JP6916591B2 - サスペンション装置 - Google Patents

サスペンション装置 Download PDF

Info

Publication number
JP6916591B2
JP6916591B2 JP2015226991A JP2015226991A JP6916591B2 JP 6916591 B2 JP6916591 B2 JP 6916591B2 JP 2015226991 A JP2015226991 A JP 2015226991A JP 2015226991 A JP2015226991 A JP 2015226991A JP 6916591 B2 JP6916591 B2 JP 6916591B2
Authority
JP
Japan
Prior art keywords
passage
actuator
extension
pump
compression side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015226991A
Other languages
English (en)
Other versions
JP2017094808A (ja
Inventor
政村 辰也
辰也 政村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2015226991A priority Critical patent/JP6916591B2/ja
Publication of JP2017094808A publication Critical patent/JP2017094808A/ja
Application granted granted Critical
Publication of JP6916591B2 publication Critical patent/JP6916591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

本発明は、サスペンション装置に関する。
この種のサスペンション装置としては、たとえば、車両の車体と車軸との間に介装されるアクティブサスペンションとして機能するものがあり、具体的には、シリンダとシリンダ内に移動自在に挿入されてシリンダ内に圧力室を区画するピストンとピストンに連結されるロッドとを備えたアクチュエータと、車両のエンジンによって常時駆動される油圧ポンプと、シリンダ内の圧力室と油圧ポンプとを接続する油路と、油路の途中に設けられて圧力室内の圧力を制御する圧力制御弁と、圧力制御弁を制御する姿勢変化抑制制御装置とを備えて構成されるもの(たとえば、特許文献1参照)がある。
特開昭63−176710号公報
前記したサスペンション装置にあっては、エンジン停止モードがあるHEV(Hybrid Electric Vehicle)にそのままでは搭載することができない。
そこで、HEVやEV(Electric Vehicle)の駆動源であるモータの動力で油圧ポンプを駆動することが考えられる。しかしながら、従来のサスペンション装置では、制御中に油圧ポンプが絶えず駆動されており、吐出流量もアクチュエータが悪路走行時などでアクチュエータが大振幅かつ高速で伸縮した際にも油圧ポンプの吐出流量が不足しないようになっている。そのため、従来のサスペンション装置は、油圧ポンプで消費するエネルギが非常に大きく、電力消費が激しくなるので、HEVやEVへの適用は困難である。
本発明は、前記問題を改善するために創案されたものであって、その目的とするところは、エネルギ消費が少なくHEVやEVへ搭載することが可能なサスペンション装置の提供である。
本発明における課題解決手段におけるサスペンション装置は、伸縮可能なアクチュエータと、ポンプと、アクチュエータとポンプとの間に設けられてポンプから吐出される液体をアクチュエータへ供給してアクチュエータを伸縮させる液圧回路と、ポンプを駆動制御するコントローラとを備え、アクチュエータの伸縮方向と推力を発揮する方向によらず、アクチュエータの伸縮速度に基づいてポンプの目標回転数を求めてポンプを制御するようになっている。よって、本発明のサスペンション装置では、ポンプが一定回転速度で駆動されず、吐出流量が少なくて済むようななめらかな路面を走行中であるような場合にはポンプの回転速度を低下させることができ、消費エネルギが低減される。そして、伸縮速度を一定のサンプリング時間の間、検知し続けて、サンプリング時間中に取得された伸縮速度の平均値や積分平均値を求める必要もなく、コントローラは、検知される伸縮速度から直接に目標回転数を求め得る。よって、サスペンション装置によれば、タイムリーにその時にアクチュエータに必要な流量を確保するためのポンプの目標回転数を求め得る。そのため、本発明のサスペンション装置によれば、エネルギ消費を最小限にとどめつつも、アクチュエータに所望する推力を発揮させ得る。
また、発明では、コントローラがアクチュエータの伸縮速度に基づいてアクチュエータの伸縮に要する必要流量を求め、必要流量から目標回転数を求めるようになっている。そのため、ポンプの目標回転数は、アクチュエータの伸縮速度からごく簡単な演算によって求められる。
またさらに、発明では、コントローラが必要流量に1を超えるゲインを乗じて目標回転数を求めるか、或いは、必要流量を吐出するために必要な回転数に加算値を加算して目標回転数を求めるようにしている。そのため、突起乗り上げ時等で路面から振動が入力されて、アクチュエータの伸縮速度の急激に増加し、必要流量が急激に増加する場合にも流量不足を招かずに済み、アクチュエータに安定的な推力を発揮させ得る。
また、サスペンション装置では、液圧回路が供給路と、排出路と、伸側通路と、圧側通路と、伸側通路に設けた伸側減衰弁と、圧側通路に設けた圧側減衰弁と、伸側通路と圧側通路の一方を選択的に供給路に接続するとともに伸側通路と圧側通路の他方を前記排出路に接続する切換弁と、供給電流に応じて供給路の圧力を調整可能な制御弁と、供給路の途中に設けた供給側チェック弁と、供給路と排出路とを接続する吸込通路と、吸込通路の途中に設けた吸込チェック弁とを備えてもよいこの構成によると、サスペンション装置は、アクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとして機能できる。また、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプの駆動が必須ではなく、ポンプの駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。さらに、サスペンション装置が失陥した状態では、アクチュエータはパッシブなダンパとして機能して、フェールセーフ動作が確実に行われる。
さらに、サスペンション装置では、液圧回路が供給路と、排出路と、伸側通路と、圧側通路と、伸側通路に設けた伸側減衰弁と、圧側通路に設けた圧側減衰弁と、供給路、排出路、伸側通路および圧側通路の間に設けられた差圧制御弁と、供給路の途中に設けた供給側チェック弁と、供給路と排出路とを接続する吸込通路と、吸込通路の途中に設けた吸込チェック弁とを備えてもよいこの構成のサスペンション装置によれば、一つの差圧制御弁のみで、アクティブサスペンションとしても、セミアクティブサスペンションとしても機能できる。さらに、推力の発揮が期待される場面では、ポンプの駆動が必須ではなく、ポンプの駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。
また、サスペンション装置では、差圧制御弁が、伸側供給ポジションとニュートラルポジションと圧側供給ポジションの3位置を有するスプールと、スプールを駆動するプッシュプル型のソレノイドと、スプールを附勢してニュートラルポジションに位置決めるばねとを有してもよいこの構成によると、ニュートラルポジションでは、供給路、排出路、伸側通路および圧側通路が互いに連通されるため、失陥時にフェールセーフ動作が確実に行われる。
そして、サスペンション装置では、差圧制御弁が、伸側供給ポジションとニュートラルポジションと圧側供給ポジションとフェールポジションの4位置を有するスプールと、スプールを駆動するソレノイドと、スプールを附勢してソレノイドの非通電時にスプールをフェールポジションに位置決めるばねとを有してもよいこの構成によると、非通電時に採られるフェールポジションでは、供給路、排出路、伸側通路および圧側通路が互いに連通されるため、失陥時にフェールセーフ動作が確実に行われる。
さらに、サスペンション装置では、液圧回路が、伸側減衰弁に並列に設けられた伸側チェック弁と、圧側減衰弁に並列に設けられた圧側チェック弁とを備えていてもよいこの構成によると、ポンプから伸側室或いは圧側室へ流体を供給する際には、伸側チェック弁或いは圧側チェック弁を介してほとんど抵抗なく流体を伸側室或いは圧側室へ供給でき、アクチュエータの伸縮方向と発生させる推力の方向とが一致する際にポンプの負荷を軽減できる。また、伸側室或いは圧側室から流体が排出される場合には、伸側減衰弁或いは圧側減衰弁が通過する流体の流れに抵抗を与えるので、伸側室と圧側室の差圧を差圧制御弁で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁におけるソレノイドの推力を小さくしてもサスペンション装置に大きな推力を発生させられる。よって、差圧制御弁を小型化できるとともにコストをより安価にできる。
本発明のサスペンション装置によれば、エネルギ消費が少なくHEVやEVへ搭載することが可能となる。また、サスペンション制御装置によれば、ポンプのエネルギ消費を抑制してサスペンション装置のHEVやEVへ適用が可能となる。
本発明のサスペンション装置の基本構成を示した図である。 ポンプの目標回転数とアクチュエータの必要流量との関係を示す図である。 コントローラにおける目標回転数を求める処理手順の一例を示したフローチャートである。 第一の実施の形態におけるサスペンション装置の具体的構成を示した図である。 第一の実施の形態におけるサスペンション装置をアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 第一の実施の形態におけるサスペンション装置をセミアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 第一の実施の形態におけるサスペンション装置の失陥時における推力の特性を示した図である。 第二の実施の形態におけるサスペンション装置の具体的構成を示した図である。 第二および第三の実施の形態におけるサスペンション装置をアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 第二および第三の実施の形態におけるサスペンション装置をセミアクティブサスペンションとして機能させた場合の推力の特性を示した図である。 第二および第三の実施の形態におけるサスペンション装置の失陥時における推力の特性を示した図である。 第三の実施の形態におけるサスペンション装置の具体的構成を示した図である。
<サスペンション装置の基本構成>
以下、図に示した実施の形態に基づき、本発明を説明する。サスペンション装置Sは、図1に示すように、伸縮可能なアクチュエータACと、ポンプ4と、アクチュエータACとポンプ4との間に設けられてポンプ4から吐出される液体をアクチュエータACへ供給してアクチュエータACを伸縮させる液圧回路FCと、ポンプ4を駆動制御するコントローラCとを備えて構成されている。
このサスペンション装置Sでは、アクチュエータACは、シリンダ1と、シリンダ1内に移動自在に挿入されてシリンダ1内を伸側室R1と圧側室R2とに区画するピストン2と、シリンダ1内に移動自在に挿入されてピストン2に連結されるロッド3を備える。ロッド3は、伸側室R1内のみに挿通されていて、アクチュエータACは、所謂、片ロッド型のアクチュエータとされている。なお、リザーバRは、図1に示したところでは、アクチュエータACとは独立して設けられているが、詳しくは図示しないが、アクチュエータACにおけるシリンダ1の外周側に配置される外筒を設けて、シリンダ1と外筒との間の環状隙間で形成されてもよい。
なお、図1に示したところでは、アクチュエータACのシリンダ1をばね下部材Wにロッド3をばね上部材Bに連結しているが、アクチュエータACを車両に適用する場合、シリンダ1を車両のばね上部材Bおよびばね下部材Wのうち一方に連結し、ロッド3をばね上部材Bおよびばね下部材Wのうち他方に連結して、ばね上部材Bとばね下部材Wとの間に介装すればよい。
そして、伸側室R1および圧側室R2には液体として、たとえば、作動油等の液体が充満され、リザーバR内は液体が貯留される。リザーバRにも液体が充填され、気体ばね或いはばね或いはこれら両方によって充填される液体を加圧している。伸側室R1、圧側室R2、リザーバRおよびリザーバR内に充填される液体は、作動油以外にも、たとえば、水、水溶液といった液体を使用できる。また、本発明では、伸長行程時に圧縮される室を伸側室R1とし、収縮行程時に圧縮される室を圧側室R2としてある。
ポンプ4は、吸込側から液体を吸い込んで吐出側から液体を吐出する一方向吐出型に設定され、モータ13によって駆動されるようになっている。モータ13には、直流、交流を問わず、種々の形式のモータ、たとえば、ブラシレスモータ、誘導モータ、同期モータ等を採用できる。
そして、ポンプ4の吸込側はリザーバRに接続されており、吐出側は液圧回路FCに接続されている。したがって、ポンプ4は、モータ13によって駆動されると、リザーバRから液体を吸い込んで液圧回路FCへ液体を吐出するようになっている。
また、ポンプ4を駆動するモータ13は、コントローラCによって制御される。コントローラCは、モータ13へ供給する電流量を調節でき、ポンプ4の駆動および停止のみならず、ポンプ4の回転数を制御できるようになっている。つまり、ポンプ4は、コントローラCによって、駆動制御される。
液圧回路FCは、コントローラCによって制御される電磁弁を備えており、ポンプ4から吐出される液体をアクチュエータACにおける伸側室R1と圧側室R2へ供給できるようになっている。また、液圧回路FCは、伸側室R1と圧側室R2のいずれかから排出される液体およびポンプ4が吐出される液体のうち余剰分をリザーバRへ排出するようになっている。そして、液圧回路FCは、コントローラCからの指令により伸側室R1と圧側室R2の圧力を調節してアクチュエータACの推力を制御し、アクチュエータACをアクティブサスペンションとして機能させるようになっている。
コントローラCは、図1に示すように、アクチュエータACの伸縮変位を検知するストロークセンサ41と、ばね上部材Bの上下方向加速度を検知する加速度センサ42と、ばね上部材Bの横方向加速度を検知する加速度センサ43と、ばね上部材Bの前後方向加速度を検知する加速度センサ44と、ばね下部材Wの上下方向加速度を検知する加速度センサ45と、目標回転数決定部47と、推力演算部48と、モータ13および液圧回路FCにおける電磁弁を駆動するドライバ49とを備えて構成されている。
推力演算部48は、車両の振動を抑制するべく車両におけるばね上部材Bの車体制御に必要なアクチュエータACが発生すべき推力を求める。本例では、推力演算部48は、基本的には、スカイフック制御則に則り、加速度センサ42が検知するばね上部材Bの上下方向の加速度に基づいてばね上部材Bの振動を抑制するために必要なアクチュエータACが発揮すべき推力を目標推力としてを求める。また、本例では、スカイフック制御による振動抑制制御のほかに、加速度センサ43,44で検知する横方向加速度および前後方向加速度の入力を受けて車両の車体であるばね上部材Bのロール、ノーズダイブおよびスクォートを抑制する姿勢制御と、加速度センサ45で検知するばね下部材Wの上下方向加速度の入力を受けてばね下部材Wの振動抑制制御を加味して、アクチュエータACが発生すべき推力を目標推力として求めるようにしている。なお、スカイフック制御のみをおこなう場合、コントローラCは、ばね上部材Bの上下方向の加速度のみから目標推力を求めるようにしてもよい。推力演算部48で用いる制御則については、スカイフック制御以外の制御則を採用してもよく、車両に適するものを選択すればよい。
そして、目標推力がアクチュエータACの伸長方向の推力である場合、コントローラCは、液圧回路FCにおける電磁弁を制御してポンプ4から吐出される液体を圧側室R2へ供給させ、目標推力の大きさに応じて圧側室R2の圧力を制御する。反対に、目標推力がアクチュエータACの収縮方向の推力である場合、コントローラCは、液圧回路FCにおける電磁弁を制御してポンプ4から吐出される液体を伸側室R1へ供給させ、目標推力の大きさに応じて伸側室R1の圧力を制御する。具体的には、推力演算部48が求めた目標推力は、制御指令としてドライバ49に入力され、ドライバ49が目標推力によって指示されたとおりに電磁弁を駆動しアクチュエータACの推力が目標推力通りに制御される。
このように、コントローラCは、アクチュエータACの推力を制御するが、ポンプ4の吐出流量を制御すべく目標回転数決定部47を備えている。
目標回転数決定部47は、ストロークセンサ41で検知したアクチュエータACの伸縮変位から伸縮速度Vaを求め、伸縮速度Vaに基づいてポンプ4の目標回転数Nrefを決定する。具体的には、目標回転数決定部47は、ストロークセンサ41で検知する伸縮変位を微分処理して伸縮速度Vaを求める。この場合、伸縮速度Vaが正の値をとる場合、アクチュエータACが伸長している状況を示し、伸縮速度Vaが負の値をとる場合、アクチュエータACが収縮している状況を示すように符号を設定している。なお、本例では、ばね上部材Bの上下方向の加速度を加速度センサ42で検知し、ばね下部材Wの上下方向加速度を加速度センサ45で検知しており、これらを積分すればばね上部材Bとばね下部材Wの上下方向の速度を求められる。アクチュエータACの伸縮速度Vaは、ばね上部材Bとばね下部材Wの上下方向の速度差にほぼ等しい。よって、ストロークセンサ41で検知する伸縮変位から伸縮速度Vaを求める代わりに、ばね上部材Bとばね下部材Wの上下方向の速度から伸縮速度Vaを求めてもよい。その場合、ストロークセンサ41を省略できる。
ここで、アクチュエータACにおけるピストン2の断面積をApとし、ロッド3の断面積をArとし、アクチュエータACの伸縮によって必要となる必要流量をQとする。Va>0であってアクチュエータACが伸長する場合、拡大する圧側室R2には、Q=Ap×|Va|(式1)の流量を送り込む必要がある。Va≦0であってアクチュエータACが収縮する場合、拡大する伸側室R1には、Q=(Ap−Ar)×|Va|(式2)の流量を送り込む必要がある。
よって、コントローラCは、伸縮速度Vaの符号によって、アクチュエータACの伸縮方向を識別して、アクチュエータACが伸長時には(式1)を用い、アクチュエータACの収縮時には(式2)を用いて、伸縮速度Vaの絶対値を代入して必要流量Qを求める。
アクチュエータACで必要となる必要流量QをアクチュエータACに供給すれば、アクチュエータACは、アクティブサスペンションとして推力を発揮できる。ポンプ4の吐出流量が必要流量Qを上回ると、ポンプ4の吐出流量に余剰流量が生じてその分無駄にエネルギが消費され、ポンプ4の吐出流量が必要流量Qを下回ると、ポンプ4の吐出流量が不足してアクチュエータACの推力が適切に制御できなくなる。よって、ポンプ4の吐出流量が必要流量Qとなるようにポンプ4の回転数を求めればよく、一回転あたりの吐出流量Qpの逆数をKとすると、目標回転数NrefをNref=Q×Kの演算を行って求めてもよい。本例では、突起乗り上げ時等の急峻なアクチュエータACの伸縮速度の変化で必要流量Qが急激に増加する場合に流量が不足しないように、必要流量Qを実現するポンプ4の回転速度に一定の加算値αを加算して目標回転数Nrefを求める。具体的には、目標回転数決定部47は、Nref=Q×K+α(式3)を演算して、目標回転数Nrefを求める。なお、このように、ポンプ4の吐出流量を必要流量Qより余裕を持たせて、急峻なアクチュエータACの伸縮速度変化に対応するには、必要流量Qに1を超えるゲインβを乗じて目標回転数Nrefを求めてもよい。この場合、具体的には、目標回転数決定部47は、Nref=Q×K×β(式4)を演算して、目標回転数Nrefを求める。
このようにして目標回転数Nrefを求めると、横軸に必要流量Qを、縦軸に目標回転数Nrefをとった図2に示したグラフで、加算値αを加える場合には図2中線(1)で示すように、ゲインβを乗じる場合には図2中線(2)に示すような特性を示す。図2から理解できるように、加算値αを加える場合にはNref=Q×Kで目標回転数を求めた場合の特性線(図2中破線)に対して上方にオフセットされて流量に余裕ができ、ゲインβを乗じる場合には、必要流量Qが増えるほど余裕流量が増える。目標回転数Nrefを求める演算式のうちいずれを採用するかは任意であるが、車両の特性等によって適する演算式を採用すればよい。
ドライバ49は、液圧回路FCにおける電磁弁をPWM駆動する駆動回路と、ポンプ4を駆動するモータ13をPWM駆動する駆動回路を備えており、推力演算部48からの電磁弁への指令と、目標回転数決定部47からの指令を受けると、指令通りに電磁弁およびモータ13へ電流を供給する。なお、ドライバ49における各駆動回路は、PWM駆動を行う駆動回路以外の駆動回路であってもよい。
コントローラCの各部の動作は以上であるが、つづいて、コントローラCにおけるポンプ4の目標回転数Nrefを求める処理手順を図3に示すフローチャートの一例を用いて説明する。まず、コントローラCは、ストロークセンサ41で検知したアクチュエータACの伸縮変位から伸縮速度Vaを求める(ステップST1)。つづいて、ステップST2へ移行して、コントローラCは、伸縮速度Vaが正の値であるか否かを調べ、正の値である場合にはステップST3へ移行し、0或いは負の値である場合にはステップST4へ移行する。
ステップST3では、アクチュエータACが伸長しているので、コントローラCは、必要流量Qを(式1)を用いてQ=Ap×|Va|を演算して求める。他方、ステップST4では、アクチュエータACが収縮しているので、コントローラCは、必要流量Qを(式2)を用いてQ=(Ap−Ar)×|Va|を演算して求める。ステップST3或いはステップST4における処理を終了するとステップST5へ移行して、コントローラCは、(式3)と(式4)のうち、本サスペンション装置Sに適用されている演算式を用いて、目標回転数Nrefを求め、ステップST6へ移行する。
ステップST6では、コントローラCは、目標回転数Nref通りにポンプ4を回転駆動させるべく、モータ13へドライバ49を介して電流を供給する。コントローラCは、以上の処理手順を繰り返し実行して、ポンプ4の目標回転数Nrefを繰り返し求めて、ポンプ4を制御する。
以上、サスペンション装置Sは、前記したように動作する。そして、本発明のサスペンション装置Sによれば、アクチュエータACの伸縮速度Vaに基づいてポンプ4の目標回転数Nrefを求めて、ポンプ4が制御されるので、アクチュエータACが推力を発揮する際に要する必要流量Qが確保される。
よって、本発明のサスペンション装置Sでは、ポンプ4が一定回転速度で駆動されず、吐出流量が少なくて済むようななめらかな路面を走行中であるような場合にはポンプ4の回転速度を低下させることができ、消費エネルギが低減される。また、アクチュエータACが高速で伸縮する場合でも、アクチュエータACで必要とする必要流量Qがポンプ4から供給されるので、流量不足を生じない。
したがって、本発明のサスペンション装置Sによれば、ポンプ4を駆動する際の消費エネルギを低減でき、ポンプ4を常時一定回転速度で駆動されなくなるから、HEVやEVといった自動車にもサスペンション装置Sを利用できる。
そして、伸縮速度Vaを一定のサンプリング時間の間、検知し続けて、サンプリング時間中に取得された伸縮速度Vaの平均値や積分平均値を求める必要もなく、コントローラCは、検知される伸縮速度Vaから直接に目標回転数Nrefを求め得る。よって、サスペンション装置Sによれば、タイムリーにその時にアクチュエータACに必要な流量を確保するためのポンプ4の目標回転数Nrefを求め得る。そのため、本発明のサスペンション装置Sによれば、エネルギ消費を最小限にとどめつつも、アクチュエータACに所望する推力を発揮させ得る。
また、コントローラCがアクチュエータACの伸縮速度Vaに基づいてアクチュエータACの伸縮に要する必要流量Qを求め、必要流量Qから目標回転数Nrefを求めるようになっている。そのため、ポンプ4の目標回転数Nrefは、アクチュエータACの伸縮速度Vaからごく簡単な演算によって求められる。
またさらに、本サスペンション装置Sでは、コントローラCが必要流量Qに1を超えるゲインを乗じて目標回転数Nrefを求めるか、或いは、必要流量Qを吐出するために必要な回転数に加算値αを加算して目標回転数Nrefを求めるようにしている。そのため、突起乗り上げ時等で路面から振動が入力されて、アクチュエータACの伸縮速度が急激に増加し、必要流量Qが急激に増加する場合にも流量不足を招かずに済み、アクチュエータACに安定的な推力を発揮させ得る。
<第一の実施の形態>
サスペンション装置Sの基本構成は、以上に説明したとおりである。以下では、具体的な液圧回路を備えたサスペンション装置の構成例を説明する。第一の実施の形態におけるサスペンション装置S1では、図4に示した液圧回路FC1を備えている。
液圧回路FC1は、ポンプ4の吐出側に接続される供給路5と、リザーバRに接続される排出路6と、伸側室R1に接続される伸側通路7と、圧側室R2に接続される圧側通路8と、伸側通路7に設けた伸側減衰弁15と、圧側通路8に設けた圧側減衰弁17と、供給路5、排出路6、伸側通路7および圧側通路8の間に設けられて伸側通路7と圧側通路8の一方を供給路5へ選択的に接続するとともに伸側通路7と圧側通路8の他方を排出路6に接続する切換弁9と、供給電流に応じて供給路5の圧力を調整可能な制御弁Vと、供給路5と排出路6とを接続する吸込通路10と、吸込通路10の途中に設けられて排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11と、供給路5の途中であって制御弁Vとポンプ4との間に設けられてポンプ4側から制御弁V側へ向かう流れのみを許容する供給側チェック弁12とを備えて構成されている。この液圧回路FC1の場合、電磁弁として切換弁9と制御弁Vを備えており、両者がコントローラCによって制御される。
ポンプ4の吸込側はポンプ通路14によってリザーバRに接続されており、吐出側は供給路5に接続されている。したがって、ポンプ4は、モータ13によって駆動されると、リザーバRから液体を吸い込んで供給路5へ液体を吐出するようになっている。排出路6は、前述の通り、リザーバRに連通されている。
伸側通路7の途中には、伸側室R1から切換弁9に向かう液体の流れに対し抵抗を与える伸側減衰弁15の他に、当該伸側減衰弁15に並列されて切換弁9から伸側室R1へ向かう液体の流れのみを許容する伸側チェック弁16が設けられている。よって、伸側室R1から切換弁9へ向けて移動する液体の流れに対しては、伸側チェック弁16は閉じた状態に維持されるため、液体は、伸側減衰弁15のみを通過して切換弁9側へ向かって流れる。切換弁9から伸側室R1へ向けて移動する液体の流れに対して伸側チェック弁16が開き、伸側チェック弁16は伸側減衰弁15に比較して液体の流れに与える抵抗が小さいので、液体は、伸側チェック弁16を優先的に通過して伸側室R1側へ向かって流れる。伸側減衰弁15は、双方向流れを許容する絞り弁とされてもよいし、伸側室R1から切換弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
圧側通路8の途中には、圧側室R2から切換弁9に向かう流れに対し抵抗を与える圧側減衰弁17の他に、当該圧側減衰弁17に並列されて切換弁9から圧側室R2へ向かう液体の流れのみを許容する圧側チェック弁18が設けられている。よって、圧側室R2から切換弁9へ向けて移動する液体の流れに対しては、圧側チェック弁18は閉じた状態に維持されるため、液体は、圧側減衰弁17のみを通過して切換弁9側へ向かって流れる。切換弁9から圧側室R2へ向けて移動する液体の流れに対して圧側チェック弁18が開き、圧側チェック弁18は圧側減衰弁17に比較して液体の流れに与える抵抗が小さいので、液体は、圧側チェック弁18を優先的に通過して圧側室R2側へ向かって流れる。圧側減衰弁17は、双方向流れを許容する絞り弁とされてもよいし、圧側室R2から切換弁9に向かう流れのみを許容するリーフバルブやポペット弁といった減衰弁とされてもよい。
さらに、供給路5と排出路6とを接続する吸込通路10が設けられている。この吸込通路10の途中には、排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11が設けられており、吸込通路10が排出路6から供給路5へ向かう液体の流れのみを許容する一方通行の通路に設定されている。
切換弁9は、4ポート2位置の電磁切換弁とされており、伸側通路7と供給路5とを連通するとともに圧側通路8と排出路6を連通する伸側供給ポジション9bと、伸側通路7と排出路6とを連通するとともに圧側通路8と供給路5を連通する圧側供給ポジション9cとを備えたスプール9aと、スプール9aを附勢するばね9dと、前記ばね9dに対抗する推力をスプール9aに与えるソレノイド9eとを備えている。そして、ソレノイド9eへ電力供給しない非通電時には、スプール9aはばね9dによって附勢されて伸側供給ポジション9bを採り、ソレノイド9eへ通電するとスプール9aはソレノイド9eの推力で押されて、圧側供給ポジション9cを採るようになっている。
したがって、切換弁9が伸側供給ポジション9bを採る場合、供給路5が伸側通路7を通じて伸側室R1に連通されるとともに、排出路6が圧側通路8を通じて圧側室R2に連通される。この状態でポンプ4が駆動されると伸側室R1に液体が供給されて圧側室R2からリザーバRへ液体が排出されるので、アクチュエータACは収縮できる。他方、切換弁9が圧側供給ポジション9cを採る場合、供給路5が圧側通路8を通じて圧側室R2に連通されるとともに、排出路6が伸側通路7を通じて伸側室R1に連通される。この状態でポンプ4が駆動されると圧側室R2に液体が供給されて伸側室R1からリザーバRへ液体が排出されるので、アクチュエータACは伸長できる。
また、ポンプ4から供給路5へ液体が吐出されるが、この供給路5の圧力を制御するために、液圧回路FCには、制御弁Vが設けられている。制御弁Vは、具体的には、供給路5と排出路6を接続する制御通路19の途中に設けられており、開弁圧を調節して制御弁Vの上流側である供給路5の圧力を制御できるようになっている。
制御弁Vは、この例では、電磁圧力制御弁とされており、制御通路19の途中に設けた弁体20aと、弁体20aに供給路5側である上流側の圧力をパイロット圧として弁体20aを開弁方向に作用させるパイロット通路20bと、弁体20aに推力を与えるソレノイド20cとを備えている。ソレノイド20cは、図示しないばねとコイルとで構成されている。ソレノイド20cにおけるばねは、常に弁体20aを開弁方向へ附勢しており、対して、ソレノイド20cは、通電時には、弁体20aを附勢するばねに対抗する推力を発生できるようになっている。よって、ソレノイド20cへの通電量を調節して制御弁Vの開弁圧を高低調節でき、供給路5の圧力を制御弁Vの開弁圧に制御できる。このように、制御弁Vは、供給電流に応じて供給路5の圧力を調整可能となっているが、前記した制御弁Vの具体的構成は一例であってこれに限定されるものではない。
この制御弁Vにあっては、ソレノイド20cへ供給する電流量に比例した開弁圧を得られるようになっており、電流量を大きくすればするほど開弁圧が大きくなり、電流を供給しない場合には開弁圧が最小になるようになっている。また、制御弁Vは、サスペンション装置S1の実用領域において流量に比例して圧力損失が大きくなる圧力オーバーライドがない特性となっている。なお、実用領域とは、たとえば、アクチュエータACを図1に示すように車両のばね上部材Bとばね下部材Wとの間に介装して使用する場合において、アクチュエータACが秒速1mの範囲内で伸縮する領域とすればよい。実用領域において流量に比例して圧力損失が大きくなる圧力オーバーライドがない特性とは、アクチュエータACが秒速1mの範囲内で伸縮する場合に制御弁Vを通過し得る流量に対して圧力オーバーライドを無視できる程度の特性を指す。また、制御弁Vは、本実施の形態では、非通電時における開弁圧がごく小さく、非通電時において通過する液体の流れに対してほとんど抵抗を与えないようになっている。
さらに、供給路5と排出路6とを接続する吸込通路10が制御通路19に対して並列に設けられている。この吸込通路10の途中には、排出路6から供給路5へ向かう液体の流れのみを許容する吸込チェック弁11が設けられており、吸込通路10が排出路6から供給路5へ向かう液体の流れのみを許容する一方通行の通路に設定されている。
供給路5の途中であって制御弁Vとポンプ4との間には供給側チェック弁12が設けられている。より詳しくは、供給路5の途中であって制御通路19および吸込通路10の接続点よりもポンプ4側に供給側チェック弁12が設けられており、供給側チェック弁12は、ポンプ4側から制御弁V側へ向かう流れのみを許容し、その反対の流れを阻止する。よって、ポンプ4の吐出圧より切換弁9側の圧力が高圧となっても、供給側チェック弁12が閉じてポンプ4側へ液体の逆流が阻止される。
サスペンション装置S1は、以上のように構成されており、続いて、その作動について説明する。まず、モータ13、ポンプ4、切換弁9および制御弁Vを正常に動作できる通常時における作動を説明する。
基本的には、ポンプ4をモータ13によって駆動し、切換弁9によって伸側室R1と圧側室R2のうちポンプ4に接続する室にポンプ4が吐出する液体を供給しつつ排出路6を通じて他方の室をリザーバRに連通させる。このようにすると、アクチュエータACは、積極的に伸長或いは収縮して、アクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、切換弁9を圧側供給ポジション9cとして、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、切換弁9を伸側供給ポジション9bとして、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、制御弁Vによって供給路5の圧力を調節してアクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
目標推力の演算、制御弁Vおよび切換弁9に与える電流量の演算と電流量の供給については、モータ13を制御するコントローラCが実行するようになっているが、コントローラCの上位の制御装置が実行してもよい。
ドライバ49は、たとえば、制御弁Vおよび切換弁9におけるソレノイド20cおよびソレノイド9eをPWM駆動する駆動回路と、モータ13をPWM駆動する駆動回路を備えている。そして、ドライバ49は、コントローラCで決定した通りにソレノイド20c、ソレノイド9eおよびモータ13へ電流を供給する。ドライバ49における各駆動回路は、PWM駆動を行う駆動回路以外の駆動回路であってもよい。
そして、アクチュエータACに発生させる目標推力がアクチュエータACの伸長方向では、コントローラCは切換弁9について圧側供給ポジション9cを選択すればよい。また、アクチュエータACに発生させる目標推力がアクチュエータACの収縮方向では、コントローラCは切換弁9について伸側供給ポジション9bを選択する。ドライバ49は、切換弁9に前記のように選択されたポジションへ切換えるべく、ソレノイド9eへ電流の供給或いは停止する。具体的には、本例では、アクチュエータACを収縮作動させる場合には、伸側室R1へ液体を供給し圧側室R2から液体をリザーバRへ排出させるために、伸側供給ポジション9bを採るように切換弁9におけるソレノイド9eへは電流を供給せず非通電とする。反対に、アクチュエータACを伸長作動させる場合には、圧側室R2へ液体を供給し伸側室R1から液体をリザーバRへ排出させるために、圧側供給ポジション9cを採るように切換弁9におけるソレノイド9eへ電流を供給すればよい。サスペンション装置S1における推力の制御に用いる制御則については、車両に適するものを選択すればよく、たとえば、スカイフック制御等といった車両の振動抑制に優れる制御則を採用するとよい。また、コントローラCに入力する情報は、コントローラCで採用する制御則に適した情報であればよく、図示はしないが、当該情報についてはセンサ等で検知してコントローラCに入力すればよい。なお、制御弁Vおよび切換弁9の制御にあっては、コントローラCとは別にコントローラを備えていてもよい。
以上、アクチュエータACを積極的に伸縮させる場合の作動について説明したが、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮する。以下に、外乱を受けたアクチュエータACの伸縮を踏まえた作動について説明する。
最初に、ポンプ4を駆動して供給路5へ液体を吐出している状態についての作動を説明する。アクチュエータACが外乱を受けて伸縮する場合、アクチュエータACが推力を発生する方向とアクチュエータACの伸縮方向で場合分けすると、四つのケースが考えられる。
まず、第一のケースとして、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向であり、伸側室R1へ液体を供給する必要がある。この場合、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
アクチュエータACが伸長作動しているときには、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、さらに、供給路5を介して制御弁Vを通過してリザーバRへ流れる。ポンプ4の回転数は、前述のように求められる目標回転数Nrefに制御される。なお、供給側チェック弁12が設けられているので、動的に供給路5の圧力がポンプ4の吐出圧よりも高くなっても、液体は、ポンプ4側に逆流しない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の伸側室R1は、制御弁Vの開弁圧に伸側減衰弁15による圧力損失分を重畳した圧力分だけリザーバRの圧力よりも高くなる。他方、圧側室R2はリザーバRと等圧であり、伸側室R1の圧力は、リザーバRの圧力との差圧として捉えられる。よって、伸側室R1の圧力は、制御弁Vの開弁圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。制御弁Vの開弁圧を最大としたときのアクチュエータACの伸縮速度と発揮される推力の特性は、図5に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、図5中の線(1)で示す特性となる。
続いて、第二のケースとして、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向であるので、伸側室R1へ液体を供給する必要がある。この場合も伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
アクチュエータACが収縮作動しているときには、伸側室R1の容積が増大する。ポンプ4の吐出流量は、単位時間当たりの伸側室R1の容積増大量以上に制御され、伸側室R1で必要となる必要流量Qよりポンプ4の吐出流量は多い。この場合、ポンプ4から吐出された液体は、伸側チェック弁16を通じて伸側室R1へ流入するとともに、ポンプ4の吐出流量のうち伸側室R1で吸収されずに余った液体が制御弁Vを通じてリザーバRへ流れる。したがって、伸側室R1の圧力は、供給路5の圧力と等圧となり、制御弁Vの開弁圧に制御される。他方の容積が減少する圧側室R2には、圧側減衰弁17および排出路6を介して圧側室R2から容積減少分の液体がリザーバRへ排出される。圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。したがって、このような状況では、伸側室R1の圧力は制御弁Vの開弁圧に等しくなるが、圧側室R2の圧力は圧側減衰弁17による圧力損失分だけリザーバRの圧力よりも高くなり、圧側室R2から排出される流量が多くなるとそれだけ圧力損失も大きくなる。よって、伸側室R1の圧力は、制御弁Vによって調節される差圧から圧側減衰弁17で生じる圧力損失分の圧力を差し引いた値だけ圧側室R2よりも高くなり、アクチュエータACは、収縮を助成する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、図5中の線(2)で示す特性となる。
これに対して、アクチュエータACの収縮速度が高く、ポンプ4の吐出流量が最大に制御されても単位時間当たりの伸側室R1の容積増大量を下回ると、ポンプ4からの液体供給が伸側室R1の単位時間当たりの容積増大量に追いつかなくなる。そして、ポンプ4から吐出される液体が全て伸側室R1で吸収されてしまうようになると、制御弁Vには液体が流れなくなり、伸側室R1で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。このような状況となると、伸側室R1の圧力はほぼリザーバRの圧力に等しくなるが、圧側室R2の圧力は圧側減衰弁17による圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を下方に押し下げる方向へは推力を発揮できなくなり、反対の方向へ、つまり、ピストン2を上方へ押し上げる方向へ推力を発揮する。以上、ピストン2を押し下げる推力をサスペンション装置S1に発揮させる際に、アクチュエータACが外力によって収縮作動して、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量未満であると、ピストン2を押下げる推力を発揮できなくなる。このような状況では、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、図5中の線(3)で示す特性となる。制御弁Vの開弁圧を最大にする場合、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量以上では図5中の線(2)の特性となり、ポンプ4の吐出流量が伸側室R1の単位時間当たりの容積増大量未満となると図5中の線(3)の特性へ変化する。
次に、第三のケースとして、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。この場合、圧側室R2へ液体を供給する必要があるので、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
アクチュエータACが収縮作動しているときには、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、さらに、供給路5を介して制御弁Vを通過してリザーバRへ流れる。ポンプ4の回転数は、前述のように求められる目標回転数Nrefに制御される。なお、供給側チェック弁12が設けられているので、動的に供給路5の圧力がポンプ4の吐出圧よりも高くなっても、液体は、ポンプ4側に逆流しない。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。他方の伸側室R1の圧力は、リザーバRと等圧となる。よって、圧側室R2の圧力は、制御弁Vの開弁圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、図5中の線(4)で示す特性となる。
さらに、第四のケースとして、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向であるので、圧側室R2へ液体を供給する必要がある。よって、この場合、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
アクチュエータACが伸長作動しているときには、圧側室R2の容積が増大する。ポンプ4の吐出流量は、単位時間当たりの圧側室R2の容積増大量以上に制御され、圧側室R2で必要となる必要流量Qよりポンプ4の吐出流量は多い。そのため、ポンプ4から吐出された液体は、圧側チェック弁18を通じて圧側室R2へ流入するとともに、ポンプ4の吐出流量のうち圧側室R2で吸収されずに余った液体が制御弁Vを通じてリザーバRへ流れる。したがって、圧側室R2の圧力は、供給路5の圧力と等圧となり、制御弁Vの開弁圧に制御される。他方の容積が減少する伸側室R1には、伸側減衰弁15および排出路6を介して伸側室R1から容積減少分の液体がリザーバRへ排出される。伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。このような状況では、圧側室R2の圧力は制御弁Vの開弁圧に等しくなるが、伸側室R1の圧力は伸側減衰弁15による圧力損失分だけリザーバRの圧力よりも高くなり、伸側室R1から排出される流量が多くなるとそれだけ圧力損失も大きくなる。よって、圧側室R2の圧力は、制御弁Vによって調節される差圧から伸側減衰弁15で生じる圧力損失分の圧力を差し引いた値だけ伸側室R1よりも高くなり、アクチュエータACは、伸長を助成する推力を発揮する。そして、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、図5中の線(5)で示す特性となる。
これに対して、アクチュエータACの伸長速度が高く、ポンプ4の吐出流量が最大に制御されても単位時間当たりの圧側室R2の容積増大量を下回ると、ポンプ4からの液体供給が圧側室R2の単位時間当たりの容積増大量に追いつかなくなる。そして、ポンプ4から吐出される液体が全て圧側室R2で吸収されるようになると、制御弁Vには液体が流れなくなり、圧側室R2で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。このような状況では、圧側室R2の圧力はほぼリザーバRの圧力に等しくなるが、伸側室R1の圧力は伸側減衰弁15による圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を上方に押し上げる方向へは推力を発揮できなくなり、反対の方向へ、つまり、ピストン2を下方へ押し下げる方向へ推力を発揮する。以上から、ピストン2を押し上げる推力をサスペンション装置S1に発揮させる際に、アクチュエータACが外力によって伸長作動している場合、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量未満となると、ピストン2を押し上げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、図5中の線(6)で示す特性となる。制御弁Vの開弁圧を最大にする場合、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量以上では図5中の線(5)の特性となり、ポンプ4の吐出流量が圧側室R2の単位時間当たりの容積増大量未満となると図5中の線(6)の特性へ変化する。なお、アクチュエータACは、収縮側では図5中線(2)から線(3)へ推力が変化する特性を示し、伸長側では図5中線(5)から線(6)へ推力が変化する特性を示すが、特性の変化はごく瞬間的に生じるものであり、乗り心地に与える影響は軽微である。
以上から、制御弁Vの開弁圧の調節により、図5中、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合、ポンプ4の吐出流量が拡大する室の容積増大量以上であると、アクチュエータACは伸縮方向と同方向に推力を発揮できる。
引き続き、ポンプ4を駆動しない停止状態にした場合のサスペンション装置S1の作動を説明する。この場合についても、アクチュエータACが外乱を受けて伸縮する方向とアクチュエータACが推力を発生する方向とで場合分けすると、四つのケースが考えられる。
まず、ピストン2を押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を押し下げる方向であるので、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
アクチュエータACが伸長作動しているときには、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、液体は、ポンプ4側に流れない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の伸側室R1は、制御弁Vの開弁圧に伸側減衰弁15による圧力損失分を重畳した圧力分だけ圧側室R2の圧力よりも高くなる。縦軸にアクチュエータACの推力の方向を採り、横軸にアクチュエータACの伸縮速度を採った図6に示したグラフでは、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、図6中の線(1)で示す特性となる。
続いて、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。ポンプ4が停止状態であってポンプ4から液体は供給されないが、アクチュエータACに発生させる推力の方向は、ピストン2を下方に押し下げる方向である。そのため、伸側供給ポジション9bを採るように切換弁9を切換えて、伸側室R1を供給路5へ接続するとともに、排出路6を通じて圧側室R2をリザーバRへ連通させる。
アクチュエータACが収縮作動しているときには、伸側室R1の容積が増大するが、ポンプ4が液体を吐出していないので、制御弁Vには液体が流れなくなり、伸側室R1で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。この状況では、伸側室R1の圧力はほぼリザーバRの圧力に等しくなる。他方の容積が減少する圧側室R2は、圧側減衰弁17および排出路6を介して圧側室R2から容積減少分の液体がリザーバRへ排出される。圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際の生じる圧力損失分だけ伸側室R1の圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を下方に押し下げる方向へは推力を発揮できず、反対の方向へ、つまり、ピストン2を上方へ押し上げる方向へ推力を発揮する。以上から、ピストン2を下方に押し下げる推力をサスペンション装置S1に発揮させようとする場合で、アクチュエータACが外力によって収縮作動している場合にあって、ポンプ4が停止している場合、ピストン2を押し下げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、図6中の線(2)で示す特性となる。これは、減衰力可変ダンパにおいて、圧側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
次に、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。そのため、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
アクチュエータACが収縮作動しているときには、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、液体は、ポンプ4側に流れない。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
供給路5の圧力は、制御弁Vによって、制御弁Vの開弁圧に制御されているため、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなる。したがって、この場合の圧側室R2は、制御弁Vの開弁圧に圧側減衰弁17による圧力損失分を重畳した圧力分だけ伸側室R1の圧力よりも高くなる。よって、制御弁Vの開弁圧を最大としたときのアクチュエータACの推力の特性は、図6中の線(3)で示す特性となる。
続いて、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。ポンプ4が停止状態であってポンプ4から液体は供給されないが、アクチュエータACに発生させる推力の方向は、ピストン2を上方に押し上げる方向である。そのため、圧側供給ポジション9cを採るように切換弁9を切換えて、圧側室R2を供給路5へ接続するとともに、排出路6を通じて伸側室R1をリザーバRへ連通させる。
アクチュエータACが伸長作動しているときには、圧側室R2の容積が増大するが、ポンプ4が液体を吐出していないので、制御弁Vには液体が流れなくなる。圧側室R2で不足する量の液体は、吸込チェック弁11が開いて、リザーバRから排出路6および吸込通路10を介して供給される。この状況では、圧側室R2の圧力はほぼリザーバRの圧力に等しくなる。他方の容積が減少する伸側室R1には、伸側減衰弁15および排出路6を介して伸側室R1から容積減少分の液体がリザーバRへ排出される。伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際の生じる圧力損失分だけリザーバRの圧力よりも高くなる。そのため、アクチュエータACは、ピストン2を上方に押し上げる方向へは推力を発揮できず、反対の方向へ、つまり、ピストン2を下方へ押し下げる方向へ推力を発揮する。以上から、ピストン2を上方に押し上げる推力をサスペンション装置S1に発揮させようとする場合で、アクチュエータACが外力によって伸長作動している場合にあって、ポンプ4が停止している場合、ピストン2を上方に押し上げる方向へ推力を発揮できない。よって、制御弁Vの開弁圧とは無関係にアクチュエータACの推力は、図6中の線(4)で示す特性となる。これは、減衰力可変ダンパにおいて、伸側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
このようにポンプ4の停止中は、制御弁Vの開弁圧を調整すると、図6中第一象限内では、線(4)から線(1)までの範囲で、第三象限内では、線(2)から線(3)の範囲で、アクチュエータACの推力を可変にできる。
ここで、セミアクティブサスペンションにあっては、減衰力可変ダンパを用いてカルノップ則に従ってスカイフック制御を実行する場合を考える。伸側減衰力(ピストンを押し下げる方向の力)が必要である場合、伸長作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、収縮作動時には、伸側減衰力が得られないから圧側へ最も低い減衰力を発揮するように制御される。他方、圧側減衰力(ピストンを押し上げる方向の力)が必要な場合、収縮作動時には減衰力可変ダンパの減衰力が目標推力を得られる減衰力に制御され、伸長作動時には、圧側減衰力が得られないから伸側へ最も低い減衰力を発揮するように制御される。本発明のサスペンション装置S1では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し下げる推力を発揮させる場合、伸長時にはアクチュエータACの推力が切換弁9によって出力可能範囲内で制御され、収縮時には、アクチュエータACは最も低い推力を発揮する。反対に、本発明のサスペンション装置S1では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し上げる推力を発揮させる場合、収縮時にはアクチュエータACの推力が制御弁Vによって出力可能範囲内で制御され、伸長時には、アクチュエータACは最も低い推力を発揮する。したがって、本発明のサスペンション装置S1では、ポンプ4を停止中である場合、自動的に、セミアクティブサスペンションと同じ機能を発揮ができる。よって、ポンプ4が駆動中であってもポンプ4の吐出流量が拡大する伸側室R1或いは圧側室R2の容積増大量未満となると、自動的に、サスペンション装置S1がセミアクティブサスペンションとして機能できる。
最後に、サスペンション装置S1のモータ13、切換弁9および制御弁Vへの通電が何らかの異常により通電不能な失陥時におけるサスペンション装置S1の作動について説明する。こうした失陥には、たとえば、モータ13、切換弁9および制御弁Vへの通電ができない場合のほか、コントローラCやドライバ49に異常が見られた場合にモータ13、切換弁9および制御弁Vへの通電を停止する場合も含まれる。
失陥時には、モータ13、切換弁9および制御弁Vへの通電が停止されるか、或いは通電不能な状態であり、ポンプ4は停止し、制御弁Vは開弁圧が最小となり、切換弁9は、ばね9dに附勢されて伸側供給ポジション9bを採った状態となる。
この状態で、アクチュエータACが外力によって伸長作動する場合、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出され、供給路5を介して制御弁Vを通過してリザーバRへ流れる。なお、供給側チェック弁12が設けられているので、ポンプ4側に液体が流れない。他方、容積が増大する圧側室R2には、排出路6を介してリザーバRから容積拡大分に見合う液体が供給される。
伸側室R1から排出された液体は制御弁Vを通過するが、制御弁Vが非通電時に通過する流れに対しほとんど抵抗を与えない特性になっているため、供給路5の圧力は、ほぼリザーバRの圧力と等圧となる。よって、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ供給路5の圧力よりも高くなるから、当該圧力損失分だけ圧側室R2の圧力よりも高くなる。したがって、アクチュエータACの推力の特性は、図7に示したグラフでは、図7中の線(1)で示す特性となる。
反対に、アクチュエータACが外力によって収縮作動する場合、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出され、リザーバRへ流れる。他方、容積が増大する伸側室R1には、排出路6を介してリザーバRから吸込通路10、吸込チェック弁11を通じて容積拡大分に見合う液体が供給される。なお、供給側チェック弁12が設けられているので、液体はポンプ4側に液体が流れない。よって、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ伸側室R1の圧力よりも高くなる。したがって、アクチュエータACの推力の特性は、図7中の線(2)で示す特性となる。
このようにサスペンション装置S1が失陥した状態では、アクチュエータACはパッシブなダンパとして機能でき、ばね上部材Bおよびばね下部材Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。なお、失陥時に、切換弁9が圧側供給ポジション9cを採るようにしても、図7に示した特性を実現でき、フェールセーフ動作を行える。
このように、本発明のサスペンション装置S1では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとして機能できる。また、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S1では、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
また、制御弁Vが流量に対する圧力オーバーライドが少ない特性である場合には、ポンプ4に作用する圧力が小さくなるため、ポンプ4で消費するエネルギ量も少なくなり、より効果的にエネルギ消費を抑制できる。
さらに、サスペンション装置S1が失陥した状態では、アクチュエータACはパッシブなダンパとして機能して、ばね上部材Bおよびばね下部材Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。
また、本実施の形態のサスペンション装置S1にあっては、伸側室R1から切換手段としての切換弁9に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて切換弁9から伸側室R1へ向かう流れのみを許容する伸側チェック弁16とを有し、圧側室R2から切換弁9に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて切換弁9から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ液体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく液体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から液体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する液体の流れに抵抗を与えるので、伸側室R1或いは圧側室R2の圧力を制御弁Vの開弁圧以上にして大きな推力が得られる。よって、制御弁Vにおけるソレノイド20cの推力を小さくしてもサスペンション装置S1は大きな推力を発生できる。このことから、制御弁Vを小型化でき、コストを低減できる。なお、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであってもよく、その場合、伸側チェック弁16および圧側チェック弁18の省略も可能である。その場合でも、サスペンション装置S1がセミアクティブサスペンションとしての推力の発揮が期待される場面ではポンプ4の駆動が必須ではないからエネルギ消費が少なくなるという本発明の効果は失われない。
<第二の実施の形態>
具体的な液圧回路を備えたサスペンション装置の他の構成例を説明する。第二の実施の形態におけるサスペンション装置S2では、図8に示した液圧回路FC2を備えている。
液圧回路FC2は、図8に示すように、制御弁Vと切換弁9によって伸側室R1と圧側室R2の圧力を制御する液圧回路FC1に対して、供給路5、排出路6、伸側通路7および圧側通路8の間に4ポート3位置の差圧制御弁DP1を設けている点で異なっている。具体的には、液圧回路FC2は、液圧回路FC1において制御通路19、制御弁Vおよび切換弁9を廃止する代わりに、切換弁9を設けていた位置に差圧制御弁DP1を設けている。その他の液圧回路FC2の構成は、液圧回路FC1と同様であるので、説明の重複を避けるため、同一の部材については同一の符号を付して詳しい説明を省略する。
差圧制御弁DP1は、伸側通路7に接続されるAポートと、圧側通路8に接続されるBポートと、供給路5に接続されるPポートと、排出路6に接続されるTポートの4ポートを有して伸側通路7と圧側通路8の差圧を制御する4ポート3位置の電磁差圧制御弁とされている。
具体的には、伸側通路7と供給路5とを連通するとともに圧側通路8と排出路6を連通する伸側供給ポジションA1と、全ポートを連通して供給路5、排出路6、伸側通路7および圧側通路8を相互に連通させるニュートラルポジションN1と、伸側通路7と排出路6とを連通するとともに圧側通路8と供給路5を連通する圧側供給ポジションB1と、スプールSP1を両側から挟んで附勢する一対のばねCs1,Cs2と、スプールSP1を駆動するプッシュプル型のソレノイドSol1とを備えている。スプールSP1は、ソレノイドSol1から推力を受けないと、ばねCs1,Cs2による附勢力により、ニュートラルポジションN1を採る中立位置に位置決めされる。なお、伸側供給ポジションA1、ニュートラルポジションN1および圧側供給ポジションB1は、スプールSP1の移動により、連続的に切換わるようになっている。
また、伸側通路7からの圧力をパイロット圧としてスプールSP1の一端側へ導いており、伸側通路7の圧力でスプールSP1を図8中下方へ附勢できるようになっている。さらに、圧側通路8からの圧力をパイロット圧としてスプールSP1の他端側へ導いており、圧側通路8の圧力でスプールSP1を図8中上方へ附勢できるようになっている。伸側通路7の圧力によってスプールSP1を図8中下方へ押す力と、圧側通路8の圧力によってスプールSP1を図8中上方へ押す力は、互いにスプールSP1を反対に向けて押す力であり、これらの合力を液圧フィードバック力として利用している。ソレノイドSol1へ通電すると、スプールSP1は、前記ポジションA1,B1のうち、ソレノイドSol1からの推力、伸側通路7および圧側通路8の圧力による液圧フィードバック力と、ばねCs1,Cs2の附勢力が釣り合うポジションに切換わる。ソレノイドSol1の推力の大小によって、この推力と前記液圧フィードバック力とばねCs1,Cs2の附勢力が釣り合うスプールSP1の位置が変化するので、ソレノイドSol1の推力調整によって、伸側通路7と圧側通路8の差圧を制御できる。他方、ソレノイドSol1へ電力供給しない非通電時には、スプールSP1は、ばねCs1,Cs2によって附勢されて中立位置のニュートラルポジションN1を採る。
よって、ソレノイドSol1へ供給する電流量の調整によって、伸側通路7の圧力と圧側通路8の圧力の差圧を制御できる。なお、アクチュエータACが伸縮するとアクチュエータACの伸側室R1と圧側室R2へ液体が出入りするため、差圧制御弁DP1を通過する流量は、ポンプ流量からアクチュエータACの伸縮による流量分だけ増減する。このようにアクチュエータACの伸縮によって流量が増減しても、液圧フィードバック力によってスプールSP1が自動的に移動して、前記差圧は、ソレノイドSol1へ供給する電流量によって一意的に決められた差圧に制御される。
コントローラCは、この場合、差圧制御弁DP1およびモータ13へ供給する電流を制御すればよい。なお、差圧制御弁DP1の制御にあっては、コントローラCとは別にコントローラを備えていてもよい。
なお、伸側通路7の圧力と圧側通路8の圧力の差圧を適切に制御できるのは、高圧側の圧力がリザーバ圧より高く保たれる場合であって、ポンプ流量が不足、或いは、ポンプ4が停止状態でリザーバRから吸込チェック弁11を介して液体の供給を受けなければならない状態では、差圧は0となる。
サスペンション装置S2は、以上のように構成されており、続いて、その作動について説明する。まず、モータ13、ポンプ4、差圧制御弁DP1を正常に動作させられる通常時における作動を説明する。
基本的には、ポンプ4をモータ13によって駆動し、差圧制御弁DP1によって伸側室R1と圧側室R2との差圧を制御すれば、アクチュエータACが積極的に伸長或いは収縮するアクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、差圧制御弁DP1を圧側供給ポジションB1として、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、差圧制御弁DP1を伸側供給ポジションA1として、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、差圧制御弁DP1によって伸側室R1と圧側室R2の差圧を調節すれば、アクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
以上、アクチュエータACを積極的に伸縮させる場合の作動について説明したが、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮するので、以下に、アクチュエータACが外乱を受けて伸縮する点を踏まえた作動について説明する。
アクチュエータACが外乱を受けて伸縮する場合、アクチュエータACが推力を発生する方向とアクチュエータACの伸縮方向で場合分けすると、四つのケースが考えられる。Aポートの圧力をPaとし、Bポートの圧力をPbとすると、第一のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合で、アクチュエータACが外力によって伸長作動する場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、圧側室R2には、ポンプ4からBポートを経て圧側チェック弁18を通り、液体が補充される。
伸長速度が速くなり、ポンプ4の回転数が目標回転数Nrefに制御されても圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、図9中の線(1)で示す特性となる。
第二のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、伸側室R1には、ポンプ4からAポートを経て伸側チェック弁16を通り、液体が補充される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は、圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧から圧側減衰弁17で生じる圧力損失分の圧力を差し引いた値だけ圧側室R2よりも高くなり、アクチュエータACは、収縮を助成する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9中の線(2)で示す特性となる。
さらに、収縮速度が速くなり、目標回転数Nrefが上限に達しても伸側室R1に補充されるべき液体流量がポンプ4の最大吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではAポートを加圧できず、Aポートの圧力Paは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってはAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9中の線(3)で示す特性となり、線(2)で示した特性とは不連続となる。このように、伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回るとアクチュエータACがパッシブなダンパとして機能し、収縮速度に依存して推力が変化する特性となる。
次に、第三のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、伸側室R1には、ポンプ4からAポートを経て伸側チェック弁16を通り、液体が補充される。
伸長速度が速くなり、ポンプ4の回転数が目標回転数Nrefに制御されても伸側室R1に補充されるべき液体流量がポンプ4の吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9中の線(4)で示す特性となる。
第四のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、ポンプ4の回転数が前述のように求められる目標回転数Nrefに制御されて、圧側室R2には、ポンプ4からBポートを経て圧側チェック弁18を通り、液体が補充される。Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は、伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧から伸側減衰弁15で生じる圧力損失分の圧力を差し引いた値だけ伸側室R1よりも高くなり、アクチュエータACは、伸長を助成する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9中の線(5)で示す特性となる。
さらに、伸長速度が速くなり、目標回転数Nrefが上限に達しても圧側室R2に補充されるべき液体流量がポンプ4の最大吐出流量を上回ると、吸込チェック弁11を介してリザーバRからも液体が供給される。このような状態となると、ポンプ4の吐出流量ではBポートを加圧できず、Bポートの圧力Pbは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってはAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図9中の線(6)で示す特性となり、線(5)で示した特性とは不連続となる。このように、圧側室R2に補充されるべき液体流量がポンプ4の吐出流量を上回るとアクチュエータACがパッシブなダンパとして機能し、伸長速度に依存して推力が変化する特性となる。
なお、アクチュエータACは、収縮側では図9中線(2)から線(3)へ推力が変化する特性を示し、伸長側では図9中線(5)から線(6)へ推力が変化する特性を示すが、特性の変化はごく瞬間的に生じるものであり、乗り心地に与える影響は軽微である。
以上から、差圧制御弁DP1による差圧制御により、図9中、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合には、ポンプ4の吐出流量が拡大する室の容積増大量以上である場合には、アクチュエータACの伸縮方向と同方向に推力を発揮させられる。
引き続き、ポンプ4を駆動しない停止状態にした場合のサスペンション装置S2の作動を説明する。この場合についても、アクチュエータACが外乱を受けて伸縮する方向とアクチュエータACが推力を発生する方向とで場合分けすると、四つのケースが考えられる。
第一のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合で、アクチュエータACが外力によって伸長作動する場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRからBポートを経て圧側チェック弁18を通り、液体が補充される。
Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、伸側室R1の圧力は伸側減衰弁15で生じる圧力損失分だけAポートの圧力よりも高くなる。よって、伸側室R1の圧力は、差圧制御弁DP1によって調節される差圧に伸側減衰弁15で生じる圧力損失分の圧力を加えた値だけ圧側室R2よりも高くなり、アクチュエータACは、伸長を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図10に示した、縦軸にアクチュエータACの推力を採り、横軸にアクチュエータACの伸縮速度を採ったグラフでは、図10中の線(1)で示す特性となる。
第二のケースとして、Pa>Pbとなるように制御し、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRから吸込チェック弁11、Aポートを経て伸側チェック弁16を通り、液体が補充される。Aポートの圧力Paは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図10中の線(2)で示す特性となる。
次に、第三のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって収縮作動している場合について説明する。アクチュエータACの収縮により圧側室R2の容積が減少し、圧側室R2から排出された液体は圧側減衰弁17を通り、差圧制御弁DP1のBポートに流れる。他方、アクチュエータACの収縮により伸側室R1の容積が膨張し、伸側室R1には、リザーバRからAポートを経て伸側チェック弁16を通り、液体が補充される。
Aポートの圧力PaとBポートの圧力Pbの差圧は、差圧制御弁DP1により一定に保たれるので、圧側室R2の圧力は圧側減衰弁17で生じる圧力損失分だけBポートの圧力よりも高くなる。よって、圧側室R2の圧力は、差圧制御弁DP1によって調節される差圧に圧側減衰弁17で生じる圧力損失分の圧力を加えた値だけ伸側室R1よりも高くなり、アクチュエータACは、収縮を抑制する推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図10中の線(3)で示す特性となる。
第四のケースとして、Pb>Paとなるように制御し、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させる場合であって、アクチュエータACが外力によって伸長作動している場合について説明する。アクチュエータACの伸長により伸側室R1の容積が減少し、伸側室R1から排出された液体は伸側減衰弁15を通り、差圧制御弁DP1のAポートに流れる。他方、アクチュエータACの伸長により圧側室R2の容積が膨張し、圧側室R2には、リザーバRから吸込チェック弁11、Bポートを経て圧側チェック弁18を通り、液体が補充される。Bポートの圧力Pbは、リザーバRの圧力よりも若干低くなり、差圧制御弁DP1によってAポートの圧力PaとBポートの圧力Pbの差圧を制御できなくなって両者の差圧は0となる。すると、アクチュエータACは、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失によって生じる伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図10中の線(4)で示す特性となる。
よって、ポンプ4を停止した状態では、差圧制御弁DP1による差圧制御により、図10中において、第一象限内では、線(1)から線(4)までの範囲で、第三象限内では、線(3)から線(2)までの範囲でアクチュエータACの推力を可変にできる。
また、ポンプ4が停止状態では、ピストン2を下方に押し下げる推力をサスペンション装置S2に発揮させようとする場合、アクチュエータACが外力によって収縮作動すると、差圧制御弁DP1の差圧制御によらず、アクチュエータACの推力は、図10中の線(2)で示す特性となる。これは、減衰力可変ダンパにおいて、圧側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。さらに、ポンプ4が停止状態では、ピストン2を上方に押し上げる推力をサスペンション装置S2に発揮させようとする場合、アクチュエータACが外力によって伸長作動すると、差圧制御弁DP1の差圧制御によらず、アクチュエータACの推力は、図10中の線(4)で示す特性となる。これは、減衰力可変ダンパにおいて、伸側減衰力を最も低い減衰力に制御しているのと同等の効果をもたらしている。
本発明のサスペンション装置S2では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し下げる推力を発揮させる場合、伸長時にはアクチュエータACの推力が差圧制御弁DP1によって出力可能範囲内で制御され、収縮時には、アクチュエータACは最も低い推力を発揮する。反対に、本発明のサスペンション装置S2では、ポンプ4を停止した状態でアクチュエータACにピストン2を押し上げる推力を発揮させる場合、収縮時にはアクチュエータACの推力が差圧制御弁DP1によって出力可能範囲内で制御され、伸長時には、アクチュエータACは最も低い推力を発揮する。したがって、本発明のサスペンション装置S2では、ポンプ4を停止中である場合、自動的に、セミアクティブサスペンションと同じ機能を発揮ができる。よって、ポンプ4が駆動中であってもポンプ4の吐出流量が拡大する伸側室R1或いは圧側室R2の容積増大量未満となると、自動的に、サスペンション装置S2がセミアクティブサスペンションとして機能できる。
最後に、サスペンション装置S2のモータ13および差圧制御弁DP1への通電が何らかの異常により通電不能な失陥時におけるサスペンション装置S2の作動について説明する。こうした失陥には、たとえば、モータ13および差圧制御弁DP1への通電ができない場合のほか、コントローラCやドライバ49に異常が見られた場合にモータ13および差圧制御弁DP1への通電を停止する場合も含まれる。
失陥時には、モータ13および差圧制御弁DP1への通電が停止されるか、或いは通電不能な状態であり、ポンプ4は停止し、差圧制御弁DP1は、ばねCs1,Cs2に附勢されてニュートラルポジションN1を採る状態となる。具体的な差圧制御弁DP1にあっては、ばねCs1,Cs2によって附勢されてニュートラルポジションN1を採る状態となる。
この状態で、アクチュエータACが外力によって伸長作動する場合、伸側室R1の容積が減少するため、減少分の液体は、伸側減衰弁15を通じて伸側室R1から排出される。容積が膨張する圧側室R2に対しては、伸側室R1およびリザーバRから液体が補充される。
よって、伸側室R1の圧力は、伸側室R1から排出される液体が伸側減衰弁15を通過する際に生じる圧力損失分だけ圧側室R2の圧力よりも高くなり、アクチュエータACは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図11中の線(1)で示す特性となる。
反対に、アクチュエータACが外力によって収縮作動する場合、圧側室R2の容積が減少するため、減少分の液体は、圧側減衰弁17を通じて圧側室R2から排出される。容積が膨張する伸側室R1に対しては、圧側室R2およびリザーバRから液体が補充される。
よって、圧側室R2の圧力は、圧側室R2から排出される液体が圧側減衰弁17を通過する際に生じる圧力損失分だけ伸側室R1の圧力よりも高くなり、アクチュエータACは、伸側室R1と圧側室R2の差圧で推力を発揮する。この時のアクチュエータの伸縮速度と発揮される推力の特性は、図11中の線(2)で示す特性となる。
このようにサスペンション装置S2が失陥した状態では、アクチュエータACはパッシブなダンパとして機能して、ばね上部材Bおよびばね下部材Wの振動を抑制するので、失陥時にはフェールセーフ動作が確実に行われる。
このように、本発明のサスペンション装置S2では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S2によれば、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
そして、本発明のサスペンション装置S2にあっては、アクチュエータACの推力の制御を差圧制御弁DP1のみで行えるので、電磁弁が二つ必要であった第一の実施の形態のサスペンション装置S1に比較して、装置全体のコストが安価となるだけでなく、液圧回路の配管の取り回しも簡素化できる。
さらに、このサスペンション装置S2にあっては、アクティブサスペンションとして機能できるだけでなく、ソレノイドを搭載した差圧制御弁DP1を一つ設けるだけで、失陥時におけるフェールセーフ動作を行える。
また、本実施の形態のサスペンション装置S2にあっては、伸側室R1から差圧制御弁DP1に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて差圧制御弁DP1から伸側室R1へ向かう流れのみを許容する伸側チェック弁16と、圧側室R2から差圧制御弁DP1に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて差圧制御弁DP1から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ液体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく液体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から液体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する液体の流れに抵抗を与えるので、伸側室R1と圧側室R2の差圧を差圧制御弁DP1で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁DP1におけるソレノイドSol1の推力を小さくしてもサスペンション装置S2に大きな推力を発生させられる。よって、差圧制御弁DP1を小型化できるとともにコストをより安価にできる。なお、伸側減衰弁15および圧側減衰弁17が液体の流れる方向にかかわりなく液体の流れに抵抗を与えるものであってもよく、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであれば伸側チェック弁16および圧側チェック弁18を省略できる。
<第三の実施の形態>
具体的な液圧回路を備えたサスペンション装置の他の構成例を説明する。第三の実施の形態におけるサスペンション装置S3では、図12に示した液圧回路FC3を備えている。
液圧回路FC3は、図12に示すように、液圧回路FC2の差圧制御弁DP1を4ポート4位置の差圧制御弁DP2に変更した点で異なっている。その他の液圧回路FC3の構成は、液圧回路FC2と同様であるので、説明の重複を避けるため、同一の部材については同一の符号を付して詳しい説明を省略する。
差圧制御弁DP2は、伸側通路7に接続されるAポートと、圧側通路8に接続されるBポートと、供給路5に接続されるPポートと、排出路6に接続されるTポートの4ポートを有してAポートとBポートの差圧を制御するともに、非通電時に伸側通路7、圧側通路8、供給路5および排出路6を互いに連通するフェールポジションを採る4ポート4位置の電磁差圧制御弁とされている。
具体的には、AポートとPポートとを連通するとともにBポートとTポートを連通する伸側供給ポジションA2と、Aポート、Bポート、PポートおよびTポートの全ポートを相互に連通させるニュートラルポジションN2と、AポートとTポートとを連通するとともにBポートとPポートを連通する圧側供給ポジションB2と、全ポートを相互に連通させるフェールポジションF2とを備えたスプールSP2と、スプールSP2を附勢するばねCs3と、前記ばねCs3に対抗する推力をスプールSP2に与えるソレノイドSol2とを備えている。つまり、伸側供給ポジションA2では、供給路5を伸側通路7へ連通し、かつ、排出路6を圧側通路8へ連通させ、ニュートラルポジションN2およびフェールポジションF2では、供給路5、排出路6、伸側通路7および圧側通路8を相互に連通し、圧側供給ポジションB2では、供給路5を圧側通路8へ連通し、かつ、排出路6を伸側通路7へ連通させる。なお、伸側供給ポジションA2、ニュートラルポジションN2および圧側供給ポジションB2は、スプールSP2の移動により、連続的に切換わるようになっている。
また、伸側通路7からの圧力をパイロット圧としてスプールSP2の一端側へ導いており、伸側通路7の圧力でスプールSP2を図12中下方へ附勢できるようになっている。さらに、圧側通路8からの圧力をパイロット圧としてスプールSP2の他端側へ導いており、圧側通路8の圧力でスプールSP2を図12中上方へ附勢できるようになっている。伸側通路7の圧力によってスプールSP2を図12中下方へ押す力と、圧側通路8の圧力によってスプールSP2を図12中上方へ押す力は、互いにスプールSP2を反対に向けて押す力であり、これらの合力を流体圧フィードバック力として利用している。ソレノイドSol2へ通電すると、スプールSP2は、前記ポジションA2,B2,N2のうち、ソレノイドSol2からの推力、伸側通路7および圧側通路8の圧力による流体圧フィードバック力と、ばねCs3の附勢力が釣り合うポジションに切換わる。ソレノイドSolの推力の大小によって、この推力と前記流体圧フィードバック力とばねCs3の附勢力が釣り合うスプールSP2の位置が変化するので、ソレノイドSol2の推力調整によって、伸側通路7と圧側通路8の差圧を制御できる。他方、ソレノイドSol2へ電力供給しない非通電時には、スプールSP2は、ばねCs3によって押されてフェールポジションF2を採る。なお、本例では、伸側通路7をAポートに接続し、圧側通路8をBポートに接続しているが、伸側通路7をBポートに接続し、圧側通路8をAポートに接続してもよい。
よって、ソレノイドSol2へ供給する電流量の調整によって、伸側通路7の圧力と圧側通路8の圧力の差圧を制御できる。なお、アクチュエータACが伸縮するとアクチュエータACの伸側室R1と圧側室R2へ液体が出入りするため、差圧制御弁DP2を通過する流量は、ポンプ流量からアクチュエータACの伸縮による流量分だけ増減する。このようにアクチュエータACの伸縮によって流量が増減しても、流体圧フィードバック力によってスプールSP2が自動的に移動して、前記差圧は、ソレノイドSol2へ供給する電流量によって一意的に決められた差圧に制御される。
なお、伸側通路7の圧力と圧側通路8の圧力の差圧を適切に制御できるのは、高圧側の圧力がリザーバ圧より高く保たれる場合であって、ポンプ流量が不足、或いは、ポンプ4が停止状態でリザーバRから吸込チェック弁11を介して液体の供給を受けなければならない状態では、差圧は0となる。
サスペンション装置S3は、以上のように構成されており、液圧回路FC2を備えたサスペンション装置S2と同様に差圧制御弁DP2によって、アクチュエータACの推力を制御できる。よって、このサスペンション装置S3は、サスペンション装置S2と同様に、ポンプ4をモータ13によって駆動し、差圧制御弁DP2によって伸側室R1と圧側室R2の差圧を制御すれば、アクチュエータACが積極的に伸長或いは収縮するアクチュエータとして機能できる。アクチュエータACに発生させる推力がアクチュエータACの伸長方向である場合には、差圧制御弁DP2を圧側供給ポジションB2として、圧側室R2を供給路5へ接続し伸側室R1をリザーバRへ接続する。反対に、アクチュエータACに発生させる推力がアクチュエータACの収縮方向である場合には、差圧制御弁DP2を伸側供給ポジションA2として、伸側室R1を供給路5へ接続し圧側室R2をリザーバRへ接続する。そして、差圧制御弁DP2によって伸側室R1と圧側室R2の差圧を調節すれば、アクチュエータACの伸長方向或いは収縮方向の推力の大きさを制御できる。
また、車両走行中には、アクチュエータACが路面の凹凸により外乱を受けて伸縮する場合における作動についても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、図9に示した線(1)から線(6)の特性となる。よって、サスペンション装置S3にあっても、線(1)から線(3)をつなげたラインから線(4)から線(6)までをつなげたラインまでの間の範囲でアクチュエータACの推力を可変にできる。また、ポンプ4の駆動によって、ポンプ4の吐出流量を伸側室R1と圧側室R2のうち拡大する側の室へ供給する場合には、ポンプ4の吐出流量が拡大する室の容積増大量以上である場合には、アクチュエータACの伸縮方向と同方向に推力を発揮させられる。
さらに、ポンプ4を駆動しない停止状態にした場合の作動についても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、図10に示した線(1)から線(4)の特性となる。よって、サスペンション装置S3にあっても、ポンプ4を停止すると、差圧制御弁DP2による差圧制御により、図10中の第一象限内では、線(1)から線(4)までの範囲で、第三象限内では、線(3)から線(2)までの範囲でアクチュエータACの推力を可変にできる。
なお、サスペンション装置S3の液圧回路FC3における差圧制御弁DP2は、液圧回路FC2における差圧制御弁DP1と異なり、ニュートラルポジションN2の他にフェールポジションF2を備えている。このフェールポジションF2は、差圧制御弁DP1におけるニュートラルポジションNと同様に、供給路5、排出路6、伸側通路7および圧側通路8を相互に連通する。よって、失陥時にあっても、サスペンション装置S3は、サスペンション装置S2と同様の作動を呈する。つまり、サスペンション装置S3におけるアクチュエータACの伸縮速度に対する推力の特性は、サスペンション装置S2と同じく、図11に示した線(1)、線(2)で示した特性となる。よって、サスペンション装置S3にあっても、失陥時には、アクチュエータACをパッシブなダンパとして機能させて、ばね上部材Bおよびばね下部材Wの振動を抑制するので、フェールセーフ動作が確実に行われる。
このように、本発明のサスペンション装置S3では、アクチュエータACを積極的に伸縮させてアクティブサスペンションとして機能できるだけでなく、セミアクティブサスペンションとしての推力の発揮が期待される場面では、ポンプ4の駆動が必須ではなく、ポンプ4の駆動が必要なときにのみ駆動すればよいので、エネルギ消費が少なくなる。よって、本発明のサスペンション装置S3によれば、アクティブサスペンションとして機能できるとともに、エネルギ消費が少なくなる。
そして、本発明のサスペンション装置S3にあっては、アクチュエータACの推力の制御を差圧制御弁DP2のみで行えるので、電磁弁が二つ必要であったサスペンション装置S1に比較して、装置全体のコストが安価となるだけでなく、流体圧回路の配管の取り回しも簡素化できる。
さらに、このサスペンション装置S3にあっては、アクティブサスペンションとして機能できるだけでなく、ソレノイドを搭載した差圧制御弁DP2を一つ設けるだけで、失陥時におけるフェールセーフ動作を行える。
加えて、差圧制御弁DP2を駆動するためのドライバ49にあっても、ソレノイドSol2を駆動する駆動回路を備えていれば足りるので、従来の電磁弁が二つ必要なサスペンション装置に比し、ドライバ49で保有する駆動回路数が少なくて済む。よって、サスペンション装置S3を駆動するドライバ49のコストも低減される。
また、本実施の形態のサスペンション装置S3にあっては、伸側室R1から差圧制御弁DP2に向かう流れに対し抵抗を与える伸側減衰弁15と、伸側減衰弁15に並列されて差圧制御弁DP2から伸側室R1へ向かう流れのみを許容する伸側チェック弁16と、圧側室R2から差圧制御弁DP2に向かう流れに対し抵抗を与える圧側減衰弁17と、圧側減衰弁17に並列されて差圧制御弁DP2から圧側室R2へ向かう流れのみを許容する圧側チェック弁18とを有している。よって、ポンプ4から伸側室R1或いは圧側室R2へ流体を供給する際には、伸側チェック弁16或いは圧側チェック弁18を介してほとんど抵抗なく流体を伸側室R1或いは圧側室R2へ供給でき、アクチュエータACの伸縮方向と発生させる推力の方向とが一致する際にポンプ4の負荷を軽減できる。また、伸側室R1或いは圧側室R2から流体が排出される場合には、伸側減衰弁15或いは圧側減衰弁17が通過する流体の流れに抵抗を与えるので、伸側室R1と圧側室R2の差圧を差圧制御弁DP2で設定可能な差圧以上にして大きな推力を得られ、差圧制御弁DP2におけるソレノイドSol2の推力を小さくしてもサスペンション装置S3に大きな推力を発生させられる。よって、差圧制御弁DP2を小型化できるとともにコストをより安価にできる。なお、伸側減衰弁15或いは圧側減衰弁17が流体の流れる方向にかかわりなく流体の流れに抵抗を与えるものであってもよく、伸側減衰弁15および圧側減衰弁17が双方向流れを許容するものであれば伸側チェック弁16および圧側チェック弁18を省略できる。
以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されない。
1・・・シリンダ、2・・・ピストン、4・・・ポンプ、5・・・供給路、6・・・排出路、7・・・伸側通路、8・・・圧側通路、9・・・切換弁、10・・・吸込通路、11・・・吸込チェック弁、12・・・供給側チェック弁、15・・・伸側減衰弁、16・・・伸側チェック弁、17・・・圧側減衰弁、18・・・圧側チェック弁、A1、A2・・・伸側供給ポジション、AC・・・アクチュエータ、B1,B2・・・圧側供給ポジション、C・・・コントローラ、Cs1,Cs2,Cs3・・・ばね、F2・・・フェールポジション、FC,FC1,FC2,FC3・・・流体圧回路、N1,N2・・・ニュートラルポジション、R・・・リザーバ、R1・・・伸側室、R2・・・圧側室、S,S1,S2,S3・・・サスペンション装置、Sol1,Sol2・・・ソレノイド、SP1,SP2・・・スプール、V・・・制御弁

Claims (7)

  1. 伸縮可能なアクチュエータと、
    ポンプと、
    前記アクチュエータと前記ポンプとの間に設けられて前記ポンプから吐出される液体を前記アクチュエータへ供給して前記アクチュエータを伸縮させる液圧回路と、
    前記ポンプを駆動制御するコントローラとを備え、
    前記コントローラは、前記アクチュエータの伸縮方向と推力を発揮する方向によらず、前記アクチュエータの伸縮速度に基づいて前記アクチュエータの伸縮に要する必要流量を求め、前記必要流量に1を超えるゲインを乗じて前記ポンプの目標回転数を求めて前記ポンプを制御する
    ことを特徴とするサスペンション装置。
  2. 伸縮可能なアクチュエータと、
    ポンプと、
    前記アクチュエータと前記ポンプとの間に設けられて前記ポンプから吐出される液体を前記アクチュエータへ供給して前記アクチュエータを伸縮させる液圧回路と、
    前記ポンプを駆動制御するコントローラとを備え、
    前記コントローラは、前記アクチュエータの伸縮方向と推力を発揮する方向によらず、前記アクチュエータの伸縮速度に基づいて前記アクチュエータの伸縮に要する必要流量を求め、前記必要流量を吐出するために必要な回転数に加算値を加算して前記ポンプの目標回転数を求めて前記ポンプを制御する
    ことを特徴とするサスペンション装置。
  3. リザーバを備え、
    前記アクチュエータは、
    シリンダと、
    前記シリンダ内に移動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
    前記シリンダ内に移動自在に挿入されて前記ピストンに連結されるロッドを有し、
    前記液圧回路は、
    前記ポンプの吐出側に接続される供給路と、
    前記リザーバに接続される排出路と、
    前記伸側室に接続される伸側通路と、
    前記圧側室に接続される圧側通路と、
    前記伸側通路に設けた伸側減衰弁と、
    前記圧側通路に設けた圧側減衰弁と、
    前記伸側通路と前記圧側通路の一方を選択的に前記供給路に接続するとともに前記伸側通路と前記圧側通路の他方を前記排出路に接続する切換弁と、
    供給電流に応じて前記供給路の圧力を調整可能な制御弁と、
    前記供給路と前記排出路とを接続する吸込通路と、
    前記吸込通路の途中に設けられて前記排出路から前記供給路へ向かう液体の流れのみを許容する吸込チェック弁と、
    前記供給路の途中であって前記制御弁と前記ポンプとの間に設けられて前記ポンプ側から前記制御弁側へ向かう流れのみを許容する供給側チェック弁と
    を備えたことを特徴とする請求項1又は2に記載のサスペンション装置。
  4. リザーバを備え、
    前記アクチュエータは、
    シリンダと、
    前記シリンダ内に移動自在に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
    前記シリンダ内に移動自在に挿入されて前記ピストンに連結されるロッドを有し、
    前記液圧回路は、
    前記ポンプの吐出側に接続される供給路と、
    前記リザーバに接続される排出路と、
    前記伸側室に接続される伸側通路と、
    前記圧側室に接続される圧側通路と、
    前記伸側通路に設けた伸側減衰弁と、
    前記圧側通路に設けた圧側減衰弁と、
    前記供給路、前記排出路、前記伸側通路および前記圧側通路の間に設けられて、前記伸側通路と前記圧側通路の差圧を制御する差圧制御弁と、
    前記供給路の途中であって前記差圧制御弁と前記ポンプとの間に設けられて前記ポンプ側から前記差圧制御弁側へ向かう流れのみを許容する供給側チェック弁と、
    前記供給路の途中であって前記差圧制御弁と前記供給側チェック弁の間と前記排出路とを接続する吸込通路と、
    前記吸込通路の途中に設けられて前記排出路から前記供給路へ向かう液体の流れのみを許容する吸込チェック弁と、
    を備えたことを特徴とする請求項1又は2に記載のサスペンション装置。
  5. 前記差圧制御弁は、
    前記伸側通路を前記供給路に接続するとともに前記圧側通路を前記排出路に接続する伸側供給ポジションと、前記伸側通路、前記圧側通路、前記供給路および前記排出路を互いに連通するニュートラルポジションと、前記圧側通路を前記供給路に接続するとともに前記伸側通路を前記排出路に接続する圧側供給ポジションの3位置を有するスプールと、
    前記スプールを駆動するプッシュプル型のソレノイドと、
    前記スプールを附勢してニュートラルポジションに位置決める一対のばねとを有する
    ことを特徴とする請求項に記載のサスペンション装置。
  6. 前記差圧制御弁は、
    前記伸側通路を前記供給路に接続するとともに前記圧側通路を前記排出路に接続する伸側供給ポジションと、前記伸側通路、前記圧側通路、前記供給路および前記排出路を互いに連通するニュートラルポジションと、前記圧側通路を前記供給路に接続するとともに前記伸側通路を前記排出路に接続する圧側供給ポジションと、前記伸側通路、前記圧側通路、前記供給路および前記排出路を互いに連通するフェールポジションの4位置を有するスプールと、
    前記スプールを駆動するソレノイドと、
    前記スプールを附勢して、前記ソレノイドの非通電時に前記スプールをフェールポジションに位置決めるばねとを有する
    ことを特徴とする請求項に記載のサスペンション装置。
  7. 前記液圧回路は、
    前記伸側通路に前記伸側減衰弁に並列に設けられて、前記切換弁或いは前記差圧制御弁から前記伸側室に向かう流れのみを許容する伸側チェック弁と、
    前記圧側通路に前記圧側減衰弁に並列に設けられて、前記切換弁或いは前記差圧制御弁から前記圧側室に向かう流れのみを許容する圧側チェック弁と
    を備えたことを特徴とする請求項からのいずれか一項に記載のサスペンション装置。
JP2015226991A 2015-11-19 2015-11-19 サスペンション装置 Active JP6916591B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015226991A JP6916591B2 (ja) 2015-11-19 2015-11-19 サスペンション装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015226991A JP6916591B2 (ja) 2015-11-19 2015-11-19 サスペンション装置

Publications (2)

Publication Number Publication Date
JP2017094808A JP2017094808A (ja) 2017-06-01
JP6916591B2 true JP6916591B2 (ja) 2021-08-11

Family

ID=58803166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015226991A Active JP6916591B2 (ja) 2015-11-19 2015-11-19 サスペンション装置

Country Status (1)

Country Link
JP (1) JP6916591B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512083Y2 (ja) * 1986-06-13 1993-03-26
JPH0490913A (ja) * 1990-08-02 1992-03-24 Mitsubishi Motors Corp 車両用アクティブサスペンション装置
JP3062616B2 (ja) * 1991-09-06 2000-07-12 カヤバ工業株式会社 アクティブサスペンションの油圧回路
JP2000233746A (ja) * 1998-12-16 2000-08-29 Nippon Sharyo Seizo Kaisha Ltd 鉄道車両の振動抑制装置
JP2005193708A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd サスペンション装置
JP2009137342A (ja) * 2007-12-04 2009-06-25 Honda Motor Co Ltd 減衰力可変ダンパの制御装置
JP5307419B2 (ja) * 2008-02-25 2013-10-02 カヤバ工業株式会社 シリンダ装置
EP2156970A1 (en) * 2008-08-12 2010-02-24 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Multi-point hydraulic suspension system for a land vehicle
JP2015102101A (ja) * 2013-11-21 2015-06-04 カヤバ工業株式会社 緩衝器
JP6243205B2 (ja) * 2013-11-25 2017-12-06 Kyb株式会社 サスペンション装置

Also Published As

Publication number Publication date
JP2017094808A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
US10076943B2 (en) Suspension device
JP6700735B2 (ja) サスペンション装置
US10183540B2 (en) Suspension device and suspension control unit
JP6714336B2 (ja) サスペンション装置
JP6663197B2 (ja) サスペンション装置
JP6663196B2 (ja) サスペンション装置
JP6243205B2 (ja) サスペンション装置
JP6916591B2 (ja) サスペンション装置
JP6675923B2 (ja) サスペンション装置
JP7021959B2 (ja) 液圧緩衝器
JP6700736B2 (ja) サスペンション装置
JP7008486B2 (ja) サスペンション装置
JP6484152B2 (ja) サスペンション装置
JP6675924B2 (ja) サスペンション装置
JP2017196921A (ja) サスペンション装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R151 Written notification of patent or utility model registration

Ref document number: 6916591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350