JP6385711B2 - 顕微鏡装置 - Google Patents

顕微鏡装置 Download PDF

Info

Publication number
JP6385711B2
JP6385711B2 JP2014093516A JP2014093516A JP6385711B2 JP 6385711 B2 JP6385711 B2 JP 6385711B2 JP 2014093516 A JP2014093516 A JP 2014093516A JP 2014093516 A JP2014093516 A JP 2014093516A JP 6385711 B2 JP6385711 B2 JP 6385711B2
Authority
JP
Japan
Prior art keywords
objective lens
conjugate
spatial light
deflection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014093516A
Other languages
English (en)
Other versions
JP2015210470A (ja
Inventor
本田 進
進 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014093516A priority Critical patent/JP6385711B2/ja
Publication of JP2015210470A publication Critical patent/JP2015210470A/ja
Application granted granted Critical
Publication of JP6385711B2 publication Critical patent/JP6385711B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、顕微鏡装置に関するものである。
従来、空間光変調素子により波面を変調したレーザ光をガルバノミラーユニットを経由させて対物レンズに入射させることで、レーザ光の集光点を標本の深さ方向に変化させながら深さ方向に交差する2次元的な画像を取得する顕微鏡装置が知られている(例えば、特許文献1参照。)。
このような顕微鏡装置においては、ガルバノミラーユニットの揺動により、対物レンズの瞳面にリレーされる変調波面が瞳面上において光軸と直交する方向にシフトしてしまい、光学性能が劣化してしまうという問題がある。これに対し、特許文献1に記載の顕微鏡装置は、2枚の揺動ミラーの内の高速の揺動ミラーと空間光変調素子および対物レンズの瞳をそれぞれ共役な位置に配置するとともに、低速の揺動ミラーの揺動角度に応じて空間光変調素子の変調パターンを変化させるようになっている。これにより、高速の揺動ミラーと対物レンズの瞳との位置関係を一定に保つとともに、対物レンズの瞳位置での低速の揺動ミラーの揺動動作に応じたレーザ光のシフトも打ち消し、光学性能が低下するのを防止している。
特開2011−170338号公報
しかしながら、特許文献1に記載の顕微鏡装置により、標本の深さ方向の位置を変化させずに2次元的な画像を取得しようとすると、空間光変調素子による波面の変調を伴わないため、対物レンズの瞳位置での低速の揺動ミラーの揺動動作に応じたレーザ光のシフトを打ち消すことができない。そのため、標本の深さ方向の位置を変化させない場合は、明るさムラが生じて高精度な2次元的な画像を取得することができないという不都合がある。
本発明は上述した事情に鑑みてなされたものであって、簡易な構成で、標本の観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本の観察深さ位置を変化させずに高精度な2次元的な画像を取得したりすることができる顕微鏡装置を提供することを目的としている。
上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、光源からの照明光の波面を変調可能な空間光変調部と、互いに交差する2つの方向に光を偏向可能な2つの偏向手段を有し、前記空間光変調部から出射された照明光を偏向して2次元的に走査させるスキャナと、該スキャナにより走査された照明光を標本に照射する対物レンズと、該スキャナにより偏向された照明光を前記対物レンズに導くリレー光学系と、前記対物レンズの瞳位置と一方の前記偏向手段の偏向面とが光学的に共役関係を有する第1共役状態と、前記対物レンズの瞳位置と前記2つの偏向手段の各偏向面の間の位置とが光学的に共役関係を有する第2共役状態とを切り替え可能な共役状態切替部と、前記第1共役状態において、前記空間光変調部上の像を固定して他方の前記偏向手段により前記照明光を偏向させたと仮定した場合における前記対物レンズの瞳位置にリレーされる像の移動方向とは逆方向に、前記他方の偏向手段による偏向を停止させた状態を仮定した場合における前記対物レンズの瞳位置の像が移動するように、前記他方の偏向手段による偏向に応じて、前記空間光変調部上の像を形成する前記波面の変調領域を移動させ、前記第2共役状態において、前記空間光変調部を作動させず、前記光源からの照明光を前記空間光変調部による波面の変調を伴わせずに前記スキャナに入射させる変調領域調節部とを備え、前記空間光変調部が、前記第1共役状態において前記一方の偏向手段の偏向面と光学的に共役関係を有する顕微鏡装置を提供する。
本発明によれば、空間光変調部によって波面が変調された照明光がスキャナによって偏向されてリレー光学系を介して対物レンズに導かれ、対物レンズにより集光されて2つの偏向手段による偏向に応じて標本上で2次元的に走査される。このとき、空間光変調部上に形成された波面像は、スキャナにより偏向されてリレー光学系によって対物レンズの瞳位置にリレーされる。
ここで、空間光変調部により照明光の波面を変調してスキャナにより照明光を走査させることで、標本における照明光の集光点を深さ方向に変化させながら、深さ方向に交差する標本の2次元的な画像を取得することができる。この場合において、空間光変調部上の像が固定されていると、スキャナを構成する2つの偏向手段の内、対物レンズの瞳位置と光学的に共役な位置に配置されていない偏向手段によって偏向されることにより、対物レンズの瞳位置にリレーされる像が光軸に交差する方向に移動させられる。
これに対し、共役状態切替部により、対物レンズの瞳位置と一方の偏向手段の偏向面とが光学的に共役関係を有する第1共役状態に切り替えるとともに、変調領域調節部により、他方の偏向手段による偏向に応じて空間光変調部上の像を形成する波面の変調領域を移動させることで、対物レンズの瞳位置にリレーされる像の移動が打ち消されて静止する。これにより、対物レンズの瞳全体にわたるように照明光を入射させて、最大限に明るい照明を行うことができる。
また、第1共役状態では、空間光変調部と上記一方の偏向手段とも光学的共役関係となるので、結果的に、空間光変調部は対物レンズ瞳位置と共役関係になる。したがって、空間光変調部により波面変調された照明光を対物レンズに正しく入射させることができる。
一方、空間光変調部による照明光の波面の変調を伴わずにスキャナにより照明光を走査せることで、標本の観察深さ位置を変化させずに2次元的な画像を取得することができる。この場合において、共役状態切替部により、対物レンズの瞳位置と2つの偏向手段の各偏向面の間の位置とが光学的に共役関係を有する第2共役状態に切り替えることで、2つの偏向手段の偏向による対物レンズの瞳位置での照明光の移動量が小さくなる。これにより、照明効率を向上して明るさムラを低減することができる。
したがって、簡易な構成で、標本の観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本の観察深さ位置を変化させずに高精度な2次元的な画像を取得したりすることができる。
上記発明においては、前記2つの偏向手段が、非平行な2つの軸線回りにそれぞれ揺動可能な2枚の揺動ミラーであることとしてもよい。
上記発明においては、前記共役状態切替部が、空気と異なる屈折率を有し、前記スキャナと前記リレー光学系との間の光路上に挿脱可能に形成されていることとしてもよい。
このように構成することで、例えば、照明光の光路上に共役状態切替部を挿入することにより、対物レンズの瞳位置と光学的に共役関係を有する位置が一方の偏向手段の偏向面に移動し、一方の偏向手段の偏向面に形成された像を対物レンズの瞳位置にリレーすることができる。また、照明光の光路上から共役状態切替部を脱離することにより、対物レンズの瞳位置と光学的に共役関係を有する位置が2つの偏向手段の各偏向面の間に移動し、2つの偏向手段の各偏向面の間の位置に形成された像を対物レンズの瞳位置にリレーすることができる。したがって、照明光の光路に共役状態切替部を挿脱するだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
上記発明においては、前記リレー光学系が、前記対物レンズの瞳位置に像を縮小または拡大してリレーする投影倍率を有し、前記共役状態切替部が、前記リレー光学系を光軸方向に移動可能に形成されていることとしてもよい。
このように構成することで、共役状態切替部により、例えば、リレー光学系を光軸方向に移動させて、対物レンズの瞳位置と光学的に共役関係を有する位置を一方の偏向手段の偏向面まで延長することにより、一方の偏向手段の偏向面に形成される像を対物レンズの瞳位置にリレーすることができる。また、リレー光学系を反対方向に移動させて、対物レンズの瞳位置と光学的に共役関係を有する位置を2つの偏向手段の各偏向面の間まで短縮することにより、2つの偏向手段の各偏向面の間の位置に形成される像を対物レンズの瞳位置にリレーすることができる。したがって、リレー光学系を光軸方向に移動するだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
上記発明においては、前記スキャナが、前記空間光変調部からの入射光軸と前記2つの偏向手段間の光軸とが平行になるように、前記空間光変調部からの照明光を前記入射光軸を含む平面に沿って折り返して一方の前記偏向手段の偏向面に入射させる折り返しミラーを備え、前記共役状態切替部が、前記折り返しミラーおよび前記一方の偏向手段を前記入射光軸に沿う方向に移動可能に形成されていることとしてもよい。
このように構成することで、共役状態切替部により、例えば、折り返しミラーおよび一方の偏向手段を入射光軸に沿う方向に移動させて、この偏向手段を他方の偏向手段に近接させることで、対物レンズの瞳位置と一方の偏向手段の偏向面の位置と光学的に共役関係にすることができる。また、折り返しミラーおよび一方の偏向手段を反対方向に移動させて、この偏向手段を他方の偏向手段から離間させることで、対物レンズの瞳位置と2つの偏向手段の各偏向面の間の位置とを光学的に共役関係にすることができる。したがって、折り返しミラーおよび一方の偏向手段を入射光軸に沿う方向に移動するだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
本発明によれば、簡易な構成で、標本の観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本の観察深さ位置を変化させずに高精度な2次元的な画像を取得したりすることができるという効果を奏する。
本発明の第1実施形態に係る顕微鏡装置の第1共役状態を示す概略構成図である。 本発明の第1実施形態に係る顕微鏡装置の第2共役状態を示す概略構成図である。 図1および図2の顕微鏡装置の空間光変調素子における変調領域を示す図である。 図1および図2の顕微鏡装置のスキャナを示し、対物レンズの瞳位置と光学的に共役な位置が高速側のミラー上に配置されている例を示す斜視図である。 本発明の第2実施形態に係る顕微鏡装置の第1共役状態を示す概略構成図である。 本発明の第2実施形態に係る顕微鏡装置の第2共役状態を示す概略構成図である。 本発明の第3実施形態に係る顕微鏡装置の第1共役状態を示す概略構成図である。 本発明の第3実施形態に係る顕微鏡装置の第2共役状態を示す概略構成図である。
〔第1実施形態〕
本発明の第1実施形態に係る顕微鏡装置について図面を参照して以下に説明する。
本実施形態に係る顕微鏡装置10は、図1および図2に示されるように、レーザ光(照明光)を発生する光源1と、光源1から発せられたレーザ光の波面を変調可能な空間光変調部3と、空間光変調部3により波面が変調されたレーザ光をリレーする第1リレー光学系5と、第1リレー光学系5によりリレーされたレーザ光を2次元的に走査するスキャナ7と、スキャナ7により走査されたレーザ光の光路長を補正可能なガラス部材(共役状態切替部)9と、ガラス部材9を通過したレーザ光をリレーする第2リレー光学系11と、第2リレー光学系11によりリレーされたレーザ光を集光する対物レンズ13と、空間光変調部3およびスキャナ7を制御する制御部(変調領域調節部)15とを備えている。図中、符号Pは対物レンズ13の瞳位置を示している。
光源1は、例えば、多光子励起用のIR(近赤外)極短パルスレーザ光源である。
空間光変調部3としては、例えば、光の位相を自由に変調可能な反射型あるいは透過型のLCOS−SLM(Liquid Crystal On Silicon − Spatial Light Modulator)が用いられる。本実施形態においては、反射型のLCOS−SLMを例示して説明する。
この空間光変調部3は、2次元的に配列された多数の微小変調素子(図示略)を備えており、これら微小変調素子ごとに入射したレーザ光に与える位相変化量を制御部15により個々に制御することができるようになっている。
また、空間光変調部3は、対物レンズ13の瞳位置Pと光学的に共役な位置に配置されている。この空間光変調部3は、図3に示すように、実際に波面の変調を付与する領域(以下、変調領域Eという。)を含むそれよりも大きな領域(以下、照射領域Fという。)に対して、光源1からのレーザ光が照射されるようになっている。
空間光変調部3の変調領域Eは、入射した平面波の波面を変調して、対物レンズ13の焦点位置において1点に集光させることができるような表面形状を有している。この変調領域Eは、各種光学系の収差や標本Sにおける屈折率分布等を考慮して予め算出あるいは測定しておくことができる。
そして、空間光変調部3は、制御部15により設定された所定の変調パターンに基づき、入射したレーザ光の波面形状を変調領域Eの微小変調素子ごとに位相変調により変化させることができるようになっている。これにより、標本S上でのレーザ光の強度分布を3次元的に変化させて、標本Sに所望の3次元的なパターンのレーザ光を照射することができるようになっている。例えば、空間光変調部3は、標本S上の一点にレーザ光を照射したり、標本S上のXYZ軸方向にわたる3次元的な多点にレーザ光を同時に照射したりすることができる。
スキャナ7は、図4に示すように、相互に直交する2つの揺動軸線S1,S2回りにそれぞれ揺動可能な2枚の揺動ミラー(偏向手段)8A,8Bを備えており、これら揺動ミラー8A,8Bにより、空間光変調部3から出射されたレーザ光を偏向して標本S上で2次元的に走査させることができるようになっている。これら揺動ミラー8A,8Bは、モータ9A,9Bにより揺動軸線S1,S2回りに揺動させられるようになっている。
一方の揺動ミラー8Aの揺動速度は、他方の揺動ミラー8Bの揺動速度に対して十分に速く設定されている。高速側の揺動ミラー8Aは標本S上におけるレーザ光の走査のために使用され、低速側の揺動ミラー8Bは標本S上におけるレーザ光の走査位置を送るために使用される。具体的には、高速側の揺動ミラー8Aが水平方向にレーザ光を1ライン(片道または往復)走査させるように動作するごとに、低速側の揺動ミラー8Bが垂直方向に1ライン分ずらすように動作することで、標本S上でレーザ光をラスター走査するようになっている。
また、高速側の揺動ミラー8Aは、空間光変調部3と光学的に共役な位置に配置されている。図1における空間光変調部3と高速側の揺動ミラー8Aとを結ぶ実線は、高速側の揺動ミラー8Aと空間光変調部3とが光学的に共役関係を有することを示している。図5および図7において同様である。
ガラス部材9は、空気と異なる屈折率を有しており、手動によりスキャナ7と第2リレー光学系11との間の光路上に挿脱可能に形成されている。ガラス部材9がレーザ光の光路に挿入されると、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置が高速側の揺動ミラー8Aの揺動軸線S1上に移動し、高速側の揺動ミラー8の表面に形成された像が対物レンズ13の瞳位置Pにリレーされるようになっている。以下、対物レンズ13の瞳位置Pと高速側の揺動ミラー8Aの揺動軸線上の位置とが光学的に共役関係を有する状態を第1共役状態とする。
また、ガラス部材9をレーザ光の光路上から脱離すると、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置が2枚の揺動ミラー8A,8Bの略中間に移動し、2枚の揺動ミラー8A,8Bの略中間位置に形成された像が対物レンズ13の瞳位置Pにリレーされるようになっている。以下、対物レンズ13の瞳位置Pと2枚の揺動ミラー8A,8Bの略中間位置とが光学的に共役関係を有する状態を第2共役状態とする。図1および図2における対物レンズ13の瞳位置Pと高速側の揺動ミラー8Aの揺動軸線S1(図参照)上の位置または2枚の揺動ミラー8A,8Bの略中間位置とを結ぶ実線は、それぞれ対物レンズ13の瞳位置Pと高速側の揺動ミラー8Aの揺動軸線S1上の位置または2枚の揺動ミラー8A,8Bの略中間位置とが光学的に共役関係を有することを示している。図5〜図8において同様である。
第1リレー光学系5および第2リレー光学系11は、それぞれ複数のレンズにより構成されている。第1リレー光学系5は、空間光変調部3の表面に形成された像を高速側の揺動ミラー8Aの表面にリレーするように構成されている。第2リレー光学系11は、高速側の揺動ミラー8Aの表面に形成された像を対物レンズ13の瞳位置Pにリレーするように構成されている。
対物レンズ13は、レーザ光が照射されることにより標本Sにおいて発生する蛍光(戻り光)を集光するようになっている。
また、顕微鏡装置10には、光源1からのレーザ光が照射されることにより標本Sにおいて発生して対物レンズ13により集光された蛍光(戻り光)をレーザ光の経路から分岐させる第1ダイクロイックミラー17と、第1ダイクロイックミラー17により分岐された蛍光を検出する光電子増倍管(Photomultiplier Tube)のような光検出器19とが備えられている。光検出器19は、多光子励起蛍光観察用のノンディスキャン検出器である。
また、顕微鏡装置10には、1光子励起用のレーザ光を発生するレーザ光源21と、レーザ光源21から発せられたレーザ光の経路を光源1から発せられたレーザ光の経路に合流させる一方、レーザ光源21からのレーザ光が照射されることにより標本Sにおいて発生しスキャナ7を介して光路を戻る蛍光(戻り光)を分岐させる第2ダイクロイックミラー23と、第2ダイクロイックミラー23により分岐された蛍光をレーザ光の経路から分岐させる第3ダイクロイックミラー25と、第3ダイクロイックミラー25により分岐された蛍光を検出する共焦点検出部27とが備えられている。
レーザ光源21は、例えば、可視レーザ光源である。
共焦点検出部27は、第3ダイクロイックミラー25により分岐された蛍光を集光する集光レンズと、集光レンズにより集光された蛍光の光束を制限するピンホールと、ピンホールを通過した蛍光を検出する光電子増倍管のような光検出器とにより構成されている。
なお、第2ダイクロイックミラー23に代えて、挿脱式の全反射ミラーを採用することとしてもよい。
例えば、PC(Personal Computer、図示略)により、光検出器19により検出された蛍光の強度情報とその検出時のスキャナ7によるレーザ光の走査位置情報とに基づいて、標本Sの2次元的な蛍光画像を取得することができる。同様にして、PCにより、共焦点検出部27により検出された蛍光の強度情報とその検出時のスキャナ7によるレーザ光の走査位置情報とに基づいて、標本Sの2次元的な蛍光画像を取得することができる。
このように構成された顕微鏡装置10は、光源1からレーザ光を発生させて標本Sに照射し、標本Sから戻る蛍光を第1ダイクロイックミラー17を介して光検出器19により検出することで、多光子励起蛍光観察を行うことができる。この場合、蛍光を空間光変調部3に戻さないので、第1共役状態に切り替えて空間光変調部3を動作させて、標本Sにおける観察深さの変更や収差補正を行うこととしても、空間光変調部3による蛍光ロスは生じない。第1共役状態では、空間光変調部3と高速側の揺動ミラー8Aとが光学的に共役関係を有するので、結果的に、空間光変調部3は対物レンズ13の瞳位置Pと共役関係を有する。したがって、空間光変調部3により波面変調されたレーザ光を対物レンズ13に正しく入射させることができる。多光子励起蛍光観察では、第2共役状態に切り替えて空間光変調部3を動作させずに画像取得することもできる。
また、この顕微鏡装置19は、レーザ光源21からレーザ光を発生させて標本Sに照射し、標本Sにおいて発生した蛍光をスキャナ7、第2ダイクロイックミラー23および第3ダイクロイックミラー25等を介して共焦点検出部27により検出することで、1光子励起蛍光観察を行うことができる。この場合、空間光変調部3は使用しない(光路が空間光変調部3を経由しない)ので、第2共役状態に切り替えて画像取得を行う。蛍光が空間光変調部3に戻らないので、空間光変調部3の偏光依存性による蛍光ロスを防止することができる。
制御部15は、スキャナ7のモータに対して、各揺動ミラー8A,8Bの揺動角度を指令する角度指令信号を出力するようになっている。また、制御部15は、第1共役状態での多光子励起蛍光観察においては、空間光変調部3における変調領域Eの表面が予め設定された所定の変調パターンの形状となるように、空間光変調部3に対して形状指令信号を出力するようになっている。
また、制御部15は、第2共役状態での1光子励起蛍光観察においては、空間光変調部3を作動させず、光源1からのレーザ光を空間光変調部3による位相変調を伴わせずに第1リレー光学系5に向けて反射させるようになっている。
さらに、制御部15は、第1共役状態での多光子励起蛍光観察において、角度指令信号に同期して、空間光変調部3に対してレーザ光の照射領域F内で変調領域Eを移動させる移動指令信号を出力するようになっている。具体的には、制御部15は、空間光変調部3の変調領域Eを固定して低速側の揺動ミラー8Bを揺動させたと仮定したときに対物レンズ13の瞳位置における変調領域Eの像の移動方向とは逆方向に、低速側の揺動ミラー8Bを固定したと仮定した状態でこの変調領域Eの像を移動させるように、揺動ミラー8Bの揺動に応じて空間光変調部3における波面の変調領域Eを移動させるようになっている。
このように構成された本実施形態に係る顕微鏡装置10の作用について、以下に説明する。
本実施形態に係る顕微鏡装置10を用いた標本Sの蛍光観察は、標本Sの観察深さ位置を変化させながら2次元的な画像を取得する場合と、標本Sの観察深さ位置を変化させずに2次元的な画像を取得する場合とに切り替えて行うことができる。
まず、標本Sの観察深さ位置を変化させながら画像を取得して観察する場合について説明する。
この場合、レーザ光の光路上にガラス部材9を挿入して第1共役状態とし、制御部15からスキャナ7への角度指令信号と空間光変調部3への形状指令信号を出力して、光源1からレーザ光を発生させる。この場合の形状指令信号は、レーザ光の集光位置が観察深さ方向(光軸方向)に所望量変化するような波面変調を与えるための制御信号である。
光源1から発せられたレーザ光は空間光変調部3の照射領域Fに照射され、その内の変調領域Eに入射したレーザ光のみが波面を変調されて反射され、第1リレー光学系5を介してスキャナ7の揺動ミラー8Aに入射する。以下、空間光変調部3の変調領域Eで波面変調されたレーザ光の、空間光変調部3と光学的に共役な位置に配置された高速側の揺動ミラー8Aの面上におけるビーム断面をレーザ光の像と表記する。
スキャナ7においては、高速側の揺動ミラー8Aが揺動させられることにより、揺動ミラー8Aにより反射されたレーザ光が走査方向に揺動させられる。そして、低速側の揺動ミラー8Bが揺動させられることにより、揺動ミラー8Bにより反射されたレーザ光が高速走査方向と直交した送り方向に揺動させられる。これにより、レーザ光が2次元的にラスター走査される。
スキャナ7により走査されたレーザ光は、ガラス部材9を透過した後、第2リレー光学系11を介して対物レンズ13に入射する。これにより、高速側の揺動ミラー8Aの面上に形成されたレーザ光の像が、揺動ミラー8Aと光学的に共役な位置に配置されている対物レンズ13の瞳位置Pにリレーされる。この結果、空間光変調部3の変調領域Eで波面変調されたレーザ光が、高速側の揺動ミラー8Aの面上を介して対物レンズ13の瞳位置Pにリレーされ、空間光変調部3の所定の変調パターンに従い対物レンズ13を介して標本Sに照射される。
レーザ光が照射されることにより標本Sから戻る蛍光は、対物レンズ13により集光されて第1ダイクロイックミラー17によりレーザ光の光路から分岐され、光検出器19により検出される。そして、PCにおいて、光検出器19から出力される蛍光の強度情報とスキャナ7によるレーザ光の走査位置情報とに基づいて、標本Sの2次元的な蛍光画像が生成される。これにより、所望の観察深さでの標本Sの2次元観察画像が得られる。観察深さ位置を変化させるように空間光変調部3の位相変調パターンを変化させながら画像を繰り返して取得して、観察深さの異なる複数の2次元画像を得ることで、標本Sを3次元的に観察することができる。
この場合において、仮に、空間光変調部3における変調領域Eを固定したままの状態でスキャナ7を作動させると、2枚の揺動ミラー8A,8Bの揺動に従って、対物レンズ13の瞳位置Pにリレーされたレーザ光の像が光軸に交差する方向に直線的に移動する。
これに対し、第1共役状態においてはスキャナ7の高速側の揺動ミラー8Aの揺動軸線S1上と空間光変調部3の表面および対物レンズ13の瞳位置Pとが光学的に共役関係を有するので、高速の揺動ミラー8Aの揺動動作に拘わらず、揺動ミラー8Aとレーザ光の位置は対物レンズ13の瞳位置P上で一定に保たれる。したがって、高速側の揺動ミラー8Aの揺動に応じた空間光変調部3の変調領域Eの移動を行わずに済む。
そこで、低速側の揺動ミラー8Bの揺動に応じてのみ空間光変調部3の変調領域Eを移動させる。低速側の揺動ミラー8Bの揺動に従って対物レンズ13の瞳位置Pにおいて移動する変調領域Eの像の移動方向をK方向、移動量をΔKとする。また、スキャナ7の低速側のミラー8Bを停止させた状態で空間光変調部3の変調領域Eを照射領域Fの範囲内で移動させた場合に、対物レンズ13の瞳位置Pにおいて移動する変調領域Eの像の移動方向をQ方向、移動量をΔQとする。
本実施形態においては、制御部15が、K方向とQ方向とが逆方向となり、かつ、ΔK=ΔQとなるように、角度指令信号に同期して空間光変調部3に対して移動指令信号を出力し、空間光変調部3の変調領域Eを移動させる。これにより、低速側の揺動ミラー8Bの揺動に拘わらず、対物レンズ13の瞳位置Pにリレーされるレーザ光の像を静止させた状態に維持することができる。これにより、揺動ミラー8Bの揺動状態に関わらず、空間光変調部3の変調領域Eで変調されたレーザ光を対物レンズ13の瞳の全体に渡るように入射させて、標本Sに対して最大限に明るい照明を行うことができる。
また、スキャナ7の揺動ミラー8A,8Bの揺動によっても対物レンズ13の瞳位置Pにおける変調領域Eの像が移動しないように、空間光変調部3の変調領域Eをレーザ光の光軸に交差する方向に移動させることで、空間光変調部3により変調した波面を対物レンズ13の瞳位置Pに正確にリレーし、集光性能の低下を防止することができる。
これにより、各種光学系の収差や、標本A内の屈折率分布等によって発生する収差を空間光変調部3による波面変調により正確に補償することができ、対物レンズ13によって標本S内の所望の1点にレーザ光を精度よく集光させることができる。なお、光源1から発せられるレーザ光を極短パルスレーザ光とすれば、対物レンズ13の焦点位置のみにおいて多光子励起効果によって蛍光を発生させ、鮮明な蛍光画像を取得することが可能となる。
また、高速側の揺動ミラー8Aの揺動に応じた空間光変調部3の変調領域Eの移動を行わずに済むので、空間光変調部3は、高速側の揺動ミラー8Aと比較して十分に速度の遅い低速側の揺動ミラー8Bの揺動に応じて変調領域Eを移動させれば足り、応答性が低くてよい。すなわち、揺動ミラー8A,8Bの揺動による対物レンズ13の瞳位置Pにおけるレーザ光の像の変位をより確実に防止することができる。また、空間光変調部3を移動させるのではなく、空間光変調部3上の変調領域Eを移動させるので、振動を伴わずに高速に移動させることができる。
次に、標本Sの観察深さ位置を変化させずに画像を取得して観察する場合について説明する。
この場合、レーザ光の光路からガラス部材9を脱離させて第2共役状態とし、制御部15からスキャナ7に角度指令信号を出力する一方、空間光変調部3を作動させずにレーザ光源1からレーザ光を発生させる。
レーザ光源1から発せられたレーザ光は、空間光変調部3による位相変調を伴わずにスキャナ7により走査された後、ガラス部材9を透過せずに第2リレー光学系11を介して対物レンズ13により標本Sに照射される。
標本Sから戻る蛍光は、対物レンズ13により集光されて第1ダイクロイックミラー17によりレーザ光の光路から分岐され、光検出器19により検出される。空間光変調部3によるレーザ光の波面の変調を伴わずにスキャナ7によりレーザ光を走査せることで、PCにより標本Sの観察深さ位置を変化させずに2次元的な画像を取得することができる。
なお、レーザ光源1の代わりにレーザ光源21を用い、検出手段として共焦点検出部27を用いることで、1光子励起による蛍光観察画像を取得できる。
この場合において、第2共役状態においては、対物レンズ13の瞳位置Pと2枚の揺動ミラー8A,8Bの略中間位置とが光学的に共役関係を有することで、対物レンズ13の瞳位置Pにおける、2枚の揺動ミラー8A,8Bのそれぞれの揺動によるレーザ光の移動量が小さくなる。
具体的には、対物レンズ13の瞳位置Pと揺動ミラー8Aの揺動軸線S1上の位置とが共役関係を有する場合と比較して、揺動ミラー8A,8Bのいずれの揺動に対しても対物レンズ13の瞳位置Pにおけるレーザ光が移動することになるが、その移動量は、第1共役状態における揺動ミラー8Bの揺動による移動量の略半分となる。
これにより、揺動ミラー8A,8Bの揺動による照明効率の変化を小さくすることができ、得られる画像の明るさムラを低減することができる。
以上説明したように、本実施形態に係る顕微鏡装置10によれば、ガラス部材9により第1共役状態と第2共役状態とを切り替えることで、標本Sの観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本Sの観察深さ位置を変化させずに高精度な2次元的な画像を取得したりすることができる。また、レーザ光の光路に対してガラス部材9を挿脱するだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
なお、第2共役状態では、空間光変調部3と高速側の揺動ミラー8とが光学的に共役関係を有さなくてもよい。
本実施形態においては、ガラス部材9を手動で挿脱することとして説明したが、これに代えて、ガラス部材9の挿脱を自動で行う電動挿脱手段を設けると好ましい。この場合、制御部15により電動挿脱手段の動作を制御することとすればよい。
また、本実施形態においては、第1共役状態での多光子励起蛍光観察の場合において、第1ダイクロイックミラー17を採用して光検出器19により蛍光を検出することとしたが、これに代えて、例えば、第1ダイクロイックミラー17を設けずに、標本Sを挟んで対物レンズ13と反対側に集光レンズや光検出器等の検出手段を配置し、対物レンズ13と反対側で蛍光(戻り光)を検出することとしてもよい。
また、本実施形態の画像取得の方法として、2枚の揺動ミラー8A,8Bを同時に動作させて、標本Sに対する走査の方向を任意に回転させるローテーションスキャンを行う場合がある。
この場合は、2つの揺動ミラー8A,8Bの駆動速度は、走査方向の回転角度に依存するので、どちらかの揺動ミラー8A,8Bを高速側,低速側と定義することができない。したがって、低速側の揺動ミラーに合せて空間光変調部3の変調領域Eを制御することはできないので、光源1による多光子励起観察を行う場合でも、第2共役状態で、空間光変調部3を動作させずに画像取得を行うのが望ましい。
〔第2実施形態〕
次に、本発明の第2実施形態に係る顕微鏡装置について説明する。
本実施形態に係る顕微鏡装置20は、図4、図5および図6に示すように、第2リレー光学系11が対物レンズ13の瞳位置Pに像を拡大してリレーする投影倍率を有し、共役状態切替部として、ガラス部材9に代えて、第2リレー光学系11を光軸方向に移動させる移動機構19を備える点で第1実施形態と異なる。
以下、第1実施形態に係る顕微鏡装置10と構成を共通する箇所には、同一符号を付して説明を省略する。
移動機構19は、第2リレー光学系11を構成する複数のレンズ全体を支持し、これらのレンズの位置関係を変えずに第2リレー光学系11を光軸方向に移動させることができるようになっている。また、移動機構19は、図5に示すように、第2リレー光学系11をスキャナ7に近接する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置を高速側の揺動ミラー8Aの揺動軸線S1(図4参照)上まで延長させることができるようになっている(第1共役状態)。また、移動機構19は、図6に示すように、第2リレー光学系11をスキャナ7から離間する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置を2枚の揺動ミラー8A,8Bの略中間位置まで短縮させることができるようになっている(第2共役状態)。図5において、Lは光路長であり、Mは投影倍率を示している。
制御部15は、空間光変調部3およびスキャナ7の制御に加え、移動機構19による第2リレー光学系11の光軸方向の移動を制御し、第1共役状態と第2共役状態とを切り替えるようになっている。
このように構成された顕微鏡装置10によれば、標本Sの観察深さ位置を変化させながら2次元的な画像を取得して観察する場合は、制御部15が、移動機構19により第2リレー光学系11をスキャナ7に近接する方向に移動させて第1共役状態に設定する。一方、標本Sの観察深さ位置を変化させずに2次元的な画像を取得して観察する場合は、制御部15が、移動機構19により第2リレー光学系11をスキャナ7から離間する方向に移動させて第2共役状態に設定する。
本実施形態に係る顕微鏡装置20によれば、移動機構19により第1共役状態と第2共役状態とを切り替えることで、標本Sの観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本Sの観察深さ位置を変化させずにムラを低減した高精度な2次元的な画像を取得したりすることができる。また、移動機構19により第2リレー光学系11を光軸方向に移動させるだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
本実施形態においては、第2リレー光学系11が対物レンズ13の瞳位置Pに像を拡大してリレーする投影倍率を有することとしたが、第2リレー光学系11が対物レンズ13の瞳位置Pに像を縮小してリレーする投影倍率を有することとしてもよい。
この場合、第2リレー光学系11をスキャナ7から離間する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置を高速側の揺動ミラー8Aの揺動軸線上まで延長させることができる(第1共役状態)。また、第2リレー光学系11をスキャナ7に近接する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置を2枚の揺動ミラー8A,8Bの略中間位置まで短縮させることができる(第2共役状態)。
〔第3実施形態〕
次に、本発明の第3実施形態に係る顕微鏡装置について説明する。
本実施形態に係る顕微鏡装置30は、図4、図7および図8に示すように、スキャナ7が、第1リレー光学系5からのレーザ光を高速側の揺動ミラー8Aに向けて折り返す折り返しミラー8Cを備え、共役状態切替部として、ガラス部材9や移動機構19に代えて、折り返しミラー8Cおよび高速側の揺動ミラー8Aを入射光軸に沿う方向に移動させる移動機構29を備える点で第1実施形態および第2実施形態と異なる。
以下、第1実施形態に係る顕微鏡装置10または第2実施形態に係る顕微鏡装置20と構成を共通する箇所には、同一符号を付して説明を省略する。また、図7および図8においては、説明の都合上、レーザ光源21、第2ダイクロイックミラー23、第3ダイクロイックミラー25および共焦点検出部27の記載を省略する。
折り返しミラー8Cは、第1リレー光学系5からの入射光軸と2枚の揺動ミラー8A,8B間の光軸とが平行になるように、第1リレー光学系5からのレーザ光を入射光軸を含む平面に沿って折り返して高速側の揺動ミラー8Aに入射させるようになっている。
移動機構29は、折り返しミラー8Cおよび高速側の揺動ミラー8Aを支持し、これら折り返しミラー8Cおよび揺動ミラー8Aをそれぞれの位置関係を変えずに入射光軸に沿う方向に移動させて、低速側の揺動ミラー8Bに対して高速側の揺動ミラー8Aを入射光軸に沿って近接させたり離間させたりすることができるようになっている。
また、移動機構29は、高速側の揺動ミラー8Aを低速側の揺動ミラー8Bに近接する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置に高速側の揺動ミラー8Aの揺動軸線S1(図4参照)を配置することができるようになっている(第1共役状態)。また、移動機構29は、高速側の揺動ミラー8Aをスキャナ7から離間する方向に移動させることで、対物レンズ13の瞳位置Pと光学的に共役関係を有する位置を2枚の揺動ミラー8A,8Bの略中間位置とすることができるようになっている(第2共役状態)。
制御部15は、空間光変調部3およびスキャナ7の制御に加え、移動機構29による折り返しミラー8Cおよび高速側の揺動ミラー8Aの入射光軸方向の移動を制御し、第1共役状態と第2共役状態とを切り替えるようになっている。
このように構成された顕微鏡装置10によれば、標本Sの観察深さ位置を変化させながら2次元的な画像を取得して観察する場合は、制御部15が、移動機構29により高速側の揺動ミラー8Aを低速側の揺動ミラー8Bに近接する方向に移動させて第1共役状態に設定する。一方、標本Sの観察深さ位置を変化させずに2次元的な画像を取得して観察する場合は、制御部15が、移動機構29により高速側の揺動ミラー8Aを低速側の揺動ミラー8Bから離間する方向に移動させて第2共役状態に設定する。
本実施形態に係る顕微鏡装置30によれば、移動機構29により第1共役状態と第2共役状態とを切り替えることで、標本Sの観察深さ位置を変化させながら明るい2次元的な画像を取得したり、標本Sの観察深さ位置を変化させずにムラを低減した高精度な2次元的な画像を取得したりすることができる。また、折り返しミラー8Cおよび高速側の揺動ミラー8Aを入射光軸に沿う方向に移動するだけの簡易な構成で、第1共役状態と第2共役状態とを容易に切り替えることができる。
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記の各実施形態に適用したものに限定されることなく、これらの実施形態を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。
また、上記各実施形態においては、共役状態切替部として、ガラス部材を例示して説明したが、スキャナ7と第2リレー光学系11との間の光路に対して挿脱することでレーザ光の光路長を補正して第1共役状態と第2共役状態とを切り替えることができるものであればよく、これに限定されるものではない。
1 光源
3 空間光変調部
5 第1リレー光学系
7 スキャナ
8A 揺動ミラー(偏向手段)
8B 揺動ミラー(偏向手段)
8C 折り返しミラー
9 ガラス部材(共役状態切替部)
10,20,30 顕微鏡装置
11 第2リレー光学系
13 対物レンズ
15 制御部(変調領域調節部)
P 瞳位置
S 標本

Claims (5)

  1. 光源からの照明光の波面を変調可能な空間光変調部と、
    互いに交差する2つの方向に光を偏向可能な2つの偏向手段を有し、前記空間光変調部から出射された照明光を偏向して2次元的に走査させるスキャナと、
    該スキャナにより走査された照明光を標本に照射する対物レンズと、
    該スキャナにより偏向された照明光を前記対物レンズに導くリレー光学系と、
    前記対物レンズの瞳位置と一方の前記偏向手段の偏向面とが光学的に共役関係を有する第1共役状態と、前記対物レンズの瞳位置と前記2つの偏向手段の各偏向面の間の位置とが光学的に共役関係を有する第2共役状態とを切り替え可能な共役状態切替部と、
    前記第1共役状態において、前記空間光変調部上の像を固定して他方の前記偏向手段により前記照明光を偏向させたと仮定した場合における前記対物レンズの瞳位置にリレーされる像の移動方向とは逆方向に、前記他方の偏向手段による偏向を停止させた状態を仮定した場合における前記対物レンズの瞳位置の像が移動するように、前記他方の偏向手段による偏向に応じて、前記空間光変調部上の像を形成する前記波面の変調領域を移動させ、前記第2共役状態において、前記空間光変調部を作動させず、前記光源からの照明光を前記空間光変調部による波面の変調を伴わせずに前記スキャナに入射させる変調領域調節部とを備え、
    前記空間光変調部が、前記第1共役状態において前記一方の偏向手段の偏向面と光学的に共役関係を有する顕微鏡装置。
  2. 前記2つの偏向手段が、非平行な2つの軸線回りにそれぞれ揺動可能な2枚の揺動ミラーである請求項1に記載の顕微鏡装置。
  3. 前記共役状態切替部が、空気と異なる屈折率を有し、前記スキャナと前記リレー光学系との間の光路上に挿脱可能に形成されている請求項1または請求項2に記載の顕微鏡装置。
  4. 前記リレー光学系が、前記対物レンズの瞳位置に像を縮小または拡大してリレーする投影倍率を有し、
    前記共役状態切替部が、前記リレー光学系を光軸方向に移動可能に形成されている請求項1または請求項2に記載の顕微鏡装置。
  5. 前記スキャナが、前記空間光変調部からの入射光軸と前記2つの偏向手段間の光軸とが平行になるように、前記空間光変調部からの照明光を前記入射光軸を含む平面に沿って折り返して一方の前記偏向手段の偏向面に入射させる折り返しミラーを備え、
    前記共役状態切替部が、前記折り返しミラーおよび前記一方の偏向手段を前記入射光軸に沿う方向に移動可能に形成されている請求項1に記載の顕微鏡装置。
JP2014093516A 2014-04-30 2014-04-30 顕微鏡装置 Active JP6385711B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014093516A JP6385711B2 (ja) 2014-04-30 2014-04-30 顕微鏡装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014093516A JP6385711B2 (ja) 2014-04-30 2014-04-30 顕微鏡装置

Publications (2)

Publication Number Publication Date
JP2015210470A JP2015210470A (ja) 2015-11-24
JP6385711B2 true JP6385711B2 (ja) 2018-09-05

Family

ID=54612670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014093516A Active JP6385711B2 (ja) 2014-04-30 2014-04-30 顕微鏡装置

Country Status (1)

Country Link
JP (1) JP6385711B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203960A1 (en) * 2021-03-25 2022-09-29 Illumina, Inc. Apparatus and methods for transmitting light

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016214695B3 (de) * 2016-08-08 2017-10-19 Carl Zeiss Smt Gmbh Optisches System und Verfahren zur Korrektur von Maskenfehlern mit diesem System
CN112437895A (zh) * 2018-07-25 2021-03-02 奥林巴斯株式会社 显微镜装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146410A (ja) * 1990-10-09 1992-05-20 Olympus Optical Co Ltd 走査光学系
JPH0784187A (ja) * 1993-09-13 1995-03-31 Olympus Optical Co Ltd 瞳投影光学系
JP5603786B2 (ja) * 2010-01-21 2014-10-08 オリンパス株式会社 顕微鏡装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203960A1 (en) * 2021-03-25 2022-09-29 Illumina, Inc. Apparatus and methods for transmitting light

Also Published As

Publication number Publication date
JP2015210470A (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5642301B2 (ja) 走査型顕微鏡、および試料の光学検鏡画像形成のための方法
US10007100B2 (en) Light sheet illumination microscope and light sheet illumination method
JP5603786B2 (ja) 顕微鏡装置
JP6419558B2 (ja) 観察装置
WO2016010096A1 (ja) 位相変調素子調整システムおよび位相変調素子調整方法
JP6385711B2 (ja) 顕微鏡装置
JP5603749B2 (ja) 顕微鏡装置
JP2016091006A (ja) シート照明顕微鏡、及び、シート照明方法
JP5959180B2 (ja) 照明光学装置
JP5701573B2 (ja) スキャナ、走査型照明装置および走査型観察装置
US10422747B2 (en) Imaging optical system, illumination apparatus, observation apparatus, and wavefront recovery device
JP2013041142A (ja) 顕微鏡装置
JP5856824B2 (ja) 光走査装置および走査型顕微鏡装置
JP6353703B2 (ja) 顕微鏡装置
JP6469380B2 (ja) 結像光学系、照明装置および観察装置
JP6205140B2 (ja) 走査型レーザ顕微鏡装置
US20180059397A1 (en) Microscope system
JP5591073B2 (ja) 顕微鏡装置
JP2012150238A (ja) 顕微鏡装置
JP5765569B2 (ja) 顕微鏡装置
JP2016133636A (ja) 画像取得装置および画像取得方法
JP2014163997A (ja) ビーム走査領域の位置調整方法並びにビーム走査領域の位置調整装置及びそれを備えたマルチビームレーザ走査型顕微鏡
JP2016109731A (ja) 照明光学系、照明光学装置、及びこれを用いた顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R151 Written notification of patent or utility model registration

Ref document number: 6385711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250