JP6947412B2 - 組み合わせられたhdr/ldrビデオストリーミング - Google Patents

組み合わせられたhdr/ldrビデオストリーミング Download PDF

Info

Publication number
JP6947412B2
JP6947412B2 JP2018561189A JP2018561189A JP6947412B2 JP 6947412 B2 JP6947412 B2 JP 6947412B2 JP 2018561189 A JP2018561189 A JP 2018561189A JP 2018561189 A JP2018561189 A JP 2018561189A JP 6947412 B2 JP6947412 B2 JP 6947412B2
Authority
JP
Japan
Prior art keywords
hdr
sensor
signal
pixel
ldr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018561189A
Other languages
English (en)
Other versions
JP2019506109A (ja
Inventor
ウィリー シー. カイザー,
ウィリー シー. カイザー,
ノラ トッチ,
ノラ トッチ,
マイケル ディー. トッチ,
マイケル ディー. トッチ,
Original Assignee
コントラスト, インコーポレイテッド
コントラスト, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コントラスト, インコーポレイテッド, コントラスト, インコーポレイテッド filed Critical コントラスト, インコーポレイテッド
Publication of JP2019506109A publication Critical patent/JP2019506109A/ja
Application granted granted Critical
Publication of JP6947412B2 publication Critical patent/JP6947412B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00068Calculating or estimating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/23439Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements for generating different versions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2365Multiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/85Camera processing pipelines; Components thereof for processing colour signals for matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/646Circuits for processing colour signals for image enhancement, e.g. vertical detail restoration, cross-colour elimination, contour correction, chrominance trapping filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20208High dynamic range [HDR] image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Processing Of Color Television Signals (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Image Processing (AREA)

Description

(関連出願の相互参照)
本願は、2016年5月31日に出願された米国出願第15/169,012号に対する優先権および利益を主張するものであり、この出願は、2016年2月12日に出願された米国仮特許出願第62/294,820号の利益を主張するものであり、これらの各々の内容は、参照により本明細書中に援用される。
(技術分野)
本開示は、低ダイナミックレンジおよび高ダイナミックレンジディスプレイデバイス上での表示のためのビデオのリアルタイム生成およびブロードキャストに関する。
人間の視覚系は、高ダイナミックレンジを伴う視覚特徴の識別および処理を行うことができる。例えば、1,000,000:1またはそれを上回るコントラスト比率を伴う実世界場面は、人間の視覚野によって正確に処理されることができる。しかしながら、大部分の画像取得デバイスは、低ダイナミックレンジの再現または捕捉のみが可能であって、画像正確度の損失をもたらす。問題は、ビデオ撮像においてさらにより有意となる。
それぞれ異なる露光を受ける複数のセンサからの画像を後処理することによって、高ダイナミックレンジ画像を作成する例が存在する。結果として生じる「混成された」画像は、後処理動作を伴わずに単一センサから可能であろうものより広いダイナミックレンジを捕捉することが意図される。しかしながら、要求される後処理は、時間集約的であって、HDRビデオ信号を生成し、これは、高価なHDR再生デバイスおよびディスプレイデバイスを要求する。
集約的後処理および非一般的機器の要件は、多くの人々がテレビを視聴する方法に良好に適さない、HDRビデオシステムにつながる。例えば、ライブブロードキャストは、テレビの重要な部分である。多くの人々は、イベントライブを視聴することによって、ニュースまたはそのお気に入りのスポーツチームをフォローする一方、既存のHDRビデオ生成は、撮影後、生成後処理、次いで、表示が続くことを要求する。加えて、いくつかのHDRビデオシステムは、低ダイナミックレンジ(LDR)テレビを有するユーザの既存のインストールされたベースと後方互換性がない。
本発明は、ビデオがLDRおよびHDRディスプレイデバイスの両方によってリアルタイムで表示されるように、デュアルHDR/LDRフォーマットでビデオをブロードキャストするための方法を提供する。本発明の方法およびデバイスは、フレーム独立様式において、複数のセンサからのピクセルのストリームを処理し、高ダイナミックレンジ(HDR)ビデオ信号をリアルタイムで生成する。本発明のリアルタイム側面は、それらのピクセルが属するフレームを参照せずに、種々のセンサからのピクセルのストリームを分析することによって遂行される。したがって、本発明のフレーム独立性質は、ピクセルデータを処理する前に、データのフレーム全体がセンサから読み取られることを待機する必要がないことを意味する。その結果、単一画像センサを使用して得られ得る範囲、典型的には、深度8ビットを上回るダイナミックレンジを有する、HDRビデオとなる。そのHDRビデオ信号は、次いで、トーンマッピングされ、LDRビデオ信号を生成し、LDR信号は、HDR信号から減算され、残留信号を計算し、LDR信号および残留信号は、組み合わせられた信号に融合され、これは、通信ネットワークを介してブロードキャストされる。組み合わせられた信号は、それらのデバイスが、単に、組み合わせられた信号のLDR信号を使用するため、既存のLDRディスプレイデバイスと後方互換性がある。組み合わせられた信号はまた、残留物とLDR信号を融合し、HDRビデオ信号を再作成することによって、HDRディスプレイによっても表示可能である。HDRビデオは、異なる光レベルで同じ場面に露光され、それぞれ、順序付けられたピクセル値のストリームを生成する、複数のセンサを用いて開始される。ピクセル値は、リアルタイムで、それらが常駐するであろう、フレームから独立して処理される。HDR画像を生成するために使用されるビデオ処理パイプラインは、飽和されているピクセル値を識別し、ピクセル値のストリームを融合する、カーネルおよび融合演算を含む。融合演算は、飽和されているピクセル値と異なるセンサから生じる対応するピクセル値を置換することを含む。融合された信号は、HDR信号であって、トーンマッピングされ、LDR信号および残留物を生成する。残留物は、LDR信号とともに、組み合わせられた信号の中に組み合わせられ、これは、それぞれ、LDRおよびHDRデバイスによるLDRおよびHDR表示のためにブロードキャストされる。
デュアルLDR/HDRビデオブロードキャストは、パイプライン内のカーネルおよび融合演算を通してピクセル値をストリームさせることによって、リアルタイムで提供される。好ましくは、パイプライン内の同期モジュールは、センサから着信するピクセル値のストリームを同期させる。これは、例えば、第1のセンサからの60番目のピクセルがカーネル演算に進むと、他のセンサのそれぞれからの60番目のピクセルもまた同時にカーネル演算に進むことを意味する。その結果、異なるセンサ上の対応するピクセルからのピクセル値は、パイプラインを通して同期してフローする。これは、2つのことを可能にする。第1に、同期モジュールは、複数のセンサからシステムへのデータ到着時間における僅かな段階相違を補正することができる。第2に、同期は、カーネル演算が、画像センサのうちの1つ上の具体的ピクセルからの所与のピクセル値に関して、そのセンサ上のピクセルを囲繞する近傍からの値を考慮し、また、画像センサの別のもの上の対応するピクセルの近傍からの値も考慮することを可能にする。これは、カーネル演算が、同一または別のセンサ上の周囲近傍からの値のパターンに基づいて、1つのセンサからの飽和されているピクセルに関する推定値を作成することを可能にする。
パイプラインは、随意に、複数のセンサのそれぞれのスペクトル特性における差異を補正してもよい。ビーム分割器、レンズ、またはフィルタ等の光学構成要素は、スペクトル的に中立であると主張される場合でも、伝送される光の量に若干の波長依存差を有し得る。すなわち、各画像センサは、その独自の「色補正空間」を有すると言え、それによって、そのセンサからの画像は、その色補正空間から真の色に補正される必要がある。光学システムは、較正されることができ(例えば、較正カードの写真を撮影することによって)、色補正行列が、画像センサ毎に、判定および記憶されることができる。HDRビデオパイプラインは、次いで、ピクセル値を1つのセンサから別のセンサの色補正空間に向かって調節する反直感的ステップを行うことができ、これは、ある場合には、色を真の色から微調整することを伴い得る。これは、1つのセンサからのRGB値のベクトルを他のセンサの色補正行列の逆行列によって乗算することによって遂行されてもよい。第2のセンサに対する本色補正後、ストリームは、融合され、結果として生じるHDRビデオ信号は、真の色に色補正される(例えば、RGBベクトルを適用可能な色補正行列によって乗算することによって)。本演算は、各画像センサのスペクトル差を考慮する。
好ましいパイプラインは、以下の発明を実施するための形態に詳細に説明されるような他の処理モジュールを含む。
ある側面では、本発明は、高ダイナミックレンジ(HDR)および低ダイナミックレンジ(LDR)ディスプレイのためのビデオをストリームさせるための方法を提供する。本方法は、ピクセル値をHDRビデオカメラ上の複数の画像センサから受信し、HDR信号を生成するステップと、HDR信号を処理し、LDR信号および残留信号を備える、出力信号を生成するステップと、受信と伝送との間に1つ未満の遅延のフレームを伴って、HDRおよびLDRディスプレイのための出力信号を伝送するステップとを含む。HDR信号を処理するステップは、HDRビデオをトーンマッピングし、LDR信号を生成し、LDR信号をHDR信号から減算し、残留信号を生成するステップを含んでもよい。LDRビデオは、例えば、MPEGエンコーダを使用して、圧縮されてもよい。出力信号は、LDRディスプレイによって8ビットビデオとして表示可能であって、HDRディスプレイによってHDRビデオとして表示可能である。
ある実施形態では、HDR信号は、飽和されているピクセル値を識別する、カーネル演算と、ピクセル値を融合し、HDR信号を生成する、融合演算とを含む、パイプラインによって、ピクセル値から生成される。好ましくは、複数の画像センサは全て、単一レンズを通して画像を同時に捕捉する。本方法は、入射光をレンズを通して受信し、少なくとも1つのビーム分割器を介して、光を複数の画像センサ上に分割するステップを含んでもよく、レンズによって集められた光の少なくとも95%は、複数の画像センサによって捕捉される。
複数の画像センサは、少なくとも高露光(HE)センサと、中間露光(ME)センサとを含んでもよく、シーケンスの融合は、飽和されていないHEピクセル値および飽和されているピクセル値に対応するMEピクセル値の使用を含んでもよい。複数の画像センサはさらに、低露光(LE)センサを含んでもよい。好ましい実施形態では、複数の画像センサは、光レベル以外は光学的に同じ画像を捕捉する。
本方法は、リアルタイムで動作し、依然として、カーネル演算を通して、後に着信するピクセル値をストリームさせながら、ピクセル値の一部の融合を開始するステップを含んでもよい。
パイプラインは、処理デバイス(例えば、フィールドプログラマブルゲートアレイまたは特定用途向け集積回路)によって提供されてもよく、画像センサはそれぞれ、カラーフィルタアレイを含んでもよい。いくつかの実施形態では、本方法は、融合ステップ後、HDR信号をデモザイク処理するステップを含む。
本明細書は、例えば、以下の項目も提供する。
(項目1)
高ダイナミックレンジ(HDR)および低ダイナミックレンジ(LDR)ディスプレイのためのビデオをストリームさせるための方法であって、前記方法は、
フレーム独立ピクセル値をHDRビデオカメラ上の複数の画像センサから受信し、HDR信号を生成するステップと、
前記HDR信号を処理し、LDR信号および残留信号を備える出力信号を生成するステップと、
HDRおよびLDRディスプレイのための前記出力信号を伝送するステップと、
を含む、方法。
(項目2)
前記HDR信号を処理するステップは、HDRビデオをトーンマッピングし、前記LDR信号を生成し、前記LDR信号を前記HDR信号から減算し、前記残留信号を生成するステップを含む、項目1に記載の方法。
(項目3)
MPEGエンコーダを使用して、LDRビデオを圧縮するステップをさらに含む、項目2に記載の方法。
(項目4)
前記出力信号は、LDRディスプレイによって8ビットビデオとして表示可能であり、HDRディスプレイによってHDRビデオとして表示可能である、項目1に記載の方法。
(項目5)
前記HDR信号は、
飽和されているピクセル値を識別するカーネル演算と、
前記ピクセル値を融合し、前記HDR信号を生成する融合演算と、
を含むパイプラインによって、前記ピクセル値から生成される、項目1に記載の方法。
(項目6)
前記複数の画像センサは全て、単一レンズを通して画像を同時に捕捉する、項目5に記載の方法。
(項目7)
入射光を前記レンズを通して受信し、少なくとも1つのビーム分割器を介して、前記光を前記複数の画像センサ上に分割するステップをさらに含み、撮像レンズによって集められた前記光の少なくとも95%は、前記複数の画像センサによって捕捉される、項目6に記載の方法。
(項目8)
前記複数の画像センサは、少なくとも高露光(HE)センサと、中間露光(ME)センサとを含み、シーケンスの融合は、飽和されていないHEピクセル値および前記飽和されているピクセル値に対応するMEピクセル値の使用を含む、項目6に記載の方法。
(項目9)
前記カーネル演算を通して、後に着信するピクセル値を依然としてストリームさせながら、前記ピクセル値の一部の融合を開始するステップをさらに含む、項目6に記載の方法。
(項目10)
前記パイプラインは、フィールドプログラマブルゲートアレイおよび特定用途向け集積回路から成る群から選択された処理デバイスによって提供され、さらに、前記画像センサのそれぞれは、カラーフィルタアレイを備え、前記方法はさらに、前記融合ステップ後、前記HDR信号をデモザイク処理するステップを含む、項目9に記載の方法。
(項目11)
複数の画像センサは、光レベル以外は光学的に同じ画像を捕捉する、項目10に記載の方法。
図1は、リアルタイムHDRビデオを生成するための方法のステップを示す。 図2は、HDRビデオ処理のための装置を示す。 図3は、複数のセンサのための配列を示す。 図4は、リアルタイムHDRビデオ装置上の処理デバイスを示す。 図5は、同期モジュールの動作を示す。 図6は、ピクセル値がカーネル演算に提示される方法を図示する。 図7は、パイプラインをモデル化するアプローチを示す。 図8は、アーチファクトを回避するための融合を図示する。 図9は、ピクセル値を調節するために使用されるカメラ応答曲線を示す。 図10は、色補正プロセスを示す。 図11は、組み合わせられたHDRをブロードキャストするための方法を図示する。
図1は、LDRおよびHDR表示のためにリアルタイムでビデオをブロードキャストするための方法101のステップを示す。方法101は、光を撮像装置のレンズを通して受信するステップ107を含む。1つまたはそれを上回るビーム分割器が、光を複数の画像センサ上に衝突する異なる経路の中に分割する113。各画像センサは、次いで、センサのピクセル毎に、ピクセル値の形態で信号を捕捉する125。センサが、例えば、1920×1080ピクセルを有する場合、ピクセル値は、センサから接続される処理デバイスにストリームさせるであろう。本方法は、フレーム独立様式において、処理デバイス219上のパイプライン231を通して複数のセンサのそれぞれからのピクセル値501をストリームさせるステップ129を含む。パイプライン231は、飽和されているピクセル値を識別する、カーネル演算135を含む。ピクセル値501は、融合される139。典型的には、融合された画像は、デモザイク処理され145、これは、HDR画像を生成する。HDR画像は、トーンマッピングされ、LDR画像を生成する。
次いで、LDR画像の値は、HDR画像の値から減算され、残留物のセットを判定する。LDR画像および残留物は、組み合わせられた画像信号の中に組み合わせられ、これは、ブロードキャストされる151。
組み合わせられた画像信号は、従来のLDRディスプレイデバイスによって、また、HDRディスプレイデバイスによって受信および表示されることができる。その意味において、リアルタイムHDRビデオカメラは、後方互換性があり、従来のLDRディスプレイデバイスによって表示されることができる、HDRビデオのライブかつリアルタイムのブロードキャストを提供する。LDRデバイスは、8ビットLDR信号のみを「確認」および表示する。任意のHDRデバイスは、信号を解凍し、LDR信号と残留物を組み合わせ、フルHDR信号を再構成する。
説明される方法101では、複数の画像センサは全て、単一レンズ311を通して画像を同時に捕捉する125。パイプライン231およびカーネル演算135は、フィールドプログラマブルゲートアレイまたは特定用途向け集積回路等の集積回路によって提供されてもよい。画像センサはそれぞれ、カラーフィルタアレイ307を含んでもよい。好ましい実施形態では、方法101は、融合するステップ139後、HDR画像をデモザイク処理するステップ145を含む。複数の画像センサは、好ましくは、光レベル以外は光学的に同じ画像を捕捉する。
本発明の特徴は、ピクセル値501が、フレーム独立様式においてパイプライン処理されることである。ピクセル値501のシーケンスは、処理デバイス219を通してストリームされ129、ピクセル値501を画像センサ上の全てのピクセルから受信することを待機せずに、融合される139。これは、処理デバイス219上のいずれの場所も、完全な画像を記憶しないように、取得ステップ125、ストリームステップ129、および融合ステップ139が、処理デバイス219上のパイプライン231を通してピクセル値501のシーケンスをストリーム129させることによって行われ得ることを意味する。ピクセル値が、パイプラインを通してストリームされるため、最終HDRビデオ信号は、リアルタイムで生成される。装置201は、方法101のステップを行い、したがって、リアルタイムHDRビデオカメラの機能を提供する。リアルタイムは、カメラからのHDRビデオが、カメラが場面を捕捉することと本質的に同時に表示され得ることを意味する(例えば、信号がセンサからディスプレイに進む速度からビデオのフレームを上回らない待ち時間を差し引いた速度であり、これは、現在の技術水準では典型的には1/60秒である)。画像データを後処理する要件が存在せず、画像の「フレーム」全体を捕捉、記憶、比較、または処理する要件も存在しない。
出力は、方法101および装置201が、異なる露光レベルにおける複数のセンサを使用して、複数の同型画像(すなわち、光レベル以外は同じである)を捕捉し、それらを融合するため、HDRビデオ信号となる。高露光(HE)センサからのデータは、画像の一部が暗い場合に使用され、中間露光(ME)(またはそれより低い)センサからのデータは、画像の一部がより明るく照明される場合に使用される。方法101および装置201は、HEおよびME(および随意にLE)画像を融合し、HDRビデオ信号を生成する。具体的には、方法101および装置201は、画像内の飽和されているピクセルを識別し、それらの飽和されているピクセルとより低い露光のセンサから導出された値を置換する。好ましい実施形態では、画像センサのうちの1つ上の第1のピクセルからの第1のピクセル値は、いくつかの規定されたレベルを上回る、例えば、最大可能ピクセル値の少なくとも90%である場合、飽和として識別される。
図2は、HDRビデオ処理のための装置201を示す。装置201は、フィールドプログラマブルゲートアレイ(FPGA)または特定用途向け集積回路(ASIC)等の処理デバイス219を含む。複数の画像センサ265は、処理デバイス219に結合される。装置201は、フレーム独立様式において、処理デバイス219上のパイプライン231を通して複数の画像センサ265のそれぞれからのピクセル値501をストリームさせるように構成される。パイプライン231は、飽和されているピクセル値501を識別する、カーネル演算413と、ピクセル値501を融合し、HDR画像を生成する、融合モジュールとを含む。
カーネル演算413は、HEセンサ213上の所与のピクセルに関して、所与のピクセルを囲繞するピクセルの近傍601からの値を検査し、ピクセルの近傍601内の飽和されている値を見出し、MEセンサ211上の対応する近傍601からの情報を使用して、所与のピクセルに関する値を推定することによって、ピクセル値501が複数の画像センサ265のそれぞれからストリームされるにつれて、それらに作用する。
装置201の種々の構成要素は、印刷回路基板205を介して、接続されてもよい。装置201はまた、メモリ221と、随意に、プロセッサ227(ARMマイクロコントローラのような汎用プロセッサ等)とを含んでもよい。装置201はさらに、入出力デバイス239またはディスプレイ267のうちの1つまたはそれを上回るものを含む、またはそれに接続されてもよい。メモリは、RAMまたはROMを含むことができ、好ましくは、少なくとも1つの有形非一過性媒体を含む。プロセッサは、Intel(Santa Clara, CA)によって商標名XEON E7で販売されているプロセッサまたはAMD(Sunnyvale, CA)によって商標名OPTERON6200で販売されているプロセッサ等、当技術分野において公知の任意の好適なプロセッサであってもよい。本発明による入力/出力デバイスは、ビデオディスプレイユニット(例えば、液晶ディスプレイまたはLEDディスプレイ)、キー、ボタン、信号生成デバイス(例えば、スピーカ、チャイム、または光)、タッチスクリーン、加速度計、マイクロホン、セルラー無線周波数アンテナ、メモリカードのためのポート、および、例えば、ネットワークインターフェースカード(NIC)、Wi−Fiカード、またはセルラーモデムであることができる、ネットワークインターフェースデバイスを含んでもよい。装置201は、記憶デバイス241を含む、またはそれに接続されてもよい。複数のセンサは、好ましくは、複数のセンサ265が光レベル以外は同じ画像を同時に受信することを可能にする、配列で提供される。
図3は、複数のセンサ265のための配列を示す。複数のセンサは、好ましくは、少なくとも、高露光(HE)センサ213と、中間露光(ME)センサ211とを含む。各画像センサは、その独自のカラーフィルタアレイ307を有してもよい。カラーフィルタアレイ307は、各ピクセルが赤色、緑色、または青色光のいずれかを受信するように、Bayerフィルタとして動作してもよい。当技術分野において公知のように、Bayerフィルタは、センサからストリームされるピクセル値のシーケンスが、赤色、緑色、青色、緑色、赤色、緑色、青色、緑色、赤色、緑色、青色、緑色、…等に関する値に対応するように、赤色、緑色、青色、緑カラーフィルタの反復グリッドを含む。
図3に示されるように、装置201はまた、レンズ311および少なくとも1つのビーム分割器301を含む、または光学的に接続されてもよい。HEセンサ213、MEセンサ211、レンズ311、および少なくとも1つのビーム分割器301は、光の入射ビーム305を受信し、光のビーム305を、少なくとも、HEセンサ213上に衝突する第1の経路と、MEセンサ211上に衝突する第2の経路とに分割するように配列される。好ましい実施形態では、装置201は、3つの撮像センサ上に同時に集束されるように、部分的反射性表面のセットを使用して、単一撮影レンズ311からの光を分割する。好ましい実施形態では、光は、ビーム分割器のうちの1つを通して2回逆指向され、3つのサブ画像は赤色、緑色、および青色に分割されず、代わりに、その光レベル以外は光学的に同じである。図3に示される、本設計は、装置が、カメラに進入する光の大部分を使用して、HDR画像を捕捉することを可能にする。
いくつかの実施形態では、光学分割システムは、空気/プラスチック界面におけるFresnel反射に依拠し、したがって、その実際の透過率/反射率(T/R)値が角度の関数である、2つの皮膜されていない2ミクロン厚のプラスチックビーム分割器を使用する。ガラスもまた、好適な材料オプションである。一実施形態では、第1のビーム分割器301は、45°角度であって、92/8の近似T/R比率を有し、これは、カメラレンズ311からの光の92%が、第1のビーム分割器301を通して伝送され、高露光(HE)センサ213上に直接指向されることを意味する。ビーム分割器301は、第1のものと同一光学性質を有するが、光経路に対して90°角度に位置付けられ、94/6の近似T/R比率を有する、第2の皮膜されていないビーム分割器319に向かって、レンズ311からの光の8%を上向きに反射させる(図3に示されるように)。
上向きに反射された全光の8%のうち、94%(または全光の7.52%)は、第2のビーム分割器319を通して伝送され、中間露光(ME)センサ211上に集束される。この上向きに反射された光の他の6%(または全光の0.48%)は、第2のビーム分割器319によって、第1のビーム分割器301(再び、45°である)に向かって下方に逆反射され、それを通して92%(または全光の0.44%)が、低露光(LE)センサ261上に伝送および集束される。本配列を用いることで、HE、MEおよびLEセンサは、それぞれ、カメラレンズ311によって集められた全光の92%、7.52%、および0.44%を用いて画像を捕捉する。したがって、カメラレンズ311によって集められた全光のうちの合計99.96%が、画像センサによって捕捉される。したがって、HEおよびME露光は、12.2倍(3.61絞り値)分離され、MEおよびLEは、17.0倍(4.09絞り値)分離され、これは、本構成がセンサのダイナミックレンジを7.7絞り値拡張させるように設計されることを意味する。
本ビーム分割器配列は、装置201を光効率的にする。すなわち、レンズ311によって集められた全光のわずか0.04%のみが、無駄となる。これはまた、全3つのセンサが同一場面を「確認」することを可能にし、したがって、全3つの画像は、その光レベル以外は光学的に同じである。当然ながら、描写される実施形態201の装置では、ME画像は、奇数回の反射を受け、したがって、他の画像と比較して、左右反転されるが、これは、ソフトウェア内で容易に修正される。好ましい実施形態では、3つのセンサは、独立して、直接、同期モジュールを含む、パイプラインの中に入射ピクセル値をストリームさせる。本同期モジュールは、複数のセンサからシステムへのデータ到着時間における僅かな段階相違を補正することができる。
したがって、ビーム分割器301は、光の大部分を第1の経路に、光のより少ない量を第2の経路に指向することが分かる。好ましくは、第1の経路および第2の経路は、それぞれ、HEセンサ213およびMEセンサ211上に衝突し、光レベル以外は光学的に同じ画像を生成する。描写される実施形態では、装置201は、低露光(LE)センサを含む。
好ましい実施形態では、ピクセル値は、シーケンスで、HEセンサ213、MEセンサ211、およびLEセンサ261から、直接、処理デバイス219にストリームされる。それらのシーケンスは、それらが処理デバイス219上に到着するにつれて同期されなくてもよい。
図3によって示されるように、方法101は、入射光をレンズ311を通して受信するステップ107と、少なくとも1つのビーム分割器301を介して、光を複数の画像センサ上に分割するステップ113とを含んでもよく、光の入射ビーム305の少なくとも95%は、複数の画像センサによって捕捉される。
装置201は、(1)運動を考慮するための画像操作を必要としない、光学的に整合された複数の露光画像を同時に捕捉し、(2)利用可能な画像センサのダイナミックレンジを拡張し(我々の現在のプロトタイプでは、7撮影絞り値を上回って)、(3)実装が安価であって、(4)単一の標準的カメラレンズ311を利用し、(5)レンズ311からの光を効率的に使用する。
方法101は、好ましくは、(1)露光において3を上回る絞り値分だけ分離された画像を組み合わせ、(2)事前にデモザイク処理されたピクセルデータを空間的に混成し、望ましくないアーチファクトを低減させ、(3)放射輝度的に正しいHDR画像を生成し、(4)利用可能な最高忠実性(最低量子化雑音)ピクセルデータを使用する。装置201は、種々の異なるセンサタイプと協働することができ、カメラレンズとセンサとの間に位置するビーム分割器に基づいて、光学アーキテクチャを使用する。
図4は、装置201上の処理デバイス219を示す。記載されるように、処理デバイス219は、1つまたはそれを上回るFPGA、ASIC、または他の集積回路によって提供されてもよい。センサからのピクセル値は、処理デバイス219上のパイプライン231を通してストリームされる。処理デバイス219内のパイプライン231は、ピクセル値501がフローする順序において、ピクセル値501が処理デバイス219上に複数の画像センサ265からストリームされるにつれて、ピクセル値501を同期させるための同期モジュール405と、カーネル演算413と、融合モジュール421と、デモザイク処理モジュール425と、トーンマッピングオペレータ427とを含む。
トーンマッピングオペレータ427は、LDR信号を生成する。圧縮モジュール431は、HDR信号からLDR信号を減算し、結果として生じる残りをLDR信号と再び組み合わせ、組み合わされた信号をブロードキャストのために伝送する。
パイプライン231は、色補正モジュール、HDR変換モジュール、およびHDR圧縮モジュール等の1つまたはそれを上回る補助モジュールを含んでもよい。
図5は、ピクセル値501が処理デバイス219上に複数の画像センサ265からストリームされるにつれて、ピクセル値501を同期させるための同期モジュール405の動作を示す。図5に描写されるように、HE_1ピクセル値およびME_1ピクセル値は、同期モジュール405にほぼ同時に到着する。しかしながら、HE_2ピクセル値は、ME_2と比較して遅れて到着し、LEピクセル値のシーケンス全体が、遅れて到着するであろう。同期モジュール405は、先に到着したピクセル値を巡回させ、それらを対応する後に着信するピクセル値と同時に解放する、小ラインバッファを含有することができる。同期されたピクセル値は、次いで、パイプライン231を通してカーネル演算413にストリームされる。
図6は、ピクセル値がカーネル演算413に提示される方法を図示する。図6の上部分は、HEセンサ213を描写する。各正方形は、センサ213の1つのピクセルを描写する。白色中心を伴う、塗り潰された黒色ボックスは、考慮のための所与のピクセル615と、所与のピクセル615を囲繞するピクセルの近傍601とを図示するように描かれている。塗り潰された黒色ボックスは、実際には、センサ213(CMOS動画撮影用カメラセンサ等)上には現れず、単に近傍601が含むものを図示し、近傍601がピクセル値501のシーケンス621がカーネル演算413に提示されるときに現れる状態を理解することを補助するために描かれている。
図6の下部分は、同期モジュール405後、それらがカーネル演算413の中にストリームされるにつれたピクセル値のシーケンス621を示す。センサ213上のピクセルの近傍601からのピクセル値501は、依然として、例証を補助するために、「黒く塗り潰されている」。考慮下の所与のピクセル615は、2つの黒色ピクセルによって両側が囲繞されているため、センサ上のピクセルの列から容易に見分けることができる。2つのシーケンス621が存在し、そのうちの1つは、描写されるHEセンサ213から生じ、そのうちの1つは、MEセンサ211から生じる。
ピクセル値501をカーネル演算413を通してストリームさせるステップは、HEセンサ213上の第1のピクセル615を囲繞するピクセルの近傍601からの値を検査し、ピクセルの近傍601内の飽和されている値を見出し、MEセンサ211からの対応する近傍613からの情報を使用して、第1のピクセル615に関する値を推定するステップを含む。これは、以下により詳細に説明されるであろう。これを遂行するために、処理デバイスは、異なるセンサからの対応するピクセル値間で比較を行わなければならない。これは、考慮下のピクセル615を近傍601からの各ピクセルに隣接させて、かつ別のセンサ上の対応する近傍からの各ピクセルに隣接させて設置する方式において、ピクセル値をカーネル演算を通してストリームさせることが有用であり得る。
図7は、パイプラインが、以下のピクセル値、すなわち、センサ213上の右に1つ目のピクセルからのピクセル値、センサ213上の右に2つ目のピクセルからのピクセル値、左に1つ目のピクセルからのピクセル値、左に2つ目のピクセルからのピクセル値のそれぞれに隣接させて現在のピクセル615を設置するように、回路をモデル化するアプローチを示す。図7に示されるように、データは、パイプラインの本部分の中にフローし、そして4回コピーされる。コピー毎に、異なりかつ特定の量の遅延が、主分岐に追加される。5つのコピー全てが、並行してフローし続ける。したがって、全5つのコピーにわたる同時スナップショットは、所与の現在のピクセル値615および近傍601からの他のピクセル値を網羅する。このように、現在処理されているピクセルの両側のピクセル値が、現在処理されているピクセルとともに、その処理ステップにおいて使用されることができる。したがって、処理デバイスは、同時に、所与のピクセルのピクセル値を読み取り、近傍の値と比較することができる。図7に図示されるアプローチは、比較のために、上側近傍および下側近傍、対角線近傍、ならびに別のセンサ上の対応する近傍からのピクセル値に拡張されることができる。したがって、いくつかの実施形態では、ピクセル値501をカーネル演算413を通してストリーム129させるステップは、一時的に、第1のピクセルからの値をピクセルの近傍601から生じる各値に近接させて設置する、ピクセル値501を処理デバイス219内の経路621を通してストリーム129させるステップを含む。
近傍比較は、飽和されているピクセルに関する置換値を使用すべきかどうかと、どの置換値を使用すべきかとを判定するために使用されてもよい。近傍比較を使用するアプローチは、融合の議論の後に以下でさらに議論される。置換値は、ピクセル値501のシーケンス621が融合モジュール421によって融合139されるときに使用されるであろう。融合139するステップは、飽和されているピクセル値501の少なくともいくつかをHDR画像から除外する。
異なる露光を伴うLDR画像のセットからのHDR画像を融合するための以前のアルゴリズムは、典型的には、LDR画像をデモザイク処理し、近傍ピクセル情報を考慮せずに、データをピクセル毎に融合した後に行われる。
最小数のカメラセンサを用いて可能な最広ダイナミックレンジを捕捉するために、LDR画像を従来のHDR取得方法を用いてよりも露光においてさらに離して位置付けることが好ましい。先行技術方法は、量子化および雑音効果のため、望ましくないアーチファクトをもたらし、それらの問題は、あるトーンマッピングオペレータ(TMO)が適用されるとき、悪化される。それらのTMOは、ダイナミックレンジが圧縮されると、画像内で僅かな勾配差を増幅させ、それらを可視にし、融合アーチファクトも同様に増幅させる。
図8は、アーチファクトを低減させる(例えば、参照することによって組み込まれる、「Debevec and Malik, 1997, Recovering high dynamic range radiance maps from photographs, Proceedings of ACM SIGGRAPH 1997:369−378」における融合アルゴリズムで使用される加重係数と比較して)、融合のアプローチを図示する。図8における「HEセンサ」、「MEセンサ」、および「LEセンサ」バーは、3つのセンサによって測定された場面照明の範囲を提示する。
例証のために、本システムは、16のみの一意の明るさ値を測定し、センサが、露光において1絞り値のみ(2倍)分離される、4ビットセンサ(装置201内で使用され得るような12ビットセンサとは対照的に)を用いて簡略化される。CMOSセンサは、略線形関係を入射露光とその出力値との間に呈するため、3つのセンサからの値は、従来の対数スケールの代わりに、入射放射照度の線形関数としてグラフ化される。
常時、Debevec and Malikのもの等の単純加重関数を用いて、全3つのセンサからのデータを使用する、先行技術アルゴリズムによる画像の融合は、アーチファクトを導入する。先行技術では、各センサからのデータは、点線によって示されるように、三角関数を用いて加重され、したがって、LEセンサからのデータが、HEセンサのものより粗く量子化される場合でも、低明るさ値(示されるサンプル照明レベルのように)におけるLEセンサからの寄与は、ゼロではない。
本発明の方法は、対照的に、可能な限りより高い露光センサからのデータ値を使用し、飽和の近傍にあるとき、次により暗いセンサからのデータ内に混成させる。
図8は、LEセンサが場面放射照度を他の2つのセンサより粗く測定することを示す。例えば、HEセンサは、LEセンサが単一インクリメントを記録する前に、勾配内で4つの異なるピクセル値を測定し得る。加えて、常時、ある程度の少量の雑音がピクセル値に存在し、LEセンサ内の±1の誤差は、本実施例に関しては、HEセンサ内の12の値範囲に及ぶ。Debevecand Malikのアルゴリズムは、これらの値をともに混成するが、方法101および装置201は、可能である場合、最長露光センサ(より低雑音)のみからのピクセル値を使用し、ピクセルが飽和に近づくと、次により暗い露光内に混成させる。
ある実施形態では、方法101および装置201は、LDR画像を融合するとき、個々のピクセルのみを検査するのではなく、また、脱雑音プロセスに役立てるための付加的情報を提供し得る、近傍ピクセル601(図6参照)も考慮する。
本発明による融合139の一側面は、可能な最も明るく最も良好に露光されるセンサからのピクセルデータを排他的に使用することである。したがって、HE画像からのピクセルが、可能な限り使用され、ME画像内のピクセルは、HEピクセルが飽和に近づく場合のみ使用される。対応するMEピクセルが、飽和レベルを下回る場合、MEピクセルがHEピクセルを12.2倍下回る放射照度を受信することを前提として、カメラの応答曲線に基づいて、HEピクセルに関連してそれを調節する、係数によって乗算される。
図9は、ピクセル値を調節するための係数を求めるために使用される、カメラ応答曲線901を示す。3センサ実施形態では、HEセンサが飽和レベルを上回るとき、対応するMEピクセルが飽和レベルを上回る場合、類似プロセスが、低露光LE画像内の同一ピクセルに適用される。
それらが飽和するまで、HEセンサからの値を排他的に使用し、次いで、単に、次のセンサに切り替える、「勝者総取り方式」アプローチによる融合は、遷移が生じる場所でバンディングアーチファクトをもたらすことが見出され得る。そのようなバンディングアーチファクトを回避するために、方法101および装置201は、2つのセンサ間のピクセル値を空間的に混成することによって、1つのセンサから次のセンサに遷移する。これを行うために、方法101および装置201は、評価されているピクセル615の周囲の近傍601を走査する(図6参照)。本領域内の任意の近傍ピクセルが飽和される場合、考慮下のピクセルは、ピクセルクロストークまたは漏出を受け得、方法101および装置201は、近傍601内のその近傍に基づいて、ピクセルに関する値を推定するであろう。
方法101および装置201は、デモザイク処理が飽和されている領域内の色を破損させ得るため、個々のBayerカラーフィルタアレイ画像をデモザイク処理145することに先立って、融合139を行う。例えば、場面の明るい橙色セクションは、飽和されている赤色ピクセルを有し得る一方、緑色および青色ピクセルは、該当しない。画像が、HDRに融合される前にデモザイク処理される場合、デモザイク処理された橙色は、飽和されている赤色ピクセルデータおよび非飽和緑色/青色ピクセルデータから算出されるであろう。その結果、橙色セクションの色相は、正しくなく再現されるであろう。これらのアーチファクトを回避するために、方法101および装置201は、デモザイク処理に先立って、HDR融合を行う。
画像が、デモザイク処理ステップに先立って融合されるため、方法101および装置201は、放射照度の代わりに、ピクセル値を用いて作用する。放射輝度的に正しいHDR画像を生成するために、方法101および装置201は、これらが波長の関数として若干変化するため、ピクセル色毎に適切なビーム分割器透過率値を使用して、HE、ME、およびLEセンサの放射照度レベルを整合させる。方法101および装置201は、異なる値を使用して、色チャネルのそれぞれを整合させるが、便宜上、プロセスは、平均値を用いて説明される。ピクセル値は、カメラ応答曲線901を通して転換され、結果として生じる放射照度は、露光レベル比率(HE/MEに関しては平均12.2倍)によって調節され、本新しい放射照度値は、カメラ応答曲線901を通して新しいピクセル値に逆転換される。
図9は、HE、ME、およびLEセンサの放射照度レベルを整合させるための3ステップHDR変換プロセスを示す。HDR変換プロセスは、ピクセル比率曲線に到達するために全てのHEピクセル値(例えば、1から4096)に対して行われてもよく、これは、同一放射照度に関して各MEピクセル値をHEセンサ上の対応するピクセル値に転換するためのスケーリング係数を与える。実際は、別個のピクセル比率曲線が、Bayerパターンにおいて色(R、G、B)毎に計算される。ピクセル値をHEおよびME画像間(またはMEおよびLE画像間)で比較するとき、単純乗算器が、使用されてもよい、またはピクセル比率曲線は、ルックアップテーブル(LUT)として使用され、4096未満のHEピクセル値をMEピクセル値に、またはその逆に転換してもよい。HEピクセル値が、飽和されると、ピクセル比率曲線は、そこで得られる最後の値(約8)を使用して拡張される。
カメラ応答曲線901は、ブラケット露光のセットを取り、露光とピクセル値(線形ドメイン内のスケール定数内)を関連させる単調増加関数を求めることによって測定されることができる。
図9は、未加工カメラデータから算出された曲線を示すが、線形最良適合から算出された曲線もまた、使用され得る。
図9は、カメラが場面放射照度をピクセル値に転換する方法を示す、カメラ応答曲線を与える。所与のHE値に関してとられるべきMEピクセル値を算出するために、HEピクセル値(1)は、最初に、場面放射照度(2)に転換され、これは、次に、12.2の我々のHE/ME減衰比率によって除算される。本新しい放射照度値(3)は、カメラ応答曲線を通して予期されるMEピクセル値(4)に転換される。本グラフは、略線形であるが、有意な平滑化または線形適合の適用を伴わずに未加工データから算出されるため、それほど完璧ではない。3つの画像の放射照度レベルが整合されると、融合139は、行われてもよい。
融合139の例証的実施例では、2つの位置合わせされたLDR画像(1つは、高露光画像IHEであって、もう1つは、中間露光画像IMEである)が、HDR画像IHDRに融合139されることになる。融合139は、高露光画像IHE内の情報を用いて開始され、次いで、必要に応じて、次により暗い露光画像IMEからのデータ内で組み合わせられる。上記で説明された遷移アーチファクトを低減させるために、方法101および装置201は、N(x,y)として示されるように、周囲(2k+1)×(2k+1)ピクセル近傍601からの情報を考慮することによって、各ピクセル場所(x,y)に作用する。
図6に図示されるようないくつかの実施形態では、方法101および装置201は、5×5ピクセル近傍601(k=2)を使用して、その値がある特定の量、例えば、最大ピクセル値の90%(例えば、センサ213が12ビットCMOSセンサである場合、4096)を上回る場合、ピクセルが飽和されていると定義する。
ある実施形態では、融合139は、センサ213上のピクセル615およびその近傍601(図6参照)に関する4つのケース毎に、特定の動作を含む。
ケース1:ピクセル615は、飽和されておらず、近傍601も、飽和されているピクセルを有しておらず、したがって、ピクセル値は、そのまま使用される。
ケース2:ピクセル615は、飽和されていないが、近傍601が、1つまたはそれを上回る飽和されているピクセルを有し、したがって、近傍内に存在する飽和の量に応じて、IHE(x,y)におけるピクセル値と次により暗い露光IME(x,y)におけるものとの間で混成する。
ケース3:ピクセル615は、飽和されているが、近傍601は、1つまたはそれを上回る飽和されていないピクセルを有し、これは、IHE(x,y)に関する値をより良好に推定するために使用され得る。すなわち、近傍内の飽和されていないピクセルと中心ピクセルとの間のME画像内のピクセル値の比率を計算し、ME比率の本マップを使用して、考慮下の飽和されているピクセルの実際の値を推定する。
ケース4:ピクセル615は、飽和されており、近傍601内の全てのピクセルも、飽和されており、したがって、高露光画像からの有効情報は存在せず、ME画像を使用して、IHDR(x,y)=IME(x,y)を設定する。
3つのLDR画像が存在するとき、上記のプロセスは、単に、2回目の反復において繰り返され、IHDRとIHEおよびILEとIMEを置換する。このように、データは、最低露光に向かって進みながら、より高い露光から融合139され、より高い露光データが飽和またはその近傍にあるとき、データは、より低い露光からのみ使用される。
これは、全3つの色チャネルを考慮して、図9のものに類似するカメラ応答曲線を使用して、デモザイク処理145され、ピクセル値から放射照度に転換され得る、HDR画像を生成する。最終HDRフルカラー画像は、次いで、トーンマッピングされてもよい(例えば、FDRTools、HDR Expose、Photomatix等の商業用ソフトウェアパッケージを用いて)
装置201は、カメラ本体内に搭載される3つのSilicon Imaging SI−1920HD最高仕様動画撮影用CMOSセンサを使用して実装されてもよい。それらのセンサは、標準的Bayerカラーフィルタアレイとともに、1920×1080ピクセル(5平方ミクロン)を有し、約10絞り値(雑音を除外する)のダイナミックレンジを測定することができる。センサは、カメラを小ピンホール光源に照準し、HEセンサを下方に係止し、次いで、止めねじを調節し、MEおよびLEセンサを整合させることによって整合される。
カメラ本体は、Hasselbladレンズマウントを含み、高性能相互交換可能商業用レンズの使用を可能にしてもよい。ビーム分割器に関して、装置は、Edmund Opticsによって販売されているもの等の皮膜されていないペンシルビーム分割器[製品番号NT39−482]を含んでもよい。装置201は、方法101のステップを行ってもよい。好ましくは、複数の画像センサは、少なくとも高露光(HE)センサ213と、中間露光(ME)センサ211とを含み、融合は、飽和されていないHEピクセル値501と、飽和されているピクセル値に対応するMEピクセル値501との使用を含む。複数のセンサはさらに、低露光(LE)センサ261を含んでもよく、方法101は、HEセンサ213およびMEセンサ211の両方から生じる飽和されているピクセル値501を識別するステップを含んでもよい。ピクセル値は、パイプラインを通してストリームされるため、飽和されているピクセル値501の少なくともいくつかは、処理デバイス219において複数の画像センサの全てのピクセルからの値を受信する前に識別されることが可能であって、方法101は、依然として、後に着信するピクセル値501をカーネル演算413を通してストリーム129させながら、シーケンスの一部の融合139を開始するステップを含んでもよい。
ビーム分割器、レンズ、またはフィルタ等の光学構成要素は、「スペクトル的に中立」であると標識される場合でも、伝送される光の量に若干の波長依存差を有し得ることを理解されたい。すなわち、各画像センサは、その独自の「色補正空間」を有すると言え、それによって、そのセンサからの画像は、その色補正空間から真の色に補正される必要がある。光学システムは、較正されることができ(例えば、較正カードの写真を撮影することによって)、色補正行列が、画像センサ毎に、記憶されることができる。HDRビデオパイプラインは、次いで、ピクセル値を1つのセンサから別のセンサの色補正空間に向かって調節する反直感的ステップを行うことができ、これは、ある場合には、色を真の色から微調整することを伴い得る。これは、1つのセンサからのRGB値のベクトルを他のセンサの色補正行列の逆行列によって乗算することによって遂行されてもよい。第2のセンサに対する本色補正後、ストリームは、融合され、結果として生じるHDRビデオ信号は、真の色に色補正される(例えば、RGBベクトルを適用可能な色補正行列によって乗算することによって)。この色補正プロセスは、各画像センサのスペクトル差を考慮する。
図10は、HDRパイプラインが複数のセンサのそれぞれのスペクトル特性における差異を補正し得る、色補正プロセス1001を示す。センサ間の若干の波長依存差を補正するために、電子入力と電子出力との間の関係が、既知の入力を使用して実験的に測定されることができる。センサ毎に、補正係数を算出することによって、センサによって検出された情報は、さらなる処理に先立って補正されることができる。したがって、いくつかの実施形態では、パイプライン231は、色補正のためのモジュールを含む。色補正プロセスのステップは、パイプラインに沿った複数の場所において適用されてもよく、したがって、色補正は、FPGA上の異なる場所において特定のモジュールを介して実装されてもよい。併せて、それらのモジュールは、色補正プロセス1001を実装する、色補正モジュールと称され得る。
色補正プロセス1001は、2つのセンサからの画像を融合する前に、その色補正空間からの1つのセンサのデータを別のセンサの色補正空間に転換する。融合された画像データは、次いで、第3のセンサからの画像データと組み合わせられる前に、その第3のセンサの色補正空間に転換されることができる。プロセスは、所望に応じた数のセンサに関して繰り返されてもよい。全てのセンサの画像が、組み合わせられた後、最終の組み合わせられた画像は、デモザイク処理145されてもよく、次いで、真の色に色補正されてもよい。
色補正プロセス1001は、1つのセンサから次のセンサに色情報を保存するように、2つの画像が一度に融合される段階において、複数のセンサからの画像が融合されることを可能にする。例示的目的のために、図10では、HEセンサからのHEピクセル値は、MEセンサからのMEピクセル値と融合される。融合の結果は、次いで、LEセンサからのLEピクセル値と融合される。
色補正プロセス1001をガイドする基本原理は、最初に、暗画像を次の最明画像の色補正空間に転換し、次いで、2つの「非デモザイク処理」(またはカラーフィルタアレイ[CFA]Bayerパターン化)画像をともに融合することである。
色補正プロセス1001は、MEセンサ、LEセンサ、およびSEセンサを伴う装置201に関して、3つの一般的段階、すなわち、SE色補正空間(CCS)段階、ME色補正空間段階、およびLE色補正空間段階を含む。色補正プロセスは、最初に、SE色補正空間段階から開始し、これは、最初に、LEピクセル値をデモザイク処理1045するステップと、次いで、結果として生じるベクトルをME画像の色補正空間に変換1051するステップを含む。デモザイク処理プロセス1045は、ピクセル毎に、フルカラーRGBベクトル値をもたらす。
デモザイク処理1045された後、LE画像データが、次に、ME色補正空間に変換1045される。本目的は、LEピクセルの色(ここでは、RGBベクトルによって説明される)をMEアレイの色(MEアレイの色の不完全性の全てを伴う)に整合することである。変換1051を行うために、LE RGBベクトルは、色補正行列によって変換1051される。例えば、等式1−3は、色補正行列を使用して、それぞれ、HE、ME、およびLEセンサに関する色値を補正する方法を示す。等式1は、色補正行列を使用して、HEセンサの色値を補正する方法を示し、値A1−A9を含む、3×3行列係数は、ピクセル値を強化または弱化させるために選択された係数を表し、RGB行列(RLE、GLE、およびBLE)は、LEセンサからのデモザイク処理されたRGB出力信号を表す。ある場合には、3×3行列係数は、デモザイク処理された出力を期待(すなわち、いわゆる「真」)値に対して比較することによって導出されることができる。例えば、3×3行列係数は、デモザイク処理されたRGB出力値と基準色チャート(例えば、Macbethチャート)からの基準値との間の最小2乗多項式モデル化によって導出されることができる。同様に、等式2は、色補正行列を使用して、MEセンサの色値を補正する方法を示し、RGB行列(RME、GME、およびBME)は、MEセンサからのデモザイク処理されたRGB出力信号を表し、等式3は、色補正行列を使用して、SEセンサの色値を補正する方法を示し、RGB行列(RME、GME、およびBME)は、SEセンサからのデモザイク処理されたRGB出力値を表す。
等式1−[A]、すなわち、LEセンサのための色補正行列を使用してSEピクセル値を補正する。
Figure 0006947412
等式2−[B]、すなわち、MEセンサのための色補正行列を使用してMEピクセル値を補正する。
Figure 0006947412
等式3−[C]、すなわち、SEセンサに関する色補正行列を使用してSEピクセル値を補正する。
Figure 0006947412
画像を第1の色補正空間(CCS)から第2の色補正空間に転換するために、1つまたはそれを上回るセンサからの色補正行列が、使用されることができる。本プロセスは、色補正空間間の転換または色補正空間の較正と称され得る。第1の色補正空間または第2の色補正空間のいずれも、捕捉された画像の真の色を正確に反映させていない。第1および第2の色補正空間の両方とも、ずれを有し、それらのずれは、一般に、相互から異なる。したがって、各センサからのRGB値は、真の色として現れるために、それらのRGB値に関する一意の色補正行列によって乗算されなければならない。
本発明は、画像をLEセンサの色補正空間からMEセンサの色補正空間に転換するための方法1001を含み、以下の等式4に図示される。
等式4−LEピクセル値をLE色補正空間からME色補正空間に転換する。
Figure 0006947412
等式4では、LEセンサのピクセル値(R、G、B)は、LEセンサの補正行列[C]によって乗算され、次いで、MEセンサの補正行列[B]の逆行列によって乗算される。結果は、MEセンサの色補正空間内にある、ピクセル値(R、G、B)のセットとなる。
本発明の方法は、2つのセンサからの画像が、正確に組み合わせられる、または融合され得るように、第2のセンサの色補正空間と第1のセンサの色補正空間の整合を可能にする。2つのセンサからの画像をHDR画像の中に組み合わせることに先立って、第2の色補正空間の全てのずれを第1の色補正空間に適用するための方法は、これまで知られていない。複数のCFAセンサからのデータを組み合わせるための典型的方法は、画像を組み合わせることに先立って、各センサのデータを較正された色カードから測定された「真」値に色補正することに依拠する。これは、HDRシステムにおいて問題となり、より明るいセンサの画像は、飽和されている有意な部分を有し、その飽和されている部分は、実際には、組み合わせるとき、より暗いセンサの画像から利用されているはずであることが知られている。飽和されているピクセルに基づいて、色情報を有する画像を色補正することは、色を誤識別させるであろう。したがって、HDRシステムでは、画像を組み合わせることに先立って、より明るい画像(例えば、「真」色値)を色補正することは、色をモザイクパターン化画像から作成する際、飽和されているピクセルデータの使用のため、色が誤識別されることにつながるであろう。本理由から、我々は、以下を規定する。(1)より暗い画像は、その色情報をより明るい画像の色空間に整合するように変換され、(2)本変換されたより暗い画像は、より明るい画像と組み合わせられ、次いで、(3)最終の組み合わせられた画像は、「真」色値に色変換される。
本発明に提供される解決策は、より暗いセンサからのデータの[(a)デモザイク処理1045、(b)色補正1051、および(c)モザイク処理1057]ステップを行い、それによって、全てのデータが、より暗いセンサのデータとより明るいセンサのデータを融合するステップに先立って、その非デモザイク処理された状態に正確に戻されることを確実にすることによって、本飽和ピクセル色誤識別問題を回避する。
さらに、2つのセンサからの画像の融合に先立って、本発明は、2つのセンサの色補正空間を整合させる。本変換は、2つの画像(第1および第2の色補正空間センサから)が非デモザイク処理されたフォーマットでピクセル毎に正確に融合され得ることを確実にする。これは、特に、第2のセンサの色補正空間が「真の」色補正空間と異なることが既知であるとき、1つのセンサの色補正空間を第2のセンサの色補正空間に整合させるように変化させるというように、一見、反直感的であるように考えられ得る。しかしながら、これは、(1)より明るいセンサの色情報が融合に先立ってデモザイク処理されないことと、(2)画像の融合に先立って両センサからの色データがともに整合されることとを確実にする際に重要な特徴である。色補正プロセス1001は、それ自体が処理デバイス219上のパイプライン231内のカーネルとして実装され得る、行列を使用する。したがって、色補正プロセス1001は、それらがピクセル値を受信するにつれて、カーネルが適用されるため、HDRパイプラインワークフローと互換性がある。
LE情報が、LE色補正空間からME色補正空間に変換1051された後、変換された値は、モザイク処理1057される(すなわち、デモザイク処理プロセスが逆転される)。変換されたスカラーピクセル値は、ここでは、MEセンサによって検出されたBayerパターン化スカラーMEピクセル値に比較可能であり、プロセス1001は、MEおよびHE非デモザイク処理(すなわち、スカラー)センサデータの融合1061を含む。
ME色補正空間内の融合された非デモザイク処理画像は、次いで、デモザイク処理1067される。本デモザイク処理1064は、上記に説明されるデモザイク処理1045に類似するが、デモザイク処理プロセスを受けるCFAピクセル値は、ここでは、ME色補正空間と関連付けられる。デモザイク処理1067は、ME色空間内のRGBベクトルを生成する。それらのRGBベクトルは、HE色空間に変換1071される一方、また、色補正される([B][A]−1[RGB])。ME色補正行列は、等式2において上記されたデモザイク処理された色値を用いて決定され得る。色補正されたME情報は、ME色補正行列をSE色補正行列の逆行列によって乗算することによって、ME色補正空間からHE色補正空間に変換1071される。
ME情報が、ME色補正空間からHE色補正空間に変換1071された後、変換されたベクトルは、モザイク処理1075される(すなわち、デモザイク処理プロセスが、逆転される)。これは、変換されたME CFA Bayerパターン化ピクセル値が、HEセンサによって検出されたHEピクセル値と融合1079することを可能にする。色補正プロセス1001における本時点で、HEおよびMEセンサによって検出された変換された色情報は、ここで、HEセンサによって検出された色情報に整合するように較正される。本新しく融合された色値データセットは、ここでは、HE色補正空間205内の色値を表す。
図11は、高ダイナミックレンジ(HDR)ビデオと低ダイナミックレンジ(LDR)ビデオの組み合わせられたブロードキャストのための方法1301を図示する。方法1301は、HDRおよびLDRビデオのストリームを提供する。方法1301は、センサ165のアレイを使用して、一連の画像を表す情報を検出するステップ125と、情報を処理するステップ1309と、典型的には、1つのフレーム未満の検出と伝送との間の遅延を伴って、HDRおよびLDR表示のための情報をリアルタイムで伝送するステップ1321とを含む。
色処理後、パイプラインは、HDRビデオ信号を生成する。そのHDRビデオ信号は、次いで、トーンマッピングされ1313、LDRビデオ信号を生成する。トーンマッピングされた信号は、LDR信号として組み合わせられた信号内に含まれる。加えて、トーンマッピングの出力は、残留物を判定するための減算1315において使用される。
パイプラインは、リアルタイムで、LDR信号をHDR信号から減算する(HDR−LDR=残留物)、減算1315のためのモジュールを含むことができる。減算モジュール後のフローは、一対のストリーム、すなわち、LDRビデオ信号および残留信号である。好ましくは、色情報は全て、LDR信号内にある。
LDR信号または残留物のいずれかは、任意の好適な圧縮またはエンコーディング(例えば、MPEGエンコーディング)を受けてもよい。対のストリームは、8ビットLDR信号と、HDR表示を提供する、残留物とを含む。本デュアル信号は、通信ネットワークを経由してブロードキャストされ、実際、テレビネットワーク、セルラーネットワーク、またはインターネットを経由してブロードキャストされてもよい。信号を受信するデバイスは、そのデバイスの容量に従って、ビデオを表示する。LDRディスプレイデバイスは、8ビットLDR信号を「確認」し、ビデオを標準的ダイナミックレンジで表示するであろう。HDRディスプレイデバイスは、残留物を解凍し、デュアルストリームをHDR信号(例えば、12ビット、または、例えば、22ビット)の中に組み合わせ、ビデオを高ダイナミックレンジで表示するであろう。
したがって、方法1301および装置201は、リアルタイムHDRビデオ捕捉ならびに単一伝送におけるHDRおよびLDR出力の同時送達のために使用されてもよい。処理1309は、処理デバイス219からビデオ(ブロードキャスト)出力までのワークフローを含んでもよい。方法1301および装置201は、全て同型画像を単一レンズを通して得て、結果として生じるピクセル値をパイプラインを通してストリームさせ、融合されたHDRビデオ信号内の飽和されているピクセルに取って代わる、複数のセンサ等の本明細書に説明される特徴を使用して、リアルタイム処理および相補的HDR/LDR表示を提供する。方法101および装置201はそれぞれ、センサのアレイを使用して、ビデオ情報を捕捉し、そのビデオ情報をリアルタイムで処理し、HDRおよびLDR互換性フォーマットでビデオ情報をリアルタイムで伝送する。
特許、特許出願、特許刊行物、雑誌、書籍、論文、ウェブコンテンツ等の他の文書の参照および引用が、本開示全体を通して行なわれる。そのような文書は全て、あらゆる目的のために、参照することによって、全体として本明細書に組み込まれる。
均等物
本明細書に図示および説明されるものに加え、本発明およびその多くのさらなる実施形態の種々の修正が、本明細書に引用される科学および特許文献の参考文献を含む、本書の全内容から、当業者に明白となるであろう。本明細書における主題は、その種々の実施形態およびその均等物における本発明の実践に適合され得る、重要な情報、例示、および指針を含有する。

Claims (9)

  1. 高ダイナミックレンジ(HDR)および低ダイナミックレンジ(LDR)ディスプレイのためのビデオをストリームさせるための方法であって、前記方法は、
    フレーム独立ピクセル値をHDRビデオカメラ上の複数の画像センサから受信することであって、前記複数の画像センサは全て、単一レンズを通して画像を同時に捕捉する、ことと、
    パイプラインによって前記ピクセル値からHDR信号を生成することであって、前記パイプラインは
    飽和されているピクセル値を識別するカーネル演算と、
    前記ピクセル値を融合し、前記HDR信号を生成する融合演算と、
    を含む、ことと、
    前記HDR信号を処理し、LDR信号および残留信号を備える出力信号を生成することと、
    HDRおよびLDRディスプレイのための前記出力信号を伝送することと、
    を含む、方法。
  2. 前記HDR信号を処理することは、HDRビデオをトーンマッピングし、前記LDR信号を生成し、前記LDR信号を前記HDR信号から減算し、前記残留信号を生成することを含む、請求項1に記載の方法。
  3. MPEGエンコーダを使用して、LDRビデオを圧縮することをさらに含む、請求項2に記載の方法。
  4. 前記出力信号は、LDRディスプレイによって8ビットビデオとして表示可能であり、HDRディスプレイによってHDRビデオとして表示可能である、請求項1に記載の方法。
  5. 入射光を前記レンズを通して受信し、少なくとも1つのビーム分割器を介して、前記光を前記複数の画像センサ上に分割することをさらに含み、撮像レンズによって集められた前記光の少なくとも95%は、前記複数の画像センサによって捕捉される、請求項に記載の方法。
  6. 前記複数の画像センサは、少なくとも高露光(HE)センサと、中間露光(ME)センサとを含み、シーケンスの融合は、飽和されていないHEピクセル値および前記飽和されているピクセル値に対応するMEピクセル値の使用を含む、請求項に記載の方法。
  7. 前記カーネル演算を通して、後に着信するピクセル値を依然としてストリームさせながら、前記ピクセル値の一部の融合を開始することをさらに含む、請求項に記載の方法。
  8. 前記パイプラインは、フィールドプログラマブルゲートアレイおよび特定用途向け集積回路から成る群から選択された処理デバイスによって提供され、さらに、前記画像センサのそれぞれは、カラーフィルタアレイを備え、前記方法はさらに、前記融合前記HDR信号をデモザイク処理することを含む、請求項に記載の方法。
  9. 複数の画像センサは、光レベル以外は光学的に同じ画像を捕捉する、請求項に記載の方法。
JP2018561189A 2016-02-12 2017-02-10 組み合わせられたhdr/ldrビデオストリーミング Active JP6947412B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662294820P 2016-02-12 2016-02-12
US62/294,820 2016-02-12
US15/169,012 2016-05-31
US15/169,012 US10257394B2 (en) 2016-02-12 2016-05-31 Combined HDR/LDR video streaming
PCT/US2017/017400 WO2017139599A1 (en) 2016-02-12 2017-02-10 Combined hdr/ldr video streaming

Publications (2)

Publication Number Publication Date
JP2019506109A JP2019506109A (ja) 2019-02-28
JP6947412B2 true JP6947412B2 (ja) 2021-10-13

Family

ID=59559836

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018561187A Active JP6928388B2 (ja) 2016-02-12 2017-02-08 光学システム内の複数のセンサにわたる色整合
JP2018561189A Active JP6947412B2 (ja) 2016-02-12 2017-02-10 組み合わせられたhdr/ldrビデオストリーミング

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018561187A Active JP6928388B2 (ja) 2016-02-12 2017-02-08 光学システム内の複数のセンサにわたる色整合

Country Status (6)

Country Link
US (13) US10257394B2 (ja)
EP (2) EP3414539B1 (ja)
JP (2) JP6928388B2 (ja)
AU (1) AU2017217929B2 (ja)
CA (2) CA3016421A1 (ja)
WO (2) WO2017139363A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10122928B2 (en) 2015-09-09 2018-11-06 Red.Com, Llc Motion video output for multiple displays
US9871965B2 (en) * 2016-02-03 2018-01-16 Texas Instruments Incorporated Image processing for wide dynamic range (WDR) sensor data
US10257394B2 (en) 2016-02-12 2019-04-09 Contrast, Inc. Combined HDR/LDR video streaming
US10264196B2 (en) 2016-02-12 2019-04-16 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
CA3033242A1 (en) 2016-08-09 2018-02-15 Contrast, Inc. Real-time hdr video for vehicle control
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera
CN108038835B (zh) * 2017-11-27 2021-07-13 杭州电子科技大学 显著性驱动的图像重要区域马赛克自动生成方法
US10951888B2 (en) * 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
EP4274250A3 (en) 2018-06-07 2024-01-03 Dolby Laboratories Licensing Corporation Hdr image generation from single-shot hdr color image sensors
US11423514B2 (en) 2018-08-14 2022-08-23 Contrast, Inc. Image processing noise reduction
US11303932B2 (en) 2018-08-14 2022-04-12 Contrast, Inc. Image compression
WO2021026063A1 (en) 2019-08-02 2021-02-11 Contrast, Inc. Code-independent graph technology
CN110636198A (zh) * 2019-10-15 2019-12-31 重庆金山医疗技术研究院有限公司 一种成像方法及装置、内窥镜设备
US10819915B1 (en) 2019-10-17 2020-10-27 Horiba Instruments Incorporated Apparatus and method generating high dynamic range video
US11333829B2 (en) * 2019-11-22 2022-05-17 Karl Storz Imaging, Inc. Medical imaging device with split image on common image sensor
CN114205487A (zh) * 2020-08-28 2022-03-18 超威半导体公司 内容自适应镜头阴影校正方法和装置
US11587213B1 (en) * 2021-11-05 2023-02-21 GM Cruise Holdings LLC. Preserving dynamic range in images
DE102022114615A1 (de) 2022-06-10 2023-12-21 Carl Zeiss Ag Digitales fernoptisches Gerät, Verfahren zum Betrieb eines digitalen fernoptischen Geräts sowie Kamerasystem

Family Cites Families (340)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956025A (ja) 1946-12-14 1950-01-23
US2642487A (en) 1947-02-28 1953-06-16 Rca Corp Component color separator
US2971051A (en) 1958-12-08 1961-02-07 Frank G Back Varifocal, long back-focal lens for color television
NL254460A (ja) 1960-08-02
US3381084A (en) 1964-06-01 1968-04-30 Mannie Feigenbaum Color television camera optical system
US3474451A (en) 1967-04-10 1969-10-21 William E Abel Loop antenna circuit coupling multiple transmitters
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
US3653748A (en) 1968-12-26 1972-04-04 Int Video Corp Color divider for color video cameras
US3659918A (en) 1970-03-24 1972-05-02 Philips Corp Color separating prism system
US3668304A (en) 1970-06-29 1972-06-06 Bell Telephone Labor Inc Single pickup tube color television camera
GB1377627A (en) 1971-09-01 1974-12-18 Rank Organisation Ltd Beam splitting prisms
US3720146A (en) 1972-03-15 1973-03-13 Spectral Data Corp Multispectral camera
US3945034A (en) 1973-04-26 1976-03-16 Canon Kabushiki Kaisha Optical system for a color television camera
NL7400148A (nl) 1974-01-07 1975-07-09 Philips Nv Kleurensplitsend prismastelsel met enige opper- en die aan dichroitische lagen grenzen.
US4072405A (en) 1974-06-13 1978-02-07 Tokina Optical Co., Ltd. Prism system for use in tricolor separation
NL7511838A (nl) 1975-10-09 1977-04-13 Philips Nv Kleurscheidende prismacombinatie.
US4134683A (en) 1976-03-05 1979-01-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multispectral imaging and analysis system
JPS599888B2 (ja) 1977-01-27 1984-03-06 ソニー株式会社 色分解光学装置
JPS53124028A (en) 1977-04-05 1978-10-30 Sony Corp Solid state image pickup device
US4395234A (en) 1977-09-16 1983-07-26 Farrand Optical Co., Inc. Optical scanning probe with multiple outputs
US4268119A (en) 1979-01-22 1981-05-19 Bell & Howell Company Color-separating optical system
SE457754B (sv) 1981-07-01 1989-01-23 Barr & Stroud Ltd Icke fokuserande teleskop
US4396188A (en) 1981-07-15 1983-08-02 Dreissigacker Peter D Stationary rowing unit
US4584606A (en) 1983-09-01 1986-04-22 Olympus Optical Co., Ltd. Image pickup means
US4555163A (en) 1983-09-22 1985-11-26 Rca Corporation Complementary color splitting filters used in a color camera
JPS60213178A (ja) 1984-04-06 1985-10-25 Olympus Optical Co Ltd 撮像装置
SE455646B (sv) 1984-10-22 1988-07-25 Radians Innova Ab Fluorescensanordning
US4743011A (en) 1986-07-07 1988-05-10 Calvin Coffey Exercise rowing machine
US4916529A (en) 1986-11-14 1990-04-10 Canon Kabushiki Kaisha Imaging device utilizing solid-state image sensors combined with a beam-splitting prism
JPS63160489A (ja) 1986-12-24 1988-07-04 Mitsubishi Electric Corp 固体撮像装置
US5093563A (en) 1987-02-05 1992-03-03 Hughes Aircraft Company Electronically phased detector arrays for optical imaging
JPS6468190A (en) 1987-09-09 1989-03-14 Victor Company Of Japan Three-color separation optical system
US4805037A (en) 1987-10-15 1989-02-14 Eastman Kodak Company Image recording system
US5155623A (en) 1988-09-23 1992-10-13 At&T Bell Laboratories Arrangement for imaging multiple arrays of light beams
US5134468A (en) 1989-02-21 1992-07-28 Canon Kabushiki Kaisha Optical apparatus for varying the lengths of optical path of color component light beams
US5194959A (en) 1989-12-21 1993-03-16 Ricoh Company, Ltd. and Nippon Telegraph and Telephone Corporation Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts
US5024530A (en) 1989-12-26 1991-06-18 Lockheed Missiles & Space Company, Inc. Multichannel telecentric filtered imager
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5092581A (en) 1990-07-02 1992-03-03 Michael Koz Rowing exercise apparatus
JP2510768B2 (ja) 1990-07-05 1996-06-26 学校法人近畿大学 高速流速場測定用ビデオ撮影装置
DE4035144A1 (de) 1990-11-06 1992-05-07 Bio Photonics Gmbh Optisches strahlenteilersystem zur erzeugung einer mehrzahl von reellen abbildungen
DE4035145A1 (de) 1990-11-06 1992-05-07 Bio Photonics Gmbh Optisches system zur aufteilung einer reellen abbildung
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
JPH05134192A (ja) 1991-05-02 1993-05-28 Hughes Aircraft Co 多数の同時機能を有する光学系
JP2777847B2 (ja) 1991-08-30 1998-07-23 富士写真フイルム株式会社 撮像装置および方法ならびに画像処理装置および方法
US5153621A (en) 1991-10-31 1992-10-06 Nview Corporation Optical system for projecting multiple images in adjoining relation without illuminance discontinuities
US5355165A (en) 1992-08-06 1994-10-11 Princeton Scientific Instruments, Inc. Very high frame rate CCD imager
US5275518A (en) 1993-01-29 1994-01-04 C. D. Sparling Company Hand rail fastener
JPH06335006A (ja) 1993-05-19 1994-12-02 Matsushita Electric Ind Co Ltd 固体撮像装置
JP3385432B2 (ja) 1993-09-29 2003-03-10 株式会社ニュークリエイション 検査装置
US5801773A (en) 1993-10-29 1998-09-01 Canon Kabushiki Kaisha Image data processing apparatus for processing combined image signals in order to extend dynamic range
GB2284273B (en) 1993-11-29 1997-01-08 Hadland Photonics Limited Electronic high speed camera incorporating a beam splitter
US5707322A (en) 1994-02-28 1998-01-13 Concept Ii, Inc. Exercise machine
US5644432A (en) 1995-01-17 1997-07-01 Ibm Corporation Three prism color separator
US5929908A (en) 1995-02-03 1999-07-27 Canon Kabushiki Kaisha Image sensing apparatus which performs dynamic range expansion and image sensing method for dynamic range expansion
JPH08220585A (ja) 1995-02-13 1996-08-30 Nikon Corp 電子カメラ
JPH08233658A (ja) 1995-02-24 1996-09-13 Olympus Optical Co Ltd 分光装置及び分光画像記録装置
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US7426437B2 (en) 1997-10-22 2008-09-16 Intelligent Technologies International, Inc. Accident avoidance systems and methods
US5642191A (en) 1995-07-20 1997-06-24 Lockheed Missiles & Space Company, Inc. Multi-channel imaging spectrophotometer
US6111702A (en) 1995-11-30 2000-08-29 Lucent Technologies Inc. Panoramic viewing system with offset virtual optical centers
US5881180A (en) 1996-02-08 1999-03-09 Sony Corporation Method and apparatus for the reduction of blocking effects in images
US5905490A (en) 1996-02-26 1999-05-18 Seiko Epson Corporation Generating color-correction look-up-table addresses by multi-level half-toning
US6011876A (en) 1997-02-26 2000-01-04 Raytheon Company System and method for converting an incoming image into electronic form
JPH10269616A (ja) 1997-03-19 1998-10-09 Fujitsu Ltd 光ピックアップ
US6058215A (en) 1997-04-30 2000-05-02 Ricoh Company, Ltd. Reversible DCT for lossless-lossy compression
US6356296B1 (en) 1997-05-08 2002-03-12 Behere Corporation Method and apparatus for implementing a panoptic camera system
DE69841107D1 (de) 1997-07-12 2009-10-08 Roper Ind Inc Multispektraler zweidimensionaler bildgebeuder spekteometer
US5900942A (en) 1997-09-26 1999-05-04 The United States Of America As Represented By Administrator Of National Aeronautics And Space Administration Multi spectral imaging system
JP3808610B2 (ja) 1997-10-21 2006-08-16 東芝テリー株式会社 撮像装置
JP2000019407A (ja) 1998-07-06 2000-01-21 Olympus Optical Co Ltd 結像光学系
WO2000003357A1 (en) 1998-07-08 2000-01-20 Ppt Vision, Inc. Identifying and handling device tilt in a three-dimensional machine-vision image
US7446774B1 (en) * 1998-11-09 2008-11-04 Broadcom Corporation Video and graphics system with an integrated system bridge controller
US6614478B1 (en) 1999-04-30 2003-09-02 Foveon, Inc. Color separation prisms having solid-state imagers mounted thereon and camera employing same
JP2000338313A (ja) 1999-05-26 2000-12-08 Sony Corp 色分解プリズム
KR100363826B1 (ko) 1999-06-07 2002-12-06 히다치덴시 가부시키가이샤 넓은 다이내믹레인지의 영상신호를 생성하는텔레비젼신호처리장치와 그 신호처리장치를 가지는텔레비젼카메라 및 텔레비젼신호처리방법
US6243143B1 (en) * 1999-09-21 2001-06-05 Media 100 Inc. Effecting video transitions between video streams
US6429016B1 (en) 1999-10-01 2002-08-06 Isis Pharmaceuticals, Inc. System and method for sample positioning in a robotic system
JP2001136434A (ja) 1999-11-09 2001-05-18 Ricoh Co Ltd 撮像装置
US6215597B1 (en) 1999-11-17 2001-04-10 Duncan Technologies, Inc. Apparatus for forming a plurality of subimages having different characteristics
US20010055034A1 (en) 2000-02-02 2001-12-27 Goertzen Kenbe D. System and method for optimizing image resolution using pixelated imaging devices
US7084905B1 (en) 2000-02-23 2006-08-01 The Trustees Of Columbia University In The City Of New York Method and apparatus for obtaining high dynamic range images
US6674487B1 (en) 2000-03-31 2004-01-06 Intel Corporation Controlling hue using a saturation control circuit
US6633683B1 (en) 2000-06-26 2003-10-14 Miranda Technologies Inc. Apparatus and method for adaptively reducing noise in a noisy input image signal
US6646716B1 (en) 2000-07-27 2003-11-11 Eastman Kodak Company Method and apparatus for printing multiple simultaneous images onto a photosensitive media
US8719326B2 (en) 2003-08-18 2014-05-06 S.F. Ip Properties 14 Llc Adaptive data transformation engine
JP2002165108A (ja) 2000-11-28 2002-06-07 Fuji Photo Film Co Ltd 画像取得装置
US6937770B1 (en) 2000-12-28 2005-08-30 Emc Corporation Adaptive bit rate control for rate reduction of MPEG coded video
WO2002085000A1 (en) 2001-04-13 2002-10-24 The Trustees Of Columbia University In The City Of New York Method and apparatus for recording a sequence of images using a moving optical element
JP4734768B2 (ja) 2001-06-04 2011-07-27 ソニー株式会社 撮影装置および方法、記録媒体、並びにプログラム
US6609795B2 (en) 2001-06-11 2003-08-26 3M Innovative Properties Company Polarizing beam splitter
US6856466B2 (en) 2001-07-05 2005-02-15 Science & Engineering Associates, Inc. Multiple imaging system
JP2003035881A (ja) 2001-07-25 2003-02-07 Minolta Co Ltd 画像表示装置
US20040125228A1 (en) 2001-07-25 2004-07-01 Robert Dougherty Apparatus and method for determining the range of remote objects
US20030048493A1 (en) 2001-09-10 2003-03-13 Pontifex Brian Decoursey Two sensor quantitative low-light color camera
US6882685B2 (en) 2001-09-18 2005-04-19 Microsoft Corporation Block transform and quantization for image and video coding
US20030072011A1 (en) 2001-10-09 2003-04-17 Shirley Lyle G. Method and apparatus for combining views in three-dimensional surface profiling
US7049597B2 (en) 2001-12-21 2006-05-23 Andrew Bodkin Multi-mode optical imager
US7302104B2 (en) 2001-12-28 2007-11-27 Ricoh Co., Ltd. Smoothing tile boundaries of images encoded and decoded by JPEG 2000
US7238378B2 (en) * 2002-02-08 2007-07-03 Novozymes A/S Phytase variants
US6954580B2 (en) 2002-03-01 2005-10-11 Jds Uniphase Corporation Optical receiver with high dynamic range
AU2003218158A1 (en) 2002-03-14 2003-09-29 Science And Engineering Associates, Inc. Multiple imaging system and method for designing same
US9428186B2 (en) 2002-04-09 2016-08-30 Intelligent Technologies International, Inc. Exterior monitoring for vehicles
US9007197B2 (en) 2002-05-20 2015-04-14 Intelligent Technologies International, Inc. Vehicular anticipatory sensor system
JP4818609B2 (ja) 2002-08-21 2011-11-16 ジェンテックス コーポレイション 外部車両照明の自動制御のための画像取得及び処理方法
EP1395062A1 (en) 2002-09-02 2004-03-03 Thomson Licensing S.A. Color image pickup device
US9446305B2 (en) * 2002-12-10 2016-09-20 Sony Interactive Entertainment America Llc System and method for improving the graphics performance of hosted applications
US7307787B2 (en) 2002-12-20 2007-12-11 Fuji Xerox Co., Ltd. Beam splitting prism, method of manufacturing beam splitting prism, and all-optical switching device
US20070182844A1 (en) 2003-03-09 2007-08-09 Latia Imaging Pty Ltd Optical system for producing differently focused images
US6801719B1 (en) 2003-03-14 2004-10-05 Eastman Kodak Company Camera using beam splitter with micro-lens image amplification
US7336299B2 (en) 2003-07-03 2008-02-26 Physical Optics Corporation Panoramic video system with real-time distortion-free imaging
US7535647B1 (en) 2003-08-29 2009-05-19 Otten Iii Leonard John Beam splitters for, for instance, high efficiency spectral imagers
EP1697009A4 (en) 2003-09-15 2009-03-04 Matthew Duncan Roach SIMULATION RAMEUR
JP2005117524A (ja) 2003-10-10 2005-04-28 Canon Inc 画像処理システム
US20050117799A1 (en) 2003-12-01 2005-06-02 Chiou-Shann Fuh Method and apparatus for transforming a high dynamic range image into a low dynamic range image
US20060001761A1 (en) 2003-12-23 2006-01-05 Tessera, Inc. Hermetically sealed image sensor module and method of fabricating same
US20050151860A1 (en) 2004-01-08 2005-07-14 Silverstein D. A. Image sensing device and method
US7308159B2 (en) 2004-01-16 2007-12-11 Enuclia Semiconductor, Inc. Image processing system and method with dynamically controlled pixel processing
US8872914B2 (en) 2004-02-04 2014-10-28 Acushnet Company One camera stereo system
US20050198482A1 (en) 2004-03-02 2005-09-08 Altek Corporation Central processing unit having a micro-code engine
JP4223420B2 (ja) 2004-03-05 2009-02-12 メガビジョン株式会社 撮影装置
US20050219659A1 (en) 2004-03-31 2005-10-06 Shuxue Quan Reproduction of alternative forms of light from an object using digital imaging system
JP4594688B2 (ja) 2004-06-29 2010-12-08 オリンパス株式会社 画像符号化処理方法、画像復号化処理方法、動画圧縮処理方法、動画伸張処理方法、画像符号化処理プログラム、画像符号化装置、画像復号化装置、画像符号化/復号化システム、拡張画像圧縮伸張処理システム
US7483486B2 (en) * 2004-07-02 2009-01-27 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and apparatus for encoding high dynamic range video
US7283307B2 (en) 2004-07-07 2007-10-16 Oasys Technology, Llc Common aperture vision system
JP4059233B2 (ja) 2004-07-23 2008-03-12 セイコーエプソン株式会社 画像表示装置およびプロジェクタ
JP4576528B2 (ja) * 2004-07-28 2010-11-10 オプテックス株式会社 防犯用センサ装置
US7397509B2 (en) 2004-08-27 2008-07-08 Micron Technology, Inc. High dynamic range imager with a rolling shutter
US7777199B2 (en) 2004-09-17 2010-08-17 Wichita State University System and method for capturing image sequences at ultra-high framing rates
US7138619B1 (en) 2004-09-28 2006-11-21 Rockwell Collins, Inc. Method and apparatus for coincident viewing at a plurality of wavelengths
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
WO2006062987A2 (en) 2004-12-09 2006-06-15 Inneroptic Technology, Inc. Apparatus, system and method for optically analyzing substrate
JP4985394B2 (ja) 2005-03-15 2012-07-25 オムロン株式会社 画像処理装置および方法、プログラム、並びに記録媒体
CA2511220C (en) 2005-03-21 2012-08-14 Sunnybrook Technologies Inc. Multiple exposure methods and apparatus for electronic cameras
JP4766302B2 (ja) 2005-03-22 2011-09-07 オムロン株式会社 画像処理装置および方法、記録媒体、並びにプログラム
US20060221209A1 (en) * 2005-03-29 2006-10-05 Mcguire Morgan Apparatus and method for acquiring and combining images of a scene with multiple optical characteristics at multiple resolutions
US20060249652A1 (en) 2005-05-03 2006-11-09 Kyle Schleifer Methods and systems for pixilation processing of precision, high-speed scanning
US7387391B2 (en) 2005-05-20 2008-06-17 3M Innovative Properties Company Apparatus and method for mounting imagers on stress-sensitive polarizing beam splitters
US7454136B2 (en) 2005-07-28 2008-11-18 Mitsubishi Electric Research Laboratories, Inc. Method and apparatus for acquiring HDR flash images
JP4218670B2 (ja) 2005-09-27 2009-02-04 オムロン株式会社 前方撮影装置
US7471451B2 (en) 2005-10-14 2008-12-30 Flir Systems, Inc. Multiple field of view optical system
JP4687492B2 (ja) 2006-02-14 2011-05-25 株式会社ニコン カメラ、撮像方法、露出演算装置およびプログラム
US20070189750A1 (en) 2006-02-16 2007-08-16 Sony Corporation Method of and apparatus for simultaneously capturing and generating multiple blurred images
US8014445B2 (en) 2006-02-24 2011-09-06 Sharp Laboratories Of America, Inc. Methods and systems for high dynamic range video coding
JP2007281816A (ja) 2006-04-05 2007-10-25 Shimadzu Corp カメラ装置
JP4469956B2 (ja) 2006-04-26 2010-06-02 独立行政法人産業技術総合研究所 多焦点撮像装置
US8880571B2 (en) 2006-05-05 2014-11-04 Microsoft Corporation High dynamic range data format conversions for digital media
US8226816B2 (en) * 2006-05-24 2012-07-24 West Virginia University Method of producing synthetic pitch
US20080013051A1 (en) 2006-07-14 2008-01-17 3M Innovative Properties Company Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
US7667762B2 (en) 2006-08-01 2010-02-23 Lifesize Communications, Inc. Dual sensor video camera
US7903888B2 (en) 2006-08-08 2011-03-08 Canon Kabushiki Kaisha Image encoding apparatus and image decoding apparatus
KR100843087B1 (ko) 2006-09-06 2008-07-02 삼성전자주식회사 영상 생성 장치 및 방법
US7551359B2 (en) 2006-09-14 2009-06-23 3M Innovative Properties Company Beam splitter apparatus and system
TW200820123A (en) 2006-10-20 2008-05-01 Primax Electronics Ltd Method and system of generating high dynamic range image corresponding to specific scene
KR20080038929A (ko) 2006-10-31 2008-05-07 삼성전기주식회사 적외선 차단막 일체형 렌즈 및 이를 이용한 카메라 모듈
KR100834763B1 (ko) 2006-11-14 2008-06-05 삼성전자주식회사 동적 촬영 대역의 확장을 위한 이미지 센서 및 화소에수광된 광량을 측정하는 방법
US7714998B2 (en) 2006-11-28 2010-05-11 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US7719674B2 (en) 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
US8665942B2 (en) * 2007-01-23 2014-03-04 Sharp Laboratories Of America, Inc. Methods and systems for inter-layer image prediction signaling
US20080198235A1 (en) 2007-02-16 2008-08-21 Shou-Lung Chen High dynamic range image recorder
US20080198266A1 (en) * 2007-02-20 2008-08-21 Seiko Epson Corporation Video output device, video output method, video output program, video processing system, video processing device, video processing method, and video processing program
US8323047B2 (en) 2007-03-16 2012-12-04 Allied Precision Industries, Inc. Cordset assembly
US7903900B2 (en) 2007-03-30 2011-03-08 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Low complexity color de-noising filter
CA2729935A1 (en) 2007-05-11 2008-11-20 Michael D'eredita Simulated rowing machine
US8207931B2 (en) 2007-05-31 2012-06-26 Hong Kong Applied Science and Technology Research Institute Company Limited Method of displaying a low dynamic range image in a high dynamic range
US8331438B2 (en) 2007-06-05 2012-12-11 Microsoft Corporation Adaptive selection of picture-level quantization parameters for predicted video pictures
JP5115792B2 (ja) 2007-07-04 2013-01-09 オムロン株式会社 画像処理装置および方法、並びに、プログラム
CN101344706B (zh) 2007-07-11 2010-09-15 宏达国际电子股份有限公司 可携式电子装置及可携式电子装置的照相模块
US8022994B2 (en) * 2007-08-31 2011-09-20 Omnivision Technologies, Inc. Image sensor with high dynamic range in down-sampling mode
DE102007046210A1 (de) 2007-09-27 2009-04-02 Carl Zeiss Meditec Ag Anordnung und Verfahren zur Erzeugung von Bildern mit erweiterter Dynamik
KR101385961B1 (ko) 2007-12-21 2014-04-16 삼성전자주식회사 영상신호의 색 노이즈 제거 장치 및 방법
US8723961B2 (en) * 2008-02-26 2014-05-13 Aptina Imaging Corporation Apparatus and method for forming and displaying high dynamic range (HDR) images
US7961398B2 (en) 2008-03-05 2011-06-14 Contrast Optical Design & Engineering, Inc. Multiple image camera and lens system
EP2265993B8 (en) 2008-03-28 2021-07-07 Contrast, Inc. Whole beam image splitting system
US8751154B2 (en) 2008-04-24 2014-06-10 GM Global Technology Operations LLC Enhanced clear path detection in the presence of traffic infrastructure indicator
US8035711B2 (en) * 2008-05-22 2011-10-11 Panavision Imaging, Llc Sub-pixel array optical sensor
WO2009153836A1 (en) * 2008-06-19 2009-12-23 Panasonic Corporation Method and apparatus for motion blur and ghosting prevention in imaging system
US8843938B2 (en) 2008-07-02 2014-09-23 International Business Machines Corporation Methods, systems, and computer program products for asynchronous resumption of a dataflow
JP5132517B2 (ja) 2008-10-22 2013-01-30 キヤノン株式会社 画像処理装置および画像処理方法
US7973940B2 (en) 2008-12-11 2011-07-05 Kowa Company Ltd. Optical object measurement apparatus
US20100172409A1 (en) 2009-01-06 2010-07-08 Qualcom Incorporated Low-complexity transforms for data compression and decompression
AU2010221241A1 (en) * 2009-03-04 2011-10-27 Paul A. Wagner Temporally aligned exposure bracketing for high dynamic range imaging
BRPI1009443B1 (pt) * 2009-03-13 2021-08-24 Dolby Laboratories Licensing Corporation Método de geração de parâmetros de mapeamento de tons inverso, método de compactação de dados de vídeo e método para geração de um fluxo de bits de saída a partir de um fluxo de bits de entrada
US9110849B2 (en) 2009-04-15 2015-08-18 Qualcomm Incorporated Computing even-sized discrete cosine transforms
WO2010123923A1 (en) 2009-04-23 2010-10-28 Zoran Corporation Multiple exposure high dynamic range image capture
US20110028278A1 (en) 2009-06-09 2011-02-03 Roach Matthew D Dynamic Rowing Machine
JP5458707B2 (ja) * 2009-07-08 2014-04-02 日立金属株式会社 ケーブル
US7898837B2 (en) * 2009-07-22 2011-03-01 Texas Instruments Incorporated F-SRAM power-off operation
WO2011014207A1 (en) 2009-07-31 2011-02-03 University Of Utah Research Foundation Beam splitter module
EP2476021B1 (en) 2009-09-10 2019-11-20 Contrast, Inc. Whole beam image splitting system
US8606009B2 (en) 2010-02-04 2013-12-10 Microsoft Corporation High dynamic range image generation and rendering
US8340442B1 (en) * 2010-02-12 2012-12-25 Pacific Data Images Llc Lossy compression of high-dynamic range image files
EP2539197B1 (en) 2010-02-26 2020-12-16 Gentex Corporation Automatic vehicle equipment monitoring, warning, and control system
JP2013521576A (ja) 2010-02-28 2013-06-10 オスターハウト グループ インコーポレイテッド 対話式ヘッド取付け型アイピース上での地域広告コンテンツ
US9754629B2 (en) 2010-03-03 2017-09-05 Koninklijke Philips N.V. Methods and apparatuses for processing or defining luminance/color regimes
US8659683B1 (en) 2010-03-25 2014-02-25 Ambarella, Inc. Digital picture noise reduction by combining high-noise and low-noise processed pictures
US8622876B2 (en) 2010-04-01 2014-01-07 Rowing Innovations Inc. Rowing simulator
KR101529992B1 (ko) 2010-04-05 2015-06-18 삼성전자주식회사 픽셀 그룹별 픽셀값 보상을 위한 비디오 부호화 방법과 그 장치, 및 픽셀 그룹별 픽셀값 보상을 위한 비디오 복호화 방법과 그 장치
US8917632B2 (en) 2010-04-07 2014-12-23 Apple Inc. Different rate controller configurations for different cameras of a mobile device
EP2577489A4 (en) * 2010-06-02 2014-09-10 Onmobile Global Ltd METHOD AND APPARATUS FOR ADAPTING MULTIMEDIA CONTENT
US8947410B2 (en) 2010-06-07 2015-02-03 Prysm, Inc. Power calibration of multiple light sources in a display screen
US20130093805A1 (en) 2010-06-21 2013-04-18 Imax Corporation Double stacked projection
US8760537B2 (en) 2010-07-05 2014-06-24 Apple Inc. Capturing and rendering high dynamic range images
EP2591602A1 (en) * 2010-07-06 2013-05-15 Koninklijke Philips Electronics N.V. Generation of high dynamic range images from low dynamic range images
US8357899B2 (en) 2010-07-30 2013-01-22 Aptina Imaging Corporation Color correction circuitry and methods for dual-band imaging systems
US8649592B2 (en) 2010-08-30 2014-02-11 University Of Illinois At Urbana-Champaign System for background subtraction with 3D camera
EP2622838B1 (en) 2010-10-01 2015-07-22 Contex A/s Signal intensity matching of image sensors
US8699801B2 (en) * 2010-11-26 2014-04-15 Agfa Healthcare Inc. Systems and methods for transmitting high dynamic range images
GB2500835B (en) 2010-12-10 2014-02-12 Ibm High-dynamic range video tone mapping
GB2501402B (en) 2010-12-21 2015-06-24 Syndiant Inc Spatial light modulator with storage reducer
EP2469295A1 (en) 2010-12-23 2012-06-27 André Borowski 3D landscape real-time imager and corresponding imaging methods
CN102651442B (zh) 2011-02-23 2015-01-07 展晶科技(深圳)有限公司 发光二极管光源
JP2012204384A (ja) 2011-03-23 2012-10-22 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
US8593565B2 (en) * 2011-03-25 2013-11-26 Gary S. Shuster Simulated large aperture lens
JP2012222550A (ja) 2011-04-07 2012-11-12 Sony Corp 再生装置および映像制作システム
US9013352B2 (en) 2011-04-25 2015-04-21 Saudi Arabian Oil Company Method, system, and machine to track and anticipate the movement of fluid spills when moving with water flow
US8861851B2 (en) * 2011-05-13 2014-10-14 Dolby Laboratories Licensing Corporation Color highlight reconstruction
US20140085422A1 (en) 2011-05-30 2014-03-27 Sony Ericsson Mobile Communications Ab Image processing method and device
US20120307893A1 (en) 2011-06-02 2012-12-06 Qualcomm Incorporated Fast computing of discrete cosine and sine transforms of types vi and vii
MX2013013941A (es) 2011-07-11 2014-01-31 Panasonic Corp Metodo de decodificacion de imagenes, metodo de codificacion de imagenes, aparato de decodificacion de imagenes, aparato de codificacion de imagenes y aparato de codificacion y decodificacion de imagenes.
US8553109B2 (en) 2011-07-20 2013-10-08 Broadcom Corporation Concurrent image processing for generating an output image
US9270875B2 (en) * 2011-07-20 2016-02-23 Broadcom Corporation Dual image capture processing
US8730330B2 (en) 2011-07-25 2014-05-20 Aptina Imaging Corporation Image sensors with dark pixels for real-time verification of imaging systems
JP2013027021A (ja) 2011-07-26 2013-02-04 Canon Inc 全方位撮像装置及び全方位撮像方法
US8672838B2 (en) 2011-08-12 2014-03-18 Intuitive Surgical Operations, Inc. Image capture unit in a surgical instrument
KR101971211B1 (ko) 2011-08-12 2019-04-23 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술기기 내의 이미지 캡쳐 장치
US8784301B2 (en) 2011-08-12 2014-07-22 Intuitive Surgical Operations, Inc. Image capture unit and method with an extended depth of field
JP5220172B2 (ja) 2011-08-22 2013-06-26 キヤノン株式会社 画像取得装置、画像取得システム、および対物光学系
JP2013066142A (ja) * 2011-08-31 2013-04-11 Sony Corp 画像処理装置、および画像処理方法、並びにプログラム
KR20130025137A (ko) 2011-09-01 2013-03-11 삼성전자주식회사 파노라마 촬상 렌즈 및 이를 이용한 파노라마 촬상 시스템
ITVI20110243A1 (it) 2011-09-09 2013-03-10 Stmicroelectronics Grenoble 2 Riduzione di rumore croma di una immagine
US10916000B2 (en) 2011-09-27 2021-02-09 Koninklijke Philips N.V. Apparatus and method for dynamic range transforming of images
JP6102930B2 (ja) * 2011-10-14 2017-03-29 オムロン株式会社 射影空間監視のための方法および装置
JP5832855B2 (ja) 2011-11-01 2015-12-16 クラリオン株式会社 画像処理装置、撮像装置および画像処理プログラム
WO2013076531A1 (en) 2011-11-23 2013-05-30 Nokia Corporation An apparatus and method comprising a beam splitter
JP6019573B2 (ja) 2011-12-07 2016-11-02 セイコーエプソン株式会社 記録装置および画像処理方法
US9177988B2 (en) 2011-12-16 2015-11-03 Chromatra, Llc. Systems and methods for creating full-color image in low light
KR101310140B1 (ko) 2012-01-19 2013-09-23 금오공과대학교 산학협력단 가역 워터마킹 기술을 이용한 영상의 무결성 인증 방법
EP2620050B1 (en) 2012-01-25 2016-07-27 Honda Research Institute Europe GmbH System, method and apparatus for unsupervised adaptation of the perception of an autonomous mower
US9258468B2 (en) 2012-02-15 2016-02-09 Fluxdata, Inc. Method and apparatus for separate spectral imaging and sensing
US9185307B2 (en) 2012-02-21 2015-11-10 Semiconductor Components Industries, Llc Detecting transient signals using stacked-chip imaging systems
US9129445B2 (en) 2012-03-14 2015-09-08 Dolby Laboratories Licensing Corporation Efficient tone-mapping of high-bit-depth video to low-bit-depth display
US20130258044A1 (en) 2012-03-30 2013-10-03 Zetta Research And Development Llc - Forc Series Multi-lens camera
KR20150014453A (ko) * 2012-05-18 2015-02-06 톰슨 라이센싱 네이티브 3-컬러 이미지 및 hdr 이미지
JP5781978B2 (ja) 2012-05-22 2015-09-24 株式会社小松製作所 ダンプトラック
US8964040B2 (en) 2012-06-06 2015-02-24 Apple Inc. High dynamic range image registration using motion sensor data
US9489706B2 (en) 2012-07-02 2016-11-08 Qualcomm Technologies, Inc. Device and algorithm for capturing high dynamic range (HDR) video
WO2014009844A1 (en) 2012-07-13 2014-01-16 Koninklijke Philips N.V. Improved hdr image encoding and decoding methods and devices
US9531961B2 (en) 2015-05-01 2016-12-27 Duelight Llc Systems and methods for generating a digital image using separate color and intensity data
US20140063300A1 (en) * 2012-09-06 2014-03-06 Aptina Imaging Corporation High dynamic range imaging systems having clear filter pixel arrays
JP6019964B2 (ja) 2012-09-10 2016-11-02 株式会社リコー 画像処理装置及びそれを搭載した撮像装置、並びに画像処理方法
US9720231B2 (en) 2012-09-26 2017-08-01 Dolby Laboratories Licensing Corporation Display, imaging system and controller for eyewear display device
US8975594B2 (en) 2012-11-09 2015-03-10 Ge Aviation Systems Llc Mixed-material multispectral staring array sensor
KR102004199B1 (ko) 2012-11-16 2019-07-26 톰슨 라이센싱 높은 동적 범위 이미지들의 프로세싱
KR101932587B1 (ko) 2012-11-20 2018-12-26 삼성전자주식회사 컬러-깊이 디모자이킹 영상 처리 장치 및 방법
US9437171B2 (en) * 2012-12-05 2016-09-06 Texas Instruments Incorporated Local tone mapping for high dynamic range images
US8866928B2 (en) 2012-12-18 2014-10-21 Google Inc. Determining exposure times using split paxels
US9071765B2 (en) 2012-12-28 2015-06-30 Nvidia Corporation System, method, and computer program product implementing an image processing pipeline for high-dynamic range images
US9547160B2 (en) * 2013-01-05 2017-01-17 Light Labs Inc. Methods and apparatus for capturing and/or processing images
US10271038B2 (en) 2013-01-15 2019-04-23 Disney Enterprise, Inc. Camera with plenoptic lens
WO2014125659A1 (ja) * 2013-02-15 2014-08-21 富士フイルム株式会社 画像処理装置、撮像装置、フィルタ生成装置、画像復元方法及びプログラム
US9106851B2 (en) * 2013-03-12 2015-08-11 Tower Semiconductor Ltd. Single-exposure high dynamic range CMOS image sensor pixel with internal charge amplifier
WO2014165244A1 (en) 2013-03-13 2014-10-09 Pelican Imaging Corporation Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
KR101803164B1 (ko) 2013-03-15 2017-12-28 우버 테크놀로지스, 인크. 로봇 공학용 다중 감지 스테레오 비전 방법, 시스템 및 장치
CN104125408B (zh) 2013-04-28 2018-06-12 比亚迪股份有限公司 一种高动态范围图像处理方法及装置
US9955084B1 (en) * 2013-05-23 2018-04-24 Oliver Markus Haynold HDR video camera
TWI632810B (zh) 2013-07-19 2018-08-11 新力股份有限公司 Data generating device, data generating method, data reproducing device, and data reproducing method
CN105409225B (zh) 2013-07-19 2019-09-17 皇家飞利浦有限公司 Hdr元数据传输
BR112016002185A2 (pt) 2013-07-31 2017-08-01 Aquahydrex Pty Ltd células eletroquímicas modulares
US9654738B1 (en) 2013-08-07 2017-05-16 Waymo Llc Using multiple exposures to improve image processing for autonomous vehicles
US20160205341A1 (en) 2013-08-20 2016-07-14 Smarter Tv Ltd. System and method for real-time processing of ultra-high resolution digital video
US9275445B2 (en) 2013-08-26 2016-03-01 Disney Enterprises, Inc. High dynamic range and tone mapping imaging techniques
WO2015034188A1 (ko) 2013-09-06 2015-03-12 엘지전자 주식회사 디지털 방송 시스템에서 광역 밝기 표현을 위한 초고화질 방송 신호 송수신 방법 및 장치
US9294662B2 (en) * 2013-10-16 2016-03-22 Broadcom Corporation Depth map generation and post-capture focusing
US9851527B2 (en) * 2013-10-18 2017-12-26 Light Labs Inc. Methods and apparatus for capturing and/or combining images
EP3070934A4 (en) 2013-11-13 2017-03-29 LG Electronics Inc. Broadcast signal transmission method and apparatus for providing hdr broadcast service
EP2873314B1 (en) 2013-11-19 2017-05-24 Honda Research Institute Europe GmbH Control system for an autonomous garden tool, method and apparatus
EP3812962A1 (en) 2013-12-04 2021-04-28 Mobileye Vision Technologies Ltd. Navigating a vehicle to pass another vehicle
GB2521408B (en) 2013-12-18 2015-12-16 Imagination Tech Ltd Defective pixel fixing
WO2015105790A1 (en) * 2014-01-07 2015-07-16 Dolby Laboratories Licensing Corporation Techniques for encoding, decoding and representing high dynamic range images
KR102347016B1 (ko) 2014-02-07 2022-01-04 소니그룹주식회사 수신 장치, 표시 장치 및 수신 방법
KR102025037B1 (ko) 2014-02-25 2019-09-24 애플 인크. 비디오 인코딩 및 디코딩을 위한 적응형 전달 함수
GB2526047B (en) 2014-02-27 2021-04-07 British Broadcasting Corp Method and apparatus for improved signal processing for high dynamic range
US9368535B2 (en) 2014-02-28 2016-06-14 Semiconductor Components Industries, Llc Imaging systems with flip chip ball grid arrays
US10203762B2 (en) 2014-03-11 2019-02-12 Magic Leap, Inc. Methods and systems for creating virtual and augmented reality
US9677840B2 (en) 2014-03-14 2017-06-13 Lineweight Llc Augmented reality simulator
US20150296140A1 (en) 2014-04-11 2015-10-15 Grey Matter Fusion, Inc. Panoramic view blind spot eliminator system and method
DE102014207315A1 (de) 2014-04-16 2015-10-22 Spheronvr Ag Kameraanordnung
JP2015210702A (ja) 2014-04-28 2015-11-24 キヤノン株式会社 画像処理装置及び画像処理方法
GB201408618D0 (en) 2014-05-15 2014-06-25 Univ Warwick Compressing high dynamic range images
US9131150B1 (en) 2014-06-06 2015-09-08 Amazon Technologies, Inc. Automatic exposure control and illumination for head tracking
WO2015199911A1 (en) 2014-06-23 2015-12-30 Exxonmobil Upstream Research Company Methods and systems for detecting a chemical species
US20160007052A1 (en) 2014-07-03 2016-01-07 Anthem Digital Media, Inc. Live streaming broadcast service with artist and fan competitive reward system
US20160007910A1 (en) 2014-07-10 2016-01-14 International Business Machines Corporation Avoidance of cognitive impairment events
US9344639B2 (en) * 2014-08-12 2016-05-17 Google Technology Holdings LLC High dynamic range array camera
US9613408B2 (en) 2014-09-25 2017-04-04 Intel Corporation High dynamic range image composition using multiple images
EP3217672B1 (en) 2014-11-07 2021-04-07 Sony Corporation Transmission device, transmission method, reception device, and reception method
KR101629825B1 (ko) 2014-12-04 2016-06-22 현대모비스 주식회사 Hdr 기능을 이용한 차량용 디스플레이 장치 및 방법
US10163195B2 (en) 2014-12-12 2018-12-25 Andrew Berlin Spatio-temporal differential synthesis ofdetail images for high dynamic range imaging
US20160191795A1 (en) 2014-12-30 2016-06-30 Alpine Electronics, Inc. Method and system for presenting panoramic surround view in vehicle
EP3043289B1 (en) 2015-01-07 2023-04-19 Honda Research Institute Europe GmbH Control system for an autonomous vehicle and a method for generating a control signal and autonomous vehicle equipped with such control system
US9560330B2 (en) 2015-01-09 2017-01-31 Vixs Systems, Inc. Dynamic range converter with reconfigurable architecture and methods for use therewith
US10217198B2 (en) 2015-01-30 2019-02-26 Koninklijke Philips N.V. Simple but versatile dynamic range coding
US20160252727A1 (en) 2015-02-27 2016-09-01 LAFORGE Optical, Inc. Augmented reality eyewear
JP6390512B2 (ja) 2015-05-21 2018-09-19 株式会社デンソー 車載カメラ装置
US10880557B2 (en) 2015-06-05 2020-12-29 Fastvdo Llc High dynamic range image/video coding
US10397585B2 (en) 2015-06-08 2019-08-27 Qualcomm Incorporated Processing high dynamic range and wide color gamut video data for video coding
US9974996B2 (en) 2015-06-23 2018-05-22 Contrast, Inc. Adaptor for an indoor rowing machine
US9998692B1 (en) 2015-06-26 2018-06-12 The United States Of America As Represented By The Secretary Of The Navy Motion picture high dynamic range imaging
GB2539917B (en) 2015-06-30 2021-04-07 British Broadcasting Corp Method and apparatus for conversion of HDR signals
JP2017028490A (ja) 2015-07-22 2017-02-02 ルネサスエレクトロニクス株式会社 撮像センサ及びセンサモジュール
US9277122B1 (en) 2015-08-13 2016-03-01 Legend3D, Inc. System and method for removing camera rotation from a panoramic video
US9979895B2 (en) 2015-09-04 2018-05-22 Disney Enterprises, Inc. High dynamic range tone mapping
US10839487B2 (en) 2015-09-17 2020-11-17 Michael Edwin Stewart Methods and apparatus for enhancing optical images and parametric databases
US9826171B2 (en) * 2015-10-29 2017-11-21 Novatek Microelectronics Corp. Apparatus and method for reconstructing high dynamic range video
US20170155873A1 (en) 2015-11-30 2017-06-01 Sensors Unlimited, Inc. Sensor systems and methods
CN105472265B (zh) 2015-12-04 2018-12-14 中国神华能源股份有限公司 一种获取高动态范围图像的装置和方法
US9984446B2 (en) 2015-12-26 2018-05-29 Intel Corporation Video tone mapping for converting high dynamic range (HDR) content to standard dynamic range (SDR) content
CA3016428C (en) 2016-02-12 2024-01-09 Contrast Optical Design & Engineering, Inc. Devices and methods for high dynamic range video
US10264196B2 (en) 2016-02-12 2019-04-16 Contrast, Inc. Systems and methods for HDR video capture with a mobile device
US10257394B2 (en) 2016-02-12 2019-04-09 Contrast, Inc. Combined HDR/LDR video streaming
US10478720B2 (en) 2016-03-15 2019-11-19 Unity IPR ApS Dynamic assets for creating game experiences
US9488984B1 (en) 2016-03-17 2016-11-08 Jeff Williams Method, device and system for navigation of an autonomous supply chain node vehicle in a storage center using virtual image-code tape
EP3220645A1 (en) 2016-03-18 2017-09-20 Thomson Licensing A method and a device for encoding a high dynamic range picture, corresponding decoding method and decoding device
US9459692B1 (en) 2016-03-29 2016-10-04 Ariadne's Thread (Usa), Inc. Virtual reality headset with relative motion head tracker
EP3443735A4 (en) 2016-04-12 2019-12-11 Quidient, LLC RECONSTRUCTION MACHINE FOR EVERYDAY SCENES
GB2549696A (en) 2016-04-13 2017-11-01 Sony Corp Image processing method and apparatus, integrated circuitry and recording medium
CA3033242A1 (en) 2016-08-09 2018-02-15 Contrast, Inc. Real-time hdr video for vehicle control
JP6726060B2 (ja) 2016-08-16 2020-07-22 キヤノン株式会社 画像処理装置およびその制御方法ならびにプログラム
US10812820B2 (en) 2016-11-30 2020-10-20 Qualcomm Incorporated Systems and methods for signaling and constraining a high dynamic range (HDR) video system with dynamic metadata
US10165182B1 (en) 2016-12-29 2018-12-25 Scott Zhihao Chen Panoramic imaging systems based on two laterally-offset and vertically-overlap camera modules
GB201709199D0 (en) 2017-06-09 2017-07-26 Delamont Dean Lindsay IR mixed reality and augmented reality gaming system
US11265530B2 (en) 2017-07-10 2022-03-01 Contrast, Inc. Stereoscopic camera
US10951888B2 (en) 2018-06-04 2021-03-16 Contrast, Inc. Compressed high dynamic range video
US10679320B1 (en) 2018-07-23 2020-06-09 Ambarella International Lp High dynamic range sensor system with row increment operation
US10616512B2 (en) 2018-07-27 2020-04-07 Wisconsin Alumni Research Foundation Systems, methods, and media for high dynamic range imaging using dead-time-limited single photon detectors
US11423514B2 (en) 2018-08-14 2022-08-23 Contrast, Inc. Image processing noise reduction
US11303932B2 (en) 2018-08-14 2022-04-12 Contrast, Inc. Image compression
US20200320955A1 (en) 2019-04-03 2020-10-08 Contrast, Inc. Augmented reality systems
WO2021026063A1 (en) 2019-08-02 2021-02-11 Contrast, Inc. Code-independent graph technology

Also Published As

Publication number Publication date
CA3016429C (en) 2024-04-23
US20240031509A1 (en) 2024-01-25
US11368604B2 (en) 2022-06-21
US11805218B2 (en) 2023-10-31
EP3414896B1 (en) 2023-08-30
US20190238725A1 (en) 2019-08-01
US20190166283A1 (en) 2019-05-30
US20230396726A1 (en) 2023-12-07
WO2017139363A1 (en) 2017-08-17
EP3414539B1 (en) 2022-08-31
CA3016429A1 (en) 2017-08-17
EP3414539A4 (en) 2019-12-25
JP2019505153A (ja) 2019-02-21
AU2017217929B2 (en) 2021-08-26
US20180198957A1 (en) 2018-07-12
WO2017139599A1 (en) 2017-08-17
US20210029271A1 (en) 2021-01-28
EP3414539A1 (en) 2018-12-19
JP2019506109A (ja) 2019-02-28
US20210099616A1 (en) 2021-04-01
US9948829B2 (en) 2018-04-17
US11785170B2 (en) 2023-10-10
US20230079875A1 (en) 2023-03-16
US20170238029A1 (en) 2017-08-17
JP6928388B2 (ja) 2021-09-01
US10200569B2 (en) 2019-02-05
EP3414896A4 (en) 2019-09-18
US20220311907A1 (en) 2022-09-29
US11463605B2 (en) 2022-10-04
US10536612B2 (en) 2020-01-14
AU2017217929A1 (en) 2018-09-06
CA3016421A1 (en) 2017-08-17
EP3414896A1 (en) 2018-12-19
US10257393B2 (en) 2019-04-09
US20170237879A1 (en) 2017-08-17
US10257394B2 (en) 2019-04-09
US10805505B2 (en) 2020-10-13
US20190238726A1 (en) 2019-08-01
US20170237890A1 (en) 2017-08-17
US10742847B2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6947412B2 (ja) 組み合わせられたhdr/ldrビデオストリーミング
JP6997461B2 (ja) 高ダイナミックレンジビデオのためのデバイスおよび方法
US20090147098A1 (en) Image sensor apparatus and method for color correction with an illuminant-dependent color correction matrix
EP2323408A1 (en) Image processing device, image processing method, image capturing device, and computer program
Hubel Foveon technology and the changing landscape of digital cameras
CN112217962B (zh) 摄像机及图像生成方法
JP2020120204A (ja) 画像処理装置、画像処理方法およびプログラム
JP2020202441A (ja) 画像処理装置および方法、撮像装置
WO2017122553A1 (ja) 画像処理装置、画像処理方法、及び、撮像装置
CN115643387A (zh) 校正方法、装置、设备、可读存储介质及程序产品
Stump Camera Sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210909

R150 Certificate of patent or registration of utility model

Ref document number: 6947412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150