JP6892367B2 - 電源回路 - Google Patents

電源回路 Download PDF

Info

Publication number
JP6892367B2
JP6892367B2 JP2017196716A JP2017196716A JP6892367B2 JP 6892367 B2 JP6892367 B2 JP 6892367B2 JP 2017196716 A JP2017196716 A JP 2017196716A JP 2017196716 A JP2017196716 A JP 2017196716A JP 6892367 B2 JP6892367 B2 JP 6892367B2
Authority
JP
Japan
Prior art keywords
voltage
circuit
power supply
output
internal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017196716A
Other languages
English (en)
Other versions
JP2019070948A (ja
Inventor
林 健太郎
健太郎 林
林 豊
豊 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2017196716A priority Critical patent/JP6892367B2/ja
Priority to US16/106,785 priority patent/US10599172B2/en
Priority to EP18193067.8A priority patent/EP3471247A1/en
Priority to KR1020180118225A priority patent/KR102562626B1/ko
Priority to CN201811172350.0A priority patent/CN109656293B/zh
Publication of JP2019070948A publication Critical patent/JP2019070948A/ja
Application granted granted Critical
Publication of JP6892367B2 publication Critical patent/JP6892367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/465Internal voltage generators for integrated circuits, e.g. step down generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/562Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices with a threshold detection shunting the control path of the final control device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/571Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overvoltage detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • H02H3/207Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage also responsive to under-voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/573Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overcurrent detector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Protection Of Static Devices (AREA)

Description

本発明は、電源回路に関し、例えば、集積回路の内部電源回路に関する。
特許文献1には、負荷電流の変動に対して、十分な駆動電流を供給することができる内部電源回路が記載されている。特許文献1の内部電源回路は、レギュレータ回路を備え、基準電圧に等しくなるように、フィードバック制御によって内部電源電圧を出力する。そして、負荷回路の消費電力が急激に増加した場合には、その変化に急峻に対応して大きな電流を負荷回路に供給している。これにより、内部電源電圧の降下を抑制している。
特開2009−080653号公報
特許文献1の内部電源回路では、レギュレータ回路に故障が発生した場合に、出力電圧が上昇し、負荷回路の正常な動作を保証することができない恐れがある。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
一実施の形態によれば、電源回路は、入力された入力電圧を用いて出力電圧を生成するレギュレータ回路と、前記出力電圧を検知する電圧検知回路と、前記出力電圧に基づいて内部電源電圧を出力するクランプ回路であって、前記出力電圧が所定の第1電圧よりも大きい第1異常の場合に、第1電圧以下に抑えた前記内部電源電圧を出力する前記クランプ回路を備え、前記クランプ回路は、前記第1電圧以下の前記内部電源電圧で動作するロジック回路に対して前記内部電源電圧を出力し、前記電圧検知回路は、前記第1異常を検知した場合に、前記ロジック回路に対して、前記第1異常を出力する。
前記一実施の形態によれば、内部電源電圧を安定化させ、負荷回路の正常な動作を保証することができる電源回路を提供することができる。
電源回路の構成を例示したブロックである。 実施形態1に係る電源回路を例示したブロック図である。 実施形態1に係る電源回路の詳細を例示したブロック図である。 実施形態1に係る電源回路において、電圧設定範囲を例示した図である。 実施形態2に係る電源回路を例示したブロック図である。 実施形態2に係る電源回路の詳細を例示したブロック図である。 実施形態2に係る電源回路において、電圧設定範囲を例示した図である。 実施形態3に係る電源回路を例示したブロック図である。 実施形態3に係る電源回路において、BIST時の電圧設定範囲を例示した図である。
説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
まず、発明者らによって見出された電源回路の内部電源電圧が上昇する原因について説明する。これにより、実施形態に係る電源回路をより明確にする。
図1は、電源回路の構成を例示したブロックである。図1に示すように、電源回路100は、レギュレータ回路110及び電圧検知回路120を含んでいる。電源回路100は、例えば、半導体装置の内部に設置された内部電源回路であり、ロジック回路140等の負荷回路を動作させる出力電圧VDDを供給する。
レギュレータ回路110は、入力電圧VINに対して所定の出力電圧VDDを生成する。入力電圧VINは、バッテリー等から供給される電圧であり、比較的高電圧となっている。入力電圧VINは、例えば、12[V]〜18[V]等であるが、入力電圧VINは、これらの電圧に限らない。レギュレータ回路110の出力電圧VDDの一部は、レギュレータ回路10に帰還する。このように、電源回路100は、負帰還増幅回路を含んでいる。
レギュレータ回路110の出力電圧VDDは、負荷回路が動作する電源となる。負荷回路は、ロジック回路140及びAMP回路等の半導体装置の内部回路である。出力電圧VDDは、負荷回路であるロジック回路140のプロセスに依存する絶対最大定格、ロジック動作領域及び動作スピードに合わせた電圧に設定されている。電圧検知回路120は、出力電圧VDDをモニタする。
電源回路100を含む半導体装置全体、及び、半導体装置を用いたシステムの機能安全を考慮すると、レギュレータ回路110にランダムハードウェア故障(単一故障)が発生した場合でも、システムの機能が安全に動作することが望ましい。しかしながら、図1に示す電源回路100では、レギュレータ回路110に故障が発生した場合、出力電圧VDDが異常に高い電圧となる。例えば、出力電圧VDDは、入力電圧VINまで上昇することが想定される。これは、ロジック回路140等の耐圧を超え、動作異常および故障につながり、システムの安全を損なう可能性がある。
レギュレータ回路110の故障として、例えば、レギュレータ回路110内に形成された出力トランジスタのドレイン−ソース間のショートによる故障、出力電圧VDDを生成するためのフィードバック抵抗の一部がショートすることによる故障等が考えられる。このような故障が発生した場合には、出力電圧VDDは、入力電圧VINのレベルまで上昇する可能性がある。
一般的に、電源回路100は、出力電圧VDDをモニタする電圧検知回路120を有している。出力電圧VDDが異常に高い電圧となった時は、電圧検知回路120は、ロジック回路140を介して、SPI(Serial Peripheral Interface)等で、外部のマイコン等へ通知する。しかし、このような故障モードの場合は、ロジック回路140は、高い出力電圧VDDによって、既に故障している可能性がある。よって、マイコン等へ電圧異常を通知することが困難な場合がある。
以下の実施形態では、ランダムハードウェア故障(単一故障)が発生した場合でも、システムの機能が安全に動作するように、安定した内部電源電圧を供給する電源回路を説明する。
(実施形態1)
実施形態1に係る電源回路を説明する。まず、電源回路の概要を説明する。図2は、実施形態1に係る電源回路を例示したブロック図である。図2に示すように、電源回路1は、レギュレータ回路10と、電圧検知回路20と、クランプ回路30と、を備えている。
レギュレータ回路10は、入力電圧VINを用いて所定の出力電圧VDDを生成する。入力電圧VINは、バッテリー等から供給される電圧である。レギュレータ回路10の出力電圧VDDの一部は、レギュレータ回路10に帰還する。よって、電源回路1は、負帰還増幅回路を含んでいる。
電圧検知回路20は、レギュレータ回路10に接続されている。電圧検知回路20は、レギュレータ回路10から出力された出力電圧VDDが入力される。そして、電圧検知回路20は、出力電圧VDDを検知する。電圧検知回路20は、検知した出力電圧VDDが所定の電圧よりも大きい異常を検知した場合に、ロジック回路40に対して、異常を出力する。ロジック回路40は、当該異常を、SPI等を用いて、例えば、マイコン等の外部へ通知する。
クランプ回路30は、レギュレータ回路10に接続されている。クランプ回路30には、レギュレータ回路10から出力された出力電圧VDDが入力される。クランプ回路30は、ロジック回路40に接続されている。クランプ回路30は、出力電圧VDDに基づいて、内部電源電圧VDDINTを出力する。内部電源電圧VDDINTは、例えば、ロジック回路40、AMP制御回路、Bias回路等の負荷回路に使用される。内部電源電圧VDDINTは、負荷回路に含まれた低耐圧素子の電源となる。
クランプ回路30の例としては、例えば、ダイオードクランプ構成、MOSFETを用いたゲートクランプ構成等が挙げられる。また、クランプ回路は、レギュレータ回路10と独立した回路構成とする。クランプ回路30は、通常時は動作しない。通常時とは、レギュレータ回路10が所定の電圧以下の出力電圧VDDを生成する正常な場合である。通常時には、レギュレータ回路10が出力した出力電圧VDDと内部電源電圧VDDINTとは同じ電圧となっている(出力電圧VDD=内部電源VDDINT)。
一方、クランプ回路30は、入力された出力電圧VDDが所定の電圧よりも大きい異常の場合に、所定の電圧以下に抑えた内部電源電圧VDDINTをロジック回路40に対して出力する。出力電圧VDDが所定の電圧よりも大きい場合とは、例えば、レギュレータ回路10に、ランダムハードウェハ故障が発生した場合である。所定の電圧は、例えば、ロジック回路40の絶対最大定格以下の電圧である。また、所定の電圧は、ロジック回路が動作する電圧である。このように、クランプ回路30は、内部電源電圧VDDINTを所定の電圧に抑えるクランプ手段となっている。
レギュレータ回路10から出力された出力電圧VDDを、クランプ回路30に経由させることにより、ロジック回路40を絶対最大定格以下の電圧で動作させることができる。これにより、レギュレータ回路10に、ランダムハードウェア故障(単一故障)が発生した場合でも、内部電源電圧VDDINTを、ロジック回路40の絶対最大定格以下の電圧に制限させることができる。よって、所定の電圧以下で動作するロジック回路40は、レギュレータ回路10の故障による影響を受けない。ロジック回路40の正常な動作を保証することができる。
次に、電源回路1を具体的に説明する。図3は、実施形態1に係る電源回路1の詳細を例示したブロック図である。図3に示すように、電源回路1は、レギュレータ回路10、複数の電圧検知回路21及び22、クランプ回路30、並びに、抵抗R11〜R16を備えている。なお、電源回路1は、動作の上で必要なこれら以外の回路を含んでもよい。
レギュレータ回路10は、演算増幅器(Operational Amplifier)11と、出力トランジスタ12とを含んでいる。演算増幅器11の正側の電極端子には入力電圧VINが接続されている。演算増幅器11の負側の電源端子は接地されている。+入力端子には、基準電圧Vref11が接続されている。基準電圧Vref11は、例えば、図示しない基準電圧生成回路から供給される。
−入力端子には、出力電圧VDDの一部が接続されている。このように、レギュレータ回路10は、出力電圧VDDの一部が帰還する負帰還増幅器を含んでいる。演算増幅器11の出力は、出力トランジスタ12のゲートに接続されている。
出力トランジスタ12の入力側は、入力電圧VINに接続されている。出力トランジスタ12のゲートは、演算増幅器11の出力に接続されている。出力トランジスタ12の出力側は、クランプ回路30に接続されている。これにより、クランプ回路30には、出力電圧VDDが入力される。出力トランジスタ12は、例えば、N型MOSトランジスタである。
また、出力トランジスタ12の出力側は、所定の抵抗値を有する抵抗R11及び抵抗R12を介して、接地されている。抵抗R11と抵抗R12との接点N11に、演算増幅器11の−入力端子が接続されている。これにより、出力電圧VDDの一部は、フィードバック抵抗として機能する抵抗R11及びR12を介して、レギュレータ回路10に帰還する。具体的には、出力トランジスタ12が出力した出力電圧VDDの一部は、フィードバック抵抗R11及びR12を介して負帰還増幅器の−入力端子に帰還する。よって、レギュレータ回路10から出力される出力電圧VDDは、ロジック回路40が動作する電圧レベルに保たれる。例えば、以下の(1)式で示される出力電圧VDDが出力される。出力電圧VDDは、例えば、3.3[V]である。
VDD=Vref11・(R11+R12)/R12 (1)
電源回路1は、複数の電圧検知回路20を備えてもよい。例えば、電圧検知回路20は、過電圧検知回路21と、低電圧検知回路22と、を有している。過電圧検知回路21は、出力トランジスタ12の出力側に所定の抵抗R13を介して接続されている。出力トランジスタ12の出力側は、所定の抵抗R13及び抵抗R14を介して接地されている。抵抗R13と抵抗R14との間の接点N12に、過電圧検知回路21が接続されている。
過電圧検知回路21は、出力電圧VDDが所定の電圧よりも大きい異常を検知した場合には、ロジック回路40に対して異常を出力する。そして、ロジック回路40は、外部に異常を通知する。
具体的には、過電圧検知回路21は、例えば、コンパレータ回路を含んでいる。そして、抵抗R13及びR14は、ラダー抵抗として機能する。過電圧検知回路21は、出力電圧VDDを抵抗R13及び抵抗R14によって分割する。そして、分割した出力電圧VDDを基準電圧で比較する。出力電圧VDDが所定の電圧になった時に(例えば、6.0[V])、コンパレータ回路の出力が反転する。過電圧検知回路21は、出力の反転をロジック回路40へ出力する。なお、過電圧検知回路21用の基準電圧は、レギュレータ回路10の基準電圧と独立した基準電圧生成回路から供給されることが好ましい。
また、クランプ回路30に低電圧検知回路22が接続されてもよい。低電圧検知回路22は、クランプ回路30に抵抗R15を介して接続されている。また、クランプ回路30は、抵抗R15及びR16を介して接地されている。低電圧検知回路22は、抵抗R15と抵抗R16との間の接点N13に接続されている。よって、抵抗R15及び抵抗R16はラダー抵抗として機能する。低電圧検知回路22は、クランプ回路30が出力した内部電源電圧VDDINTを検知する。低電圧検知回路22は、内部電源電圧VDDINTが、所定の電圧よりも小さい異常を検知した場合に、ロジック回路40に対して異常を出力する。そして、ロジック回路40は、外部に異常を通知する。ロジック回路40は、異常をSPI等で外部のマイコン等へ通知する。
クランプ回路30にランダムハードウェア故障(単一故障)が発生すると、クランプ回路30が出力電圧VDDに基づいて、所定の内部電源電圧VDDINTを出力することができない場合がある。そうすると、内部電源VDDINTは、所定の電圧よりも低下する。この場合には、内部電源電圧VDDINTを検知する低電圧検知回路22は、クランプ回路30の異常をロジック回路40へ出力する。ロジック回路40は、SPI等を用いて、外部のマイコン等へ異常を通知する。そして、例えば、POR(Power On Reset)等により、各電源を強制的に停止させる。
図4は、実施形態1に係る電源回路において、電圧設定範囲を例示した図である。図4に示すように、内部電源電圧VDDINTが、ロジック回路40の正常動作範囲内になるように、クランプ回路30の動作する電圧範囲、レギュレータ回路10の出力電圧VDD、過電圧検知回路21及び低電圧検知回路22の検知範囲を設定する。
ロジック回路40の正常動作範囲は、例えば、2.00[V]〜5.40[V]である。そこで、まず、ロジック回路40が正常に動作するように、レギュレータ回路10の出力電圧VDDを設定する。レギュレータ回路10の出力電圧VDDを、3.3[V]±3[%]と設定すれば、レギュレータ回路10が出力する出力電圧VDDは、例えば、3.20[V]〜3.40[V]の電圧範囲となる。レギュレータ回路10が正常に動作している場合には、ロジック回路40も正常に動作することができる。
次に、クランプ回路30が動作する電圧範囲を設定する。ロジック回路40の正常動作範囲は、2.00[V]〜5.40[V]であるので、クランプ回路30は、内部電源電圧VDDINTを、5.40[V]以下に抑えるように設定される。そこで、所定の電圧を、第1電圧として、ロジック回路40の正常動作範囲の上限の電圧を選択する。クランプ回路30が動作する出力電圧VDDを、4.5[V]±20[%]と設定すれば、クランプ回路30が出力電圧VDDをクランプし、出力する内部電源電圧VDDINTは、3.60[V]〜5.40[V]の電圧範囲となる。
よって、レギュレータ回路10の故障によって、第1電圧よりも大きい出力電圧VDDが出力されても、内部電源電圧VDDINTを、ロジック回路40の絶対最大定格以下の電圧に抑えることができる。このように、出力電圧VDDが第1電圧よりも大きい異常の場合に、クランプ回路30が出力する内部電源電圧VDDINTは、ロジック回路40に含まれた低耐圧素子の絶対最大定格以下である。さらに、好ましくは、異常の場合にクランプ回路30が出力する内部電源電圧VDDINTは、ロジック回路40の正常動作範囲の上限の電圧以下である。
また、クランプ回路30は、レギュレータ回路10が正常に動作している場合の出力電圧VDDよりも大きい電圧で動作を開始するように設定する。例えば、レギュレータ回路10の出力電圧VDDは、例えば、3.20[V]〜3.40[V]の電圧範囲である。また、クランプ回路30が動作を開始し、出力する内部電源電圧VDDINTは、3.60[V]〜5.40[V]の電圧範囲である。よって、レギュレータ回路10が正常の場合に、レギュレータ回路10が出力する出力電圧VDD(3.20[V]〜3.40[V])は、レギュレータ回路10が異常の場合に、クランプ回路30が出力する内部電源電圧VDDINT(3.60[V]〜5.40[V])よりも小さくなっている。
過電圧検知回路21は、ロジック回路40の正常動作範囲よりも大きい出力電圧VDDを検知するように設定する。例えば、過電圧検知電圧を、5.75[V]と設定し、5.60[V]〜5.90[V]を検知範囲とする。過電圧検知回路21は、検知範囲の出力電圧VDDを検知した場合には、ロジック回路40に異常を出力する。
低電圧検知回路22は、レギュレータ回路10の出力電圧VDDよりも低い内部電源電圧VDDINTを検知するように設定する。例えば、第2電圧として、レギュレータ回路10の出力電圧VDDよりも低い電圧を選択する。例えば、定電圧検知電圧を、2.85[V]と設定し、2.70[V]〜3.00[V]を検知範囲とする。低電圧検知回路22は、検知範囲の内部電源電圧VDDINTを検知した場合には、ロジック回路40に対して異常を出力する。
次に、本実施形態の効果を説明する。
本実施形態の電源回路1は、内部電源電圧VDDINTを所定の電圧以下に抑えることを目的としたクランプ回路30を備えている。よって、内部電源電圧VDDINTを安定化させ、ロジック回路40等の負荷回路の正常な動作を保証することができる。
クランプ回路30の動作する電圧範囲を、レギュレータ回路10の正常時における出力電圧VDDよりも大きい値としている。よって、レギュレータ回路10にランダムハードウェア故障が発生した場合に、確実にクランプ回路30を動作させることができる。
また、クランプ回路30が出力する内部電源電圧VDDINTは、ロジック回路40に含まれた低耐圧素子の絶対最大定格以下の電圧に設定されている。よって、故障時においても、ロジック回路40を正常に動作させることができる。
電圧検知回路20は、異常を検知した場合に、ロジック回路40に対して異常を出力し、ロジック回路40は、外部に異常を通知する。よって、機能安全を考慮した異常の通知を行うことができる。
レギュレータ回路10は、出力電圧VDDの一部が帰還する負帰還増幅器を含んでいる。これにより、出力電圧VDDのバラつきを抑制し、出力電圧VDDの安定性を向上させることができる。
クランプ回路30は、レギュレータ回路10と独立した回路で構成されている。これにより、レギュレータ回路10にランダムハードウェア故障が発生しても、クランプ回路30は、内部電源電圧VDDINTを、ロジック回路40が正常に動作する所定の電圧以下に抑えることができる。
(実施形態2)
次に、実施形態2の電源回路を説明する。図5は、実施形態2に係る電源回路を例示したブロック図である。図5に示すように、本実施形態の電源回路2は、メインレギュレータ回路50、サブレギュレータ回路60、電圧検知回路20を備えている。
サブレギュレータ回路60は、入力された入力電圧VINを用いて所定の出力電圧VDDを生成する。メインレギュレータ回路50は、サブレギュレータ回路60に接続されている。メインレギュレータ回路50には、サブレギュレータ回路60から出力された出力電圧VDDが入力される。通常時においては、サブレギュレータ回路60は、動作しない。サブレギュレータ回路60は、入力された入力電圧VINに対して、入力電圧VINと等しい出力電圧VDD(出力電圧VDD=入力電圧VIN)を出力する。
メインレギュレータ回路50は、ロジック回路40に接続されている。メインレギュレータ回路50は、出力電圧VDDを用いて、所定の内部電源電圧VDDINTを生成する。メインレギュレータ回路50は、ロジック回路40に対して内部電源電圧VDDINTを出力する。内部電源電圧VDDINTは、例えば、ロジック回路40、AMP制御回路、Bias回路等の内部回路に使用される。内部電源電圧VDDINTは、ロジック回路40等に含まれた低耐圧素子の電源となる。内部電源電圧VDDINTの一部は、メインレギュレータ回路50及びサブレギュレータ回路60に帰還する。このように、メインレギュレータ回路50及びサブレギュレータ回路60は、内部電源電圧VDDINTの一部が帰還する負帰還増幅器を含んでいる。
電圧検知回路20は、メインレギュレータ回路50に接続されている。電圧検知回路20は、メインレギュレータ回路50から出力された内部電源電圧VDDINTが入力される。電圧検知回路20は、内部電源電圧VDDINTを検知する。電圧検知回路20は、モニタした内部電源電圧VDDINTが所定の電圧よりも大きくなった時は、ロジック回路40に異常を出力する。ロジック回路40は、異常をSPI等で外部のマイコン等へ通知する。
メインレギュレータ回路50が正常の場合には、メインレギュレータ回路50は、所定の電圧以下の内部電源電圧を生成する。メインレギュレータ回路50がランダムハードウェハ故障した場合には、メインレギュレータ回路50は、所定の電圧よりも大きい内部電源電圧VDDINTを出力する。よって、内部電源電圧VDDINTが所定の電圧よりも大きい異常の状態となる。
異常状態の場合には、自動で、サブレギュレータ回路60に動作が切り替わる。そして、サブレギュレータ回路60は、所定の電圧以下に抑えた内部電源電圧VDDINTになるように出力電圧VDDを生成する。これにより、内部電源電圧VDDINTは、ロジック回路40等の低耐圧素子の絶対最大定格以下の電圧に制限される。このように、サブレギュレータ回路60は、内部電源電圧VDDINTを所定の電圧に抑えるクランプ手段となっている。
電圧検知回路20は、メインレギュレータ回路50が故障した場合に、内部電源電圧VDDINTの変化を検知する。メインレギュレータ回路50が正常の場合に出力される内部電源電圧VDDINTは、異常の場合に、サブレギュレータ回路60の動作により出力される内部電源電圧VDDINTよりも小さくなっている。よって、電圧検知回路20は、サブレギュレータ回路60が動作した場合の内部電源電圧VDDINTを検知する。これにより、電圧検知回路20は、メインレギュレータ回路50の故障による異常を検知する。そして、電圧検知回路20は、ロジック回路40に対して異常を出力する。ロジック回路40は、外部に異常を通知する。
このように、本実施形態の電源回路2は、独立したレギュレータ回路を2つ有している。メインレギュレータ回路50にランダムハードウェア故障(単一故障)が発生した場合でも、サブレギュレータ回路60により、内部電源電圧VDDINTは、ロジック回路40の絶対最大定格以下の電圧に制限される。これにより、ロジック回路40の故障を抑制し、ロジック回路40の正常な動作を保証することができる。
実施形態2の電源回路2は、実施形態1の電源回路1に比べて、低耐圧素子の低電圧化に対応することができる。プロセスルールが微細化することにより、電源回路2は低電圧化する。低電圧化の程度は、電源回路2を構成する低耐圧素子の絶対最大定格、ロジック回路等の動作する電圧範囲及び動作スピードに依存する。
実施形態1のクランプ回路30は、ダイオードクランプ構成やMOSFETを用いたゲートクランプ構成となっている。このような構成の場合には、クランプ回路30を構成する素子の特性のバラつきの影響により、クランプ回路30が出力した内部電源電圧VDDINTのバラつきは比較的大きい。したがって、クランプ回路30の場合には、低電圧化に対応させることが困難となる。
実施形態1では、通常動作の電圧設定が3.3[V]に対して、絶対最大定格を7.0[V]に設定している。このため、このような電圧設定に、クランプ回路30を対応させることは比較的容易である。クランプ回路30の出力に20%の幅があっても、絶対最大定格7.0[V]以下に対応させることができる。
一方、プロセスルールの微細化により、低耐圧素子の絶対最大定格が低下したロジック回路40にクランプ回路30を対応させることは困難である。クランプ回路30の出力の幅によって、絶対最大定格を超える可能性がある。
これに対して、本実施形態の電源回路2は、クランプ回路30の代わりに、メインレギュレータ回路50及びサブレギュレータ回路60を有する構成としている。レギュレータ回路は、バラつきの少ない安定した出力をすることができる。よって、低耐圧素子の絶対最大定格が低下したロジック回路40に対応させることができる。
次に、実施形態2に係る電源回路2の詳細を説明する。図6は、実施形態2に係る電源回路の詳細を例示したブロック図である。図6に示すように、本実施形態の電源回路2は、メインレギュレータ回路50、サブレギュレータ回路60、過電圧検知回路21、低電圧検知回路22、及び、抵抗R21〜R28を含んでいる。メインレギュレータ回路50は、演算増幅器51及び出力トランジスタ52を含んでいる。サブレギュレータ回路60は、演算増幅器61及び出力トランジスタ62を含んでいる。電圧検知回路20は、過電圧検知回路21と、低電圧検知回路22と、を有している。
サブレギュレータ回路60において、演算増幅器61の正側の電極端子には、入力電圧VINが接続されている。演算増幅器61の負側の電源端子は、接地されている。+入力端子には、基準電圧Vref21が接続されている。基準電圧Vref21は、例えば、図示しない基準電圧生成回路から供給される。
演算増幅器61の−入力端子には、メインレギュレータ回路50が出力した内部電源VDDINTの一部が接続されている。演算増幅器61の出力は、出力トランジスタ62のゲートに接続されている。
出力トランジスタ62の入力側は、入力電圧VINに接続されている。出力トランジスタ62のゲートは、サブレギュレータ回路60の演算増幅器61の出力に接続されている。出力トランジスタ62の出力側は、メインレギュレータ回路50の出力トランジスタ52の入力側に接続されている。
メインレギュレータ回路50において、演算増幅器51の正側の電極端子は、入力電圧VINに接続されている。演算増幅器51の負側の電源端子は接地されている。+入力端子には、基準電圧Vref22が接続されている。基準電圧Vref22は、例えば、図示しない基準電圧生成回路から供給される。
演算増幅器51の−入力端子には、メインレギュレータ回路50が出力した内部電源VDDINTの一部が接続されている。演算増幅器51の出力は、出力トランジスタ52のゲートに接続されている。
出力トランジスタ52の入力側は、出力トランジスタ62の出力側が接続されている。これにより、出力トランジスタ52の入力側には、出力電圧VDDが入力されている。出力トランジスタ52のゲートは、メインレギュレータ回路50の演算増幅器51の出力に接続されている。出力トランジスタ52の出力側は、ロジック回路40等を含む内部回路に接続されている。これにより、ロジック回路40等は、内部電源電圧VDDINTを供給される。
また、出力トランジスタ52の出力側は、所定の抵抗R21及び抵抗R22を介して、接地されている。抵抗R21と抵抗R22との間の接点N21に、演算増幅器51の−入力端子が接続されている。これにより、出力トランジスタ52の出力は、フィードバック抵抗R21及びR22を介して演算増幅器51に帰還する。また、接点N21は、スイッチSW21及び抵抗R23を介して接地されている。
さらに、出力トランジスタ52の出力側は、所定の抵抗R24及び抵抗R25を介して、接地されている。抵抗R24と抵抗R25との間の接点N22に、演算増幅器61の−入力端子が接続されている。これにより、出力トランジスタ52の出力は、フィードバック抵抗R24及びR25を介して演算増幅器61に帰還する。
サブレギュレータ回路60における演算増幅器61の−入力端子及びメインレギュレータ回路50における演算増幅器51の−入力端子に内部電源電圧VDDINTの一部が戻る負帰還増幅回路となっている。このように、電源回路2は、2つのレギュレータ回路が直列接続となる構成(従属接続)であり、メインレギュレータ回路50に、機能安全を考慮したサブレギュレータ回路60を追加した構成となっている。そして、メインレギュレータ回路50及びサブレギュレータ回路60は、内部電源電圧VDDINTをフィードバックする構成となっている。サブレギュレータ回路60と、メインレギュレータ回路50とは、独立した構成とする。すなわち、例えば、使用される基準電圧Vref21及びVref22、並びに、基準電流等は別の独立した回路で動作するように設計されている。
通常動作時においては、サブレギュレータ回路60は動作しない。よって、出力トランジスタ62は、フルオン(Full ON)状態となる。これにより、電源回路2は、メインレギュレータ回路50のみで動作する。電源回路2は、所定の電圧の内部電源電圧VDDINTを生成する。
一方、メインレギュレータ回路50に故障が発生した場合には、自動で、サブレギュレータ回路60に切り替わる。サブレギュレータ回路60は、内部電源電圧VDDINTをロジック回路40等に含まれた低耐圧素子の絶対最大定格以下の電圧に制限させる。
メインレギュレータ回路50の故障としては、例えば、出力トランジスタ52がON固着した場合、フィードバック抵抗R21〜R22の一部が接地側とショートした場合が挙げられる。このような故障の場合には、内部電源電圧VDDINTは上昇する。しかしながら、内部電源電圧VDDINTが、サブレギュレータ回路60の設定電圧になると、サブレギュレータ回路60が動作する。そして、内部電源VDDINTは、絶対最大定格以下の電圧に抑えられる。よって、電源回路2から出力される内部電源VDDINTは、ロジック回路40が正常な動作を行う電圧レベルに保たれる。
メインレギュレータ回路50は、入力電圧VINに対し、以下の(2)式で示される内部電源電圧VDDINTを出力する。
VDDINT=Vref22・(R21+R22)/R22 (2)
サブレギュレータ回路60は、入力電圧VINに対し、以下の(3)式で示される内部電源電圧VDDINTを出力する。
VDDINT=Vref21・(R24+R25)/R25 (3)
メインレギュレータ回路50が出力する内部電源電圧VDDINTと、サブレギュレータ回路60が出力する出力電圧VDDとは、以下の関係とする。
メインレギュレータ回路50が出力する電圧レベル<サブレギュレータ回路60が出力する電圧レベル<低耐圧素子の絶対最大定格の電圧 (4)
メインレギュレータ回路50を構成する演算増幅器51、出力トランジスタ52、基準電圧回路、出力フィードバック抵抗R21及びR22に、単一故障が発生しても、内部電源電圧VDDINTは、サブレギュレータ回路60によって制限される。これにより、内部電源電圧VDDINTは、ロジック回路40で含まれた低耐圧素子の絶対最大定格以下に抑えられる。
また、サブレギュレータ回路60も、内部電源電圧VDDINTをフィードバックする負帰還増幅回路で構成している。よって、サブレギュレータ回路60が動作した時も、サブレギュレータ回路60は、バラつきが抑えられた内部電源電圧VDDINTを出力することができる。
低電圧検知回路22は、出力トランジスタ52の出力側に所定の抵抗R26を介して接続されている。出力トランジスタ52の出力側は、所定の抵抗R26〜抵抗R28を含むラダー抵抗を介して接地されている。抵抗R26と抵抗R27との間の接点N23に、低電圧検知回路22が接続されている。低電圧検知回路22は、内部電源電圧VDDINTを検知する。低電圧検知回路22は、内部電源電圧VDDINTが所定の電圧よりも小さい異常を検知した場合に、ロジック回路40に対して異常を出力する。ロジック回路40は、当該異常をSPIで外部のマイコン等へ通知する。
また、過電圧検知回路21は、出力トランジスタ52の出力側に所定の抵抗R26及びR27を介して接続されている。抵抗R27と抵抗R28との間の接点N24に、過電圧検知回路21が接続されている。過電圧検知回路21は、内部電源電圧VDDINTを検知する。過電圧検知回路21は、内部電源電圧VDDINTが所定の電圧よりも大きい異常を検知した場合に、ロジック回路40に対して異常を出力する。ロジック回路40は、当該異常をSPIで外部のマイコン等へ通知する。
具体的には、過電圧検知回路21及び低電圧検知回路22は、例えば、コンパレータ回路を含んでいる。例えば、過電圧検知回路21及び低電圧検知回路22は、内部電源電圧VDDINTを、抵抗R26〜R28によって分割する。そして、分割した内部電源電圧VDDINTを基準電圧で比較する。内部電源電圧VDDINTが所定の電圧になった時に、コンパレータ回路の出力が反転する。過電圧検知回路21及び低電圧検知回路22は、出力の反転をロジック回路40へ出力する。なお、電圧検知回路20の基準電圧は、レギュレータ回路10の基準電圧と独立した基準電圧生成回路から供給されることが好ましい。
図7は、実施形態2に係る電源回路において、電圧設定範囲を例示した図である。図7に示すように、内部電源電圧VDDINTが、ロジック回路40の正常動作範囲内になるように、メインレギュレータ回路50が出力する内部電源電圧VDDINT、サブレギュレータ回路60が動作する電圧範囲、過電圧検知回路21及び低電圧検知回路22の検知範囲を設定する。
ロジック回路40の正常動作範囲は、例えば、2.00[V]〜4.00[V]である。そこで、まず、ロジック回路40が正常に動作するように、メインレギュレータ回路50が出力する内部電源電圧VDDINTを設定する。メインレギュレータ回路50の内部電源VDDINTを、3.30[V]±3%と設定すれば、メインレギュレータ回路50が出力する内部電源電圧VDDINTは、例えば、3.21[V]〜3.39[V]の電圧範囲となる。メインレギュレータ回路50が正常に動作している場合には、ロジック回路40も正常に動作することができる。一方、メインレギュレータ回路50の電圧範囲の上限の値を第3電位とすると、内部電源電圧VDDINTが、第3電圧よりも大きい場合は、メインレギュレータ回路50が異常の場合である。
次に、サブレギュレータ回路60が動作する電圧範囲を設定する。ロジック回路40の正常動作範囲は、2.00[V]〜4.00[V]であるので、サブレギュレータ回路60は、内部電源電圧VDDINTを、4.00[V]以下に抑えるように設定される。例えば、サブレギュレータ回路60が動作する内部電源電圧VDDINTを、3.85[V]±3%と設定すれば、サブレギュレータ回路60は、内部電源VDDINTを、3.74[V]〜3.97[V]の電圧範囲となるように出力する。サブレギュレータ回路60の電圧範囲の上限値を第4電位とすると、メインレギュレータ回路50が異常の場合には、サブレギュレータ回路60は、第4電圧以下に抑えた内部電源電圧VDDINTになるように出力電圧を生成する。第4電圧は、第3電圧よりも大きい電圧である。
よって、メインレギュレータ回路50に故障が発生しても、内部電源電圧VDDINTを、ロジック回路40の絶対最大定格以下の電圧に抑えることができる。
また、サブレギュレータ回路60は、メインレギュレータ回路50が正常に動作している場合の内部電源電圧VDDINTよりも大きい電圧で動作を開始するように設定する。例えば、メインレギュレータ回路50の内部電源電圧VDDINTは、3.21[V]〜3.39[V]の電圧範囲である。また、サブレギュレータ回路60の内部電源電圧VDDINTは、3.74[V]〜3.97[V]の電圧範囲である。よって、メインレギュレータ回路50が正常に動作している場合に、メインレギュレータ回路50が出力する第3電圧以下の内部電源電圧VDDINTは、メインレギュレータ回路50が異常の場合に、サブレギュレータ回路60の動作により出力される内部電源電圧VDDINTよりも小さい。
過電圧検知回路21は、メインレギュレータ回路50の内部電源電圧VDDINTよりも大きい電圧で検知するように設定する。例えば、過電圧検知電圧を、3.55[V]とし、3.40[V]〜3.70[V]を検知範囲とする。メインレギュレータ回路50の故障により、内部電源電圧VDDINTが上昇した場合には、過電圧検知回路21は、内部電源電圧VDDINTの異常を検知し、ロジック回路40へ異常状態を出力する。ロジック回路40は、SPI等を用いて、外部のマイコン等に異常を通知する。
低電圧検知回路22は、メインレギュレータ回路50の内部電源電圧VDDINTよりも小さい電圧で検知するように設定する。例えば、低電圧検知電圧を、2.85[V]と設定し、2.70[V]〜3.00[V]を検知範囲とする。低電圧検知回路22は、内部電源電圧VDDINTの異常を検知し、ロジック回路40へ異常を出力する。ロジック回路40は、SPI等を用いて、外部のマイコン等に異常を通知する。
また、プロセスの微細化により、さらに、低耐圧素子の絶対最大定格が下がる場合は、過電圧検知回路21及び低電圧検知回路22だけでなく、内部電源電圧を検知するADC(Analog−Digital Converter)23等を用いて、内部電源電圧VDDINTの電圧診断を行ってもよい。これにより、故障時の検知電圧範囲を細かく設定することができる。
サブレギュレータ回路60のランダムハードウェハ故障においては、サブレギュレータ回路60の状態を定期的に検知することによって検出することができる。例えば、図6に示すように、スイッチSW21を用いて、BIST(Built−in Self Test)等による手法を用いる。そうすると、フィードバック抵抗R21〜R23は、メインレギュレータ回路50が生成する内部電源電圧VDDINTを、所定の電圧よりも大きくすることが可能な可変抵抗となる。これにより、メインレギュレータ回路50における演算増幅器51の電圧レベルを変更させる(上昇させる)。このようにすることで、サブレギュレータ回路60を動作させ、演算増幅器61の電圧状態を過電圧検知回路21、低電圧検知回路22及びADC23による電圧診断等で診断することができる。
または、サブレギュレータ回路60に、演算増幅器61の電流を検知する電流検知回路24を設け、電流検知回路24によって、サブレギュレータ回路60の故障を検知してもよい。電流検知回路24は、サブレギュレータ回路60の故障時には、ロジック回路40を介して異常を通知する。
次に、本実施形態の効果を説明する。
本実施形態の電源回路2は、内部電源電圧VDDINTを所定の電圧以下に抑えることを目的としたサブレギュレータ回路60を備えている。よって、内部電源電圧VDDINTを安定化させ、ロジック回路40等の負荷回路の正常な動作を保証することができる。
サブレギュレータ回路60が動作する電圧範囲を、メインレギュレータ回路50の正常時に出力する内部電源電圧VDDINTよりも大きい値としている。よって、メインレギュレータ回路50にランダムハードウェア故障が発生した場合に、内部電源電圧VDDINTを、確実に、所定の電圧以下に抑えることができる。
また、サブレギュレータ回路60の動作時に出力される内部電源電圧VDDINTは、ロジック回路40に含まれた低耐圧素子の絶対最大定格以下の電圧に設定されている。よって、故障時においても、ロジック回路40を正常に動作させることができる。
過電圧検知回路21及び低電圧検知回路22は、異常を検知した場合に、ロジック回路40に対して異常を出力し、ロジック回路40は、外部に異常を通知する。よって、機能安全を考慮した異常の通知を行うことができる。
メインレギュレータ回路50及びサブレギュレータ回路60は、内部電源電圧VDDINTの一部が帰還する負帰還増幅器を含んでいる。これにより、内部電源電圧VDDINTのバラつきを抑制し、内部電源電圧VDDINTの安定性を向上させることができる。
BIST等の手法を用いることによって、サブレギュレータ回路60の故障の発生を検出することができる。例えば、実施形態1におけるクランプ回路30の故障を検出する構成としては、例えば、クランプ回路30自体を冗長にして故障率を下げることが挙げられる。しかしながら、この場合には、搭載させるチップ上に占める面積が大きくなる。これに対して、本実施形態の電源回路2では、サブレギュレータ回路60はそのまま使用できるので、チップ上に占める面積を増大する必要がない。また、BIST等の手法を用いれば、故障の検出を、電源回路2の動作中に行うことができる。
過電圧検知回路21、低電圧検知回路22に加えて、ADC23による電圧診断及び電流検知回路24によって異常を検知することができる。これにより、メインレギュレータ回路50及びサブレギュレータ回路60の故障を検出することができる。
サブレギュレータ回路60及びメインレギュレータ回路50は、独立な回路で構成されている。また、各レギュレータ回路及び電圧検知回路20に用いられる基準電圧は、独立とされている。これにより、メインレギュレータ回路50に、ランダムハードウェア故障が発生しても、サブレギュレータ回路60は、ロジック回路40が正常に動作する内部電源電圧VDDINTを出力することができる。これ以外の構成及び効果は、実施形態1の記載に含まれている。
(実施形態3)
次に、実施形態3を説明する。図8は、実施形態3に係る電源回路を例示したブロック図である。図8に示すように、電源回路3は、メインレギュレータ回路50、サブレギュレータ回路60、過電圧検知回路21、低電圧検知回路22、及び、抵抗R31〜R39を含んでいる。メインレギュレータ回路50は、演算増幅器51及び出力トランジスタ52を含んでいる。サブレギュレータ回路60は、演算増幅器61、出力トランジスタ62、検知トランジスタ63及び過電流検知回路25を有している。
サブレギュレータ回路60において、演算増幅器61の正側の電極端子には入力電圧VINが接続されている。演算増幅器61の負側の電源端子は接地されている。演算増幅器61の+入力端子には、基準電圧Vref31が接続されている。基準電圧Vref31は、例えば、図示しない基準電圧生成回路から供給される。
演算増幅器61の−入力端子には、メインレギュレータ回路50が出力した内部電源VDDINTの一部が接続されている。演算増幅器61の出力は、出力トランジスタ62のゲート及び検知トランジスタ63のゲートに接続されている。
出力トランジスタ62及び検知トランジスタ63は、例えば、PMOSトランジスタである。出力トランジスタ62の入力側は、入力電圧VINに接続されている。出力トランジスタ62のゲートは、サブレギュレータ回路60の演算増幅器61の出力に接続されている。出力トランジスタ62の出力側は、メインレギュレータ回路50における出力トランジスタ52の入力側に接続されている。
検知トランジスタ63の入力側は、入力電圧VINに接続されている。検知トランジスタ63のゲートは、サブレギュレータ回路60の演算増幅器61の出力に接続されている。検知トランジスタ63の出力側は、過電流検知回路25に接続されている。
メインレギュレータ回路50において、演算増幅器51の正側の電極端子には入力電圧VINが接続されている。演算増幅器51の負側の電源端子は接地されている。演算増幅器51の+入力端子には、基準電圧Vref32が接続されている。基準電圧Vref32は、例えば、図示しない基準電圧生成回路から供給される。
演算増幅器51の−入力端子には、メインレギュレータ回路50が出力した内部電源電圧VDDINTの一部が接続されている。演算増幅器51の出力は、出力トランジスタ52のゲートに接続されている。
出力トランジスタ52の入力側は、出力トランジスタ62の出力側が接続されている。これにより、出力トランジスタ52の入力側には、出力電圧VDDが入力される。出力トランジスタ52のゲートは、メインレギュレータ回路50の演算増幅器51の出力に接続されている。出力トランジスタ52の出力側は、ロジック回路40等の内部回路に接続されている。これにより、ロジック回路40等は、内部電源電圧VDDINTが供給されている。
また、出力トランジスタ52の出力側は、所定の抵抗R31及び抵抗R32を介して、接地されている。抵抗R31と抵抗R32との間の接点N31に、演算増幅器51の−入力端子が接続されている。また、接点N31は、スイッチSW31及び抵抗R33を介して接地されている。
さらに、出力トランジスタ52の出力側は、所定の抵抗R34〜抵抗R38を介して、接地されている。抵抗R34〜抵抗R35と、抵抗R36〜抵抗R38との間の接点N32に、演算増幅器61の−入力端子が接続されている。
低電圧検知回路22は、出力トランジスタ52の出力側に所定の抵抗R34を介して接続されている。出力トランジスタ52の出力側は、所定の抵抗R34〜抵抗R38を含むラダー抵抗を介して接地されている。抵抗R34と抵抗R35との間の接点N33に、低電圧検知回路22が接続されている。低電圧検知回路22は、内部電源電圧VDDINTを検知する。低電圧検知回路22は、内部電源電圧VDDINTが所定の電圧よりも小さい異常を検知した場合に、ロジック回路40に対して、異常を出力する。ロジック回路40は、当該異常をSPIで外部のマイコン等へ通知する。また、抵抗R34と並列にスイッチSW31及び抵抗R39が接続されている。
過電圧検知回路21は、出力トランジスタ52の出力側に所定の抵抗R34〜R36を介して接続されている。抵抗R36と抵抗R37との間の接点N34に、過電圧検知回路21が接続されている。過電圧検知回路21は、内部電源電圧VDDINTを検知する。過電圧検知回路21は、内部電源電圧VDDINTが所定の電圧よりも大きい異常を検知した場合に、ロジック回路40に対して、異常を出力する。
過電圧検知回路21及び低電圧検知回路22は、例えば、コンパレータ回路を含んでいる。例えば、過電圧検知回路21及び低電圧検知回路22は、内部電源電圧VDDINTを、抵抗R34〜R38によって分割する。そして、分割した内部電源電圧VDDINTを基準電圧で比較する。内部電源電圧VDDINTが所定の電圧になった時に、コンパレータ回路の出力が反転する。過電圧検知回路21及び低電圧検知回路22は、出力の反転を、ロジック回路40へ出力する。なお、過電圧検知回路21等用の基準電圧は、メインレギュレータ回路50等の基準電圧と独立した基準電圧生成回路から供給されることが好ましい。
フィードバック抵抗R31〜R38は、メインレギュレータ回路50が生成する内部電源電圧VDDINTを、サブレギュレータ回路60が生成する出力電圧よりも大きくすることが可能な可変抵抗となっている。したがって、スイッチSW31及びSW32を用いたBIST等の手法により、メインレギュレータ回路50及びサブレギュレータ回路60が出力する内部電源電圧VDDINTを反転させることができる。
図9は、実施形態3に係る電源回路において、BIST時の電圧設定範囲を例示した図である。図9に示すように、BIST時において、メインレギュレータ回路50の内部電源VDDINTを、3.60[V]±3%と設定すれば、メインレギュレータ回路50が出力する内部電源電圧VDDINTは、例えば、3.49[V]〜3.71[V]の電圧範囲となる。サブレギュレータ回路60の内部電源VDDINTを、3.30[V]±3%と設定すれば、サブレギュレータ回路60が出力する内部電源電圧VDDINTは、例えば、3.20[V]〜3.40[V]の電圧範囲となる。
このように、BIST等の手法により、メインレギュレータ回路50と、サブレギュレータ回路60とが出力する内部電源電圧VDDINTを、それぞれ変化させ、これにより、容易に、サブレギュレータ回路60の故障を検知することができる。よって、集積回路のさらなる微細化等により絶対最大定格が低電圧化となった場合でも、BIST等の手法により、サブレギュレータ回路60の故障を検知することができる。
次に、本実施形態の効果を説明する。
本実施形態では、フィードバック抵抗R31〜R38は可変抵抗となっている。よって、各レギュレータ回路が出力する内部電源電圧VDDINTを逆転させることにより、サブレギュレータ回路60の故障を検出することができる。
また、過電圧検知回路21及び低電圧検知回路22により、内部電源電圧VDDINTを比較するときに使用するラダー抵抗R34〜R38を、サブレギュレータ回路60のフィードバック抵抗と共有してもよい。すなわち、電圧検知回路21及び22は、ラダー抵抗R34〜R38を介して、内部電源電圧VDDINTを検知し、サブレギュレータ回路60は、内部電源電圧VDDINTの一部がラダー抵抗R34〜R38を介して帰還するようにしてもよい。この場合には、電源回路3が占めるチップ上の面積を縮小させることができる。
サブレギュレータ回路60は、検知トランジスタ63の出力から過電流を検知する過電流検知回路25を含んでいる。これにより、サブレギュレータ回路60に故障が発生しても、それを検知し、短絡及び地絡等を回避することができる。
また、出力トランジスタ52及び62は、PMOSの構成となっていてもよい。したがって、実施形態1〜3で示したように、出力トランジスタ52及び62は、NMOSでも、PMOSでもよく、レギュレータ回路に一般的なトランジスタを用いることができる。これ以外の構成及び効果は、実施形態1及び2の記載に含まれている。
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
1、2、3 電源回路
10 レギュレータ回路
11 演算増幅器
12 出力トランジスタ
20 電圧検知回路
21 過電圧検知回路
22 低電圧検知回路
23 ADC
24 電流検知回路
25 過電流検知回路
30 クランプ回路
40 ロジック回路
50 メインレギュレータ回路
51 演算増幅器
52 出力トランジスタ
60 サブレギュレータ回路
61 演算増幅器
62 出力トランジスタ
63 検知トランジスタ
100 電源回路
110 レギュレータ回路
120 電圧検知回路
140 ロジック回路

Claims (8)

  1. 入力された入力電圧を用いて出力電圧を生成するサブレギュレータ回路と、
    前記出力電圧を用いて内部電源電圧を生成するメインレギュレータ回路と、
    前記内部電源電圧を検知する電圧検知回路と、
    を備え、
    前記メインレギュレータ回路は、第1負帰還増幅器と、前記第1負帰還増幅器の出力がゲートに接続され、前記入力電圧が入力側に接続された第1出力トランジスタとを含み、
    前記サブレギュレータ回路は、第2負帰還増幅器と、前記第2負帰還増幅器の出力がゲートに接続され、前記第1出力トランジスタの出力が入力側に接続された第2出力トランジスタとを含み、
    前記第1出力トランジスタの出力は、第1フィードバック抵抗を介して前記第1負帰還増幅器に帰還し、
    前記第1出力トランジスタの出力は、第2フィードバック抵抗を介して前記第2負帰還増幅器に帰還し、
    前記第1フィードバック抵抗及び前記第2フィードバック抵抗は、前記第1出力トランジスタの出力に接続され、
    前記サブレギュレータ回路は、前記内部電源電圧が所定の第3電圧よりも大きい第3異常の場合に、前記第3電圧よりも大きい第4電圧以下に抑えた前記内部電源電圧になるように前記出力電圧を生成し、前記メインレギュレータ回路は、前記第4電圧以下の前記内部電源電圧で動作するロジック回路に対して前記内部電源電圧を出力し、
    前記電圧検知回路は、前記第3異常を検知した場合に、前記ロジック回路に対して、前記第3異常を出力し、前記ロジック回路は、外部に前記第3異常を通知し、
    前記サブレギュレータ回路は、前記内部電源電圧が前記第3電圧以下の場合には、前記入力電圧を用いて前記出力電圧を生成し、前記メインレギュレータ回路は、前記第3電圧以下の前記内部電源電圧を生成し、前記メインレギュレータ回路が第3電圧以下の前記内部電源電圧を生成する正常の場合の前記内部電源電圧は、前記第3異常の場合の前記内部電源電圧よりも小さい、
    電源回路。
  2. 前記第3異常の場合に前記第4電圧以下に抑えた前記内部電源電圧は、前記ロジック回路に含まれた低耐圧素子の絶対最大定格以下である、
    請求項1に記載の電源回路。
  3. 前記電圧検知回路は、過電圧検知回路と、低電圧検知回路と、を有し、
    前記過電圧検知回路は、前記第3異常を検知した場合に、前記ロジック回路に対して、前記第3異常を出力し、
    前記低電圧検知回路は、前記内部電源電圧が所定の第5電圧よりも小さい第4異常を検知した場合に、前記ロジック回路に対して、前記第4異常を出力する、
    請求項1に記載の電源回路。
  4. 前記サブレギュレータ回路は、前記第2負帰還増幅器の電流を検知する電流検知回路を含む、
    請求項1に記載の電源回路。
  5. 前記サブレギュレータ回路は、
    前記第2負帰還増幅器の出力がゲートに接続された検知トランジスタと、
    前記検知トランジスタの出力から過電流を検知する過電流検知回路と、
    を含む、
    請求項1に記載の電源回路。
  6. 前記第1負帰還増幅器に用いられる基準電圧と、前記第2負帰還増幅器に用いられる基準電圧とは、独立した、
    請求項1に記載の電源回路。
  7. 前記内部電源電圧を検知するADCをさらに備えた、
    請求項1に記載の電源回路。
  8. 前記第2フィードバック抵抗は、ラダー抵抗であり、
    前記電圧検知回路は、前記ラダー抵抗を介して、前記内部電源電圧を検知する、
    請求項1に記載の電源回路。
JP2017196716A 2017-10-10 2017-10-10 電源回路 Active JP6892367B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017196716A JP6892367B2 (ja) 2017-10-10 2017-10-10 電源回路
US16/106,785 US10599172B2 (en) 2017-10-10 2018-08-21 Power circuit
EP18193067.8A EP3471247A1 (en) 2017-10-10 2018-09-06 Power circuit
KR1020180118225A KR102562626B1 (ko) 2017-10-10 2018-10-04 전원 회로
CN201811172350.0A CN109656293B (zh) 2017-10-10 2018-10-09 电源电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196716A JP6892367B2 (ja) 2017-10-10 2017-10-10 電源回路

Publications (2)

Publication Number Publication Date
JP2019070948A JP2019070948A (ja) 2019-05-09
JP6892367B2 true JP6892367B2 (ja) 2021-06-23

Family

ID=63524225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196716A Active JP6892367B2 (ja) 2017-10-10 2017-10-10 電源回路

Country Status (5)

Country Link
US (1) US10599172B2 (ja)
EP (1) EP3471247A1 (ja)
JP (1) JP6892367B2 (ja)
KR (1) KR102562626B1 (ja)
CN (1) CN109656293B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018200668A1 (de) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Schaltung zum Erkennen von Schaltungsdefekten und zur Vermeidung von Überspannungen in Reglern
JP7124808B2 (ja) * 2019-08-07 2022-08-24 株式会社デンソー 電源装置
JP7315445B2 (ja) * 2019-12-10 2023-07-26 ローム株式会社 電源装置
CN113994560A (zh) * 2019-12-17 2022-01-28 富士电机株式会社 车载用半导体电路及半导体电路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806968A1 (de) 1988-01-11 1989-07-20 Bregenhorn Buetow & Co Verfahren und schaltungsanordnung zur erzeugung einer geregelten ausgleichsspannung aus einer hoeheren eingangsgleichspannung
JPH08263152A (ja) * 1995-03-20 1996-10-11 Fujitsu Ten Ltd 安定化電源回路
JP2003084828A (ja) * 2001-09-07 2003-03-19 Nissan Motor Co Ltd 負荷制御装置
JP4658855B2 (ja) * 2006-05-09 2011-03-23 ローム株式会社 充電回路およびそれを用いた電子機器
US7751157B2 (en) * 2006-11-21 2010-07-06 Semiconductor Components Industries, Llc Protection circuit and method therefor
US7570035B2 (en) * 2007-08-01 2009-08-04 Zerog Wireless, Inc. Voltage regulator with a hybrid control loop
JP5040014B2 (ja) 2007-09-26 2012-10-03 ルネサスエレクトロニクス株式会社 半導体集積回路装置
JP5090202B2 (ja) 2008-02-19 2012-12-05 株式会社リコー 電源回路
US7812754B2 (en) * 2008-08-18 2010-10-12 Macronix International Co, Ltd. Digital to analog converter and method thereof
US8305056B2 (en) * 2008-12-09 2012-11-06 Qualcomm Incorporated Low drop-out voltage regulator with wide bandwidth power supply rejection ratio
JP5558964B2 (ja) * 2009-09-30 2014-07-23 セイコーインスツル株式会社 ボルテージレギュレータ
AU2011203664A1 (en) * 2010-01-05 2012-08-02 Belkin International, Inc. Improved power supply and method related thereto
JP5472470B2 (ja) * 2010-08-20 2014-04-16 富士通株式会社 半導体装置
JP5722697B2 (ja) 2011-05-11 2015-05-27 ルネサスエレクトロニクス株式会社 保護回路
JP2014003776A (ja) * 2012-06-18 2014-01-09 Funai Electric Co Ltd 電源回路
JP6033709B2 (ja) 2013-02-28 2016-11-30 ルネサスエレクトロニクス株式会社 半導体装置
CN104699161B (zh) * 2015-03-27 2017-06-06 西安紫光国芯半导体有限公司 一种根据负载频率和输出电压动态调整偏置电流的稳压器
EP3273320B1 (en) * 2016-07-19 2019-09-18 NXP USA, Inc. Tunable voltage regulator circuit
US9946284B1 (en) * 2017-01-04 2018-04-17 Honeywell International Inc. Single event effects immune linear voltage regulator

Also Published As

Publication number Publication date
US10599172B2 (en) 2020-03-24
US20190107854A1 (en) 2019-04-11
JP2019070948A (ja) 2019-05-09
KR102562626B1 (ko) 2023-08-03
CN109656293A (zh) 2019-04-19
CN109656293B (zh) 2022-02-08
EP3471247A1 (en) 2019-04-17
KR20190040458A (ko) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6892367B2 (ja) 電源回路
US8502513B2 (en) Voltage regulator
US8335065B2 (en) Overvoltage protection in a power supply
US7969703B2 (en) Overcurrent protection circuit and voltage regulator incorporating same
JP2021518061A (ja) 低静止電流負荷スイッチ
JP6894287B2 (ja) デュアル入力電力管理方法およびシステム
JP4591571B2 (ja) 電源装置
US9063558B2 (en) Current limiting circuit configured to limit output current of driver circuit
US10992127B2 (en) Electronic control unit
JP2010068637A (ja) 充電制御用半導体集積回路
JP2006254669A (ja) 電流バランス回路
US11768510B2 (en) Power supply semiconductor integrated circuit including a short-circuit-fault detection circuit that detects a short circuit of the voltage-output terminal
JP2005033865A (ja) 半導体集積回路装置
JP2014179079A (ja) 電流制限器を有する電圧レギュレータ
US9493127B2 (en) Electrical control system
US20050083027A1 (en) Constant-voltage power supply unit
JP2014206861A (ja) レギュレータ回路およびレギュレータを形成した半導体集積回路装置
JP2014161186A (ja) スイッチ回路、半導体装置及びバッテリ装置
JP2009189126A (ja) 電源システムおよび素子故障検出方法
WO2013088996A1 (ja) 車載用電子制御装置
US11474161B2 (en) Power supply semiconductor integrated circuit
JP7472151B2 (ja) 過電流保護回路
JP4624113B2 (ja) 電圧監視制御回路
JP2009110217A (ja) 半導体集積回路装置
JPWO2016125690A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210527

R150 Certificate of patent or registration of utility model

Ref document number: 6892367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150