JP6953734B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP6953734B2
JP6953734B2 JP2017019434A JP2017019434A JP6953734B2 JP 6953734 B2 JP6953734 B2 JP 6953734B2 JP 2017019434 A JP2017019434 A JP 2017019434A JP 2017019434 A JP2017019434 A JP 2017019434A JP 6953734 B2 JP6953734 B2 JP 6953734B2
Authority
JP
Japan
Prior art keywords
trench portion
semiconductor device
trench
conductive type
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017019434A
Other languages
English (en)
Other versions
JP2018129326A (ja
Inventor
伊倉 巧裕
巧裕 伊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017019434A priority Critical patent/JP6953734B2/ja
Publication of JP2018129326A publication Critical patent/JP2018129326A/ja
Application granted granted Critical
Publication of JP6953734B2 publication Critical patent/JP6953734B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体装置に関する。
従来、p型のフローティング層を有する絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)が知られている(例えば、特許文献1参照)。
特許文献1 特開平10−163483号公報
しかしながら、フローティング層を有するIGBTでは、ターンオン時にフローティング層に過剰な正孔が蓄積され、ターンオン特性が悪化する場合がある。
本発明の第1の態様においては、第1導電型の半導体基板のおもて面側に、第2導電型の第2導電型層を少なくとも形成した半導体装置を提供する。半導体基板は、半導体基板のおもて面に設けられ、ゲート電位に応じた電位に設定された複数の第1トレンチ部と、第1トレンチ部の間に設けられた前記第2導電型層であって、エミッタ電位に設定されたキャリア排出部とを備えてよい。キャリア排出部は、第1トレンチ部の設定された電位に応じて、キャリアを排出するとよい。
第1トレンチ部は、半導体装置のゲート電位に設定されてよい。
キャリア排出部は、第1トレンチ部に接して設けられてよい。
第1トレンチ部は、該第1トレンチ部の延伸方向においてキャリア排出部よりも延伸してよい。
半導体基板は、半導体基板のおもて面側に設けられた複数の第2トレンチ部と、第2トレンチ部に接して設けられた第1導電型のエミッタ領域と、をさらに備えてよい。半導体装置は、第2トレンチ部と該第2トレンチ部に隣接する他の第2トレンチ部との間に第2導電型層が設けられていてよい。
キャリア排出部の不純物濃度は、第2導電型層において相対的に高く設定されていてよい。
エミッタ領域の間に、キャリア排出部と不純物濃度が同じ第2導電型層が設けられていてよい。
半導体装置は、第1トレンチ部と該第1トレンチ部に隣接する他の第1トレンチ部との間にキャリア排出部が設けられていてよい。
半導体装置は、第2トレンチ部と該第2トレンチ部に隣接する第1トレンチ部との間にフローティング層としての第2導電型層が設けられていてよい。
半導体装置は、第2トレンチ部と該第2トレンチ部に隣接する第1トレンチ部との間にキャリア排出部が設けられていてよい。
第1トレンチ部の延伸方向は、第2トレンチ部の延伸方向と平行であってよい。
第1トレンチ部の延伸方向は、第2トレンチ部の延伸方向と直交してよい。
第1トレンチ部または第2トレンチ部の少なくとも一方は、第2導電型層を貫通していてよい。
第1トレンチ部は、第2トレンチ部と同一のトレンチ深さを有してよい。
第1トレンチ部と該第1トレンチ部に隣接する他の第1トレンチ部との間隔は、第2トレンチ部と該第2トレンチ部に隣接する他の第2トレンチ部との間隔よりも狭くてよい。
半導体装置は、第1トレンチ部の間に設けられ、第1トレンチ部の延伸方向においてキャリア排出部と接する第1導電型のエミッタ領域をさらに備えてよい。
半導体装置は、キャリア排出部が介在しない第1トレンチ部の間に、フローティング層としての第2導電型層が設けられていて、キャリア排出部が介在する第1トレンチ部の間隔が、キャリア排出部が介在しない第1トレンチ部の間隔よりも狭くてよい。
なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
実施例1に係る半導体装置100の断面図の一例を示す。 実施例1に係る半導体装置100の斜視図の一例を示す。 ゲートオフ動作時の半導体装置100の一例を示す。 ゲートオン動作時の半導体装置100の一例を示す。 比較例1に係る半導体装置500の断面図の一例を示す。 比較例1に係る半導体装置500の斜視図の一例を示す。 実施例2に係る半導体装置100の断面図の一例を示す。 実施例2に係る半導体装置100の斜視図の一例を示す。 実施例3に係る半導体装置100の断面図の一例を示す。 実施例3に係る半導体装置100の斜視図の一例を示す。 実施例4に係る半導体装置100の断面図の一例を示す。 実施例4に係る半導体装置100の斜視図の一例を示す。 実施例5に係る半導体装置100の断面図の一例を示す。 実施例5に係る半導体装置100の斜視図の一例を示す。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本実施形態において、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。また、半導体基板の裏面からおもて面に向かう方向をおもて面方向と称し、おもて面から裏面に向かう方向を裏面方向と称する。層または膜の表面方向の側の面をおもて面側と称し、裏面方向の側の面を裏面側と称する。
[実施例1]
図1Aは、実施例1に係る半導体装置100の断面図の一例を示す。図1Bは、実施例1に係る半導体装置100の斜視図の一例を示す。本例の半導体装置100は、半導体基板10と、半導体基板10のおもて面に設けられたエミッタ電極52と、半導体基板10の裏面に設けられたコレクタ電極24とを備える。なお、図1Bでは、簡潔化のために半導体基板10の一部のみを図示している。
半導体基板10は、第1導電型の半導体基板のおもて面側に、第2導電型の第2導電型層を少なくとも形成したものである。ここでは半導体基板10には、第2導電型層16、ドリフト領域18、キャリア排出部19、バッファ領域21およびコレクタ領域22が形成されている。本明細書において、第1導電型をn型として、第2導電型をp型として説明する。但し、これらの導電型は入れ替えられてもよい。n−型のドリフト領域18の裏面には、n+型のバッファ領域21と、p+型のコレクタ領域22とが設けられている。また、半導体基板10のおもて面上には、絶縁膜62が形成されている。絶縁膜62は、シリコン窒化膜(Si)やアモルファスシリコン膜であってよい。
第2導電型層16は、半導体基板10のおもて面側に形成されている。一例において、第2導電型層16は、半導体基板10のおもて面側から不純物をイオン注入することにより形成される。第2導電型層16は、第1ベース領域14、コンタクト領域15、フローティング層17、キャリア排出部19および第2ベース領域20を有する。
第1ベース領域14は、第2導電型層16のうちエミッタ領域12が形成されている領域であって、後述するコンタクト領域15の裏面側に設けられている領域を指す。第1ベース領域14は、第2導電型を有する。本例の第1ベース領域14は、p−型の導電型を有する。第1ベース領域14は、エミッタ領域12に導電接続されている。ゲートトレンチ部30の側壁に沿った領域には、オン状態で主電流の電流経路となるn型の反転層(即ち、チャネル)が形成される。
フローティング層17は、ここでは、ゲートトレンチ部30と該ゲートトレンチ部30に隣接するゲートトレンチ部40との間に設けられる。ただし、フローティング層17は、第2導電型層16のうちエミッタ領域12が形成されていない領域であればよく、ゲートトレンチ部30、40と該ゲートトレンチ部30、40に隣接する他のゲートトレンチ部30、40との間にエミッタ領域12との接続を設けずに形成してもよい。ここで、「隣接する」ゲートトレンチ部とは、他のゲートトレンチ部30、40を間に挟まず、そのゲートトレンチ部と隣り合っていることを指し、エミッタ領域12等の第1導電型層やコンタクト領域15、フローティング層17等の第2導電型層16は介在してよい。本例のフローティング層17は、p−型の導電型を有する。なお、本例のフローティング層17は、第1ベース領域14と交互に配置されているが、これに限られない。フローティング層17は、ドリフト領域18との間のpn接合によりドリフト領域18と電気的に絶縁されている。フローティング層17は、エミッタ電極52と電気的に絶縁されて、フローティング状態になっている。フローティング層17は、電位がフローティングされることにより、エミッタ電極52への正孔の排出を抑制する。電子注入促進(IE:Injection Enhanced)効果によりキャリア分布がエミッタ側に多い状態となる。これにより、本例の半導体装置100は、ターンオフ損失Eoffの増加を抑えつつ、オン電圧を低減する。
エミッタ領域12は、複数のゲートトレンチ部30に接して設けられている。エミッタ領域12は、高濃度の第1導電型を有する。本例のエミッタ領域12は、n+型の導電型を有する。エミッタ領域12は、コンタクトホール54を介してエミッタ電極52と接続されている。コンタクトホール54は、ゲートトレンチ部30の延伸方向に沿ってストライプ状に形成されてよい。本明細書において延伸方向とは、半導体基板10のおもて面と平行な、トレンチ部が延伸する方向である。エミッタ領域12は、半導体基板10のおもて面側から不純物をイオン注入することにより形成されてよい。
コンタクト領域15は、エミッタ領域12に接して設けられた高濃度の第2導電型の領域である。本例のコンタクト領域15は、p+型の導電型を有する。コンタクト領域15は、コンタクトホール54を介してエミッタ電極52と接続されている。コンタクト領域15は、半導体基板10のおもて面側から不純物をイオン注入することにより形成されてよい。
ゲートトレンチ部30は、ゲート電位に設定される。本例では、複数のゲートトレンチ部30が半導体基板10のおもて面側に設けられている。ゲートトレンチ部30は、ストライプ状の平面レイアウトを有する。ゲートトレンチ部30は、トレンチの内壁に沿って形成されたトレンチ絶縁膜32と、トレンチ絶縁膜32の内側に形成されたゲート導電部34とを有する。例えば、ゲート導電部34は、多結晶シリコンである。ゲートトレンチ部30は、半導体基板10のおもて面側からエミッタ領域12および第1ベース領域14等の第2導電型層16を貫通してドリフト領域18に達する。ゲートトレンチ部30は、第1ベース領域14とフローティング層17とを分離する。ゲートトレンチ部30は、第2トレンチ部の一例である。
ゲートトレンチ部40は、ゲート電位に応じた電位に設定される。ゲート電位に応じた電位とは、ゲート電位又はゲートのオンオフに応じて変化する任意の電位を含む。一例において、ゲートトレンチ部40は、ゲート電位に設定される。本例では、複数のゲートトレンチ部40が半導体基板10のおもて面側に設けられている。ゲートトレンチ部40は、半導体基板10のおもて面側から第2導電型層16を貫通してドリフト領域18に達する。特に、本例のゲートトレンチ部40は、フローティング層17を貫通して設けられる。なお、本例では、ゲートトレンチ部30およびゲートトレンチ部40の両方が第2導電型層16を貫通して設けられる。但し、ゲートトレンチ部30およびゲートトレンチ部40の少なくとも一方が、第2導電型層16を貫通して設けられていてもよい。ゲートトレンチ部40は、トレンチの内壁に沿って形成されたトレンチ絶縁膜42と、トレンチ絶縁膜42の内側に形成されたゲート導電部44とを有する。ゲートトレンチ部40は、第1トレンチ部の一例である。
また、ゲートトレンチ部40は、ゲートトレンチ部30と平行に形成されている。即ち、ゲートトレンチ部40の配列方向は、ゲートトレンチ部30の配列方向と同じ方向である。また、ゲートトレンチ部40の延伸方向は、ゲートトレンチ部30の延伸方向と同じ方向である。ゲートトレンチ部40は、複数のゲートトレンチ部30の間において、間欠的に設けられている。なお、本明細書において配列方向とは、半導体基板10のおもて面と平行な、複数のトレンチ部が配列される方向である。本例では、トレンチ部の延伸方向と配列方向とが直交する。
キャリア排出部19は、フローティング層17に蓄積されたキャリアを排出する。キャリア排出部19は、複数のゲートトレンチ部40の間に設けられる。本例のキャリア排出部19は、複数のゲートトレンチ部40に接して設けられる。また、キャリア排出部19は、ゲートトレンチ部40の延伸方向に沿って延伸している。例えば、キャリア排出部19は、ゲートトレンチ部40の設定された電位に応じて、フローティング層17に蓄積されたキャリアを排出するか否かが切り替えられる。キャリア排出部19は、コンタクトホール56を介してエミッタ電極52に電気的に接続されている。コンタクトホール56は、ゲートトレンチ部40の延伸方向に沿ってストライプ状に形成されてよい。キャリア排出部19は、エミッタ電位に設定されている。これにより、キャリア排出部19は、半導体基板10に蓄積されたキャリアをエミッタ電極52に排出する。なお、キャリア排出部19の裏面側には、第2導電型層16としてp−型の層が設けられていてよい。
キャリア排出部19の不純物濃度は、半導体装置100の設計条件に合わせて適宜変更されてよい。一例において、キャリア排出部19の不純物濃度は、コレクタ電流の電流変化率di/dtの制御性、要求されるオン電圧および耐圧などに応じて設定される。例えば、キャリア排出部19の不純物濃度は、第2導電型層16において相対的に高く設定される。キャリア排出部19の不純物濃度を、エミッタ領域12の間のコンタクト領域15と同じとしてよい。この場合、コンタクト領域15およびキャリア排出部19を同一条件で同時に形成することができる。例えば、キャリア排出部19の不純物濃度は、1E17cm−3程度である。また、例えば、キャリア排出部19を形成するために半導体基板10に注入されるp型不純物のドーズ量は、1E13cm−2であってよい。なお、Eは10のべき乗を意味し、例えば1E17cm−3は1×1017cm−3を意味する。
さらに、キャリア排出部19の深さは、半導体装置100の設計条件に合わせて適宜変更されてよい。例えば、キャリア排出部19の深さは、半導体装置100のターンオン時のdi/dt制御性、要求されるオン電圧および耐圧などに応じて設定されてよい。例えば、キャリア排出部19の深さは、コンタクト領域15の深さと同じであってよい。
第2ベース領域20は、キャリア排出部19の裏面側に設けられている領域を指す。第2ベース領域20の不純物濃度は、第1ベース領域14やフローティング層17と同じでよい。キャリア排出部19および第2ベース領域20が形成する第2導電型層16の深さは、ゲートトレンチ部40の深さよりも浅くてよい。キャリア排出部19および第2ベース領域20の深さをゲートトレンチ部40の深さよりも浅くすることにより、定常オン状態において、フローティング層17に蓄積された正孔が引き抜かれにくくなるので、低オン電圧化を実現しやすくなる。
なお、キャリア排出部19の内部には、n型領域を選択的に設けてもよい。例えば、キャリア排出部19の内部には、ゲートトレンチ部40の内壁に沿ってp型の反転層が形成され、且つ、耐圧が低下しない程度に低濃度のn型領域が設けられてもよい。この場合であっても、定常オン状態のときに、フローティング層17に蓄積された正孔が引き抜かれにくくなるので、低オン電圧化を実現しやすくなる。キャリア排出部19の内部にn型領域を設ける場合、キャリア排出部19の中間付近から半導体基板10の裏面側にn型領域を設けることが好ましい。これにより、コレクタ領域22、ドリフト領域18、キャリア排出部19およびn型領域からなるサイリスタのラッチアップを抑制できる。
ゲートトレンチ部40と該ゲートトレンチ部40に隣接する他のゲートトレンチ部40との間隔は、ゲートトレンチ部30と該ゲートトレンチ部30に隣接する他のゲートトレンチ部30との間隔よりも狭い。また、フローティング層17のメサ幅は、第1ベース領域14のメサ幅よりも狭い。つまり、キャリア排出部19の幅が狭くなる。キャリア排出部19のメサ幅を狭くすることにより、キャリア排出部19の正孔の引抜きの制御性がよくなる。一例において、キャリア排出部19の配列方向の幅は、設計基準で定められた最小寸法に基づいて、できる限り狭くすることが好ましい。ここで、ゲートトレンチ部40間において、ドリフト領域18のp型の反転層が形成されない部分は、ターンオン時にフローティング層17に蓄積された正孔の引抜きに寄与しない領域となる。このため、キャリア排出部19の配列方向の幅を狭くすれば、正孔の引抜きに寄与しない領域の面積を低減させた分だけフローティング層17の面積を増大させることができる。フローティング層17の面積を増大させることにより、IE効果を高めて、オン電圧を低減できる。また、定常オン状態の場合、フローティング層17に蓄積された正孔が引き抜かれにくくなるので、低オン電圧化を実現しやすくなる。例えば、キャリア排出部19の配列方向の幅は、1μm以下であり、好ましくは0.5μm以下である。
複数のゲートトレンチ部40は、平面視で、キャリア排出部19を挟んで設けられる。本明細書において、平面視とは、半導体基板10のおもて面側から裏面側を見る場合の視点を指す。キャリア排出部19を挟むとは、平面視で、キャリア排出部19の対向する二辺と接してゲートトレンチ部40が設けられることを指す。また、ゲートトレンチ部40は、平面視で、キャリア排出部19を囲んで設けられてもよい。この場合、ゲートトレンチ部40は、平面視で、閉じた構造を有する。
ゲートトレンチ部40は、ゲートトレンチ部40の延伸方向においてキャリア排出部19よりも延伸している。ここで、ゲートトレンチ部40がキャリア排出部19よりも延伸しているとは、少なくとも、ゲートトレンチ部40の延伸方向の一端がキャリア排出部19よりも延伸していればよい。これにより、ゲートトレンチ部40の設定された電圧に応じて、フローティング層17に蓄積された正孔の引抜きを制御できる。ゲートトレンチ部40の延伸長さを長くする、換言すれば、キャリア排出部19の平面視での窪みを大きくすることにより、キャリアを引き抜きにくくなるものの、IE効果を高めることができる。
ゲートトレンチ部40のトレンチ深さは、ゲートトレンチ部30のトレンチ深さと同一であっても異なっていてもよい。本例の複数のゲートトレンチ部40は、複数のゲートトレンチ部30と同一のトレンチ深さを有する。複数のゲートトレンチ部30および複数のゲートトレンチ部40が同一のトレンチ深さを有することにより、複数のゲートトレンチ部30および複数のゲートトレンチ部40を同一のプロセスによって形成できる。よって、複数のゲートトレンチ部30と複数のゲートトレンチ部40のトレンチ深さを同一とすることが、製造上の観点から好ましい。
但し、ゲートトレンチ部40のトレンチ深さは、ゲートトレンチ部30のトレンチ深さよりも深くてもよい。この場合、定常オン状態において、フローティング層17に蓄積された正孔がキャリア排出部19に引き抜かれにくくなるので、低オン電圧化を実現しやすくなる。例えば、ゲートトレンチ部40の深さは、5μm以上、10μm以下である。また、ゲートトレンチ部40の幅は、2μm以上、3μm以下であってよい。
図2Aは、ゲートオフ動作時の半導体装置100の一例を示す。ゲートオフの場合、半導体基板10のキャリアは、キャリア排出部19によって排出される。一例において、ゲートオフの場合とは、ゲートトレンチ部40のゲート電圧がローの場合である。また、ゲートオフの場合とは、キャリアがキャリア排出部19に排出可能な程度に低い電圧がゲートトレンチ部40に印加される場合を含んでよい。即ち、ゲートオフの場合とは、ゲート電圧がローの場合のみならず、ゲート電圧に基づく電圧が実質的にローの場合を含んでよい。ここで、キャリア排出部19にキャリアが排出されるゲート電圧は、複数のゲートトレンチ部40の間隔やキャリア排出部19の濃度等に応じて異なる。図2Aの矢印は、キャリアがゲートトレンチ部40を回り込んでキャリア排出部19に排出される経路を示す。
例えば、ターンオン時(例えば、ゲートトレンチ部40の電圧が低い状態から高い状態へ変化するときのゲートオフ時)において、フローティング層17に過剰な正孔が蓄積され、フローティング層17の電位がゲートトレンチ部40の電位よりも上昇する場合がある。この場合、トレンチ絶縁膜42が逆バイアスされるので、ゲートトレンチ部40の内壁に沿った部分にフローティング層17とキャリア排出部19とを繋ぐp型の反転層が形成される。これにより、フローティング層17に蓄積された過剰な正孔は、p型の反転層およびキャリア排出部19を介してエミッタ電極52に排出される。つまり、フローティング層17の電位が高くなるほど、p型の反転層の濃度が濃くなるので、フローティング層17から正孔を引き抜く効果が高くなる。これにより、フローティング層17の電位の上昇が抑制され、ゲート電圧の持ち上がりを抑制できる。また、フローティング層17にホール電流が集中しやすくなるので、ゲートトレンチ部30の底面付近の電位の上昇も抑制しやすくなる。
図2Bは、ゲートオン動作時(例えば、ゲートトレンチ部40の電圧が高い時)の半導体装置100の一例を示す。ゲートオンの場合、ゲートトレンチ部40の周囲にゲート電位による電位障壁が生じる。一例において、ゲートオンの場合とは、ゲートトレンチ部40のゲート電圧がハイの場合である。また、ゲートオンの場合とは、ゲートトレンチ部40の周囲にゲート電位による電位障壁が生じ、キャリアがキャリア排出部19に排出されない程度に高い電圧がゲートトレンチ部40に印加される場合を含んでよい。例えば、ゲート電位による電位障壁が生じると、半導体基板10における正孔がキャリア排出部19に排出されるのが抑制される。ここで、キャリアがキャリア排出部19に排出されない程度に高い電圧は、複数のゲートトレンチ部40の間隔やキャリア排出部19の濃度等に応じて異なる。
即ち、ゲートオン時には、フローティング層17とキャリア排出部19とをつなぐp型の反転層が形成されない。これにより、フローティング層17に蓄積された正孔の流出を抑制でき、ドリフト領域18のキャリア濃度分布をダイオードのキャリア濃度分に近い状態に維持できる。よって、キャリア排出部19を設けていない場合と同程度の低オン電圧を実現できる。
本例の半導体装置100は、キャリア排出部19を挟んだゲートトレンチ部40をゲート電位に応じた電位に設定することにより、ゲートオン時とゲートオフ時の両方において優れた特性を有する。ゲートオフの場合では、フローティング層17がエミッタ電極52と接続されているので、ターンオン時に正孔の蓄積がなく、ゲート抵抗による逆回復dv/dt制御性が高い。また、ターンオフの場合では、ゲート電圧が低下するほど正孔の排出が進むのでターンオフ損失Eoffを抑制できる。一方、ゲートオンの場合では、ゲートトレンチ部40の周囲に障壁が形成され、フローティング層17の正孔のキャリア排出部19への排出が抑制される。これにより、半導体装置100は、IE効果によってオン電圧を低減できる。
なお、フローティング層17において、ゲートトレンチ部40を部分的に形成することにより、ゲート容量を低減できる。また、フローティング層17中のゲートトレンチ部40を浅く形成することにより、ゲート容量の増加を抑制できる。ゲートトレンチ部40を浅く形成することは微細化の観点からも好ましい。
[比較例1]
図3Aは、比較例1に係る半導体装置500の断面図の一例を示す。図3Bは、比較例1に係る半導体装置500の斜視図の一例を示す。半導体装置500は、ゲートトレンチ部40およびキャリア排出部19を有さない点で実施例1に係る半導体装置100と異なる。なお、図3Bでは、簡潔化のために半導体基板10の一部のみを図示している。
半導体装置500は、複数のゲートトレンチ部30の間にフローティング層17を有する。ここで、フローティング層17を有する半導体装置500は、ターンオン時にフローティング層17に過剰な正孔が蓄積され、フローティング層17の電位が上昇する場合がある。フローティング層17の電位が上昇すると、変位電流によって入力容量が充電され、ゲート電圧が持ち上げられるので、ターンオン時のスイッチング速度が速くなる。通常、ゲート電極に直列にゲート抵抗を挿入することでスイッチング速度(即ち、コレクタ電流の電流変化率di/dt)を制御する。しかしながら、フローティング層17を備える半導体装置500では、スイッチング速度を遅くすることが困難な場合がある。したがって、フローティング層17を有する半導体装置500のゲート電極の充電速度の制御性が悪化する。
なお、フローティング層17をエミッタ電位に接続すると、正孔の蓄積がなくなるので、ゲート抵抗による逆回復dv/dt制御性が向上する。しかしながら、ターンオン時においても、エミッタ電極52によってフローティング層17の正孔が排出されるので、IE効果が得られない。したがって、フローティング層17をエミッタ電位に接続すると、半導体装置500のオン電圧が増加する場合がある。
[実施例2]
図4Aは、実施例2に係る半導体装置100の断面図の一例を示す。図4Bは、実施例2に係る半導体装置100の斜視図の一例を示す。本例の半導体装置100は、フローティング層17を有さない点で実施例1に係る半導体装置100と異なる。なお、図4Bでは、簡潔化のために半導体基板10の一部のみを図示している。
本例の半導体装置100は、エミッタ領域12が形成されているメサ部には、第2導電型層16としてコンタクト領域15および第1ベース領域14が形成されている。一方、半導体装置100は、エミッタ領域12の形成されていないメサ部に第2導電型層16が形成されていない。即ち、本例の半導体装置100は、フローティング層17が形成されていない。本例の半導体装置100は、フローティング層17を有さない場合であっても、耐圧を維持することができる。この場合、ゲートトレンチ部30の間隔が、半導体装置100の耐圧を確保できる程度に十分に狭いことが好ましい。
[実施例3]
図5Aは、実施例3に係る半導体装置100の断面図の一例を示す。図5Bは、実施例3に係る半導体装置100の斜視図の一例を示す。本例の半導体装置100は、ゲートトレンチ部40の延伸方向が、実施例1に係る半導体装置100と異なる。なお、図5Bでは、簡潔化のために半導体基板10の一部のみを図示している。
ゲートトレンチ部40の延伸方向は、ゲートトレンチ部30の延伸方向と異なる方向であってよい。一例において、ゲートトレンチ部40は、ゲートトレンチ部30の側壁からゲートトレンチ部30の配列方向に延伸している。即ち、ゲートトレンチ部40の延伸方向と、ゲートトレンチ部30の延伸方向とが直交している。
キャリア排出部19は、複数のゲートトレンチ部40に挟まれている。また、本例のキャリア排出部19は、ゲートトレンチ部30の側壁側に設けられている。但し、キャリア排出部19は、複数のゲートトレンチ部40の間に挟まれていれば、ゲートトレンチ部30と離れていてもよい。これにより、ゲートトレンチ部40の延伸方向がゲートトレンチ部30の延伸方向と異なる場合であっても、半導体基板10に蓄積されたキャリアをキャリア排出部19により排出できる。
[実施例4]
図6Aは、実施例4に係る半導体装置100の断面図の一例を示す。図6Bは、実施例4に係る半導体装置100の斜視図の一例を示す。なお、図6Bでは、簡潔化のために半導体基板10の一部のみを図示している。
キャリア排出部19は、ゲートトレンチ部30とこれに隣接するゲートトレンチ部40との間に挟まれている。即ち、本例の半導体装置100は、ゲートトレンチ部30とゲートトレンチ部40との間にキャリア排出部19を設けているので、複数のゲートトレンチ部40の間にキャリア排出部19を設ける場合と比較して、ゲートトレンチ部40の個数を少なくできる。即ち、本例では、ゲートトレンチ部30よりもゲートトレンチ部40の個数が少ない。これにより、本例の半導体装置100は、実施例1の場合と比較してゲート容量を低減できる。よって、本例の半導体装置100は、スイッチング損失を低減できる。
[実施例5]
図7Aは、実施例5に係る半導体装置100の断面図の一例を示す。図7Bは、実施例5に係る半導体装置100の斜視図の一例を示す。本例の半導体装置100は、ゲートトレンチ部40にゲートトレンチ部30の機能を兼ねさせることにより構造を簡潔化している。
ゲートトレンチ部40は、ゲートトレンチ部30の機能を兼ねる。本例の半導体装置100は、複数のゲートトレンチ部40の間に設けられ、ゲートトレンチ部40の延伸方向においてキャリア排出部19と接する第1導電型のエミッタ領域12を備える。キャリア排出部19は、コンタクト領域15の役割を兼ねている。また、第2ベース領域20は、第1ベース領域14の役割を兼ねている。キャリア排出部19が介在しない複数のゲートトレンチ部40の間には、エミッタ領域12が形成されず、絶縁膜62で被覆されたフローティング層17が設けられている。本例の半導体装置100は、ゲートトレンチ部30の役割をゲートトレンチ部40に兼ねさせることにより、実施例1に係る半導体装置100よりもゲート容量を低減できる。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10・・・半導体基板、12・・・エミッタ領域、14・・・第1ベース領域、15・・・コンタクト領域、16・・・第2導電型層、17・・・フローティング層、18・・・ドリフト領域、19・・・キャリア排出部、20・・・第2ベース領域、21・・・バッファ領域、22・・・コレクタ領域、24・・・コレクタ電極、30・・・ゲートトレンチ部、32・・・トレンチ絶縁膜、34・・・ゲート導電部、40・・・ゲートトレンチ部、42・・・トレンチ絶縁膜、44・・・ゲート導電部、52・・・エミッタ電極、54・・・コンタクトホール、56・・・コンタクトホール、62・・・絶縁膜、100・・・半導体装置、500・・・半導体装置

Claims (15)

  1. 第1導電型の半導体基板のおもて面側に、第2導電型の第2導電型層を少なくとも形成した半導体装置であって、
    前記半導体基板は、
    前記半導体基板のおもて面側に設けられた第1導電型のエミッタ領域と、
    前記半導体基板のおもて面に設けられ、ゲート電位に応じた電位に設定され、前記第1導電型のエミッタ領域と接していない複数の第1トレンチ部と、
    前記第1トレンチ部の間に設けられた前記第2導電型層であって、エミッタ電位に設定されたキャリア排出部と
    を備え、
    前記キャリア排出部は、前記第1トレンチ部に接して設けられ、前記キャリア排出部の不純物濃度は、前記第2導電型層のベース領域の不純物濃度より高く設定され、前記第1トレンチ部の設定された電位に応じて、キャリアを排出し、
    前記ベース領域は、前記キャリア排出部の底面を覆うように設けられている
    半導体装置。
  2. 前記第1トレンチ部は、前記半導体装置のゲート電位に設定されている
    請求項に記載の半導体装置。
  3. 第1導電型の半導体基板のおもて面側に、第2導電型の第2導電型層を少なくとも形成した半導体装置であって、
    前記半導体基板は、
    前記半導体基板のおもて面側に設けられた第1導電型のエミッタ領域と、
    前記半導体基板のおもて面に設けられ、ゲート電位に応じた電位に設定され、前記第1導電型のエミッタ領域と接していない複数の第1トレンチ部と、
    前記第1トレンチ部の間に設けられた前記第2導電型層であって、エミッタ電位に設定されたキャリア排出部と
    を備え、
    前記キャリア排出部は、前記第1トレンチ部に接して設けられ、前記キャリア排出部の不純物濃度は、前記第2導電型層のベース領域の不純物濃度より高く設定され、前記第1トレンチ部の設定された電位に応じて、キャリアを排出し、
    前記第1トレンチ部は、該第1トレンチ部の延伸方向において前記キャリア排出部よりも延伸している
    半導体装置
  4. 前記半導体基板は、
    前記半導体基板のおもて面側に、前記エミッタ領域に接して設けられた複数の第2トレンチ部と、
    をさらに備え、
    前記第2トレンチ部と該第2トレンチ部に隣接する他の第2トレンチ部との間に前記第2導電型層が設けられている
    請求項1からのいずれか一項に記載の半導体装置。
  5. 前記エミッタ領域の間に、前記キャリア排出部と不純物濃度が同じ前記第2導電型層が設けられている
    請求項に記載の半導体装置。
  6. 前記第1トレンチ部と該第1トレンチ部に隣接する他の第1トレンチ部との間に前記キャリア排出部が設けられている
    請求項又はに記載の半導体装置。
  7. 前記第2トレンチ部と該第2トレンチ部に隣接する前記第1トレンチ部との間にフローティング層としての前記第2導電型層が設けられている
    請求項からのいずれか一項に記載の半導体装置。
  8. 前記第2トレンチ部と該第2トレンチ部に隣接する前記第1トレンチ部との間に前記キャリア排出部が設けられている
    請求項4から7のいずれか一項に記載の半導体装置。
  9. 前記第1トレンチ部の延伸方向は、前記第2トレンチ部の延伸方向と平行である
    請求項からのいずれか一項に記載の半導体装置。
  10. 前記第1トレンチ部の延伸方向は、前記第2トレンチ部の延伸方向と直交する
    請求項からのいずれか一項に記載の半導体装置。
  11. 前記第1トレンチ部または前記第2トレンチ部の少なくとも一方は、前記第2導電型層を貫通している
    請求項から10のいずれか一項に記載の半導体装置。
  12. 前記第1トレンチ部は、前記第2トレンチ部と同一のトレンチ深さを有する
    請求項から11のいずれか一項に記載の半導体装置。
  13. 前記第1トレンチ部と該第1トレンチ部に隣接する他の第1トレンチ部との間隔は、前記第2トレンチ部と該第2トレンチ部に隣接する他の第2トレンチ部との間隔よりも狭い
    請求項から12のいずれか一項に記載の半導体装置。
  14. 第1導電型の半導体基板のおもて面側に、第2導電型の第2導電型層を少なくとも形成した半導体装置であって、
    前記半導体基板は、
    前記半導体基板のおもて面側に設けられた第1導電型のエミッタ領域と、
    前記半導体基板のおもて面に設けられ、ゲート電位に応じた電位に設定され、前記第1導電型のエミッタ領域と接していない複数の第1トレンチ部と、
    前記第1トレンチ部の間に設けられた前記第2導電型層であって、エミッタ電位に設定されたキャリア排出部と
    を備え、
    前記キャリア排出部は、前記第1トレンチ部に接して設けられ、前記キャリア排出部の不純物濃度は、前記第2導電型層のベース領域の不純物濃度より高く設定され、前記第1トレンチ部の設定された電位に応じて、キャリアを排出し、
    前記第1トレンチ部の間に設けられ、前記第1トレンチ部の延伸方向において前記キャリア排出部と接する前記第1導電型のエミッタ領域をさらに備える
    半導体装置
  15. 前記キャリア排出部が介在しない前記第1トレンチ部の間に、フローティング層としての前記第2導電型層が設けられていて、
    前記キャリア排出部が介在する第1トレンチ部の間隔が、前記キャリア排出部が介在しない前記第1トレンチ部の間隔よりも狭い
    請求項14に記載の半導体装置。
JP2017019434A 2017-02-06 2017-02-06 半導体装置 Active JP6953734B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017019434A JP6953734B2 (ja) 2017-02-06 2017-02-06 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017019434A JP6953734B2 (ja) 2017-02-06 2017-02-06 半導体装置

Publications (2)

Publication Number Publication Date
JP2018129326A JP2018129326A (ja) 2018-08-16
JP6953734B2 true JP6953734B2 (ja) 2021-10-27

Family

ID=63174423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017019434A Active JP6953734B2 (ja) 2017-02-06 2017-02-06 半導体装置

Country Status (1)

Country Link
JP (1) JP6953734B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7390868B2 (ja) * 2019-11-18 2023-12-04 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471922B2 (ja) * 1995-07-19 2010-06-02 三菱電機株式会社 半導体装置
JPH09107091A (ja) * 1995-10-12 1997-04-22 Hitachi Ltd Mosゲートサイリスタ及びその制御方法
JP2004022941A (ja) * 2002-06-19 2004-01-22 Toshiba Corp 半導体装置
JP3927111B2 (ja) * 2002-10-31 2007-06-06 株式会社東芝 電力用半導体装置
JP4703138B2 (ja) * 2004-06-18 2011-06-15 株式会社東芝 絶縁ゲート型半導体装置
JP4950934B2 (ja) * 2008-04-14 2012-06-13 株式会社東芝 絶縁ゲート型半導体装置
JP2014011418A (ja) * 2012-07-03 2014-01-20 Hitachi Ltd 半導体装置およびその製造方法
CN104995738B (zh) * 2013-08-15 2018-01-23 富士电机株式会社 半导体装置
JP2015162610A (ja) * 2014-02-27 2015-09-07 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
JP2018129326A (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5987990B2 (ja) 半導体装置
JP6844147B2 (ja) 半導体装置
US9853024B2 (en) Semiconductor device
US9362393B2 (en) Vertical semiconductor device including element active portion and voltage withstanding structure portion, and method of manufacturing the vertical semiconductor device
JP6135636B2 (ja) 半導体装置
JP5604892B2 (ja) 絶縁ゲートバイポーラトランジスタ
JP5867617B2 (ja) 半導体装置
JP2012064641A (ja) 半導体装置
JP5480084B2 (ja) 半導体装置
JP7279356B2 (ja) 半導体装置
JP6673502B2 (ja) 半導体装置
JP6673501B2 (ja) 半導体装置
JP6471508B2 (ja) 半導体装置
JP2015138789A (ja) 半導体装置
JP6287407B2 (ja) 半導体装置
JP2018156996A (ja) 半導体装置
JP6164372B2 (ja) 半導体装置および半導体装置の製造方法
JP7435645B2 (ja) 半導体装置
JP5838176B2 (ja) 半導体装置
JP2016058428A (ja) 半導体装置
JP6869791B2 (ja) 半導体スイッチング素子及びその製造方法
JP6953734B2 (ja) 半導体装置
JP5672821B2 (ja) 絶縁ゲート型半導体装置
CN108305893B (zh) 半导体装置
JP2014063931A (ja) 電力用半導体素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210913

R150 Certificate of patent or registration of utility model

Ref document number: 6953734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150