスの種類、ガス流入量、処理圧力、処理時間がそれぞれ異なっているためポンプ負荷がそれぞれ異なり、モータ電力もそれぞれ異なる。ターボ分子ポンプ1をプロセスチャンバに装着する場合には、一般的に、ポンプ本体1aとプロセスチャンバとの間には開度調整可能な圧力調整バルブが設けられる。各プロセス時には、プロセスチャンバ内の圧力がそれぞれの処理圧力となるようにガス流入量と圧力調整バルブの開度が調整される。図4に示す例では、Aプロセスにおけるモータ電力はWa、Bプロセスにおけるモータ電力はWb、Cプロセスにおけるモータ電力はWcであり、Wa>Wc>Wbである。
各プロセスの前後においては処理ガスの流入が停止され、プロセスチャンバ内の圧力をいったん低下させるために圧力調整バルブの開度を大きくする。図4では、t2〜t3、t4〜t5、t6〜t7の期間において処理ガスの流入が停止されバルブ開度が大きくされる。そのため、この期間においてはモータ電力がWa〜Wcよりも低下する。このようなプロセスにおいて真空ポンプを長期間使用すると、ポンプ内の生成物の堆積量が増加し、それにつれてモータ電力が増加する。ただし、図4に示すような短時間におけるモータ電力の変化は非常に小さく、特に、処理を開始してからそれほど時間が経過していない堆積量がほぼゼロとみなせる期間では、モータ電力の変化はほとんどゼロとみなしても良い。
(ポンプ使用条件の判定方法)
図4に示すように、プロセスに応じてモータ電力が異なり、また、プロセス中と非プロセス中とではモータ電力が大きく異なる。例えば、ポンプメンテナンス後の処理開始直後においては、生成物堆積の影響のないモータ電力Wa,Wb,WcがAプロセス、Bプロセス、Cプロセスにおいて検出される。各モータ電力Wa,Wb,Wcが継続して検出される時間は、各プロセスの処理時間(すなわち、処理ガスが流される期間)にほぼ対応している。また、A,B,Cプロセスのプロセス間には、モータ電力が大きく低下する期間(すなわち、処理ガスが流れていない期間)が存在する。
任意の一定期間(例えば、図4の時刻t1から時刻t7までの期間よりも長い期間)にサンプリングされた多数のモータ電力の分布を見ると、図5に示すようにモータ電力Wa,Wb,Wc,W0の近傍にデータが集まっている。最も電力値の大きなデータ群G1はAプロセス中にサンプリングされたものであり、最も電力値の小さなデータ群G2はガス流入が無いときにサンプリングされたものであると考えることができる。すなわち、データ群G1の電力平均値を算出するとほぼWaとなり、データ群G2の電力平均値を算出するとほぼW0となる。もちろん、データ群G1のいずれか一つのデータの電流値を堆積量指標としてのモータ電力Waとし、データ群G2のいずれか一つのデータの電流値を堆積量指標としてのモータ電力W0としても良い。
なお、以下では、電力平均値を用いる場合もばらついている個々のモータ電力を用いる場合も、モータ電力Waと記載することにする。
上述したように、堆積量指標としてのモータ電力Waは、図6のWa1、Wa2のようにポンプ使用時間の経過と共に増加し、曲線L2のように変化する。ΔWthは、前述した過剰判定値である。図3の演算部410は、サンプリングされたモータ10の電流値と電圧値とに基づいてモータ電力を算出し、図5に示すような処理を行いAプロセスのモータ電力Wa1、Wa2を抽出する。抽出されたモータ電力Wa1、Wa2は判定部411へ入力され、判定部411は、モータ電力の変化量(Wa1−Wa),(Wa2−Wa)が過剰判定値ΔWthを超過しているか否かを判定する。判定部411で変化量が過剰判定値ΔWthを超過していると判定されると、判定部411は上述したように報知部413から報知信号を出力させる。この報知信号は、堆積物クリーニングのメンテナンス時期であることを報知する信号である。
上述した説明では、Aプロセスにおけるモータ電力Waを堆積物過剰判定に使用したが、BまたはCプロセスのモータ電力Wb,Wcを堆積物過剰判定に用いてもよい。その場合には、モータ電力Wb,Wcに関する過剰判定値ΔWthを予め記憶部412に記憶しておき、判定に使用する。モータ電力WbまたはWcを抽出してBまたはCプロセスを抽出する場合も、Aプロセスの場合と同様に行われる。ただし、堆積量の増加に対するモータ電力の増え方はガス流量が大きい場合ほど顕著になるので、ガス流量の最も大きなAプロセスにおけるモータ電力を用いて生成物の堆積量を判定するのが好ましい。
上述した実施の形態では、モータ10はセンサレスのモータであって、回転速度や磁極位置の推定に用いられるモータ電流情報307およびモータ電圧情報308に基づくモータ電力を用いて堆積量の判定を行った。しかしながら、回転センサを有するモータであっても、モータ電流およびモータ電圧を検出する検出部を備える構成であれば、同様に適用できる。
上述した第1の実施の形態では、モータ電力の変化量が過剰判定値ΔWthを超過した場合に、ポンプ内の堆積物の量が過剰であると判定した。そのため、その判定結果を利用することで、例えば、判定結果に基づいて報知信号を出力することで、堆積物に関するメンテナンス時期となったことを容易に知ることができる。さらに、また、堆積量過剰の指標としてモータ電力の変化量を用いているので、モータ電流の変化だけでなくモータ電圧の変化も反映され、モータ電流の変化量のみを用いる場合に比べてより正確に堆積量過剰を判定することができる。
なお、上述した実施の形態では、モータ電流値およびモータ電圧値から算出されるモータ電力の変化量に基づいて堆積物過剰の判定を行ったが、例えば、ポンプ電源装置1bの消費電力や電流値の変化や、図3のインバータ41のインバータ電流の変化、図3のPWM信号生成部406が出力するPWM制御信号のいずれかに基づいて堆積量の判定を行うようにしても良い。PWM制御信号を使用する場合には、PWM制御信号のデューティ比から公知の計算式を用いてモータ電力が演算され、演算されたモータ電力の変化量に基づいて堆積物過剰の判定が行われる。後述するように、ポンプ内に生成物が堆積すると電磁石電流が増加して、磁気軸受消費電力が増加する。そのため、ポンプ電源装置1bの消費電力を用いる場合、ポンプ電源装置1bの消費電力の変化にはモータ消費電力の増加と磁気軸受消費電力の増加とが含まれ、堆積物過剰となるときの消費電力変化量がより大きくなる。ポンプ電源装置1bの電流値の変化を用いる場合も同様で、電流値変化量がより大きく現れる。そのため、堆積物過剰の判定をより正確に行うことができる。
−第2の実施の形態−
図7は第2の実施の形態を説明する図であり、上述した図2の場合と同様にポンプ電源装置1bの概略構成を示すブロック図である。図7に示すブロック図では、図2で設けられていた電流検知部47および電圧検知部48に代えて、ロータ回転数(すなわち、図1のシャフト2bの回転数)を検出する回転数センサ23を設けた。回転数センサ23で検出された回転数情報302は制御部44に入力される。制御部44には、図3の場合と同様に、演算部410,判定部411,記憶部412および報知部413が設けられている。
プロセス処理を行う場合には、一般的に、プロセスガスを導入する前にプロセスチャンバをいったん高真空とし、その後、プロセスガスを導入してチャンバ内圧力が所定プロセス圧力となったならばプロセス処理が開始される。ターボ分子ポンプ1では、回転数センサ23で検出されるロータ回転数が所定回転数(一般には定格回転数)から変化すると、モータ電流を制御して変化したロータ回転数を所定回転数へと戻すようにしている。そのため、ガス導入直後は、ガス負荷の急激な変化によりロータ回転数が所定回転数から低下する。
ガス導入直後の回転数低下量は、ガス負荷が大きいほど大きく、また、生成物の堆積量が多いほど大きい。図8は、3つのプロセスが順に行われる場合の、ガス導入直後の回転数低下量を模式的に示した図である。図8では、矢印で示した各処理区間A,B,Cにおいて、Aプロセス,Bプロセス,Cプロセスが行われる。各処理区間A,B,Cのいずれにおいても、ガス導入、プロセス処理、ガス停止の順に処理が進み、ガス導入直後にロータ回転数が所定回転数N0から低下して、再び所定回転数N0に戻った後にプロセス処理が行われる。処理区間Cの後にはウェハ交換区間においてウェハ搬出・搬入処理が行われ、その後、交換後のウェハに対してAプロセス,Bプロセス,Cプロセスが順に行われる。
図8に示す例では、ガス導入量はAプロセスが最も大きく、Cプロセス、Bプロセスの順に小さくなる。そのため、各処理区間A,B,Cのガス導入直後におけるロータ回転数低下量ΔNa,ΔNb,ΔNcの大小関係はΔNa>ΔNc>ΔNbとなる。なお、ロータ回転数低下量はガス導入量だけでなくガス分子量等にも依存するが、ここでは話を簡単にするためにガス導入量だけを考える。
図7に示した制御部44の演算部410は、回転数センサ23からの回転数情報302に基づいてロータ回転数低下量ΔNa,ΔNb,ΔNcを算出する。例えば、Aプロセスの区間Δtにおいてサンプリングされるロータ回転数データN(m)に関して、差分=N(m)−N(m-1)はマイナス値になる。そのため、差分がマイナス値となる区間における差分の和の絶対値は、ロータ回転数低下量ΔNaとなる。または、差分=N(m)−N(m-1)の符号がマイナスからプラスに転じたタイミングのロータ回転数データN(m-1)を用いて、N0−N(m-1)をロータ回転数低下量ΔNaとしても良い。
なお、ガス導入直後でない場合もロータ回転数が所定回転数N0から僅かにずれる場合があるので、演算部410は、ロータ回転数の変化が所定変化量を超過した場合にのみロータ回転数低下量ΔNa,ΔNb,ΔNcの演算を行うようにしても良い。
ロータ回転数低下量ΔNaを堆積物過剰判定に用いる場合には、所定時間(例えば、処理区間A,B,Cの和よりも長い時間)の間にサンプリングされた複数の回転数低下量から最も低下量の大きなデータをロータ回転数低下量ΔNaとする。このようなロータ回転数低下量ΔNaの抽出は演算部410で行われる。判定部411は、ロータ回転数低下量ΔNaと記憶部412に記憶されている閾値ΔNthとを比較し、ΔNa>ΔNthか否かを判定する。ΔNa>ΔNthと判定されると、判定部411は報知部413から堆積物メンテナンスに関する報知信号を出力させる。なお、ロータ回転数低下量ΔNbまたはΔNcを用いて堆積量の判定を行うようにしても良い。その場合には、使用するロータ回転数低下量ΔNb,ΔNcに応じた閾値Nthが記憶部412に記憶されている。
このように、本実施の形態では、ロータ回転数の低下量がその閾値を超過した場合に堆積量過剰と判定しているので、モータ電圧の変化を考慮することなくモータ電流値の変化量だけで堆積量過剰を判定する場合に比べて、より正確に判定を行うことができる。なお、第1の実施の形態の図2,3に示すように回転数センサを設けずに、回転速度・磁極位置推定部407により推定されたモータ10の回転速度ωからロータ回転数を算出するような構成の場合にも、本実施の形態を適用することができる。
−第3の実施の形態−
上述した第1の実施の形態ではモータ電力等の電力値の変化量に基づいて堆積物過剰判定を行い、第2の実施の形態ではロータ回転数の低下量に基づいて堆積物過剰判定を行ったが、第3の実施の形態では、電磁石電流値の変化量に基づいて堆積物過剰判定を行うようにした。
図9は、各磁気軸受34〜36の電磁石のシャフト2bに対する配置を模式的に示した図である。シャフト2bの軸芯方向を、5軸制御型磁気軸受を構成する磁気軸受34〜36のz軸方向とした。磁気軸受34は、シャフト2bを挟んでx1軸に沿って配置された1組の電磁石34x11,34x12と、シャフト2bを挟んでy1軸に沿って配置された1組の電磁石34y11,34y12とを備えている。磁気軸受35は、シャフト2bを挟んでx2軸に沿って配置された1組の電磁石35x21,35x22と、シャフト2bを挟んでy2軸に沿って配置された1組の電磁石35y21,35y22とを備えている。磁気軸受36は、シャフト2bのスラストディスク200を挟んで対向配置された1組の電磁石36z1,36z2を備えている。これら10個の電磁石34x11,34x12,34y11,34y12,35x21,35x22,35y21,35y22,36z1および36z2は、図2や図7に示した電磁石46に対応している。
各電磁石に流れる電磁石電流は、機能別で成分に分けると、バイアス電流ib、浮上制御電流icから構成される。ここで、対向する電磁石に流れる電磁石電流の各成分は、磁気浮上制御の必要性および位置信号(変位信号)を良好に検出する必要性から、バイアス電流は同符号、浮上制御電流は逆符号となるように構成される。例えば、磁気軸受34のx1軸の正方向に配置された電磁石34x11の電磁石電流をIp、負方向に配置された電磁石34x12の電磁石電流をImとすると、電磁石電流IpおよびImは次式(1),(2)のように表される。
Ip=ib+ic …(1)
Im=ib−ic …(2)
バイアス電流ibは直流あるいは極めて低い周波数帯であり、回転体に作用する重力との釣り合い力、浮上力の直線性改善、変位センシングのためのバイアス用として用いられる。浮上制御電流icは、シャフト2bを所定位置に浮上させる制御力用として用いられる電流である。浮上制御電流icは浮上位置の変動に応じて変化するので、その周波数帯は直流から1kHzオーダとなる。
通常、ターボ分子ポンプ1を正立姿勢で用いる場合には、図9のz軸正方向と鉛直上方向とが一致する。一般的には、シャフト2bがラジアル磁気軸受である磁気軸受34,35の中心位置に支持されると共に、シャフト2bに設けられたスラストディスク200が電磁石36z1と電磁石36z2との中間位置に支持されるように各電磁石の電磁石電流が制御される。正立姿勢の場合には、重力の影響を相殺して中間位置に支持されるように、電磁石36z1の吸引力の方が大きくなるように浮上制御電流icが制御される。電磁石36z1の電磁石電流を式(1)のIpで表し,電磁石36z2の電磁石電流を式(2)のImで表わすと、Ip>Imのように制御されている。一方、倒立姿勢で用いられる場合には、Im>Ipのように制御されることになる。
また、ターボ分子ポンプ1を横向き姿勢で用いる場合には、図10(a)または図10(b)に示すようなポンプ姿勢で用いられる。図10は、横向き姿勢の場合の磁気軸受34の電磁石34x11,34x12,34y11,34y12の配置を示したものである。図10(a)に示すポンプ姿勢では、電磁石34y11,34y12が鉛直方向に沿って配置される。図10(b)に示すポンプ姿勢では、電磁石34x11,34x12が配置される軸x1と電磁石34y11,34y12が配置される軸y1とが、それぞれ鉛直方向に対して45degの角度を成している。
いずれの場合も、重力の影響を相殺してシャフト2bが磁気軸受34の中央に磁気浮上されるように浮上制御電流icが制御される。図10(a)の場合、電磁石34y11の電磁石電流Ipが電磁石34y12の電磁石電流Imよりも大きくなるように制御され、図10(b)の場合、電磁石34x11,34y11の電磁石電流Ipが電磁石34x12,34y12の電磁石電流Imよりも大きくなるように制御される。
図9の正立姿勢、図10(a),(b)の横向き姿勢および倒立姿勢(不図示)のいずれのポンプ姿勢の場合も、一対の電磁石の内の鉛直方向上側に配置される電磁石の電磁石電流が他方の電磁石の電磁石電流よりも大きくなる。図9の場合には、5軸の内、z軸の電磁石電流Ip,ImはIp>Imのように制御され、他のx1軸、x2軸、y1軸およびy2軸の電磁石電流Ip,ImはIp=Imのように制御されている。図10(a)の場合には、5軸の内、y1軸およびy2軸の電磁石電流Ip,ImはIp>Imのように制御され、他のx1軸、x2軸およびz軸の電磁石電流Ip,ImはIp=Imのように制御されている。図10(b)の場合には、5軸の内、x1軸、x2軸、y1軸およびy2軸の電磁石電流Ip,ImはIp>Imのように制御され、他のz軸の電磁石電流Ip,ImはIp=Imのように制御されている。そのため、磁気軸受24,25,26の各電磁石電流Ip,Imを比較することで、ターボ分子ポンプ1がどのようなポンプ姿勢で配置されているかを認識することができる。
ところで、ポンプロータ2aに生成物が堆積するとポンプロータ2aの重量が増加する。その結果、図9,図10(a),(b)の鉛直方向上側に配置されている電磁石の電流が増加する。上述のように鉛直方向上側に配置されている電磁石は磁気軸受24,25,26の各電磁石電流Ip,Imを比較することで分かるので、鉛直方向上側と認識された電磁石の電磁石電流の変化(増加量)を、生成物の堆積物過剰の判定に用いることができる。
前述したモータ電力やロータ回転数の変化量は、プロセスによってガス流量やガス分子量が異なるのでプロセスの影響を受けやすい。しかしながら、電磁石電流の変化量はポンプロータ2aに堆積した生成物の重量に依存し、プロセスの影響を受けない。よって、プロセスの影響を受けることなく、堆積物過剰を判定することができる。
制御部44(図7参照)の演算部410は、電磁石電流信号304に基づいて鉛直方向上側に配置されている電磁石を推定し、推定した電磁石の電磁石電流増加量を算出して判定部411に入力する。例えば、図9のポンプ姿勢(正立姿勢)の場合には電磁石36z1が鉛直方向上側に配置されている電磁石と推定され、電磁石36z1の電磁石電流増加量が判定部411に入力される。判定部411は、入力された電磁石電流増加量と記憶部412に記憶されている電磁石電流増加量の閾値とを比較し、(電磁石電流増加量)>(閾値)か否かを判定する。(電磁石電流増加量)>(閾値)と判定された場合には、判定部411は報知部413から堆積物メンテナンスに関する報知信号を出力させる。
(C1)上述したように、堆積物監視装置である制御部44は、モータ10の消費電力の変化量、ターボ分子ポンプ1のポンプ本体1aを駆動制御するポンプ電源装置1bの入力電流値または消費電力の変化量およびポンプロータ2aの回転数の変化量の少なくとも一つを算出する演算部410と、前記変化量の閾値が記憶される記憶部412と、演算部410で算出された変化量がその変化量の閾値を超過した場合に、ポンプ本体1a内の堆積物が過剰であると判定する判定部411とを備える。
このように、モータ10の消費電力の変化量やポンプロータ2aの回転数の変化量を用いて堆積物過剰の判定を行う場合、モータ電圧の変化を考慮せずモータ電流値の変化量だけで判定を行う場合に比べてより正確に判定を行うことができる。また、ポンプ本体1aを駆動制御するポンプ電源装置1bの入力電流値または消費電力の変化量を用いて堆積物過剰の判定を行う場合には、モータ10の消費電力や電流値の変化量だけでなく、磁気軸受の消費電力の変化も含まれるので、変化量がより大きくなり堆積物過剰をより正確に判定することができる。なお、DC電源40の電流値および電圧値を検出する検出部を設けることで、その検出部の検出結果に基づいてポンプ電源装置1bの消費電力や入力電流値を求めることができる。
さらに、異なる複数の変化量について堆積物過剰の判定を行うことにより、判定の信頼性向上を図ることができる。その場合、複数の変化量の全てが各々の閾値を超過した場合に報知信号を出力するようにしても良いし、複数の変化量のいずれか一つが閾値を超過した場合に報知信号を出力するようにしても良い。
(C2)図3に示すようにモータ10を駆動するインバータ41と、インバータ41のスイッチング素子をオンオフ制御するPWM制御信号を生成するPWM信号生成部406とを備え、演算部410において、PWM信号生成部406で生成されたPWM制御信号に基づいてモータ10の消費電力の変化量を算出するようにしても良い。
(C3)さらに、演算部410は、モータ10の消費電力の変化量、ポンプ電源装置1bの入力電流値または消費電力の変化量およびロータ回転数の変化量の少なくとも一つと、モータ電流値の変化量とを算出し、演算部410で算出された変化量がその変化量の閾値を超過した場合に、ポンプ本体1a内の堆積物が過剰であると判定するようにしても良い。図2の電流検知部47で検出されるモータ電流値の変化量に加えて、モータ10の消費電力の変化量、ポンプ電源装置1bの入力電流値または消費電力の変化量およびロータ回転数の変化量の少なくとも一つを用いて堆積物過剰の判定を行うことにより、判定の信頼性向上を図ることができる。
(C4)ロータが磁気軸受により非接触支持される真空ポンプの場合には、堆積物過剰の判定の変化量として磁気軸受の電磁石電流値の変化量を用いても良い。電磁石電流値の変化量を用いた場合、プロセスの影響を受けることなく堆積物過剰を判定することができる。また、電磁石電流値の変化量と他の変化量(モータ消費電力の変化量、ポンプ電源装置1bの消費電力や入力電流値の変化量、ロータ回転数の変化量)と組み合わせて堆積物過剰の判定を行っても良い。それにより、判定の信頼性向上を図ることができる。
(C5)電磁石電流値の変化量を用いて堆積物過剰の判定を行う場合、演算部410で、複数対の電磁石の各電磁石電流値に基づいて鉛直方向上側に配置された電磁石を推定する構成とすることにより、堆積物過剰の判定に使用すべき電磁石電流値が自動的に決定される。もちろん、真空ポンプ設置時のポンプ姿勢をオペレータが確認して、そのポンプ姿勢において堆積物過剰判定に使用すべき電磁石電流を、オペレータがポンプ電源装置1bの入力部(不図示)から制御部44に入力して設定するような構成としても良い。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。例えば、上述した第1〜第3の実施の形態を組み合わせて適用しても良い。また、上述した実施の形態では磁気軸受式のターボ分子ポンプを例に説明したが、磁気軸受式でないターボ分子ポンプやネジ溝ポンプ等にも適用することができる。
1…ターボ分子ポンプ、1a…ポンプ本体、1b…ポンプ電源装置、2…回転体ユニット、2a…ポンプロータ、2b…シャフト、10…モータ、23…回転数センサ、34,35,36…磁気軸受、40…DC電源、41…インバータ、44…制御部、46…電磁石、47…電流検知部、48…電圧検知部、406…PWM信号生成部、410…演算部、411…判定部、412…記憶部、413…報知部

Claims (7)

  1. ロータをモータで回転駆動してガスを排気する真空ポンプの堆積物監視装置であって、
    前記真空ポンプへのガス導入直後の前記ロータの回転数の所定回転数から低下した変化量を算出する演算部と、
    前記演算部で算出された変化量に基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する判定部とを備える、堆積物監視装置。
  2. ロータをモータで回転駆動してガスを排気する真空ポンプの堆積物監視装置であって、
    前記真空ポンプにおいて複数のプロセスが順に繰り返し行われる場合、前記複数のプロセスのうち同一プロセスにおける前記モータの消費電力の平均値の変化量を算出する演算部と、
    前記演算部で算出された変化量に基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する判定部とを備える、堆積物監視装置。
  3. ロータをモータで回転駆動してガスを排気する真空ポンプの堆積物監視装置であって、
    前記ロータは磁気軸受により非接触支持され、
    前記磁気軸受は、前記ロータを挟んで対向対置される複数対の電磁石を有し、
    前記複数対の電磁石の各電磁石電流値に基づいて、前記複数対の電磁石から鉛直方向上側に配置された電磁石を推定する推定部と、
    前記推定部により推定された電磁石の電磁石電流値の変化量を算出する演算部と、
    前記演算部で算出された変化量に基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する判定部と、を備える、
    堆積物監視装置。
  4. 請求項1から請求項3のいずれか一項に記載の堆積物監視装置において、
    前記変化量の閾値を記憶する記憶部をさらに備え、
    前記判定部は、前記演算部で算出された変化量が前記閾値を超過した場合に、真空ポンプ内の堆積物が過剰であると判定する、堆積物監視装置。
  5. 請求項2に記載の堆積物監視装置において、
    前記同一プロセスは、前記複数のプロセスのうちガス流量が最も大きなプロセスである、堆積物監視装置。
  6. 請求項1から請求項のいずれか一項に記載の堆積物監視装置において、
    前記演算部は、前記変化量とモータ電流値の変化量とを算出し、
    前記判定部は、前記演算部で算出された前記変化量と、前記演算部で算出されたモータ電流値の変化量とに基づいて、真空ポンプ内の堆積物が過剰であるか否かを判定する、堆積物監視装置。
  7. ロータおよび前記ロータを回転駆動するモータを備えるポンプ本体と、
    前記ポンプ本体を駆動制御するポンプ電源装置と、
    請求項1から請求項6のいずれか一項に記載の堆積物監視装置と、を備える真空ポンプ。
JP2018142466A 2018-07-30 2018-07-30 堆積物監視装置および真空ポンプ Active JP6988726B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018142466A JP6988726B2 (ja) 2018-07-30 2018-07-30 堆積物監視装置および真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018142466A JP6988726B2 (ja) 2018-07-30 2018-07-30 堆積物監視装置および真空ポンプ

Publications (2)

Publication Number Publication Date
JP2020020272A JP2020020272A (ja) 2020-02-06
JP6988726B2 true JP6988726B2 (ja) 2022-01-05

Family

ID=69589615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142466A Active JP6988726B2 (ja) 2018-07-30 2018-07-30 堆積物監視装置および真空ポンプ

Country Status (1)

Country Link
JP (1) JP6988726B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179187A (ja) * 2020-05-12 2021-11-18 エドワーズ株式会社 真空ポンプ
JP7480691B2 (ja) * 2020-12-10 2024-05-10 株式会社島津製作所 真空ポンプの解析装置、真空ポンプおよび解析プログラム
JP7491239B2 (ja) * 2021-02-18 2024-05-28 株式会社島津製作所 真空ポンプおよび真空ポンプ制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175284A (ja) * 1985-01-30 1986-08-06 Anelva Corp 真空ポンプの監視装置
JP2001263352A (ja) * 2000-03-22 2001-09-26 Shimadzu Corp 磁気軸受装置
JP2003232292A (ja) * 2002-02-08 2003-08-22 Boc Edwards Technologies Ltd 真空ポンプ
JP4261252B2 (ja) * 2003-06-17 2009-04-30 株式会社荏原製作所 真空ポンプの故障診断装置及び故障診断方法
JP2006163016A (ja) * 2004-12-08 2006-06-22 Canon Inc 画像形成装置
JP5682157B2 (ja) * 2010-06-25 2015-03-11 株式会社島津製作所 真空ポンプ用モータ駆動装置およびポンプシステム
JP2014119083A (ja) * 2012-12-19 2014-06-30 Daikin Ind Ltd 磁気軸受装置および圧縮機
JP6766533B2 (ja) * 2016-09-06 2020-10-14 株式会社島津製作所 堆積物監視装置および真空ポンプ

Also Published As

Publication number Publication date
JP2020020272A (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6988726B2 (ja) 堆積物監視装置および真空ポンプ
JP6765320B2 (ja) 交流電動機の制御装置
JP6086001B2 (ja) 真空ポンプ
CN108374800B (zh) 磁轴承控制装置及真空泵
KR102106659B1 (ko) 전자 회전 장치 및 그 전자 회전 장치를 구비한 진공 펌프
JP2018040277A (ja) 堆積物監視装置および真空ポンプ
US9065369B2 (en) Motor driving device and vacuum pump
US20140210385A1 (en) Motor driving device and vacuum pump
US7397216B2 (en) Circuit for monitoring harmonic distortion in the power supply of a synchronous electrical machine with permanent magnet excitation
US9813002B2 (en) Motor controller and turbo-molecular pump
US11015609B2 (en) Magnetic levitation control device and vacuum pump
US10465677B2 (en) Control method for compressor system
JP5978924B2 (ja) モータ駆動装置および真空ポンプ
CN107210662B (zh) 用于检测电机的阻塞状态的控制器和方法
Karimi et al. Online sensorless efficiency estimation of induction-motor-driven pumps
JP6698278B2 (ja) 遠心式ポンプ装置
JP7484843B2 (ja) 真空ポンプの堆積物量推定装置
WO2016158185A1 (ja) 遠心式ポンプ装置
JP6468373B2 (ja) 真空ポンプ用モータ駆動装置および真空ポンプ
JP2014079085A (ja) モータ駆動装置および真空ポンプ
Paul Speed Control for Four Quadrant Operation of Three Phase Bldc Motor Using Digital Controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151