JP6980370B2 - 顕微鏡システム - Google Patents

顕微鏡システム Download PDF

Info

Publication number
JP6980370B2
JP6980370B2 JP2016167334A JP2016167334A JP6980370B2 JP 6980370 B2 JP6980370 B2 JP 6980370B2 JP 2016167334 A JP2016167334 A JP 2016167334A JP 2016167334 A JP2016167334 A JP 2016167334A JP 6980370 B2 JP6980370 B2 JP 6980370B2
Authority
JP
Japan
Prior art keywords
optical axis
objective
mirror
objective optical
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016167334A
Other languages
English (en)
Other versions
JP2018036337A (ja
JP2018036337A5 (ja
Inventor
竜男 中田
厚志 土井
兼太郎 井元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2016167334A priority Critical patent/JP6980370B2/ja
Priority to US15/683,980 priority patent/US10281699B2/en
Publication of JP2018036337A publication Critical patent/JP2018036337A/ja
Publication of JP2018036337A5 publication Critical patent/JP2018036337A5/ja
Application granted granted Critical
Publication of JP6980370B2 publication Critical patent/JP6980370B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0044Scanning details, e.g. scanning stages moving apertures, e.g. Nipkow disks, rotating lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • G02B21/0048Scanning details, e.g. scanning stages scanning mirrors, e.g. rotating or galvanomirrors, MEMS mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure

Description

本発明は、顕微鏡システムに関するものである。
従来、脳科学の基礎研究において、多領域の細胞間の情報伝達機能を解明することは、重要な研究課題である。ステージを動かすことにより多領域を観察可能にする観察方法があるが、ステージを動かすのでは多領域を同時にまたは迅速に切り替えて観察することは不可能である。これに対し、例えば、特許文献1に記載のレーザ走査型顕微鏡は、独立した2つの走査光学系の光路を合成して1つの対物レンズを通して試料に照明光を照射することで、異なる2つの領域を同時に観察している。
特許第3917731号明細書
しかしながら、特許文献1に記載のレーザ走査型顕微鏡は、光軸上の対物レンズの視野内で異なる2つの領域を同時に観察することはできるが、それぞれの観察領域は1つの対物レンズで観察可能な視野内に限られてしまい、その対物レンズの視野外の領域を観察することができないという不都合がある。
本発明は上述した事情に鑑みてなされたものであって、少なくとも光軸上の対物レンズの視野外を含む領域を同時にもしくは迅速に切り替えて観察可能な顕微鏡システムを提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明の第1態様は、光源から発せられた照明光を標本上に集光する対物レンズと、該対物レンズと前記標本との間に配置され、前記対物レンズによって集光された前記照明光の照明領域を前記標本における前記対物レンズの対物光軸外の複数の位置に切り替える照明領域切替部と、前記光源と前記対物レンズとの間の前記対物光軸上に配置され、前記対物レンズの焦点位置を前記対物光軸に沿う方向に変更可能な焦点可変光学系とを備え、前記照明領域切替部が、前記対物光軸上に配され前記対物レンズにより集光された前記照明光を前記対物光軸外に向けて反射する第1ミラーと、前記対物光軸外に配され前記第1ミラーにより反射された前記照明光を前記標本における前記対物光軸外に向けて反射する第2ミラーと、これら第1ミラーおよび第2ミラーの少なくとも一方を両者間に前記照明光の光路を維持しながら移動させるミラー移動機構とを備える顕微鏡システムである。
本態様によれば、照明領域切替部により、照明光の照明領域を標本における対物レンズの対物光軸外の複数の位置に切り替えることで、これら照明光が照射された標本の各領域において発せられる観察光に基づいて、対物光軸外の視野を含む複数の領域を迅速に切り替えて観察することができる。また、焦点可変光学系により、これら複数の領域ごとに対物レンズの焦点位置を変更することで、これら複数の領域ごとに3次元的に観察することができる。本明細書において、「対物レンズの焦点位置」とは、対物レンズ単体の光学系のみで決まる焦点位置ではなく、焦点可変光学系と対物レンズを含めた光学系全体で決まる標本における焦点位置を示す。
上記態様においては、前記照明領域切替部が、前記対物光軸上に配され前記対物レンズにより集光された前記照明光を前記対物光軸外に向けて反射する第1ミラーと、前記対物光軸外に配され前記第1ミラーにより反射された前記照明光を前記標本における前記対物光軸外に向けて反射する第2ミラーと、これら第1ミラーおよび第2ミラーの少なくとも一方を両者間に前記照明光の光路を維持しながら移動させるミラー移動機構とを備える
このように構成することで、ミラー移動機構により、第1ミラーおよび第2ミラーの少なくとも一方を移動させるだけの簡易な構成によって、標本における対物光軸外の照明光の照明領域を変更することができる。
上記態様においては、前記ミラー移動機構が、前記第1ミラーを前記対物光軸回りに回転させつつ、前記第2ミラーを前記対物光軸回りに回転させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における対物光軸外の照明光の照明領域を対物光軸回りに変更することができる。
上記態様においては、前記ミラー移動機構が、前記第2ミラーを前記対物光軸に交差する方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における対物光軸外の照明光の照明領域を対物光軸に交差する方向に変更することができる。
上記態様においては、前記第1ミラーおよび前記第2ミラーが角度を変更可能に設けられ、前記ミラー移動機構が、前記第1ミラーおよび前記第2ミラーの少なくとも一方を前記対物光軸に沿う方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構によって第1ミラーおよび第2ミラーの少なくとも一方を対物光軸に沿う方向に移動させて、これら第1ミラーおよび第2ミラーの角度を調整することにより、標本における対物光軸外の照明領域における対物レンズの焦点位置を深さ方向に変更することができる。
上記態様においては、前記照明領域切替部を前記対物レンズと前記標本との間に挿脱可能に支持する挿脱切替支持部を備えることとしてもよい。
このように構成することで、挿脱切替支持部により対物レンズと標本との間から照明領域切替部が脱離された状態では、光源からの照明光が対物レンズにより集光されて標本における対物光軸上の領域に照射される。一方、挿脱切替支持部により対物レンズと標本との間に照明領域切替部が挿入された状態では、光源から発せられて対物レンズにより集光された照明光が照明領域切替部により標本における対物光軸外の領域に照射される。したがって、照明領域切替部の挿脱を切り替えるだけで、標本における照明光の照明領域を対物光軸上の領域と対物光軸外の複数の領域とに切り替えることができる。
上記態様においては、前記焦点可変光学系が、前記照明領域切替部による前記対物光軸外の前記照明領域の切り替えに同期して、前記焦点位置を前記対物光軸に沿う方向に変更することとしてもよい。
このように構成することで、焦点可変光学系により、複数の領域間で対物光軸に沿う方向に同じ位置を観察することができる。また、観察領域を切り替えるとともに焦点可変光学系により対物光軸に沿う方向の位置を変更すれば、複数の領域間で対物光軸に沿う方向に異なる位置を観察することもできる。
本発明の第2態様は、光源から発せられた照明光を集光する対物レンズと、該対物レンズにより集光された前記照明光の光路を空間的に分岐させて、標本における前記対物レンズの対物光軸上の領域および該対物光軸外の領域に前記照明光を照射させる光路分岐部とを備え、該光路分岐部が、前記対物レンズと前記標本との間に配置される顕微鏡システムである。
本発明によれば、光源から発せられて対物レンズにより集光された照明光が、光路分岐部により光路を空間的に分岐されることによって、対物レンズの対物光軸上の領域と対物光軸外の領域とに同時に照射される。したがって、これら照明光が照射された標本の各領域において発せられる観察光に基づいて、対物光軸外の視野を含む領域を同時に観察することができる。
上記態様においては、前記光路分岐部が、前記対物光軸上に配され前記対物レンズにより集光された前記照明光の光路を前記対物光軸に沿う方向と該対物光軸に交差する方向とに分岐するビームスプリッタと、該ビームスプリッタにより前記対物光軸に交差する方向に分岐された前記照明光を前記標本における前記対物光軸外に向けて反射する反射ミラーと、これらビームスプリッタおよび反射ミラーの少なくとも一方を両者間に前記照明光の光路を維持しながら移動させるミラー移動機構とを備えることとしてもよい。
このように構成することで、ミラー移動機構により、ビームスプリッタおよび反射ミラーの少なくとも一方を移動させるだけの簡易な構成によって、標本における対物光軸外の照明光の照明領域を変更することができる。
前記ビームスプリッタは、多光子励起を生じさせる前記照明光の波長である近赤外の波長領域の透過率が略50%であり、短波長側の多光子蛍光および長波長側の多光子蛍光の一方の透過率が80%以上で他方の透過率が20%以下であってもよい。
上記態様においては、前記ミラー移動機構が、前記ビームスプリッタを前記対物光軸回りに回転させつつ、前記反射ミラーを前記対物光軸回りに回転させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における対物光軸外の照明光の照明領域を対物光軸回りに変更することができる。
上記態様においては、前記光源と前記対物レンズとの間の前記対物光軸上に配置され、前記対物レンズの焦点位置を前記対物光軸に沿う方向に変更可能な焦点可変光学系を備えることとしてもよい。
このように構成することで、焦点可変光学系により対物レンズの焦点位置を変更して、対物光軸上の領域および対物光軸外の領域を同時に3次元的に観察することができる。
上記態様においては、前記光源と前記対物レンズとの間の前記対物光軸上に配置され、前記対物レンズの焦点位置を前記対物光軸に沿う方向に変更可能な焦点可変光学系を備え、該焦点可変光学系が、前記ミラー移動機構による前記対物光軸外の前記照明領域の切り替えに同期して、前記焦点位置を前記対物光軸に沿う方向に変更することとしてもよい。
このように構成することで、焦点可変光学系により、対物光軸外の複数の領域間で対物光軸に沿う方向に同じ位置を観察することができる。また、照明領域を切り替えるとともに焦点可変光学系により対物光軸に沿う方向の位置を変更すれば、対物光軸外の複数の領域間で対物光軸に沿う方向に異なる位置を観察することもできる。
上記態様においては、前記ミラー移動機構が、前記反射ミラーを前記対物光軸に交差する方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における対物光軸外の照明光の照明領域を対物光軸に交差する方向に変更することができる。
上記態様においては、前記ビームスプリッタおよび前記反射ミラーが角度を変更可能に設けられ、前記ミラー移動機構が、前記ビームスプリッタおよび前記反射ミラーの少なくとも一方を前記対物光軸に沿う方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構によってビームスプリッタおよび反射ミラーの少なくとも一方を対物光軸に沿う方向に移動させて、これらビームスプリッタおよび反射ミラーの角度を調整することにより、標本における対物光軸外の照明領域における対物レンズの焦点位置を深さ方向に変更することができる。
上記態様においては、前記ビームスプリッタと前記反射ミラーとの間に配され、前記ビームスプリッタにより前記対物光軸に交差する方向に分岐された前記照明光を前記対物光軸に沿う方向と該対物光軸に交差する方向とに分岐する1以上の他のビームスプリッタを備えることとしてもよい。
このように構成することで、1以上の他のビームスプリッタにより、標本における対物光軸上のビームスプリッタによる照明光の照明領域と反射ミラーによる照明光の照明領域との間の領域にもこれらの照明領域と同時に照明光を照射することができる。したがって、これら照明光が照射された標本の各領域において発せられる観察光に基づいて、対物光軸外の視野を含む3以上の多領域を同時に観察することができる。
上記態様においては、前記ミラー移動機構が、前記対物光軸上に配された前記ビームスプリッタの前記対物光軸回りの回転と同期して、前記反射ミラーとともに前記他のビームスプリッタを前記対物光軸回りに回転させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における他のビームスプリッタによる対物光軸外の照明光の照明領域を対物光軸回りに変更することができる。
上記態様においては、前記ミラー移動機構が、前記他のビームスプリッタを前記対物光軸に交差する方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構により、標本における他のビームスプリッタによる対物光軸外の照明光の照明領域を対物光軸に交差する方向に変更することができる。
上記態様においては、前記反射ミラー、前記他のビームスプリッタおよび前記対物光軸上のビームスプリッタが角度を変更可能に設けられ、前記ミラー移動機構が、これら反射ミラーおよび他のビームスプリッタと前記対物光軸上のビームスプリッタとの少なくとも一方を前記対物光軸に沿う方向に移動させることとしてもよい。
このように構成することで、ミラー移動機構によって反射ミラーおよび他のビームスプリッタと対物光軸上のビームスプリッタの少なくとも一方を対物光軸に沿う方向に移動させて、これら反射ミラー、他のビームスプリッタおよび対物光軸上のビームスプリッタの角度を調整することにより、標本における対物光軸外の照明領域における対物レンズの焦点位置を深さ方向に変更することができる。
上記態様においては、前記対物レンズにより集光された前記照明光を2次元的に走査させる走査部を含む顕微鏡を備え、該顕微鏡が、2光子レーザ走査型顕微鏡、レーザ走査型顕微鏡またはディスクスキャン方式コンフォーカル顕微鏡であることとしてもよい。
このように構成することで、複数の領域ごとに、走査部による照明光の走査範囲の詳細に観察を実現することができる。
上記態様においては、前記対物光軸に平行な回転軸および前記対物光軸に交差する回転軸の少なくとも一方の回転軸回りに前記対物レンズを移動可能な対物移動機構を備えることとしてもよい。
このように構成することで、対物移動機構により、対物光軸に平行な回転軸および対物光軸に交差する回転軸の少なくとも一方の回転軸回りに対物レンズを移動させることにより、標本の各領域を異なる角度から観察することができる。
上記態様においては、前記標本上の前記照明領域において発せられる観察光を検出する検出部を備えることとしてもよい。
このように構成することで、検出部により検出される観察光の輝度に基づいて、標本における各観察領域の画像情報を取得することができる。
上記態様においては、前記検出部により検出された前記観察光に基づいて取得される前記照明領域ごとの画像を同時に表示する表示部を備えることとしてもよい。
このように構成することで、標本における各観察領域を表示部上で同時に観察することができる。
本発明によれば、少なくとも対物レンズの光軸外の視野を含む領域を同時にもしくは迅速に切り替えて観察することができるという効果を奏する。
本発明の第1実施形態に係る顕微鏡システムを示す概略構成図である。 (a)は図1の照明領域切替機構の周辺を対物光軸に直交する方向に切断した断面図であり、(b)は図1の照明領域切替機構の周辺を対物光軸に沿う方向に切断した断面図である。 図1のインナーフォーカスユニットの縦断面図である。 対物光軸外の複数の観察領域の一例を示す図である。 第2ミラーを対物光軸に直交する方向に移動させる様子を示す図である。 第2ミラーを対物光軸に沿う方向に移動させるとともに、第1ミラーおよび第2ミラーの角度を変更する様子を示す図である。 本発明の第2実施形態に係る顕微鏡システムを示す概略構成図である。 標本における対物光軸上の観察領域と対物光軸外の観察領域の一例を示す図である。 ダイクロイックミラーの反射特性および透過特性の一例を示す図である。 標本における観察領域と蛍光の波長との関係で決まるPMTを示す図である。
〔第1実施形態〕
本発明の第1実施形態に係る顕微鏡システムについて、図面を参照して以下に説明する。
本実施形態に係る顕微鏡システム1は、図1に示されるように、光源(図示略)およびスキャンユニット(走査部)21を備える顕微鏡3と、顕微鏡3に接続されるインナーフォーカスユニット5と、インナーフォーカスユニット5の先端部に設けられた対物レンズ7と、対物レンズ7により集光されるレーザ光(照明光)の照明領域を切り替える照明領域切替機構(照明領域切替部)9と、顕微鏡3に接続される外部検出装置(検出部)11と、制御信号を出力したり画像を生成したりするPC(Personal Computer)13と、PC13からの制御信号に基づいて各種電動部を駆動する制御基板15と、PC13により生成された画像等を表示するモニタ(表示部)17と、制御ボックス19とを備えている。
顕微鏡3は、例えば、スキャンユニット21としてガルバノスキャナを備える2光子レーザ走査型顕微鏡またはレーザ走査型顕微鏡や、スキャンユニット21として複数のピンホールを有するピンホールアレイディスクを備えるディスクスキャン方式コンフォーカル顕微鏡である。この顕微鏡3は、図2に示すように、標本Sを載置する傾斜回転XYステージ23を備え、図示しない除振台に固定されている。
インナーフォーカスユニット5は、図1および図3に示すように、対物レンズ7により集光された標本Sからの蛍光(観察光)をリレーするリレー光学系25と、リレー光学系25によりリレーされる蛍光を反射する反射ミラー27A,27Bと、インナーフォーカスレンズ(ETL:Electrically Tunable Lens、焦点可変光学系)29とを備えている。
インナーフォーカスレンズ29は、制御基板15からの駆動信号に基づき、対物レンズ7や傾斜回転XYステージ23など標本S付近の構造物を機械的に動かすことなく、対物レンズ7の焦点位置を対物光軸Pに沿う方向に高速で変更することができるようになっている。
また、インナーフォーカスユニット5は、ビームスプリッタ35を内蔵するレボアーム31に接続され、キューブターレット33を介して顕微鏡3のスキャンユニット21に接続されている。レボアーム31のビームスプリッタ35は、光源からのレーザ光を透過する一方、標本Sからインナーフォーカスユニット5を介して戻る蛍光を外部検出装置11に向けて反射するようになっている。
また、インナーフォーカスユニット5は、図示しない対物移動機構により、対物レンズ7の対物光軸Pに平行な回転軸回りおよび対物光軸Pに交差する回転軸回りに回転可能に設けられている。例えば、図1および図3に示すように、対物レンズ7の対物光軸Pに平行な軸である光軸P2、あるいは、対物レンズ7の対物光軸Pに交差する軸である光軸P1を回転軸としてインナーフォーカスユニット5を回転することができる。つまり、対物光軸Pが続いていく少なくとも1つの光軸を回転軸として、インナーフォーカスユニット5を回転することができる。これにより、対物レンズ7を対物光軸Pに平行な回転軸回りおよび対物光軸Pに交差する回転軸回りに回転させて、様々な方向から標本Sを観察することができるようになっている。
照明領域切替機構9は、図2に示すように、対物レンズ7の対物光軸P上に配される第1ミラー41と、対物光軸外に配される第2ミラー43と、これら第1ミラー41および第2ミラー43を両者間にレーザ光の光路を維持しながら移動させるミラー移動機構45とを備えている。符号47は、第2ミラー43と標本Sとの間に配置されるカバーガラスを示している。
第1ミラー41は、対物光軸P上に配置されることにより、対物レンズ7により集光されたレーザ光を対物光軸外に向けて反射するようになっている。
第2ミラー43は、対物光軸外に配置されて、対物光軸P上の第1ミラー41により反射されたレーザ光を標本Sにおける対物光軸外の領域に向けて反射すようになっている。
ミラー移動機構45は、ステッピングモータ51と、第1ミラー41および第2ミラー43を保持する保持アーム53と、ステッピングモータ51の動力を保持アーム53に伝達する2つの平歯車55A,55Bとを備えている。
このミラー移動機構45は、ステッピングモータ51の作動により、平歯車55A,55Bおよび保持アーム53を介して、第1ミラー41を対物光軸P回りに回転させつつ、第2ミラー43を対物光軸P回りに回転させることができるようになっている。これにより、第2ミラー43の対物光軸P回りの回転に伴い、例えば図4に示すように、第2ミラー43による標本Sにおける対物光軸外のレーザ光の照明領域を対物光軸P回りに変更することができるようになっている。
対物光軸P回りに切り替えられる対物光軸外のレーザ光の照明領域として、Area10A、Area10B、Area10Cを例示する。なお、各照明領域のArea10A、Area10B、Area10Cは、ミラー移動機構45をそれぞれの回転位置で静止した状態で、スキャンユニット21によりレーザ光を走査可能な領域で有り、かつ、画像化も可能な領域に相当する。また、その各照明領域の大きさは、後述する支え支柱57により照明領域切替機構9を外した状態で対物光軸P上に形成されるスキャンユニット21による走査により照明、画像化が可能な領域(視野)に相当する。
ステッピングモータ51は、位置決め用のXYZ−ラック&ピニオン(図示略)に吊り下げられている。XYZ−ラック&ピニオンは、除振台に固定された顕微鏡3と独立した支え支柱(挿脱切替支持部)57(図2参照)に固定されている。
支え支柱57は、第1ミラー41および第2ミラー43の両者間にレーザ光の光路を維持しながら照明領域切替機構9を対物レンズ7の対物光軸P上に挿脱可能に支持している。照明領域切替機構9を挿入して、第1ミラー41を対物光軸P上に配置すると、対物レンズ7により集光されたレーザ光が第1ミラー41および第2ミラー43により反射されて対物光軸外に照射され、照明領域切替機構9を脱離させて、第1ミラー41を対物光軸P上から外すと、対物レンズ7に集光されたレーザ光がそのまま対物光軸P上に照射される。
外部検出装置11は、図1に示すように、2つの外部PMT(光電子増倍管)61A,61Bと、レボアーム31のビームスプリッタ35からの蛍光を波長に応じて2つの外部PMT61A,61Bに分岐するダイクロイックミラー63とを備えている。各外部PMT61A,61Bにより検出された蛍光の輝度信号は、制御基板15を介してPC13に送られるようになっている。
PC13は、各外部PMT61A,61Bから送られてくる蛍光の輝度信号に基づいて、標本Sの画像を生成するようになっている。また、PC13は、インナーフォーカスレンズ29を駆動するETL駆動信号を制御基板15から出力させ、ステッピングモータ51を駆動する駆動信号を制御ボックス19から出力させるようになっている。
制御ボックス19は、PC13からの指示によりステッピングモータ51を駆動するようになっている。また、制御ボックス19は、ステッピングモータ51を駆動して対物光軸外のArea10A,10B,10Cを切り替える際に、Area10A,10B,10CのZ方向の差分信号を制御基板15から出力されるETL駆動信号に足し合わせるようになっている。これにより、照明領域切替機構9による対物光軸外の照明領域の切り替えに同期してインナーフォーカスレンズ29が作動し、Area10A,10B,10Cごとに、焦点位置がZ方向に調整されるようになっている。
このように構成された顕微鏡システム1の作用について説明する。
本実施形態に係る顕微鏡システム1により標本Sを観察するには、照明領域切替機構9の挿脱により、標本Sにおける観察位置を対物光軸外の領域と対物光軸P上の領域とに切り替える。
標本Sにおける対物光軸外の領域を観察する場合は、対物レンズ7と標本Sとの間に照明領域切替機構9を挿入する。照明領域切替機構9が挿入された状態では、光源から発せられてスキャンユニット21により走査されたレーザ光がキューブターレット33、レボアーム31およびインナーフォーカスユニット5を介して対物レンズ7により集光される。対物レンズ7により集光されたレーザ光は、第1ミラー41および第2ミラー43により反射されて、標本Sの対物光軸外の領域に照射される。
レーザ光が照射されることにより標本Sの対物光軸外の領域において発生する蛍光は、第2ミラー43、第1ミラー41を介して対物レンズ7により集光された後、インナーフォーカスユニット5を介してレーザ光の光路を戻り、レボアーム31のビームスプリッタ35により反射されて外部検出装置11に入射される。
外部検出装置11に入射した蛍光は、ダイクロイックミラー63により波長に応じて分岐されて、外部PMT61Aまたは外部PMT61Bにより検出される。そして、PC13により、外部PMT61A,61Bによって検出された蛍光の輝度信号に基づいて、標本Sにおける対物光軸外の領域の2次元的な画像が生成され、モニタ17に表示される。
次いで、インナーフォーカスレンズ29により、対物レンズ7の焦点位置をZ方向に所定のピッチで変更していく。これにより、標本Sの対物光軸外の領域において、各Z位置の2次元的な画像を取得して、対物光軸外の領域を3次元的に観察することができる。
続いて、ステッピングモータ51を駆動して、第1ミラー41を対物光軸P回りに回転させつつ、第2ミラー43を対物光軸P回りに回転させて、図4に示すように、標本Sの対物光軸外の観察領域をArea10A,10B,10Cのように切り替える。
この場合、ユーザが予めインナーフォーカスレンズ29を駆動調節しながらArea10A,10B,10Cの各Z位置を決め、そのArea10A,10B,10Cの各Z位置に対応するETL駆動信号から、Area10A,10B,10CのZ方向の差分信号を求めておく。そして、ステッピングモータ51を駆動してArea10A,10B,10Cを切り替える際に、制御ボックス19からArea10A,10B,10CのZ方向の差分信号を出力して、制御基板15から出力されるETL駆動信号に足し合わせる。これにより、Area10A,10B,10Cごとに、Z方向に焦点位置を順次切り替えて3次元的に観察することができる。
次に、標本Sにおける対物光軸P上の領域を観察する場合は、対物レンズ7と標本Sとの間から照明領域切替機構9を脱離させる。照明領域切替機構9が脱離された状態では、光源から発せられてスキャンユニット21により走査されたレーザ光は、キューブターレット33、レボアーム31およびインナーフォーカスユニット5を介して対物レンズ7により集光されて、標本Sの対物光軸P上の領域に照射される。
レーザ光が照射されることにより標本Sの対物光軸P上の領域において発生する蛍光は、対物レンズ7により集光され後、インナーフォーカスユニット5を介してレーザ光の光路を戻り、レボアーム31のビームスプリッタ35により反射されて外部検出装置11に入射され、ダイクロイックミラー63を介して外部PMT61Aまたは外部PMT61Bにより検出される。そして、PC13により、外部PMT61A,61Bによって検出された蛍光の輝度信号に基づいて、標本Sの対物光軸P上の領域の2次元的な画像が生成され、モニタ17に表示される。
次いで、インナーフォーカスレンズ29により、標本Sの対物光軸P上の領域において、対物レンズ7の焦点位置をZ方向に所定のピッチで変更していく。これにより、標本Sの対物光軸P上の領域において、各Z位置の2次元的な画像を取得して、対物光軸P上の領域を3次元的に観察することができる。
以上説明したように、本実施形態に係る顕微鏡システム1によれば、照明領域切替機構9の挿脱を切り替えるだけで、標本Sにおけるレーザ光の照明領域を対物光軸P上の領域と対物光軸外の1以上の領域(Area10A、10B,10C)とに切り替えることができる。これにより、レーザ光が照射された標本Sの各領域において発せられる蛍光に基づいて、対物光軸外の視野を含む複数の領域を迅速に切り替えて観察することができる。また、インナーフォーカスレンズ29により、これら複数の領域ごとに対物レンズ7の焦点位置を変更することで、これら複数の領域ごとに3次元的に観察することができる。
本実施形態においては、ミラー移動機構45により、図5に示すように、第2ミラー43が対物光軸Pに直交する方向に移動することとしてもよい。このようにすることで、標本Sにおける対物光軸外のレーザ光の照明領域を対物光軸Pに直交する方向に変更することができる。
例えば、第2ミラー43を第1ミラー41に近接する方向に移動させることにより、対物光軸外の観察領域を対物光軸P上の観察領域に近づけることができる。一方、第2ミラー43を第1ミラー41から離間する方向に移動させることにより、対物光軸外の観察領域を対物光軸P上の観察領域から遠ざけることができる。
また、本実施形態においては、図6に示すように、第1ミラー41および第2ミラー43が角度を変更可能に設けられていることとしてもよい。また、ミラー移動機構45により、第1ミラー41および第2ミラー43の少なくとも一方が対物光軸Pに沿う方向に移動することとしてもよい。
このようにすることで、ミラー移動機構45によって第1ミラー41および第2ミラー43の少なくとも一方を対物光軸Pに沿う方向に移動させて、これら第1ミラー41および第2ミラー43の角度を調整することにより、標本Sにおける対物光軸外の照明領域における対物レンズ7の焦点位置を深さ方向に変更することができる。
例えば、第2ミラー43を対物光軸Pに沿って標本Sから離間する方向に移動させて、第1ミラー41および第2ミラー43の角度を調整すれば、標本Sにおける対物光軸外の照明領域における対物レンズ7の焦点位置を浅くすることができる。また、第2ミラー43を対物光軸Pに沿って標本Sに近接させる方向に移動させて、第1ミラー41および第2ミラー43の角度を調整すれば、標本Sにおける対物光軸外の照明領域における対物レンズ7の焦点位置を深くすることができる。
また、本実施形態においては、照明領域切替機構9が支え支柱57により支持されていることとしたが、これに代えて、例えば、照明領域切替機構9を対物レンズ7に固定し、インナーフォーカスユニット5を対物光軸Pに平行な回転軸回りおよび対物光軸Pに交差する回転軸回りに回転させた場合に、対物レンズ7と一体的に焦点領域切替機構9も回転することができるようにしてもよい。
この場合、例えば、ミラー移動機構45の保持アーム53を対物レンズ7に固定し、この保持アーム53により、照明領域切替機構9全体が対物レンズ7に保持されるようにすればよい。このようにすることで、インナーフォーカスユニット5を回転させて対物レンズ7の向きを変えて観察する場合も照明領域切替機構9を脱離させる必要がなく、対物レンズ7の向きを変えながら、照明領域切替機構9により対物光軸外の複数領域を切り替えて観察することができる。
〔第2実施形態〕
次に、本発明の第2実施形態に係る顕微鏡システムについて説明する。
本実施形態に係る顕微鏡システム70は、図7に示すように、照明領域切替機構9および支え支柱57に代えて、標本Sにおける対物光軸P上の領域および対物光軸外の領域にレーザ光を同時に照射させる光路分岐機構(光路分岐部)71を備える点で第1実施形態と異なる。
以下、第1実施形態に係る顕微鏡システム1と構成を共通する箇所には、同一符号を付して説明を省略する。
光路分岐機構71は、対物光軸P上に配置されたダイクロイックミラー73と、対物光軸外に配置された反射ミラー75と、これらダイクロイックミラー73および反射ミラー75を両者間にレーザ光の光路を維持しながら移動させるミラー移動機構(図示略)とを備えている。
ダイクロイックミラー73は、対物レンズ7により集光されたレーザ光を波長に応じて対物光軸Pに交差する方向に反射または対物光軸Pに沿う方向に透過させるようになっている。また、ダイクロイックミラー73は、対物光軸Pに沿う方向および対物光軸Pに交差する方向からレーザ光の光路を逆方向に戻る標本Sからの蛍光を波長に応じて反射または透過するようになっている。
反射ミラー75は、ダイクロイックミラー73により対物光軸Pに交差する方向に反射されたレーザ光を標本Sの対物光軸外の領域に向けて反射する一方、レーザ光が照射されることにより標本Sの対物光軸外の領域から戻る蛍光をダイクロイックミラー73に向けて反射するようになっている。
このような光路分岐機構71によれば、ダイクロイックミラー73を対物光軸Pに沿う方向に透過したレーザ光はそのまま標本Sの対物光軸P上の領域に照射され、ダイクロイックミラー73により対物光軸Pに交差する方向に反射されたレーザ光は、反射ミラー75を介して標本Sの対物光軸外の領域に照射される。以下、図8に示すように、反射ミラー75により照射される対物光軸外のレーザ光の照明領域をArea10とし、ダイクロイックミラー73により照射される対物光軸P上のレーザ光の照明領域をArea20とする。
ミラー移動機構は、第1実施形態のミラー移動機構45と同様の構成を有している。このミラー移動機構は、図示しないステッピングモータの作動により、ダイクロイックミラー73を対物光軸P回りに回転させつつ、反射ミラー75を対物光軸P回りに回転させることができるようになっている。
また、図7に示すように、光路分岐機構71には、ダイクロイックミラー73と同じ透過特性および反射特性を有するダイクロイックミラー77と、ダイクロイックミラー77により反射された蛍光を検出するPMT79Aと、ダイクロイックミラー77を透過した蛍光を検出するPMT79Bとが備えられている。図7において、符号81は、キューブターレット33を介して接続されるオートフォーカス用のセンサ(AF)を示している。
ミラー移動機構により、ダイクロイックミラー73および反射ミラー75が対物光軸P回りに回転させられると、反射ミラー75、ダイクロイックミラー73、ダイクロイックミラー77、PMT79AおよびPMT79Bの間の蛍光の光路が維持されながら、ダイクロイックミラー77、PMT79AおよびPMT79Bも一緒に回転させられるようになっている。
これら2つのダイクロイックミラー73,77と外部検出装置11のダイクロイックミラー63は、例えば、図9に示すように、いずれも550nm以下の波長は100%反射し、550nmよりも大きく700mnよりも小さい波長は100%透過し、700nm以上の波長は50%透過し50%反射する透過特性および反射特性を有している。
なお、光路分岐機構71は、対物レンズ7に固定されており、インナーフォーカスユニット5が対物光軸Pに平行な回転軸回りおよび対物光軸Pに交差する回転軸回りに回転した場合に、対物レンズ7と一体的に光路分岐機構71も回転することができるようになっている。
このように構成された顕微鏡システム70の作用について説明する。
本実施形態に係る顕微鏡システム70により標本Sを観察する場合は、光源から発せられてスキャンユニット21により走査されたレーザ光がキューブターレット33、レボアーム31およびインナーフォーカスユニット5を介して対物レンズ7により集光される。
対物レンズ7により集光されたレーザ光は、波長に応じてダイクロイックミラー73を透過するかダイクロイックミラー73により反射される。図8に示すように、ダイクロイックミラー73により反射されたレーザ光は反射ミラー75により反射されて、標本Sにおける対物光軸外のArea10に照射され、ダイクロイックミラー73を透過したレーザ光は対物光軸P上のArea20に照射される。
例えば、光源から波長920nmと波長1040nmのレーザ光を射出させると、対物レンズ7により集光されたレーザ光は、ダイクロイックミラー73により50%が反射されて50%が透過する。そして、ダイクロイックミラー73により反射された50%のレーザ光が反射ミラー75により対物光軸外のArea10に照射され、これと同時に、ダイクロイックミラー73を透過した50%のレーザ光がそのまま対物光軸P上のArea20に照射される。これにより、標本SのArea10とArea20の両方で同時に励起されて、それぞれから蛍光が発せられる。
標本Sの対物光軸外のArea10において発生した蛍光は、反射ミラー75により反射されて波長に応じてダイクロイックミラー73を透過するかダイクロイックミラー73により反射される。また、標本Sの対物光軸P上のArea20において発生した蛍光は、波長に応じてダイクロイックミラー73を透過するかダイクロイックミラー73により反射される。
ダイクロイックミラー73を透過したArea10からの蛍光およびダイクロイックミラー73により反射されたArea20からの蛍光は、波長に応じてダイクロイックミラー77を透過するかダイクロイックミラー77により反射される。ダイクロイックミラー77により反射された蛍光はPMT79Aにより検出され、ダイクロイックミラー77を透過した蛍光はPMT79Bにより検出される。
例えば、図9に示すように、Area10において発生した波長550nmよりも大きいRFP(赤色蛍光タンパク質)のような蛍光は、反射ミラー75により反射されてダイクロイックミラー73およびダイクロイックミラー77を透過し、PMT79Bにより検出される。また、Area20において発生した波長550nm以下のGFP(緑色蛍光タンパク質)のような蛍光は、ダイクロイックミラー73およびダイクロイックミラー77によりそれぞれ反射されて、PMT79Aにより検出される。
そして、PC13により、PMT79A,79Bにより検出された蛍光の輝度信号に基づいて、標本Sにおける対物光軸外のArea10および対物光軸P上のArea20の2次元的な画像がそれぞれ生成され、モニタ17に表示される。
一方、ダイクロイックミラー73により反射されたArea10からの蛍光およびダイクロイックミラー73を透過したArea20からの蛍光は、対物レンズ7により集光されてインナーフォーカスユニット5をレーザ光とは逆方向に戻り、レボアーム31のビームスプリッタ35により外部検出装置11に向けて反射される。
外部検出装置11に入射した蛍光は、波長に応じてダイクロイックミラー63により反射されるかダイクロイックミラー63を透過する。ダイクロイックミラー63により反射された蛍光は外部PMT61Aにより検出され、ダイクロイックミラー63を透過した蛍光は外部PMT61Bにより検出される。
例えば、図9に示すように、Area10において発生した波長550nm以下のGFPのような蛍光は、反射ミラー75およびダイクロイックミラー73により反射されて対物レンズ7により集光された後、インナーフォーカスユニット5を介してビームスプリッタ35により反射され、外部検出装置11のダイクロイックミラー63により反射されて外部PMT61Aにより検出される。また、Area20において発生した波長550nmよりも大きいRFPのような蛍光は、ダイクロイックミラー73を透過して対物レンズ7により集光された後、インナーフォーカスユニット5を介してビームスプリッタ35により反射され、外部検出装置11のダイクロイックミラー63を透過して外部PMT61Bにより検出される。
そして、PC13により、外部PMT61A,61Bにより検出された蛍光の輝度信号に基づいて、標本Sにおける対物光軸外のArea10および対物光軸P上のArea20の2次元的な画像が生成され、モニタ17に表示される。
ここで、ダイクロイックミラー73および反射ミラー75の位置や角度を調整して、Area10およびArea20のフォーカス位置を予め合わせておく。インナーフォーカスレンズ29を作動させることにより、Area10およびArea20の両方のフォーカス位置が同時に同じ距離だけ移動される。
したがって、インナーフォーカスレンズ29により、標本Sの対物光軸外のArea10と対物光軸P上のArea20において、対物レンズ7の焦点位置をZ方向に所定のピッチで変更していくことで、各Z位置の2次元的な画像をそれぞれ同時に取得して、Area10およびArea20を3次元的に同時に観察することができる。
以上説明したように、本実施形態に係る顕微鏡システム70によれば、光源から発せられて対物レンズ7により集光されたレーザ光が、光路分岐機構71により光路を分岐されることによって、対物レンズ7の対物光軸P上のArea20と対物光軸外のArea10とに同時に照射される。これにより、レーザ光が照射された標本の各Area10,20において発せられる蛍光に基づいて、対物光軸外の視野を含むArea10,20を同時に観察することができる。また、インナーフォーカスレンズ29により、Area10,20ごとに対物レンズ7の焦点位置を変更することで、これらのArea10,20を同時に3次元的に観察することができる。
本実施形態においては、光路分岐機構71のダイクロイックミラー73,77および外部検出装置11のダイクロイックミラー63が、多光子励起を生じさせるレーザ光の波長である近赤外の波長領域に対しては略50%の透過率を有し、短波長側の多光子蛍光および長波長側の多光子蛍光の一方に対しては80%以上の透過率で他方に対しては20%以下の透過率を有することとしてもよい。
また、本実施形態においても、ミラー移動機構が、ダイクロイックミラー73を対物光軸P回りに回転させつつ、反射ミラー75を対物光軸P回りに回転させて、図4に示すように、対物光軸外のArea10をArea10A,10B,10Cのように切り替えることとしてもよい。
この場合において、ダイクロイックミラー77、PMT79AおよびPMT79Bがダイクロイックミラー73および反射ミラー75と共にこれらの間に蛍光の光路を維持しながら対物光軸P回りに回転するので、対物光軸外のArea10A,10B,10Cを切り替えながら、各Area10A,10B,10Cからの蛍光をPMT79A,79Bにより検出することができる。
また、ミラー移動機構により、反射ミラー75を対物光軸Pに直交する方向に移動させて、対物光軸外のArea10を対物光軸P上のArea20に近い位置や遠い位置に変更することとしてもよい。
また、ミラー移動機構により、ダイクロイックミラー73および反射ミラー75の少なくとも一方を対物光軸Pに沿う方向に移動させるとともに、ダイクロイックミラー73および反射ミラー75の角度を調整して、対物光軸外のArea10の照明領域における対物レンズ7の焦点位置を深さ方向に変更することとしてもよい。
また、本実施形態においては、ダイクロイックミラー73および反射ミラー75の位置や角度を調整して、Area10およびArea20のフォーカス位置を合わせるのではなく、インナーフォーカスレンズ29により、Area10およびArea20のZ位置を切替制御することとしてもよい。
この場合、第1実施形態と同様に、ユーザが予めインナーフォーカスレンズ29を駆動調節しながらArea10,20の各Z位置を決め、そのArea10,20の各Z位置に対応するETL駆動信号から、Area10,20のZ方向の差分信号を求めておくこととすればよい。そして、Area10およびArea20ごとに、制御ボックス19からArea10,20のZ方向の差分信号を出力して制御基板15から出力されるETL駆動信号に足し合わせることとすればよい。これにより、Area10,20ごとに、Z方向に焦点位置を順次切り替えて3次元的に観察することができる。
併せて、キューブターレット33を介して接続されるオートフォーカス用のセンサ81を使って標本Sの焦点位置を検出するようにし、その信号をインナーフォーカスレンズ29のコントロール信号に差分信号として入力することも可能である。例えば、標本Sが生きたマウスなどの場合、心拍でフォーカスが変わるが、センサ81およびインナーフォーカスレンズ29により焦点位置の補正が可能となる。
標本Sにおける対物光軸外の複数の領域ごとにZ位置を切替制御する場合は、ミラー移動機構による機械的な動きが必要となるが、インナーフォーカスレンズ29により標本Sにおける対物光軸外の領域と対物光軸P上の領域ごとにZ位置を切替制御する場合は、機械的な動きが必要でなく、タイムラグが少なくてすむ。
また、本実施形態においては、ダイクロイックミラー73と反射ミラー75との間に配される1以上の他のダイクロイックミラー(他のビームスプリッタ)を備えることとしてもよい。この場合、対物光軸P上のダイクロイックミラー73によって反射されたレーザ光を1以上の他のダイクロイックミラーにより対物光軸Pに沿う方向と対物光軸Pに交差する方向とに分岐し、他のダイクロイックミラーを透過したレーザ光を反射ミラー75により標本Sの対物光軸外の領域に向けて反射することとすればよい。
このようにすることで、1以上の他のダイクロイックミラーにより、対物光軸P上のダイクロイックミラー73によるレーザ光の照明領域と反射ミラー75によるレーザ光の照明領域との間の領域にもこれらの照明領域と同時にレーザ光を照射することができる。したがって、これらレーザ光が照射された標本Sの各領域において発せられる蛍光に基づいて、対物光軸外の視野を含む3以上の多領域を同時に観察することができる。
本変形例においても、ミラー移動機構により、ダイクロイックミラー73の対物光軸P回りの回転と同期して、反射ミラー75とともに他のダイクロイックミラーを対物光軸P回りに回転させることとしてもよい。また、ミラー移動機構により、他のダイクロイックミラーを対物光軸Pに交差する方向に移動させることとしてもよいし、また、反射ミラー75および他のダイクロイックミラーと対物光軸P上のダイクロイックミラー73の少なくとも一方を対物光軸Pに沿う方向に移動させるとともに、反射ミラー75、他のダイクロイックミラーおよびダイクロイックミラー73の角度を調節して、対物光軸外の照明領域における対物レンズ7の焦点位置を深さ方向に変更することとしてもよい。
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記各実施形態および変形例に適用したものに限定されることなく、これらの実施形態および変形例を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。
1,70 顕微鏡システム
3 顕微鏡
7 対物レンズ
9 照明領域切替機構(照明領域切替部)
17 モニタ(表示部)
21 スキャンユニット(走査部)
29 インナーフォーカスレンズ(焦点可変光学系)
41 第1ミラー
43 第2ミラー
45 ミラー移動機構
57 支え支柱(挿脱切替支持部)
61A,61B 外部PMT(検出部)
71 光路分岐機構(光路分岐部)
73 ダイクロイックミラー(ビームスプリッタ)
75 反射ミラー
79A,79B PMT(検出部)
S 標本
P 対物光軸

Claims (11)

  1. 光源から発せられた照明光を標本上に集光する対物レンズと、
    該対物レンズと前記標本との間に配置され、前記対物レンズによって集光された前記照明光の照明領域を前記標本における前記対物レンズの対物光軸外の複数の位置に切り替える照明領域切替部と、
    前記光源と前記対物レンズとの間の前記対物光軸上に配置され、前記対物レンズの焦点位置を前記対物光軸に沿う方向に変更可能な焦点可変光学系とを備え、
    前記照明領域切替部が、前記対物光軸上に配され前記対物レンズにより集光された前記照明光を前記対物光軸外に向けて反射する第1ミラーと、前記対物光軸外に配され前記第1ミラーにより反射された前記照明光を前記標本における前記対物光軸外に向けて反射する第2ミラーと、これら第1ミラーおよび第2ミラーの少なくとも一方を両者間に前記照明光の光路を維持しながら移動させるミラー移動機構とを備える顕微鏡システム。
  2. 前記ミラー移動機構が、前記第1ミラーを前記対物光軸回りに回転させつつ、前記第2ミラーを前記対物光軸回りに回転させる請求項1に記載の顕微鏡システム。
  3. 前記ミラー移動機構が、前記第2ミラーを前記対物光軸に交差する方向に移動させる請求項1または請求項2に記載の顕微鏡システム。
  4. 前記第1ミラーおよび前記第2ミラーが角度を変更可能に設けられ、
    前記ミラー移動機構が、前記第1ミラーおよび前記第2ミラーの少なくとも一方を前記対物光軸に沿う方向に移動させる請求項1から請求項3のいずれかに記載の顕微鏡システム。
  5. 前記照明領域切替部を前記対物レンズと前記標本との間に挿脱可能に支持する挿脱切替支持部を備える請求項1から請求項4のいずれかに記載の顕微鏡システム。
  6. 前記焦点可変光学系が、前記照明領域切替部による前記対物光軸外の前記照明領域の切り替えに同期して、前記焦点位置を前記対物光軸に沿う方向に変更する請求項1から請求項5のいずれかに記載の顕微鏡システム。
  7. 前記対物レンズにより集光された前記照明光を2次元的に走査させる走査部を含む顕微鏡を備え、
    該顕微鏡が、2光子レーザ走査型顕微鏡、レーザ走査型顕微鏡またはディスクスキャン方式コンフォーカル顕微鏡である請求項1から請求項6のいずれかに記載の顕微鏡システム。
  8. 前記対物光軸に平行な回転軸および前記対物光軸に交差する回転軸の少なくとも一方の回転軸回りに前記対物レンズを移動可能な対物移動機構を備える請求項1から請求項7のいずれかに記載の顕微鏡システム。
  9. 前記標本上の前記照明領域において発せられる観察光を検出する検出部を備える請求項1から請求項8のいずれかに記載の顕微鏡システム。
  10. 前記検出部により検出された前記観察光に基づいて取得される前記照明領域ごとの画像を同時に表示する表示部を備える請求項9に記載の顕微鏡システム。
  11. 光源から発せられた照明光を標本上に集光する対物レンズと、
    該対物レンズと前記標本との間に配置され、前記対物レンズによって集光された前記照明光の照明領域を前記標本における前記対物レンズの対物光軸外の複数の位置に切り替える照明領域切替部と、
    前記光源と前記対物レンズとの間の前記対物光軸上に配置され、前記対物レンズの焦点位置を前記対物光軸に沿う方向に変更可能な焦点可変光学系と、
    前記対物光軸に平行な回転軸および前記対物光軸に交差する回転軸の少なくとも一方の回転軸回りに前記対物レンズを移動可能な対物移動機構とを備える顕微鏡システム。
JP2016167334A 2016-08-29 2016-08-29 顕微鏡システム Active JP6980370B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016167334A JP6980370B2 (ja) 2016-08-29 2016-08-29 顕微鏡システム
US15/683,980 US10281699B2 (en) 2016-08-29 2017-08-23 Microscope system configured to irradiate focused light onto an area of a specimen outside of an optical axis of an objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167334A JP6980370B2 (ja) 2016-08-29 2016-08-29 顕微鏡システム

Publications (3)

Publication Number Publication Date
JP2018036337A JP2018036337A (ja) 2018-03-08
JP2018036337A5 JP2018036337A5 (ja) 2019-11-07
JP6980370B2 true JP6980370B2 (ja) 2021-12-15

Family

ID=61242347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167334A Active JP6980370B2 (ja) 2016-08-29 2016-08-29 顕微鏡システム

Country Status (2)

Country Link
US (1) US10281699B2 (ja)
JP (1) JP6980370B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110653488A (zh) * 2019-10-16 2020-01-07 东南大学 一种跨尺度高分辨三维激光直写加工方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623613A1 (de) * 1986-07-12 1988-01-21 Zeiss Carl Fa Koaxiales beleuchtungssystem fuer operationsmikroskope
JP3584301B2 (ja) * 1996-03-12 2004-11-04 株式会社ニコン 顕微鏡用架台
JP3917731B2 (ja) 1996-11-21 2007-05-23 オリンパス株式会社 レーザ走査顕微鏡
WO2000025171A2 (de) 1998-10-24 2000-05-04 Leica Microsystems Heidelberg Gmbh Anordnung zur optischen abtastung eines objekts
US20030002148A1 (en) 1998-10-24 2003-01-02 Johann Engelhardt Arrangement for optically scanning an object
US7170676B2 (en) * 2003-03-13 2007-01-30 Olympus Corporation Illumination switching apparatus and method
GB0608258D0 (en) * 2006-04-26 2006-06-07 Perkinelmer Singapore Pte Ltd Spectroscopy using attenuated total internal reflectance (ATR)
US8040597B2 (en) * 2006-05-16 2011-10-18 Olympus Corporation Illuminating device
JP2008225095A (ja) * 2007-03-13 2008-09-25 Olympus Corp 光走査型観察装置
JP2009058776A (ja) * 2007-08-31 2009-03-19 Olympus Corp フォーカシング光学系を有する光学系およびこれを用いたレーザ顕微鏡装置
DE102009028149B4 (de) * 2009-07-31 2011-12-08 Leica Instruments (Singapore) Pte. Ltd. Beleuchtungseinrichtung für ein Mikroskop
JP2011118069A (ja) * 2009-12-02 2011-06-16 Nikon Corp 顕微鏡用照明装置および顕微鏡
DE102012211943A1 (de) * 2012-07-09 2014-06-12 Carl Zeiss Microscopy Gmbh Mikroskop
US9036146B2 (en) * 2013-01-21 2015-05-19 Sciaps, Inc. Micro purge of plasma region
US20140333998A1 (en) * 2013-03-12 2014-11-13 Board Of Trustees, Southern Illinois University Micro-lens for high resolution microscopy
WO2016106368A1 (en) * 2014-12-23 2016-06-30 Bribbla Dynamics Llc Confocal inspection system having averaged illumination and averaged collection paths
JP6634263B2 (ja) 2015-10-16 2020-01-22 オリンパス株式会社 顕微鏡

Also Published As

Publication number Publication date
JP2018036337A (ja) 2018-03-08
US10281699B2 (en) 2019-05-07
US20180059397A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
EP2317363B1 (en) Microscope connecting unit and microscope system
US7639357B2 (en) Laser scanning microscope
US7369308B2 (en) Total internal reflection fluorescence microscope
EP1580586B1 (en) Scanning confocal microscope
EP2322969B1 (en) Microscope device
WO2012035903A1 (ja) 3次元共焦点観察用装置及び観察焦点面変位・補正ユニット
JP4889375B2 (ja) 共焦点顕微鏡および多光子励起型顕微鏡
JP2018527607A (ja) 3次元イメージングのためのシステムおよび方法
US6924490B2 (en) Microscope system
JP3861357B2 (ja) 光学装置と一体化された顕微鏡用レボルバおよび顕微鏡
JP2016109858A (ja) 観察装置
JP6980370B2 (ja) 顕微鏡システム
JP5991850B2 (ja) 顕微鏡装置
JP6385711B2 (ja) 顕微鏡装置
JPH0821956A (ja) 走査型光学顕微鏡
JP4694760B2 (ja) 顕微鏡
JP2008275791A (ja) 走査型共焦点顕微鏡
JP2006106346A (ja) 顕微鏡システム
JP6192397B2 (ja) レーザ顕微鏡
JP2014056078A (ja) 画像取得装置、画像取得システム及び顕微鏡装置
JP2009116317A (ja) 顕微鏡装置
JP4242627B2 (ja) レーザ顕微鏡
JP6436862B2 (ja) 顕微鏡および顕微鏡画像取得方法
JP6326098B2 (ja) 顕微鏡装置
JP2016090768A (ja) 顕微鏡および顕微鏡画像取得方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211117

R151 Written notification of patent or utility model registration

Ref document number: 6980370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350