JP6943180B2 - 複合半透膜及び複合半透膜の製造方法 - Google Patents

複合半透膜及び複合半透膜の製造方法 Download PDF

Info

Publication number
JP6943180B2
JP6943180B2 JP2017535469A JP2017535469A JP6943180B2 JP 6943180 B2 JP6943180 B2 JP 6943180B2 JP 2017535469 A JP2017535469 A JP 2017535469A JP 2017535469 A JP2017535469 A JP 2017535469A JP 6943180 B2 JP6943180 B2 JP 6943180B2
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
semipermeable membrane
composite semipermeable
group
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017535469A
Other languages
English (en)
Other versions
JPWO2018003943A1 (ja
Inventor
剛志 浜田
剛志 浜田
淳 岡部
淳 岡部
貴史 小川
貴史 小川
宏治 中辻
宏治 中辻
将弘 木村
将弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018003943A1 publication Critical patent/JPWO2018003943A1/ja
Application granted granted Critical
Publication of JP6943180B2 publication Critical patent/JP6943180B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/403Polymers based on the polymerisation of maleic acid or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/43Specific optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、高い透過水量と膜汚染物質に対する高い付着抑制能を持つ複合半透膜に関するものである。本発明によって得られる複合半透膜は、例えば、かん水の淡水化に好適に用いることができる。
混合物の分離に関して、溶媒(例えば、水)に溶解した物質(例えば、塩類)を除くための技術には様々なものがある。近年、省エネルギー及び省資源のためのプロセスとして膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等がある。これらの膜は、例えば、海水、かん水、有害物を含んだ水等から飲料水を得る場合や、工業用超純水の製造、廃水処理、有価物の回収等に用いられている。
現在市販されている逆浸透膜及びナノろ過膜の大部分は複合半透膜であり、支持膜上にゲル層とポリマーを架橋した活性層を有するものと、支持膜上でモノマーを重縮合して形成された活性層を有するものとの2種類がある。なかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドからなる分離機能層を支持膜上に被覆して得られる複合半透膜は、透過水量や選択分離性の高い分離膜として広く用いられている。
特許文献1には、ポリアミドを含有するとともに、ポリアミドとアミド結合で結合した親水性高分子を有する分離機能層を備える分離膜が開示されている。また、特許文献1には、親水性高分子によって耐ファウリング性が実現されることが記載されている。
国際公開第2015/046582号
しかし、本発明者らの検討によると、特許文献1に記載の技術を用いた場合においても、ファウリングを完全に抑制することは困難であり、一度ファウラントが付着すると剥離しにくいという問題があった。
本発明は、上記従来の実情に鑑みてなされたものであって、複合半透膜において、より高い耐ファウリング性を実現することを目的とする。
上記目的を達成するための本発明は、以下の構成をとる。
[1]基材及び多孔性支持層を含む支持膜と、前記多孔性支持層上に設けられた分離機能層からなる複合半透膜であって、前記分離機能層が、架橋ポリアミドと、エチレン性不飽和基を有するモノマーの重合体である親水性高分子とを含み、前記分離機能層表面の、X線光電子分光法により測定された窒素原子の原子数に対する酸素原子の原子数の比(O/N比)が1.5以上10以下かつ、前記比の標準偏差が0.15以上である、複合半透膜。
[2]前記親水性高分子が以下の(A)及び(B)を満たす、[1]に記載の複合半透膜。
(A)前記親水性高分子の25℃、75%RH条件下での含水率が40%以上である。
(B)前記親水性高分子の全反射赤外吸収測定において、25℃、75%RH条件下と絶乾条件下の差スペクトルの3700〜2900cm−1間のピークトップの波数が、3350cm−1以上3500cm−1以下である。
[3]前記親水性高分子の25℃、75%RH条件下での含水率が60%以上である、[1]または[2]に記載の複合半透膜。
[4]前記親水性高分子が、少なくとも1つの酸性基を有する高分子である、[1]〜[3]のいずれか1つに記載の複合半透膜。
[5]前記酸性基が、カルボキシ基、スルホン酸基、ホスホン酸基及びリン酸基からなる群から選択される少なくとも1つの基である、[4]に記載の複合半透膜。
[6]前記親水性高分子が、アクリル酸、メタクリル酸及びマレイン酸からなる群から選択されるいずれか1種の化合物由来の成分を含む重合体である、[1]〜[5]のいずれか1つに記載の複合半透膜。
[7]前記分離機能層表面の全反射赤外吸収測定において、25℃、3%RH条件下のスペクトルの吸光度比(I1720:1720cm−1の吸収ピーク値/I1610:1610cm−1の吸収ピーク値)が0.10以上0.50以下かつ、前記吸光度比の標準偏差が0.05以上である、[1]〜[6]のいずれか1つに記載の複合半透膜。
[8]前記親水性高分子と前記架橋ポリアミドがアミド結合で結合している、[1]〜[7]のいずれか1つに記載の複合半透膜。
[9]基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜の製造方法であって、(a)多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、前記基材及び前記多孔性支持層を含む支持膜の表面で界面重縮合を行うことにより、架橋ポリアミドを形成する工程、(b)上記工程(a)で得られた架橋ポリアミドに化学結合により親水性高分子を導入する工程、(c)前記架橋ポリアミドのアミノ基を官能基変換する試薬に接触させる工程、をこの順に行うことで前記分離機能層を形成し、かつ、前記工程(b)が、(d)上記工程(a)で得られた架橋ポリアミドと、前記親水性高分子を含む溶液を接触させる工程と、(e)上記工程(a)で得られた架橋ポリアミドと前記親水性高分子との化学結合の形成を促進する工程を含む、複合半透膜の製造方法。
[10]前記工程(b)において、前記親水性高分子としてカルボン酸誘導体を用い、前記架橋ポリアミド中のアミノ基と前記カルボン酸誘導体によりアミド結合を形成する、[9]に記載の複合半透膜の製造方法。
[11]前記工程(e)が、加熱、求核触媒の添加、及びルイス酸の添加からなる群から選択される少なくとも1つを行うことを含む、[9]または[10]に記載の複合半透膜の製造方法。
本発明の複合半透膜は、膜の表面に十分な量の親水性高分子が存在しているので、ファウラント成分の付着を効果的に抑制することができる。
また、親水性高分子が適度なバラツキで膜の表面に存在しているので、親水性高分子が密に存在する部分では水和水が多く含まれた水和水層が形成され、疎な部分では親水性高分子の運動性が高く、付着したファウラント成分が剥離しやすくなる効果がある。
1.複合半透膜
本発明の複合半透膜は、基材及び多孔性支持層を含む支持膜と、多孔性支持層上に設けられた分離機能層からなり、多孔性支持層は、架橋ポリアミド(以下、単に「ポリアミド」と称することもある。)とエチレン性不飽和基を有するモノマーの重合体である親水性高分子とを含む。
(1−1)分離機能層
分離機能層は、複合半透膜において溶質の分離機能を担う層である。分離機能層の組成及び厚み等の構成は、複合半透膜の使用目的に合わせて設定される。
分離機能層は、具体的には、多官能アミンと多官能酸ハロゲン化物との界面重縮合によって得られる架橋ポリアミド及びエチレン性不飽和基を有するモノマーの重合体である親水性高分子から形成される。
ここで、多官能アミンは、芳香族多官能アミン及び脂肪族多官能アミンから選ばれた少なくとも1つの成分からなることが好ましい。
芳香族多官能アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミンであり、特に限定されるものではないが、メタフェニレンジアミン、パラフェニレンジアミン、1,3,5−トリアミノベンゼン等が例示される。また、そのN−アルキル化物として、N,N−ジメチルメタフェニレンジアミン、N,N−ジエチルメタフェニレンジアミン、N,N−ジメチルパラフェニレンジアミン、N,N−ジエチルパラフェニレンジアミン等が例示される。性能発現の安定性から、特にメタフェニレンジアミン(以下、m−PDAという。)、または1,3,5−トリアミノベンゼンが好ましい。
また、脂肪族多官能アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミンであり、好ましくはピペラジン系アミン及びその誘導体である。例えば、ピペラジン、2,5−ジメチルピペラジン、2−メチルピペラジン、2,6−ジメチルピペラジン、2,3,5−トリメチルピペラジン、2,5−ジエチルピペラジン、2,3,5−トリエチルピペラジン、2−n−プロピルピペラジン、2,5−ジ−n−ブチルピペラジン、エチレンジアミン等が例示される。性能発現の安定性から、特に、ピペラジンまたは2,5−ジメチルピペラジンが好ましい。これらの多官能アミンは、1種を単独で用いても、2種類以上を混合物として用いてもよい。
多官能酸ハロゲン化物とは、一分子中に2個以上のハロゲン化カルボニル基を有する酸ハロゲン化物であり、上記多官能アミンとの反応によりポリアミドを与えるものであれば特に限定されない。多官能酸ハロゲン化物としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、グルタル酸、1,3,5−シクロヘキサントリカルボン酸、1,3−シクロヘキサンジカルボン酸、1,4−シクロヘキサンジカルボン酸、1,3,5−ベンゼントリカルボン酸、1,2,4−ベンゼントリカルボン酸、1,3−ベンゼンジカルボン酸、1,4−ベンゼンジカルボン酸等のハロゲン化物を用いることができる。酸ハロゲン化物の中でも、酸塩化物が好ましく、特に経済性、入手の容易さ、取り扱い易さ、反応の容易さ等の点から、1,3,5−ベンゼントリカルボン酸の酸ハロゲン化物であるトリメシン酸クロライド(以下、TMCという。)が好ましい。上記多官能酸ハロゲン化物は1種を単独で用いても、2種類以上を混合物として用いてもよい。
上記ポリアミドは、多官能アミンと多官能酸ハロゲン化物の重合反応に由来するアミド基、未反応末端官能基に由来するアミノ基及びカルボキシ基を有する。これらの官能基量は、複合半透膜の透水性能や塩除去率に影響を与える。
ポリアミド形成後に化学処理を行うと、ポリアミド中の官能基を変換したり、ポリアミドに新たな官能基を導入したりすることができ、これによって複合半透膜の透過水量や塩除去率を向上させることができる。導入する官能基としては、アルキル基、アルケニル基、アルキニル基、ハロゲン基、水酸基、アミノ基、カルボキシ基、エーテル基、チオエーテル基、エステル基、アルデヒド基、ニトロ基、ニトロソ基、ニトリル基、アゾ基等が挙げられる。
例えば、ポリアミドにアゾ基を導入すると、塩除去率が向上するため好ましい。アゾ基は、ポリアミド中の(アゾ基のモル当量)/(アミド基のモル当量)の比が0.1以上1.0以下になるように導入されることが好ましい。この比が0.1以上1.0以下であることで、高い塩除去率を得ることができる。
また、分離機能層中のアミノ基割合「(アミノ基のモル当量)/(アミド基のモル当量)」は複合半透膜の耐久性に関係し、このアミノ基割合を0.18以下となるようにアミノ基を別の官能基に変換することが好ましい。「(アミノ基のモル当量)/(アミド基のモル当量)」が0.18以下であれば、層の堅牢性が増して膜の耐久性が向上する。
これらのポリアミド中の官能基量は、例えば、13C固体NMR測定で求めることができる。具体的には、複合半透膜から基材を剥離し、分離機能層と多孔性支持層を得た後、多孔性支持層を溶解及び除去し、分離機能層を得る。得られた分離機能層をDD/MAS−13C固体NMR測定を行い、各官能基が結合している炭素原子のピークの積分値を算出する。この積分値から各官能基量を同定できる。
本発明において、エチレン性不飽和基を有するモノマーの重合体である高分子は、耐ファウリング性の観点から、親水性高分子である。なお、エチレン性不飽和基を有するモノマーについては後述する。
本発明において、親水性高分子とは、25℃の条件下で水1Lに対し0.5g以上溶解する高分子である。本発明の親水性高分子は、25℃、75%RH条件下における含水率が40%以上であることが好ましい。含水率とは、絶乾状態の高分子の重量をWdry、25℃、75%RH条件下での平衡重量をW75とすると、以下の式(1)により求めることが出来る。
Figure 0006943180
親水性高分子の25℃、75%RH条件下における含水率が40%以上であることで、高い耐ファウリング性を示す。ここで、耐ファウリング性とは、ファウリングを抑制することと、ファウリングが起きたとしても性能低下を小さく抑えることとのいずれをも含み得る。親水性高分子によって耐ファウリング性が得られる理由については、以下のように考えられる。
親水性高分子は、その水和構造によって、分離機能層に汚れが付着することを抑制できる。水和構造によるファウリング抑制は、ノニオン性、カチオン性及びアニオン性のいずれの汚れについても効果的である。また、親水性高分子が分離機能層表面に存在することで、汚れはポリアミドよりも親水性高分子に付着しやすい。つまり、仮に汚れが分離機能層表面に付着しても、親水性高分子によって、汚れはポリアミドから離れた位置に付着すると考えられる。よって、分離膜の性能低下が低く抑えられる。ゆえに、親水性高分子は分離機能層表面に存在していることが好ましい。言い換えると、分離機能層は、ポリアミドを主成分とする第1層と、親水性高分子を主成分とする第2層とを備え、第1層が多孔性支持層側に配置されることが好ましい。親水性高分子の25℃、75%RH条件下における含水率が40%以上であることで、分離機能層は十分な水和構造を保持することができ、優れた耐ファウリング性を発現する。前記含水率は、より好ましくは50%以上、さらに好ましくは60%以上である。
また、本発明の親水性高分子の全反射赤外吸収測定(以下、ATR−IRという。)において、25℃、75%RH条件下と絶乾条件下の差スペクトルの3700〜2900cm−1間のピークトップの波数が3350cm−1以上3500cm−1以下であることが好ましい。
前記差スペクトルの3700〜2900cm−1間に現れるピークは水分子のO−H結合の伸縮振動に由来する吸収である。水分子のO−H結合の伸縮振動に由来する吸収波長は水素結合の度合いによって変化し、他の水分子等と強く水素結合した水分子は低波数側に、水分子が孤立した状態で存在し、水素結合性が低い水分子は高波数側にシフトする。すなわち、親水性高分子との相互作用が弱く、周囲の水分子との水素結合が強い水分子は低波数側に、親水性高分子と強く相互作用し、周囲の水分子との水素結合が小さく孤立した水分子は高波数側にピークが現れる。
上記差スペクトルのピークトップの波数が3350cm−1以上であると、水分子と親水性高分子との相互作用が、水和水を保持できるほど充分に強い。また、上記差スペクトルのピークトップの波数が3500cm−1以下であると、ファウラントの付着を抑制できる程度に水和水の交換速度が大きくなる。以上のとおり、差スペクトルのピークトップの波数が3350cm−1以上3500cm−1以下にある水分子を有することで、優れた耐ファウリング性を発現する。また、差スペクトルのピークトップの波数は、3380cm−1以上であってもよいし、3430cm−1以下であってもよい。
本発明の複合半透膜は、乾燥状態において、前記分離機能層表面のX線光電子分光法により測定された窒素原子の原子数に対する酸素原子の原子数の比(O/N比)が1.5以上10以下であり、その標準偏差が0.15以上である。
O/N比は、ポリアミドのモノマーユニット数に対する親水性官能基の数の比率を大まかに表す。O/N比が1.5以上であることで、十分な量の親水性官能基が存在し、それによって保持された水和水によって、優れた耐ファウリング性が発現する。O/N比は好ましくは1.8以上である。O/N比が10以下であるということは、親水性高分子によって形成される層の厚みが薄いので、高い透水性が得られる。O/N比は好ましくは5以下である。なお、1枚の複合半透膜において、任意の30箇所におけるO/N比の測定結果の平均値が上記範囲にあれば、その複合半透膜はこの条件を満たす。
標準偏差とは分布のバラツキを表す指標であり、O/N比の値をxとし、測定箇所の数をNとすると、O/N比の標準偏差の値は以下の式(2)によって求めることが出来る。
Figure 0006943180
O/N比の標準偏差が0.15以上であることで、親水性高分子が適度なバラツキで表面に存在するため、親水性高分子が密に存在する部分が水和水を多く含むことで水和水の層を形成し、疎な部分では親水性高分子の運動性が高く、付着したファウラントを剥離しやすくなる。その結果、複合半透膜は耐ファウリング性が向上すると考えられる。O/N比の標準偏差は、0.20以上、0.25以上であるとより好ましい。1枚の複合半透膜において、任意の30箇所におけるO/N比の測定結果から算出される標準偏差が上記範囲にあれば、その複合半透膜はこの条件を満たす。
本発明では、親水性高分子と架橋ポリアミドがアミド結合で結合していることが好ましい。具体的には、分離機能層の主成分であるポリアミドに、ポリアミドの末端のアミノ基を介して、親水性高分子がアミド結合によって結合していることが好ましい。つまり、上述の第2層に含まれる親水性高分子は、第1層に含まれるポリアミドとアミド結合していることが好ましい。
また、分離機能層の表面において親水性高分子を検出し、その後エッチングし、さらに親水性高分子を検出する、という一連の測定操作を繰り返せば、親水性高分子が分離機能層の表面に多く存在することを確認することは可能である。
親水性高分子と分離機能層がアミド結合で結合していることで、複合半透膜は高い耐ファウリング性を発現することができる。親水性高分子が弱い結合や相互作用で結合している場合には、薬液洗浄等により容易に脱離するため好ましくない。
特に水への溶解性を向上させる効果や、負電荷を有するファウラントの付着を低減させる効果から、本発明の親水性高分子は少なくとも一つの酸性基を有することが好ましい。
好ましい酸性基としては、カルボキシ基、ホスホン酸基、リン酸基及びスルホン酸基であり、親水性高分子にこれらのうちの1つが単独で含まれていてもよく、2つ以上が含まれていてもよい。これらの酸性基の構造としては、酸の形態、エステル化合物、無水物、及び金属塩のいずれの状態で存在してもよい。
また、前述のとおり、エチレン性不飽和基を有するモノマーの重合体である高分子は、親水性高分子であり、エチレン性不飽和基を有するモノマーは、2つ以上の酸性基を含有し得るが、モノマーの入手の容易さ等から、1つ、または2つの酸性基を含有するモノマーが好ましい。
上記のエチレン性不飽和基を有するモノマーの中でカルボキシ基を有するモノマーとしては、マレイン酸、無水マレイン酸、アクリル酸、メタクリル酸、イタコン酸、2−(ヒドロキシメチル)アクリル酸、4−(メタ)アクリロイルオキシエチルトリメリト酸及び対応する無水物、10−メタクリロイルオキシデシルマロン酸、N−(2−ヒドロキシ−3−メタクリロイルオキシプロピル)−N−フェニルグリシン及び4−ビニル安息香酸等が挙げられ、これらの中でも汎用性、共重合性の観点から、アクリル酸、メタクリル酸、マレイン酸が好ましい。
上記のエチレン性不飽和基を有するモノマーの中でホスホン酸基を有するモノマーとしては、ビニルホスホン酸、4−ビニルフェニルホスホン酸、4−ビニルベンジルホスホン酸、2−メタクリロイルオキシエチルホスホン酸、2−メタクリルアミドエチルホスホン酸、4−メタクリルアミド−4−メチル−フェニル−ホスホン酸及び2−[4−(ジヒドロキシホスホリル)−2−オキサ−ブチル]−アクリル酸及び2−[2−ジヒドロキシホスホリル)−エトキシメチル]−アクリル酸−2,4,6−トリメチル−フェニルエステル等が挙げられる。
上記のエチレン性不飽和基を有するモノマーの中でリン酸基を有するモノマーとしては、2−メタクリロイルオキシプロピル−一水素リン酸、2−メタクリロイルオキシプロピル−二水素リン酸、2−メタクリロイルオキシエチル−一水素リン酸、2−メタクリロイルオキシエチル−二水素リン酸、2−メタクリロイルオキシエチル−フェニル−水素リン酸、ジペンタエリトリトール−ペンタメタクリロイルオキシホスフェート、10−メタクリロイルオキシデシル−二水素リン酸、ジペンタエリトリトールペンタメタクリロイルオキシホスフェート、リン酸モノ−(1−アクリロイル−ピペリジン−4−イル)−エステル、6−(メタクリルアミド)ヘキシル−二水素ホスフェート及び1,3−ビス−(N−アクリロイル−N−プロピル−アミノ)−プロパン−2−イル−二水素ホスフェート等が挙げられる。
上記のエチレン性不飽和基を有するモノマーの中でスルホン酸基を有するモノマーとしては、ビニルスルホン酸、4−ビニルフェニルスルホン酸及び3−(メタクリルアミド)プロピルスルホン酸等が挙げられる。
本発明に用いられる親水性高分子の重量平均分子量は2,000以上であることが好ましい。親水性高分子をポリアミド分離機能層表面に導入することで、親水性高分子の運動性により膜面へのファウラントの付着を抑制する効果があると考えられる。親水性高分子の重量平均分子量は5,000以上であるとより好ましく、さらに好ましくは100,000以上である。
親水性高分子は上記エチレン性不飽和基を有するモノマーの単独重合体でもよいが、目的に応じて2成分以上のモノマーの共重合体であってもよい。共重合成分の例としては、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニル、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、またはこれらの親水性高分子と疎水性高分子のブロック共重合体、グラフト共重合体、ランダム共重合体等が挙げられる。上記親水性高分子の中でも、共重合の容易さ、ファウラントに対する付着性低減の観点から、ポリビニルピロリドン、ポリビニルアルコール、ポリ酢酸ビニルが好ましい。
親水性高分子において、モノマー単位として酸性基を含む構造の割合は、5mol%以上100mol%以下であることが好ましい。つまり、親水性高分子を構成するモノマーのうち、(酸性基を有するモノマーのmol数/親水性高分子を構成するモノマーのmol数)の比(共重合比)が、5%以上100%以下であることが好ましい。親水性高分子において、酸性基を含むモノマー単位の割合が5mol%以上であると、親水性高分子がポリアミドに十分に結合するので、親水性高分子の運動性により膜面へのファウラントの付着が抑制される。酸性基を含む構造の割合は10mol%以上100mol%以下であるとより好ましく、40mol%以上100mol%以下であるとさらに好ましい。
また、前記分離機能層表面のATR−IRにおいて、25℃、3%RH条件下のスペクトルの吸光度比(I1720/I1610)が0.10以上0.50以下であることが好ましい(I1720:1720cm−1の吸収ピーク値、I1610:1610cm−1の吸収ピーク値)。
1720は親水性高分子中のカルボニル基に由来するピーク、I1610はポリアミド中のアミド基に由来するピークであり、ポリアミド量に対する親水性高分子の量を示す値である。親水性高分子量が少なくすぎると耐ファウリング性が不十分であり、多すぎると抵抗が大きくなり、透水性が低下するため、前記吸光度比が0.10以上、0.50以下であることが好ましい。
また、吸光度比(I1720/I1610)の標準偏差が大きいほど膜表面に存在する親水性高分子量のバラツキが大きいと考えられる。吸光度比(I1720/I1610)は、親水性高分子が適度なバラツキで表面に存在する観点から、標準偏差が0.05以上であることが好ましい。標準偏差が0.05以上であれば、親水性高分子が密に存在する部分が水和水を多く含むことで水和水の層を形成し、疎な部分では親水性高分子の運動性が高く、付着したファウラントを剥離しやすくなる。その結果、複合半透膜は耐ファウリング性が向上すると考えられる。吸光度比(I1720/I1610)の標準偏差は、任意の30箇所におけるATR−IR測定結果から算出できる。
分離機能層表面の自乗平均面粗さ(以下、RMSともいう。)は、60nm以上であることが好ましい。自乗平均面粗さが60nm以上であることで、分離機能層の表面積が大きくなり、透過水量が高くなる。一方、自乗平均面粗さが60nm未満の場合には透過水量が低下する。
なお、自乗平均面粗さは原子間力顕微鏡(以下、AFMという。)で測定できる。自乗平均面粗さは基準面から指定面までの偏差の自乗を平均した値の平方根である。ここで、測定面とは全測定データの示す面をいい、指定面とは粗さ計測の対象となる面で、測定面のうちクリップで指定した特定の部分をいい、基準面とは指定面の高さの平均値をZ0とするとき、Z=Z0で表される平面をいう。AFMは、例えば、デジタル・インスツルメンツ社製NanoScope IIIaが使用できる。
分離機能層表面の自乗平均面粗さは、界面重縮合によって分離機能層を形成する時のモノマー濃度や温度によって制御できる。例えば、界面重縮合時の温度が低いと自乗平均面粗さは小さくなり、温度が高いと自乗平均面粗さは大きくなる。また、分離機能層表面に親水性高分子による修飾を行う場合は、親水性高分子層が厚いと自乗平均面粗さは小さくなるため、自乗平均面粗さが60nm以上となるように修飾することが好ましい。
(1−2)支持膜
支持膜は、分離機能層に強度を与えるためのものであり、それ自体は、実質的にイオン等の分離性能を有さない。支持膜は、基材と多孔性支持層を含む。
支持膜における孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面における微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。
支持膜は、例えば、基材上に高分子重合体を流延することで、基材上に多孔性支持層を形成することにより得ることができる。支持膜に使用する材料やその形状は特に限定されない。
基材としては、ポリエステル及び芳香族ポリアミドから選ばれる少なくとも一種からなる布帛が例示される。機械的及び熱的に安定性の高いポリエステルを使用するのが特に好ましい。
基材に用いられる布帛としては、長繊維不織布や短繊維不織布を好ましく用いることができる。基材上に高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、基材と多孔性支持層が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような優れた製膜性が要求されることから、長繊維不織布をより好ましく用いることができる。
長繊維不織布としては、熱可塑性連続フィラメントより構成される長繊維不織布等が挙げられる。基材が長繊維不織布からなることにより、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。また、複合半透膜を連続製膜する工程においては、基材の製膜方向に張力がかけられることからも、基材としては、寸法安定性に優れる長繊維不織布を用いることが好ましい。
特に、基材の多孔性支持層と反対側に配置される繊維の配向が、製膜方向に対して縦配向であることにより、基材の強度を保ち、膜破れ等を防ぐことができるので好ましい。ここで、縦配向とは、繊維の配向方向が製膜方向と平行であることを言う。逆に、繊維の配向方向が製膜方向と直角である場合は、横配向と言う。
不織布基材の繊維配向度としては、多孔性支持層と反対側に配置される繊維配向度が0°以上25°以下であることが好ましい。ここで、繊維配向度とは、支持膜を構成する不織布基材の繊維の向きを示す指標であり、連続製膜を行う際の製膜方向を0°とし、製膜方向と直角方向、すなわち不織布基材の幅方向を90°としたときの、不織布基材を構成する繊維の平均の角度のことを言う。よって、繊維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
複合半透膜の製造工程やエレメントの製造工程には、加熱工程が含まれるが、加熱により支持膜または複合半透膜が収縮する現象が起きる。特に連続製膜において、幅方向には張力が付与されていないので、幅方向に収縮しやすい。支持膜または複合半透膜が収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。
不織布基材において、多孔性支持層と反対側に配置される繊維と、多孔性支持層側に配置される繊維との配向度差が10°以上90°以下であると、熱による幅方向の変化を抑制することができ好ましい。
基材の通気度は2.0cc/cm/sec以上であることが好ましい。通気度がこの範囲だと、複合半透膜の透過水量が高くなる。これは、支持膜を形成する工程で、基材上に高分子重合体を流延し、凝固浴に浸漬した際に、基材側からの非溶媒置換速度が速くなることで多孔性支持層の内部構造が変化し、その後の分離機能層を形成する工程において、モノマーの保持量や拡散速度に影響を及ぼすためと考えられる。
なお、通気度はJIS L1096(2010)に基づき、フラジール形試験機によって測定できる。例えば、200mm×200mmの大きさに基材を切り出し、サンプルとする。このサンプルをフラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から基材を通過する空気量、すなわち通気度を算出することができる。フラジール形試験機は、カトーテック株式会社製KES−F8−AP1等が使用できる。
また、基材の厚みは、10μm以上200μm以下の範囲内にあることが好ましく、より好ましくは30μm以上120μm以下の範囲内である。
多孔性支持層の素材には、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシド等のホモポリマーあるいはコポリマーを単独であるいはブレンドして使用することができる。ここで、セルロース系ポリマーとしては、酢酸セルロース、硝酸セルロース等、ビニルポリマーとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリル等が使用できる。中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン等のホモポリマーまたはコポリマーが好ましい。より好ましくは、酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられ、さらに、これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホンが一般的に使用できる。
具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、支持膜の孔径が制御しやすく、寸法安定性が高いため好ましい。
Figure 0006943180
例えば、上記ポリスルホンのN,N−ジメチルホルムアミド(以下、DMFという。)溶液を、密に織ったポリエステル布あるいはポリエステル不織布の上に一定の厚さに流延し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した支持膜を得ることができる。
上記の支持膜の厚みは、得られる複合半透膜の強度及びそれをエレメントにしたときの充填密度に影響を与える。支持膜の厚みは、十分な機械的強度及び充填密度を得るためには、30μm以上300μm以下の範囲内にあることが好ましく、より好ましくは100μm以上220μm以下の範囲内である。
多孔性支持層の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば、走査型電子顕微鏡で観察するのであれば、基材から多孔性支持層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金、白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜15kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)によって観察する。高分解能電界放射型走査電子顕微鏡は、日立製作所社製S−900型電子顕微鏡等が使用できる。
本発明に使用する支持膜は、ミリポア社製「ミリポアフィルターVSWP」(商品名)や、東洋濾紙社製「ウルトラフィルターUK10」(商品名)のような各種市販材料から選択することもできるし、「オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート」No.359(1968)に記載された方法等に従って製造することもできる。
多孔性支持層の厚みは、20μm以上100μm以下の範囲内にあることが好ましい。多孔性支持層の厚みが20μm以上であることで、良好な耐圧性が得られると共に、欠点のない均一な支持膜を得ることができるので、このような多孔性支持層を備える複合半透膜は、良好な塩除去性能を示すことができる。多孔性支持層の厚みが100μmを超えると、製造時の未反応物質の残存量が増加し、それにより透過水量が低下するとともに、耐薬品性が低下する。
なお、基材の厚み及び複合半透膜の厚みは、デジタルシックネスゲージによって測定することができる。また、分離機能層の厚みは支持膜と比較して非常に薄いので、複合半透膜の厚みを支持膜の厚みとみなすことができる。従って、複合半透膜の厚みをデジタルシックネスゲージで測定し、複合半透膜の厚みから基材の厚みを引くことで、多孔性支持層の厚みを簡易的に算出することができる。デジタルシックネスゲージとしては、尾崎製作所株式会社製のPEACOCK等が使用できる。デジタルシックネスゲージを用いる場合は、20箇所について厚みを測定して平均値を算出する。
なお、基材の厚みもしくは複合半透膜の厚みをデジタルシックネスゲージによって測定することが困難な場合、走査型電子顕微鏡で測定してもよい。1つのサンプルについて任意の5箇所における断面観察の走査型電子顕微鏡写真から厚みを測定し、平均値を算出することで厚みが求められる。
2.複合半透膜の製造方法
次に、上記複合半透膜の製造方法について説明する。製造方法は、支持膜の形成工程及び分離機能層の形成工程を含む。
(2−1)支持膜の形成工程
支持膜の形成工程は、基材に高分子溶液を塗布する工程及び高分子溶液を塗布した前記基材を凝固浴に浸漬させて高分子を凝固させる工程を含む。
基材に高分子溶液を塗布する工程において、高分子溶液は、多孔性支持層の成分である高分子を、その高分子の良溶媒に溶解して調製する。
高分子溶液塗布時の高分子溶液の温度は、高分子としてポリスルホンを用いる場合、10℃以上60℃以下であることが好ましい。高分子溶液の温度が、この範囲内であれば、高分子が析出することがなく、高分子溶液が基材の繊維間にまで充分含浸したのち固化される。その結果、アンカー効果により多孔性支持層が基材に強固に接合し、良好な支持膜を得ることができる。なお、高分子溶液の好ましい温度範囲は、用いる高分子の種類や、所望の溶液粘度等によって適宜調整することができる。
基材上に高分子溶液を塗布した後、凝固浴に浸漬させるまでの時間は、0.1秒以上5秒以下であることが好ましい。凝固浴に浸漬するまでの時間がこの範囲であれば、高分子を含む有機溶媒溶液が基材の繊維間にまで充分含浸したのち固化される。なお、凝固浴に浸漬するまでの時間の好ましい範囲は、用いる高分子溶液の種類や、所望の溶液粘度等によって適宜調整することができる。
凝固浴としては、通常水が使われるが、多孔性支持層の成分である高分子を溶解しないものであればよい。凝固浴の組成によって得られる支持膜の膜形態が変化し、それによって得られる複合半透膜も変化する。凝固浴の温度は、−20℃以上100℃以下が好ましく、さらに好ましくは10℃以上50℃以下である。凝固浴の温度がこの範囲以内であれば、熱運動による凝固浴面の振動が激しくならず、膜形成後の膜表面の平滑性が保たれる。また、凝固浴の温度がこの範囲内であれば、凝固速度が適当で、製膜性が良好である。
次に、このようにして得られた支持膜を、膜中に残存する溶媒を除去するために熱水洗浄する。このときの熱水の温度は40℃以上100℃以下が好ましく、さらに好ましくは60℃以上95℃以下である。熱水の温度がこの範囲内であれば、支持膜の収縮度が大きくならず、透過水量が良好である。また、熱水の温度がこの範囲内であれば、洗浄効果が十分である。
(2−2)分離機能層の形成工程
次に、複合半透膜を構成する分離機能層の形成工程を説明する。本発明の分離機能層の形成工程は、
(a)多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、前記基材及び前記多孔性支持層を含む支持膜の表面で界面重縮合を行うことにより、架橋ポリアミドを形成する工程、
(b)得られた架橋ポリアミドに化学結合により親水性高分子を導入する工程、
(c)前記架橋ポリアミドのアミノ基を官能基変換する試薬に接触させる工程、
の順に行い、前記工程(b)は、(d)上記工程(a)で得られた架橋ポリアミドと、前記親水性高分子を含む溶液を接触させる工程と、(e)上記工程(a)で得られた架橋ポリアミドと前記親水性高分子との化学結合の形成を促進する工程を含む。
上記工程(a)はポリアミドを主成分とする第1層を形成し、その後の工程(b)により第1層の表面に親水性高分子を主成分とする第2層が形成される。上記工程(b)は架橋ポリアミドと親水性高分子を化学結合で導入する工程であり、親水性高分子は、分離機能を実質的に担う架橋ポリアミドをほとんど通過しないと考えられるため、第1層の表面に第2層が形成される。一方、上記工程(c)はアミノ基を官能基変換する工程であり、工程(c)は、工程(b)の後に行うことで、工程(b)の前に工程(c)を行うよりも多くの親水性高分子を導入し、耐ファウリング性を向上させることができる。
以下、各工程を(a)、(b)及び(c)の順に実行する場合の本工程について説明する。
工程(a)において、多官能酸ハロゲン化物を溶解する有機溶媒としては、水と非混和性のものであって、支持膜を破壊しないものであり、かつ、架橋ポリアミドの生成反応を阻害しないものであればいずれであってもよい。代表例としては、液状の炭化水素、トリクロロトリフルオロエタン等のハロゲン化炭化水素が挙げられる。オゾン層を破壊しない物質であることや入手のしやすさ、取り扱いの容易さ、取り扱い上の安全性を考慮すると、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ヘプタデカン、ヘキサデカン、シクロオクタン、エチルシクロヘキサン、1−オクテン、1−デセン等の単体あるいはこれらの混合物が好ましく用いられる。
多官能アミンを含有する水溶液や多官能酸ハロゲン化物を有機溶媒に溶解した溶液には、両成分間の反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸捕捉剤、界面活性剤、酸化防止剤等の化合物が含まれていてもよい。
界面重縮合を支持膜上で行うために、まず、多官能アミンを含有する水溶液で支持膜表面を被覆する。ここで、多官能アミンを含有する水溶液の濃度は、0.1重量%以上20重量%以下が好ましく、より好ましくは0.5重量%以上15重量%以下である。
多官能アミンを含有する水溶液で支持膜表面を被覆する方法としては、支持膜の表面がこの水溶液によって均一にかつ連続的に被覆されればよく、公知の塗布手段、例えば、水溶液を支持膜表面にコーティングする方法、支持膜を水溶液に浸漬する方法等で行えばよい。支持膜と多官能アミンを含有する水溶液との接触時間は、5秒以上10分以下の範囲内であることが好ましく、10秒以上3分以下の範囲内であるとさらに好ましい。
次いで、過剰に塗布された水溶液を液切り工程により除去することが好ましい。液切りの方法としては、例えば、膜面を垂直方向に保持して自然流下させる方法等がある。液切り後、膜面を乾燥させ、水溶液の水の全部あるいは一部を除去してもよい。
その後、多官能アミンを含有する水溶液で被覆した支持膜に、前述の多官能酸ハロゲン化物を有機溶媒に溶解した溶液を塗布し、界面重縮合により架橋ポリアミドを形成させる。界面重縮合を実施する時間は、0.1秒以上3分以下が好ましく、0.1秒以上1分以下であるとより好ましい。
多官能酸ハロゲン化物を有機溶媒に溶解した溶液における多官能酸ハロゲン化物の濃度は、特に限定されないが、低すぎると活性層であるポリアミドの形成が不十分となり欠点になる可能性があり、高すぎるとコスト面から不利になるため、0.01重量%以上1.0重量%以下程度が好ましい。
次に、反応後の多官能酸ハロゲン化物を有機溶媒に溶解した溶液を液切り工程により除去することが好ましい。該溶液の除去は、例えば、膜を垂直方向に把持して過剰の該溶液を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1分以上5分以下であることが好ましく、1分以上3分以下であるとより好ましい。把持する時間が1分以上であることで目的の機能を有するポリアミドを得やすく、3分以下であることで該溶液の過乾燥による欠点の発生を抑制できるので、性能低下を抑制することができる。
次に、上述の方法により得られたポリアミドを、25℃以上90℃以下の範囲内で、1分以上60分以下熱水で洗浄処理することで、複合半透膜の溶質阻止性能や透過水量をより一層向上させることができる。ただし、熱水の温度が高すぎた場合、熱水洗浄処理後に急激に冷却すると耐薬品性が低下する。そのため、熱水洗浄は、25℃以上60℃以下の範囲内で行うことが好ましい。また、61℃以上90℃以下の高温で熱水洗浄処理する際には、熱水洗浄処理後は、緩やかに冷却することが好ましい。例えば、段階的に低い温度の熱水と接触させて室温まで冷却させる方法等がある。
また、上記の熱水洗浄する工程において、熱水中に酸またはアルコールが含まれていてもよい。酸またはアルコールを含むことで、ポリアミドにおける水素結合の形成をより制御しやすくなる。酸としては、塩酸、硫酸、リン酸等の無機酸や、クエン酸、シュウ酸等の有機酸等が挙げられる。酸の濃度は、pH2以下となるように調整することが好ましく、pH1以下であるとより好ましい。アルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール等の1価アルコールや、エチレングリコール、グリセリン等の多価アルコールが挙げられる。アルコールの濃度は、好ましくは10重量%以上100重量%以下であり、より好ましくは10重量%以上50重量%以下である。
次に、工程(b)において、親水性高分子を架橋ポリアミドに化学結合で導入する。薬液洗浄等による脱離を抑制するため、化学結合は共有結合であることが好ましく、特にアミド結合であることが好ましい。この工程は、具体的には、親水性高分子を含む溶液に架橋ポリアミドを接触させる工程と、前記親水性高分子と架橋ポリアミド中のアミノ基またはカルボキシ基との化学結合を促進する工程を有する。
架橋ポリアミドと親水性高分子を含む溶液とを接触させる方法は、具体的な方法に限定されるものではなく、噴霧、コーティング、浸漬等、架橋ポリアミドに親水性高分子が接触できればよい。
親水性高分子の例として、カルボン酸誘導体が挙げられる。カルボン酸誘導体とはカルボキシ基を変換することで得られる官能基を含む化合物であり、特に本発明の実施の態様としては、カルボン酸誘導体は、アミノ基との反応性が向上された官能基を有する化合物であることが好ましい。カルボン酸誘導体の例としては、カルボン酸塩化物、カルボン酸臭化物、活性エステル等が挙げられる。
カルボン酸(カルボキシ基を有する化合物)からカルボン酸塩化物への変換には、塩化チオニル、三塩化リン、五塩化リン、塩化スルフリル、塩化オキサリルを用いることができる。また、副生成物として塩化水素を発生しないトリフェニルホスフィン、四塩化炭素、2,4,6−トリクロロ−1,3,5−トリアジンも適宜用いることができる。また、カルボン酸臭化物への変換には三臭化リンを用いることができる。
活性エステルとは、アルキルエステル等の通常のエステル結合と異なり、脱離能に優れたエステルのことであり、後述の縮合剤を用いてカルボキシ基から変換することができる。
カルボン酸(カルボキシ基を有する化合物)のカルボン酸誘導体化に用いる縮合剤としては、特に限定されないが、N,N−ジシクロヘキシルカルボジイミド、N,N−ジイソプロピルカルボジイミド、1−[3−(ジメチルアミノ)プロピル]−3−エチルカルボジイミド及びその塩酸塩、N−シクロヘキシル−N’−(2−モルホリノエチル)カルボジイミドメト−p−トルエンスルホン酸塩等のカルボジイミド系縮合剤、1H−ベンゾトリアゾール−1−イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸塩、1H−ベンゾトリアゾール−1−イルオキシトリピロリジノホスホニウムヘキサフルオロリン酸塩、クロロトリピロリジノホスホニウムヘキサフルオロリン酸塩、ブロモトリピロリジノホスホニウムヘキサフルオロリン酸塩等のホスホニウム系縮合剤、{{[(1−シアノ−2−エトキシ−2−オキソエチリデン)アミノ]オキシ}−4−モルホリノメチレン}ジメチルアンモニウムヘキサフルオロリン酸塩、O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロリン酸塩及びテトラフルオロホウ酸塩、O−(ベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロリン酸塩及びテトラフルオロホウ酸塩等のウロニウム系縮合剤、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(以下、DMT−MMという。)、トリフルオロメタンスルホン酸(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−(2−オクトキシ−2−オキソエチル)ジメチルアンモニウム等のトリアジン系縮合剤を用いることができる。
カルボン酸誘導体化はポリアミドと親水性高分子を接触させる前に、あらかじめ行っておいてもよい。つまり、カルボン酸誘導体である親水性高分子を含む溶液をポリアミドに接触されてもよい。また、カルボキシ基を変換することで親水性高分子をカルボン酸誘導体にする試薬を、カルボン酸である親水性高分子を含む溶液に含有させ、この溶液をポリアミドに接触させてもよい。つまり、親水性高分子とカルボン酸誘導体へと変換する試薬を親水性高分子とポリアミドとを接触させる場に存在させてもよい。
カルボン酸誘導体化を促進させるために、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、リン酸ナトリウム、リン酸カリウム等のアルカリ金属化合物やトリエチルアミン、N−メチルモルホリン等の3級アミン化合物を添加してもよい。
また、その他の添加剤として、ポリアミド中に残存する、水と非混和性の有機溶媒、多官能酸ハロゲン化物、多官能アミン化合物等のモノマー、及びこれらモノマーの反応で生じたオリゴマー等を除去するために、ドデシル硫酸ナトリウム、ベンゼンスルホン酸ナトリウム等の界面活性剤を好適に用いることができる。
架橋ポリアミドに接触させる親水性高分子は単独であっても数種混合して用いてもよい。親水性高分子は、重量濃度で10ppm以上1%以下の溶液として使用するのが好ましい。親水性高分子の濃度が10ppm以上であれば、ポリアミドに存在する官能基と親水性高分子を十分に反応させることができる。一方で、1%を超えると親水性高分子層が厚くなるため、造水量が低下する。
親水性高分子と親水性高分子をカルボン酸誘導体へと変換する試薬とを含む溶液中の該試薬の濃度は、変換可能なカルボキシ基濃度より高ければ特に限定されず、反応性基との縮合に十分な効果を得ることができる。
親水性高分子と親水性高分子をカルボン酸誘導体へと変換する試薬とを含む溶液中の溶媒は、親水性高分子と親水性高分子をカルボン酸誘導体へと変換する試薬を溶解可能であれば特に限定されない。多くの場合、メタノール、エタノール等のプロトン性溶媒や水を用いると、溶媒とカルボン酸誘導体とが反応するため、非プロトン性溶媒が好ましいが、前記トリアジン系縮合剤を用いた場合は、形成する活性エステルがプロトン性溶媒や水に対し耐性を有するため、好適に用いることができる。
架橋ポリアミドの層の表面のアミノ基と、親水性高分子に含まれるカルボン酸誘導体とが反応することでアミド結合を形成するため、親水性高分子が導入される。分離機能層に親水性高分子を含む溶液を接触させる方法は特に限定されず、例えば、親水性高分子を含む溶液に複合半透膜全体を浸漬してもよいし、親水性高分子を含む溶液を分離機能層表面にスプレーしてもよく、ポリアミドと親水性高分子が接触するのであれば、その方法は限定されない。
親水性高分子がカルボン酸誘導体であり、ポリアミドと親水性高分子との間の化学結合がアミド結合である場合、化学結合の形成を促進する工程とは、カルボン酸誘導体と架橋ポリアミド中のアミノ基とのアミド化を促進する工程を備える。アミド化の促進はカルボン酸誘導体の反応性向上、アミンの反応性向上またはその両方を行うことが出来る。アミド化を促進する方法としては、加熱により反応を促進する方法、求核触媒を添加する方法、ルイス酸を添加する方法が挙げられる。アミド化反応を促進するとともに、余分なカルボン酸誘導体を分解し、副反応を抑制することが出来る。
アミド化反応を促進する工程は、10秒以上30分以下が好ましく、20秒以上15分以下がより好ましい。アミド化反応を促進する工程が上記時間内で行われることにより、適度なバラツキをもって親水性高分子を架橋ポリアミドに導入することが出来る。
加熱は、熱風により周囲の温度を昇温してもよいし、水中等の浴中で加熱してもよい。加熱温度は60〜90℃が好ましく、70〜85℃がより好ましい。60℃以上にすることでアミド化反応を十分に進行でき、90℃以下とすることで熱収縮による膜の透水性低下を抑制できる。加熱時間は特に限定されないが、上述の理由から、10秒以上30分以下が好ましく、20秒以上15分以下がより好ましい。
求核触媒としては、4−ジメチルアミノピリジン、4−ピロリジノピリジン等のピリジン系、トリフェニルホスフィン、トリブチルホスフィン等の3級ホスフィン、イミダゾールとその誘導体が挙げられる。求核試薬がカルボン酸誘導体と反応し優れた脱離基となることで、アミド化反応が促進される。求核触媒を添加する方法としては、あらかじめ親水性高分子を含む溶液に添加してもよいし、ポリアミドへの接触後に添加してもよい。求核触媒の量は、カルボキシ基の量に対して0.01〜0.5当量が好ましく0.05〜0.3当量がより好ましい。ただし、カルボン酸塩化物やカルボン酸臭化物等、反応により塩酸や臭酸等の酸を生成する場合は、酸により触媒失活してしまうため、1当量以上添加することが好ましい。
ルイス酸としては、特に限定されないが、トリフルオロメタンスルホン酸イットリウム(III)、トリフルオロメタンスルホン酸イッテルビウム(III)、トリフルオロメタンスルホン酸スカンジウム(III)等の希土類ルイス酸や、塩化インジウム(III)は水溶媒下においても適用できるため好ましい。ルイス酸がカルボン酸誘導体のカルボニル基に配位することにより、反応性が向上する。ルイス酸の量は、カルボキシ基の量に対して0.01〜0.5当量が好ましく、0.05〜0.3当量がより好ましい。
次に、工程(c)において、ポリアミドのアミノ基を官能基変換する試薬と接触させることでアミノ基を他の官能基へと変換する。中でも、アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させ、官能基の変換を行うことが好ましい。アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬としては、亜硝酸及びその塩、ニトロシル化合物等の水溶液が挙げられる。亜硝酸やニトロシル化合物の水溶液は気体を発生して分解する性質を持つため、亜硝酸塩と酸性溶液との反応によって亜硝酸を逐次生成するので好ましい。一般に、亜硝酸塩は水素イオンと反応して亜硝酸(HNO)を生成するが、水溶液のpHが7以下、好ましくは5以下、さらに好ましくは4以下で効率よく亜硝酸(HNO)を生成する。中でも、取り扱いの簡便性から、水溶液中で塩酸または硫酸と反応させた亜硝酸ナトリウムの水溶液が特に好ましい。
アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬中の亜硝酸や亜硝酸塩の濃度は、好ましくは0.01重量%以上1重量%以下の範囲であり、より好ましくは0.05重量%以上0.5重量%以下の範囲である。0.01重量%以上の濃度であれば十分な効果が得られ、濃度が1重量%以下であれば溶液の取扱いが容易である。
亜硝酸水溶液の温度は、15℃以上45℃以下であることが好ましい。15℃以上の温度であれば十分な反応時間が得られ、45℃以下の温度であれば亜硝酸の分解が起こり難いため取り扱いが容易である。
亜硝酸水溶液との接触時間は、ジアゾニウム塩及びその誘導体のうち少なくとも一方が生成する時間であればよく、高濃度では短時間で処理が可能であるが、低濃度であると長時間必要である。そのため、上記濃度の溶液では、接触時間は10分間以内であることが好ましく、3分間以内であることがさらに好ましい。また、接触させる方法は特に限定されず、前記試薬の溶液を塗布しても、前記試薬の溶液に複合半透膜を浸漬させてもよい。前記試薬を溶かす溶媒は、前記試薬が溶解し、複合半透膜が侵食されなければ、いかなる溶媒を用いてもかまわない。また、溶液には、アミノ基と前記試薬との反応を妨害しないものであれば、界面活性剤や酸性化合物、アルカリ性化合物等が含まれていてもよい。
次に、生成したジアゾニウム塩またはその誘導体の一部を異なる官能基へ変換する。ジアゾニウム塩またはその誘導体の一部は、例えば、水と反応することによりフェノール性水酸基へと変換される。また、塩化物イオン、臭化物イオン、シアン化物イオン、ヨウ化物イオン、フッ化ホウ素酸、次亜リン酸、亜硫酸水素ナトリウム、亜硫酸イオン、芳香族アミン、硫化水素、チオシアン酸等を含む溶液と接触させると、対応した官能基へ変換される。また、芳香族アミンと接触させることでジアゾカップリング反応が起こり膜面に芳香族基を導入することが可能となる。なお、これらの試薬は単一で用いても、複数混合させて用いてもよく、異なる試薬に複数回接触させてもよい。
ジアゾカップリング反応が生じる試薬としては、電子豊富な芳香環または複素芳香環を持つ化合物が挙げられる。電子豊富な芳香環または複素芳香環を持つ化合物としては、無置換の複素芳香環化合物、電子供与性置換基を有する芳香族化合物、及び電子供与性置換基を有する複素芳香環化合物が挙げられる。電子供与性の置換基としては、アミノ基、エーテル基、チオエーテル基、アルキル基、アルケニル基、アルキニル基、アリール基等が挙げられる。上記化合物の具体的な例としては、例えば、アニリン、オルト位、メタ位、パラ位のいずれかの位置関係でベンゼン環に結合したメトキシアニリン、2個のアミノ基がオルト位、メタ位、パラ位のいずれかの位置関係でベンゼン環に結合したフェニレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸、3−アミノベンジルアミン、4−アミノベンジルアミン、スルファニル酸、3,3’−ジヒドロキシベンジジン、1−アミノナフタレン、2−アミノナフタレン、またはこれらの化合物のN−アルキル化物が挙げられる。
3.複合半透膜の利用
本発明の複合半透膜は、プラスチックネット等の原水流路材と、トリコット等の透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置等と組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水を飲料水等の透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
本発明の複合半透膜を使用することにより、例えば、操作圧力が0.1MPa以上3MPa以下、より好ましくは0.1MPa以上1.55MPa以下といった低圧領域で、高い透過水量を維持しつつ、複合半透膜や流体分離装置を使用することができる。操作圧力を低くすることができるため、用いるポンプ等の容量を小さくすることができ、消費電力を抑え、造水のコストダウンを図ることができる。操作圧力が0.1MPaを下回ると、透過水量が減少する傾向があり、3MPaを超えるとポンプ等の消費電力が増加するとともに、ファウリングによる膜の目詰まりを起こしやすくなる。
本発明の複合半透膜は、pH6.5、濃度が2,000mg/Lの塩化ナトリウム水溶液を用い、25℃において、操作圧力1.55MPaで24時間ろ過したときの透過水量が0.50m/m/日以上3.0m/m/日以下であることが好ましい。このような複合半透膜は、例えば、前述した製造方法を適宜選択することで、製造することができる。透過水量が0.50m/m/日以上3.0m/m/日以下であることで、ファウリングの発生を適度に抑え、安定的に造水することができる。透過水量が0.80m/m/日以上3.0m/m/日以下であると、実用上さらに好ましい。
本発明の複合半透膜で処理する下水中には、界面活性剤等の難生分解性有機物が、生物処理で完全には分解されず含まれていることがある。従来の複合半透膜で処理を行うと界面活性剤が膜表面に吸着し、透過水量が低下してしまう。しかし、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い脱離性を持つため、安定した性能を発現することが可能である。
ここで、本発明の複合半透膜は、膜汚染物質に対する付着抑制能が高い。すなわち、25℃、pH6.5、NaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量をF1とし、続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように前記水溶液に加えて1時間ろ過したときの透過水量をF2としたとき、F2/F1の値が0.80以上であることが好ましい。さらに好ましくは0.90以上である。このような複合半透膜を用いることにより、膜の表面にファウリングが生じにくくなり、高い透過水量を長期間安定して維持することができる。
また、本発明の複合半透膜は、薬品に対する高い耐久性を示し、製膜時の前記F2/F1の値をF3、pH1の硫酸水溶液に20時間浸漬後の膜のF2/F1をF4としたとき、F4/F3の値が0.85以上であることが好ましい。さらに好ましくは0.90以上である。このような複合半透膜を用いることにより、長期運転により膜表面に汚染物質が付着し透水性が低下した際に、洗浄操作を行うことで、汚染物質を取り除くとともに、高い耐ファウリング性を維持することが出来る。
以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に何ら限定されるものではない。
(NaCl除去率)
複合半透膜に、温度25℃、pH7、塩化ナトリウム濃度2,000ppmに調整した評価水を操作圧力1.55MPaで供給して膜ろ過処理を行なった。供給水及び透過水の電気伝導度を東亜電波工業株式会社製の電気伝導度計「WM−50EG」で測定して、それぞれの実用塩分、すなわちNaCl濃度を得た。こうして得られたNaCl濃度及び下記式に基づいて、NaCl除去率を算出した。
NaCl除去率(%)=100×{1−(透過水中のNaCl濃度/供給水中のNaCl濃度)}
(膜透過流束)
前項の試験において、供給水(NaCl水溶液)の膜透過水量を測定し、膜面1平方メートル当たり、1日の透水量(立方メートル)に換算した値を膜透過流束(m/m/日)とした。
(膜性能)
膜性能の測定は以下のように行った。初めに、25℃、pH6.5、NaCl濃度が2,000mg/Lである水溶液を1.55MPaの圧力で1時間ろ過したときの透過水量を測定し、初期透過水量(F1)とした。続いてポリオキシエチレン(10)オクチルフェニルエーテルを100mg/Lの濃度となるように水溶液に加えて1時間ろ過したときの透過水量をF2とし、F2/F1の値を算出した。
(耐久性)
前記F2/F1の値について、製膜時の複合半透膜の値をF3、pH1の硫酸水溶液に20時間浸漬した後の複合半透膜の値をF4としてF4/F3の値を算出し、複合膜の耐久性(耐薬品性)を求めた。
(含水率)
親水性高分子を水に溶解し、pH7に調整した後、凍結乾燥により粉末を得た。得られた粉末を25℃、75%RHに調整した雰囲気下にて重量変化が0.1%以下となるまで静置し、重量を測定した。その後、50℃で24時間加熱乾燥し、乾燥後の重量を測定した。それぞれ得られた重量から前記式(1)より含水率を算出した。
(ATR−IR)
親水性高分子を、25℃、75%RH及び3%RHに調整した雰囲気下にて重量変化が0.1%以下となるまで静置した。Nicolet株式会社製Avatar360 FT−IR測定機を用い、全反射測定用のアクセサリーとして同社製の一回反射型水平状ATR測定装置(OMNI−Sampler)及びゲルマニウム製のATRクリスタルを用いて、多孔質体表面に赤外線を照射することで、スペクトルを得た。測定条件として、分解能を4cm−1に設定し、スキャン回数を256回に設定した。また、こうして得られたスペクトルについて、オートベースライン補正を行った。このようにして得られた各湿度条件のスペクトルについて差分をとり、差スペクトルの2900〜3600cm−1のピークのピークトップ波数を確認した。また、複合半透膜についても同様にして調整を行い、任意の30点の複合半透膜表面のスペクトルを測定し、1720cm−1と1610cm−1のピーク強度比I1720/I1610、及び標準偏差を算出した。
(X線光電子分光)
X線光電子分光法によりO/N比を測定した。まず、膜サンプルを50℃で24時間真空乾燥して水分を十分に除去した。X線光電子分光装置(K−alpha:サーモフィッシャー・サイエンティフィック社製)を用いて、光電子の検出角度90度で任意の30点の分離機能層表面の元素組成比を測定し、O/N比の平均値及び標準偏差を算出した。
(通気度)
通気度は、JIS L1096(2010)に基づき、フラジール形試験機によって測定した。基材を200mm×200mmの大きさに切り出し、フラジール形試験機に取り付け、傾斜形気圧計が125Paの圧力になるように吸込みファン及び空気孔を調整し、このときの垂直形気圧計の示す圧力と使用した空気孔の種類から通気度を求めた。フラジール形試験機は、カトーテック株式会社製KES−F8−AP1を使用した。
(複合半透膜の作製)
(比較例1)
長繊維からなるポリエステル不織布(通気度2.0cc/cm/sec)上にポリスルホン(PSf)の15.0重量%DMF溶液を25℃の条件下でキャストし、ただちに純水中に浸漬して5分間放置することによって、多孔性支持層の厚みが40μmである支持膜を作製した。
次に、この支持膜を3.5重量%のm−PDA水溶液に浸漬した後、余分な水溶液を除去し、さらにTMCを0.14重量%含むn−デカン溶液を多孔性支持層の表面が完全に濡れるように塗布した。次に膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い25℃の空気を吹き付けて乾燥させた後、40℃の純水で洗浄した。このようにして得られた複合半透膜のATR−IR測定結果、X線光電子分光測定結果、製膜時膜性能、ファウリング後膜性能、及び耐薬品性を測定したところ、表1に示す値であった。
(比較例2)
比較例1で得られた複合半透膜を、pH3、35℃に調整した0.3重量%の亜硝酸ナトリウム水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。次に0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、比較例2の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(比較例3)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量25,000、和光純薬社製)100ppmとDMT−MM0.1重量%を含む水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(比較例4)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量25,000、和光純薬社製)100ppm水溶液に20℃で24時間接触させた後、水洗した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例1)
ポリアクリル酸(重量平均分子量25,000、和光純薬社製)0.1gに塩化チオニルを0.5g加え、20時間加熱還流させた後、減圧留去により過剰な塩化チオニルを除いた。得られた固形分にヘキサン100gを加え、比較例1で得られた複合半透膜にスプレー塗布した。その後、4−ジメチルアミノピリジン10ppmヘキサン溶液を添加して25℃で10分間静置し、水洗した。次に、pH3、35℃に調整した0.3重量%の亜硝酸ナトリウム水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。さらに0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、実施例1の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例2)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量25,000、和光純薬社製)100ppmとDMT−MM0.1重量%を含む水溶液に接触させた後、4−ジメチルアミノピリジン10ppm水溶液を添加して10分間静置し、水洗した。次に、pH3、35℃に調整した0.3重量%の亜硝酸ナトリウム水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。さらに0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、実施例2の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例3)
比較例1で得られた複合半透膜をポリアクリル酸(重量平均分子量25,000、和光純薬社製)100ppmとDMT−MM0.1重量%を含む水溶液に接触させた後、80℃に加熱して4分間静置し、水洗した。次に、pH3、35℃に調整した0.3重量%の亜硝酸ナトリウム水溶液に1分間浸漬した。なお、亜硝酸ナトリウムのpHの調整は硫酸で行った。さらに0.1重量%の亜硫酸ナトリウム水溶液に35℃で2分間浸漬することで、実施例3の複合半透膜を得た。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
(実施例4)
ポリアクリル酸に代えてポリアクリル酸−マレイン酸共重合体(重量平均分子量10,000、商品名:A−6330、東亞合成社製)を用いた以外は実施例3と同様の手法にて複合半透膜を作製した。得られた複合半透膜を評価したところ、膜性能は表1に示す値であった。
表1に示す結果から分かるように、本発明の複合半透膜は、高い透過水量と膜汚染物質に対する高い付着抑制能を持ち、長期間安定して高い性能を維持することができる。
Figure 0006943180
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2016年6月29日出願の日本特許出願(特願2016−128624)及び2016年6月29日出願の日本特許出願(特願2016−128625)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の複合半透膜を用いれば、原水を飲料水等の透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。本発明の複合半透膜は、特に、かん水または海水の脱塩に好適に用いることができる。

Claims (10)

  1. 基材及び多孔性支持層を含む支持膜と、前記多孔性支持層上に設けられた分離機能層からなる複合半透膜であって、
    前記分離機能層が、架橋ポリアミドと、エチレン性不飽和基を有するモノマーの重合体である親水性高分子とを含み、
    前記分離機能層表面の、X線光電子分光法により測定された窒素原子の原子数に対する酸素原子の原子数の比(O/N比)が1.5以上10以下かつ、前記比の標準偏差が0.15以上であり、
    前記親水性高分子が以下の(A)及び(B)を満たす、複合半透膜。
    (A)前記親水性高分子の25℃、75%RH条件下での含水率が40%以上である。
    (B)前記親水性高分子の全反射赤外吸収測定において、25℃、75%RH条件下と絶乾条件下の差スペクトルの3700〜2900cm −1 間のピークトップの波数が、3350cm −1 以上3500cm −1 以下である。
  2. 前記親水性高分子の25℃、75%RH条件下での含水率が60%以上である、請求項1に記載の複合半透膜。
  3. 前記親水性高分子が、少なくとも1つの酸性基を有する高分子である、請求項1または2に記載の複合半透膜。
  4. 前記酸性基が、カルボキシ基、スルホン酸基、ホスホン酸基及びリン酸基からなる群から選択される少なくとも1つの基である、請求項に記載の複合半透膜。
  5. 前記親水性高分子が、アクリル酸、メタクリル酸及びマレイン酸からなる群から選択されるいずれか1種の化合物由来の成分を含む重合体である、請求項1〜のいずれか1項に記載の複合半透膜。
  6. 前記分離機能層表面の全反射赤外吸収測定において、25℃、3%RH条件下のスペクトルの吸光度比(I1720:1720cm−1の吸収ピーク値/I1610:1610cm−1の吸収ピーク値)が0.10以上0.50以下かつ、前記吸光度比の標準偏差が0.05以上である、請求項1〜のいずれか1項に記載の複合半透膜。
  7. 前記親水性高分子と前記架橋ポリアミドがアミド結合で結合している、請求項1〜のいずれか1項に記載の複合半透膜。
  8. 基材と、前記基材上に形成される多孔性支持層と、前記多孔性支持層上に形成される分離機能層とを備える複合半透膜の製造方法であって、
    (a)多官能アミンを含有する水溶液と、多官能酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、前記基材及び前記多孔性支持層を含む支持膜の表面で界面重縮合を行うことにより、架橋ポリアミドを形成する工程、
    (b)上記工程(a)で得られた架橋ポリアミドに化学結合により親水性高分子を導入する工程、
    (c)前記架橋ポリアミドのアミノ基を官能基変換する試薬に接触させる工程、をこの順に行うことで前記分離機能層を形成し、
    かつ、前記工程(b)が、
    (d)上記工程(a)で得られた架橋ポリアミドと、前記親水性高分子を含む溶液を接触させる工程と、
    (e)上記工程(a)で得られた架橋ポリアミドと前記親水性高分子との化学結合の形成を促進する工程を含む、複合半透膜の製造方法。
  9. 前記工程(b)において、前記親水性高分子としてカルボン酸誘導体を用い、前記架橋ポリアミド中のアミノ基と前記カルボン酸誘導体によりアミド結合を形成する、請求項に記載の複合半透膜の製造方法。
  10. 前記工程(e)が、加熱、求核触媒の添加、及びルイス酸の添加からなる群から選択される少なくとも1つを行うことを含む、請求項9に記載の複合半透膜の製造方法。
JP2017535469A 2016-06-29 2017-06-29 複合半透膜及び複合半透膜の製造方法 Active JP6943180B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016128625 2016-06-29
JP2016128625 2016-06-29
JP2016128624 2016-06-29
JP2016128624 2016-06-29
PCT/JP2017/024017 WO2018003943A1 (ja) 2016-06-29 2017-06-29 複合半透膜及び複合半透膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018003943A1 JPWO2018003943A1 (ja) 2019-04-18
JP6943180B2 true JP6943180B2 (ja) 2021-09-29

Family

ID=60785398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017535469A Active JP6943180B2 (ja) 2016-06-29 2017-06-29 複合半透膜及び複合半透膜の製造方法

Country Status (6)

Country Link
US (1) US11198100B2 (ja)
EP (1) EP3479892A4 (ja)
JP (1) JP6943180B2 (ja)
KR (1) KR102315570B1 (ja)
CN (1) CN109414660A (ja)
WO (1) WO2018003943A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107921378A (zh) * 2015-07-31 2018-04-17 东丽株式会社 分离膜、分离膜元件、净水器及分离膜的制造方法
CN109414660A (zh) * 2016-06-29 2019-03-01 东丽株式会社 复合半透膜及复合半透膜的制造方法
US20190388844A1 (en) * 2017-01-31 2019-12-26 Toray Industries, Inc. Semipermeable composite membrane and method for manufacturing semipermeable composite membrane
KR102120689B1 (ko) * 2017-04-28 2020-06-09 도레이 카부시키가이샤 복합 반투막 및 그의 제조 방법
US10960360B2 (en) 2018-02-28 2021-03-30 Toray Industries, Inc. Composite semipermeable membrane and composite semipermeable membrane element
WO2019168138A1 (ja) * 2018-02-28 2019-09-06 東レ株式会社 複合半透膜および複合半透膜エレメント
EP3675233A4 (en) 2018-07-26 2021-01-13 Lg Chem, Ltd. CROSS-LINKED POLYOLEFIN SEPARATOR AND ASSOCIATED MANUFACTURING PROCESS
JP7147476B2 (ja) * 2018-10-31 2022-10-05 東レ株式会社 表面改質剤、表面改質方法および表面改質分離膜
JP7027364B2 (ja) * 2019-03-12 2022-03-01 日東電工株式会社 硫酸イオン除去システム及び方法
JP2021159784A (ja) * 2020-03-30 2021-10-11 東洋紡株式会社 ポリフェニレン系半透膜およびその製造方法
US11534719B1 (en) * 2021-07-02 2022-12-27 Gradiant Corporation Membranes with controlled porosity for serial filtration
WO2024048695A1 (ja) * 2022-08-31 2024-03-07 東レ株式会社 複合半透膜及び複合半透膜の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929648C1 (ja) * 1989-09-06 1990-11-29 Sartorius Gmbh, 3400 Goettingen, De
US4964998A (en) * 1989-12-13 1990-10-23 Filmtec Corporation Use of treated composite polyamide membranes to separate concentrated solute
JP4284767B2 (ja) * 1998-10-05 2009-06-24 東レ株式会社 複合半透膜およびそれを用いた造水方法、流体分離素子
US6280853B1 (en) * 1999-06-10 2001-08-28 The Dow Chemical Company Composite membrane with polyalkylene oxide modified polyamide surface
JP2001286741A (ja) * 2000-04-04 2001-10-16 Toray Ind Inc 逆浸透複合膜およびその製造方法
IL164122A (en) * 2004-09-19 2009-09-22 Charles Linder Process for improving membranes
KR20100003799A (ko) 2008-07-02 2010-01-12 웅진케미칼 주식회사 높은 안티파울링성을 가지는 선택적 분리막 및 그의제조방법
ES2397073T3 (es) 2008-08-05 2013-03-04 Polymers Crc Limited Membranas de poliamida en película delgada funcionalizadas
US9193815B2 (en) 2010-03-04 2015-11-24 Sekisui Chemical Co., Ltd. Polymer membrane for water treatment and method for manufacture of same
KR101440971B1 (ko) * 2012-01-05 2014-09-17 주식회사 엘지화학 내오염성이 우수한 역삼투막 및 그 제조방법
WO2014014662A1 (en) * 2012-07-19 2014-01-23 Dow Global Technologies Llc Thin film composite membrane derived from tetra-functional acyl halide monomer
CN104619403B (zh) * 2012-09-26 2018-01-30 东丽株式会社 复合半透膜
WO2014069786A1 (ko) 2012-11-05 2014-05-08 주식회사 엘지화학 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
KR102155533B1 (ko) * 2013-02-28 2020-09-14 도레이 카부시키가이샤 복합 반투막 및 그 제조 방법
JPWO2014133133A1 (ja) * 2013-02-28 2017-02-02 東レ株式会社 複合半透膜
CN103143270A (zh) * 2013-03-19 2013-06-12 中国科学院长春应用化学研究所 亲水性反渗透复合膜及其制备方法
WO2015046582A1 (ja) * 2013-09-30 2015-04-02 東レ株式会社 複合半透膜およびその製造方法
EP3162432A4 (en) * 2014-06-30 2018-02-28 Toray Industries, Inc. Composite semipermeable membrane
CN109414660A (zh) * 2016-06-29 2019-03-01 东丽株式会社 复合半透膜及复合半透膜的制造方法

Also Published As

Publication number Publication date
US20200188861A1 (en) 2020-06-18
JPWO2018003943A1 (ja) 2019-04-18
KR20190022562A (ko) 2019-03-06
CN109414660A (zh) 2019-03-01
EP3479892A1 (en) 2019-05-08
EP3479892A4 (en) 2020-02-26
WO2018003943A1 (ja) 2018-01-04
US11198100B2 (en) 2021-12-14
KR102315570B1 (ko) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6943180B2 (ja) 複合半透膜及び複合半透膜の製造方法
JP6492663B2 (ja) 複合半透膜およびその製造方法
JP6032011B2 (ja) 複合半透膜
CN110536743B (zh) 复合半透膜和其制造方法
KR102289642B1 (ko) 복합 반투막
CN112870995A (zh) 复合半透膜
JP6485540B2 (ja) 複合半透膜およびその製造方法
WO2014133133A1 (ja) 複合半透膜
JP6544245B2 (ja) 複合半透膜
JP2018187533A (ja) 複合半透膜
JP7167442B2 (ja) 複合半透膜及びその製造方法
KR102497473B1 (ko) 복합 반투막
JP6702181B2 (ja) 複合半透膜
WO2024048695A1 (ja) 複合半透膜及び複合半透膜の製造方法
JP2019042619A (ja) 複合半透膜
JP2020138135A (ja) 複合半透膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210823

R151 Written notification of patent or utility model registration

Ref document number: 6943180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151