JP6825440B2 - 電極の製造方法及び電極の製造装置 - Google Patents

電極の製造方法及び電極の製造装置 Download PDF

Info

Publication number
JP6825440B2
JP6825440B2 JP2017056273A JP2017056273A JP6825440B2 JP 6825440 B2 JP6825440 B2 JP 6825440B2 JP 2017056273 A JP2017056273 A JP 2017056273A JP 2017056273 A JP2017056273 A JP 2017056273A JP 6825440 B2 JP6825440 B2 JP 6825440B2
Authority
JP
Japan
Prior art keywords
roll
temperature
cooling
foil
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017056273A
Other languages
English (en)
Other versions
JP2018010854A (ja
Inventor
隆彦 中野
隆彦 中野
勝志 榎原
勝志 榎原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to CN201710473984.9A priority Critical patent/CN107546369B/zh
Priority to KR1020170078864A priority patent/KR101931018B1/ko
Priority to US15/634,168 priority patent/US10403877B2/en
Publication of JP2018010854A publication Critical patent/JP2018010854A/ja
Application granted granted Critical
Publication of JP6825440B2 publication Critical patent/JP6825440B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • B05C1/0808Details thereof, e.g. surface characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Coating Apparatus (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は,金属箔に活物質を含む材料である活物質材料を転写することにより,金属箔と活物質材料の層とが積層された電極を製造する製造方法及びその製造装置に関する。
従来から,例えば,リチウムイオン二次電池には,金属箔の表面に活物質層が形成されたシート状の電極が用いられている。シート状の電極の製造方法を開示した文献としては,例えば,特許文献1がある。特許文献1には,活物質粒子と,バインダと,溶媒とを含む湿潤状態の造粒体を平面状またはブロック状に成形し,得られた成形体と金属箔とをそれぞれロールにて搬送し,両ロールの間で成形体を金属箔に転写する製造方法が開示されている。
特開2015−201318号公報
しかしながら,前記した従来の技術には,次のような問題があった。すなわち,活物質材料を金属箔に転写する際には,活物質を搬送するロールの表面と金属箔を搬送するロールの表面との間のギャップにて活物質材料が圧縮され,加工熱が発生する。そのため,長期に亘って連続して製造を続けると,発生した加工熱がロールに蓄積して,ロールが膨張しがちである。少なくとも一方のロールが膨張すると,ギャップの距離が小さくなるため,製造される電極の活物質層の層厚が小さくなりがちであった。
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,電極の製造を長時間連続して行った場合でも,活物質層の層厚を適切な範囲内とすることが期待できる電極の製造方法を提供することにある。
この課題の解決を目的としてなされた本発明の一態様における電極の製造方法は,活物質を含む材料である活物質材料を搬送する第1ロールと,前記第1ロールに隣接して平行に配置され,箔を搬送する第2ロールと,を用い,前記第1ロールと前記第2ロールとを互いに逆方向に回転させ,前記活物質材料を前記箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造方法であって,前記箔の搬送方向について前記第2ロールより上流側にて,冷却装置を用いて前記箔を冷却する冷却工程を含むものである。
上述の一態様における電極の製造方法によれば,箔は,第1ロールと第2ロールとの間へ到達する前に冷却装置にて冷却される。冷却された箔に活物質材料を転写することで,転写工程にて発生する加工熱は,その多くの部分が箔の昇温に消費される可能性が高い。そのため,第1ロールと第2ロールとのいずれにおいても熱の蓄積は抑制され,ロールの膨張は抑制されている。従って,電極の製造を長時間連続して行った場合でも,活物質層の層厚を適切な範囲内とすることが期待できる。
さらに,前記冷却装置は,冷却ロールを備え,前記冷却工程では,前記冷却ロールの外周面を製造環境の空気温度よりも低温に維持しつつ,前記冷却ロールに前記箔を接触させることにより,前記箔を冷却することが望ましい。低温の冷却ロールに接触させることで,箔を均一に冷却できる可能性が高い。
さらに,前記冷却装置は,前記冷却ロールに冷媒を供給する冷媒供給部を備え,前記冷却工程では,前記冷媒供給部にて,前記冷却ロールに,製造環境の空気温度よりも低温の冷媒を流通させることが望ましい。冷媒供給部にて冷媒を供給することで,冷却ロールの表面温度を適切に維持することが期待できる。
さらに,前記冷却工程では,冷却後の前記箔の温度が,製造環境の空気温度よりも低く,かつ,製造環境の露点温度より高い温度となるように,前記箔を冷却することが望ましい。製造環境の空気温度よりも低くすることで冷却効果が高まる。また,露点温度より高くすることで,箔への水滴の付着を抑制できる。
さらに,前記冷却装置は,製造環境の空気温度と相対湿度とに応じて異なる信号を出力するセンサを備え,前記冷却工程では,センサの出力信号に基づいて製造環境の空気温度と相対湿度とを取得し,取得された前記空気温度と前記相対湿度とから露点温度を取得し,さらに,冷却後の前記箔の温度が,取得された前記空気温度よりも低く,かつ,取得された前記露点温度より高い温度となるように,前記冷却装置での前記箔を冷却する温度を決定するとよい。製造環境の情報を取得して,取得した情報に基づいて箔を冷却する温度を自動的に決定すれば,製造工程を自動化できる可能性が高まる。
さらに,前記第1ロールの外周面の温度が冷却後の前記箔の温度より所定温度以上高い温度となるように,前記第1ロールを加温する加温工程を含むとよい。第1ロールの外周面が箔よりも所定温度以上高温となっていることで,発生した加工熱の多くは箔へ移動する。従って,第1ロールへの熱の蓄積はさらに抑制される。
さらに,本明細書には,活物質を含む材料である活物質材料を箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造装置であって,前記活物質材料を搬送する第1ロールと,前記第1ロールに隣接して平行に配置され,前記箔を搬送する第2ロールと,前記箔の搬送方向について前記第2ロールより上流側にて前記箔に接触する位置に配置され,内部に冷媒が通過する流路が形成された冷却ロールと,を有する電極の製造装置が開示されている。
さらに,電極の製造装置は,前記冷却ロールに前記冷媒を供給する冷媒供給部を備えることが望ましい。また,前記冷却ロールを複数備えることが望ましい。このようなものであれば,冷却ロールにて,箔を適切な温度まで確実に冷却できる可能性が高い。
さらに,電極の製造装置は,前記第1ロールを加温する加温部を備えることが望ましい。第1ロールを加温することで,発生した加工熱の多くは,さらに確実に箔へ移動する。
本発明によれば,電極の製造を長時間連続して行った場合でも,活物質層の層厚を適切な範囲内とすることが期待できる電極の製造方法が実現される。
第1の形態の製造装置を示す概略構成図である。 二次電池の例を示す概略断面図である。 製造装置の電気的構成を示すブロック図である。 露点温度表の例を示す説明図である。 製造装置による製造方法を示す工程図である。 電極の製造実験を行った製造装置を示す概略構成図である。 電極の製造実験の結果を示すグラフである。 第2の形態の製造装置を示す概略構成図である。 第2の形態の製造装置の電気的構成を示すブロック図である。 第2の形態の製造装置による製造方法を示す工程図である。 電極の製造実験の結果を示すグラフである。
以下,本発明を具体化した第1の形態について,添付図面を参照しつつ詳細に説明する。本形態は,帯状の電極を製造する工程にて用いられる製造装置に,本発明を適用したものである。
本形態の製造装置100の概略構成を,図1に示す。本形態の製造装置100は,例えば,リチウムイオン二次電池に用いられる帯状の電極を製造するための装置である。製造装置100は,複数のロールを使用して,活物質を含む活物質材料である造粒体10を金属箔11に転写することにより,金属箔11上に活物質の層を形成した積層シート状の電極12を製造する装置である。
本形態の製造装置100にて製造された電極12は,例えば,図2に示すような,略直方体形状で密閉型のリチウムイオン二次電池200に使用される。このリチウムイオン二次電池200は,金属製の電池ケース110に捲回型の電極体150と電解液とが封入されたものである。
電極体150は,帯状の正極の電極と帯状の負極の電極とが,間に帯状のセパレータを挟んで扁平形状に捲回された捲回体である。正極用の電極は,例えば,アルミ箔に正極活物質を含む活物質層を形成したものである。正極の活物質層としては,リチウムイオンを吸蔵・放出可能な活物質を含み,例えば,リチウム含有金属酸化物に結着剤と分散溶媒等を混練したものが好適である。負極用の電極は,例えば,銅箔に負極活物質を含む活物質層を形成したものである。負極の活物質層としては,黒鉛等の炭素系材料が好適である。
リチウムイオン二次電池200は,図2中で電池ケース110の上方に,正極端子120と負極端子130とを有している。正極端子120と負極端子130とは,電池ケース110の内部で電極体150の正負の電極にそれぞれ接続されている。
図1の説明に戻り,本形態の製造装置100は,Aロール1と,Bロール2と,Cロール3と,供給部4と,冷却部5と,を備える。Bロール2は,第1ロールの一例であり,Cロール3は,第2ロールの一例である。冷却部5は,冷却装置の一例である。
Aロール1とBロール2とCロール3とは,いずれも,回転軸が略水平となるように,互いに向き合って平行に配置されている。図1の例では,Aロール1とBロール2とは,ほぼ水平に並んで配置され,Cロール3は,Bロール2の下方に配置されている。ただし,各ロールの配置は,この図の例に限らない。例えば,3つのロール1,2,3が全て水平に並んで配置されていてもよい。
各ロールの径は,Aロール1が3つのうちで最も小さく,Cロール3が3つのうちで最も大きい。また,Aロール1とBロール2とは,外面同士の最近接箇所で,例えば,60〜100μmの隙間を空けて隣接している。また,Bロール2とCロール3とは,外面同士の最近接箇所で,例えば,10〜20μmの隙間を空けて隣接している。Aロール1とCロール3とは,隣接していない。以下では,Aロール1とBロール2との間の隙間を供給ギャップG1,Bロール2とCロール3との間の隙間を成膜ギャップG2という。
そして,Aロール1とBロール2とCロール3とは,それぞれを回転駆動するモータに接続されており,電極の製造時には所定の回転速度で回転される。なお,モータは,各ロールで共通であっても個別であってもよい。各ロールの回転方向は,2つのロールの隣接する位置である供給ギャップG1や成膜ギャップG2にて,ギャップを形成する2つのロールが互いに同じ向きへ移動するように定められている。つまり,Aロール1とCロール3とは同じ回転方向に回転され,Bロール2は,Aロール1やCロール3とは逆の回転方向に回転される。
具体的に,図1に示した例では,供給ギャップG1では,Aロール1とBロール2との外周面がいずれも図1中で下向きに移動し,成膜ギャップG2では,Bロール2とCロール3との外周面がいずれも図1中で右向きに移動する。なお,製造時の各ロールの周速は,Aロール1の周速が3つのうちで最も遅く,Cロール3の周速が3つのうちで最も速い。各ロールの径や周速は,成膜ギャップG2にて適切に転写できる範囲で選択されればよい。
供給部4は,Aロール1とBロール2との間に造粒体10を供給する。製造装置100によって電極を製造する際には,図1に示すように,供給部4から供給ギャップG1へ造粒体10が供給される。供給部4から供給された造粒体10は,供給ギャップG1にて,Aロール1とBロール2にて挟まれ,膜状に成形される。そして,膜状となった造粒体10は,Bロール2の外周面に付着して成膜ギャップG2へ搬送される。
造粒体10は,電極活物質とバインダとを含む粉体に少量の水等の溶媒を加えて湿潤状態とし,攪拌することで略球形に造粒したものである。粉体にはさらに増粘剤が含まれてもよい。また,造粒体10としては,例えば,ふるい等によって,粒の大きさをある程度揃えたものを使用してもよい。造粒体10は従来のペースト状とした材料に比較して水分含有量が少ないため,造粒体10を使用することで乾燥に要する時間が短縮される。
製造装置100を用いて電極を製造する際には,図1に示すように,Cロール3によって,成膜ギャップG2に金属箔11が供給される。金属箔11は,例えば,厚さ10〜20μmの帯状の金属製の薄膜であり,正極の電極を製造する際にはアルミ箔,負極の電極を製造する際には銅箔が用いられる。金属箔11は,図示しない供給ロール等から巻き出され,Cロール3の外周面にて成膜ギャップG2へ搬送される。
そして,成膜ギャップG2では,Bロール2の外周面に付着する造粒体10とCロール3の外周面にて搬送される金属箔11とが対向する。成膜ギャップG2の最も狭い箇所の大きさは,Bロール2上の造粒体10の厚さと金属箔11の厚さとを合わせた厚さよりも小さい。そのため,成膜ギャップG2にて,造粒体10と金属箔11とが圧接される。さらに,Cロール3の周速の方がBロール2の周速よりも速いので,造粒体10が金属箔11に転写されて積層状態の電極12となる。製造された電極12は,Cロール3から図1中で右向きに搬送され,図外の乾燥炉等にて乾燥される。
冷却部5は,図1に示すように,例えば,3個の冷却ロール51,52,53を組合せて備え,各冷却ロール51,52,53の外面に接触する金属箔11を冷却する。各冷却ロール51〜53は,それぞれ内部に冷却水の流路が形成されている金属製のロールである。冷却ロール51〜53は,内部を流れる冷却水によって表面が冷却されており,表面に巻き付けられた金属箔11を冷却する。冷却部5は,金属箔11の搬送路中であって,金属箔11の搬送方向についてCロール3より上流側の位置に配置されている。金属箔11は,冷却部5にて所定の範囲内の温度まで冷却された後,成膜ギャップG2よりも上流側で,Cロール3に巻き付けられる。
図1に示すように,冷却ロール51〜53は,互いに平行で,互いに等間隔に配置されている。冷却ロール51〜53の軸方向の長さは,金属箔11の搬送方向に直交する方向の長さより大きいことが望ましい。また,冷却ロール51〜53の外径は,金属箔11を巻き付けることができる程度に大きいことが望ましく,例えば,50mm以上でCロール3の外径以下のものが適している。各冷却ロール51〜53への金属箔11の巻き付け角は,例えば,90度〜270度が適している。巻き付け角は,冷却ロール51〜53の外周のうち,金属箔11と接触する範囲のなす角度である。巻き付け角が小さすぎると冷却性が小さくなり,巻き付け角が大きすぎると搬送の制御が困難となる。
また,本形態の冷却部5は,冷却ロール51〜53の前後に補助ロール54,55を備える。補助ロール54,55は,金属箔11と冷却ロール51〜53との巻き付け角を確保するとともに,金属箔11が適切なテンションでCロール3に巻き付けられるように,金属箔11の搬送経路を整えるためのものである。なお,冷却ロール51〜53と補助ロール54,55は,いずれも回転自在に取り付けられ,金属箔11の移動に伴って回転する。
そして,本形態の製造装置100は,冷却部5の冷却ロール51〜53に冷却水を循環させるポンプ機能と,供給する冷却水の温度を維持する熱交換機能と,を有するチラー6を備えている。チラー6は,冷媒供給部の一例である。チラー6は,各冷却ロール51〜53を通過した冷却水と内部に備える冷却冷媒とで熱交換を行い,設定温度に維持された冷却水を冷却ロール51〜53へ送出する。冷却後の金属箔11の温度は,冷却前の金属箔11の温度と,冷却ロール51〜53と金属箔11との接触面積と,チラー6の設定温度と,によって異なる。設定温度は,冷却後の金属箔11の温度を所定の範囲内とするための温度である。設定温度の詳細については後述する。
なお,各冷却ロール51〜53の冷却水の流路は,例えば,各冷却ロールの軸方向に平行な直線状の流路であってもよいし,冷却ロールの軸方向を中心とする螺旋状の流路であってもよい。また,流路は,複数設けられていてもよいし,単数でもよい。さらに,冷却ロール51〜53は,全て同種のロールであってもよいし,異なる種類のものを含んでもよい。また,冷却水に代えて,その他の液体または気体の冷媒を使用するものであってもよい。
本形態の製造装置100では,金属箔11は,Cロール3よりも搬送方向の上流側,すなわち,Cロール3へ供給される前に,冷却部5にて冷却される。そして,冷却された状態の金属箔11が,成膜ギャップG2へ到達する。成膜ギャップG2では,造粒体10と金属箔11とが圧縮され,例えば,造粒体10中の粒体同士の摩擦によって,熱が発生する。金属箔11は冷却されているので,金属箔11の温度はBロール2の表面温度よりも低く,発生した熱は,成膜ギャップG2で金属箔11に主に伝達される。そのため,Bロール2やCロール3が昇温する可能性は小さい。つまり,長尺の金属箔11を使用して,連続して電極を製造した場合でも,Bロール2やCロール3に熱が蓄積される可能性は低く,Bロール2やCロール3の径の増大は抑制されている。従って,成膜ギャップG2の大きさが小さくなる可能性は小さいので,製造された電極12の活物質層の層厚を適正な範囲内に維持できる可能性が高まる。
本形態では,冷却部5を追加して設けて金属箔11を冷却するので,Bロール2やCロール3を加工する必要はない。Bロール2やCロール3は,高精度な表面処理を施したロールであり,例えば,Bロール2やCロール3に冷却水の流路を設ける等の直接冷却するための加工は容易ではない。本形態によれば,Bロール2やCロール3の精度を維持したまま,Bロール2やCロール3への熱の蓄積を抑制できる。
続いて,製造装置100におけるチラー6の設定温度の制御について説明する。本形態の製造装置100は,チラー6の設定温度の制御により,各冷却ロール51〜53の流路に流通される冷却水の温度を制御し,これにより冷却部5を通過した後の金属箔11の温度を調整する。製造装置100におけるチラー6の設定温度の制御のための電気的構成の例を,図3のブロック図に示す。
図3に示すように,製造装置100は,コントローラ7を備える。コントローラ7にはCPU71と,記憶部72とが含まれる。さらに,製造環境の空気温度と相対湿度とを取得するための温湿度センサ9と,冷却後の金属箔11の温度を取得するための温度センサ8と,チラー6とが,コントローラ7に電気的に接続されている。
温湿度センサ9は,例えば,温湿度計であり,金属箔11の巻きだしロールの近傍における空気温度と相対湿度とに応じて異なる信号を出力する。温度センサ8は,金属箔11の搬送方向について,冷却部5より下流側であって,Cロール3より上流側の位置における,金属箔11の温度に応じて異なる信号を出力する。温度センサ8は,例えば,サーミスタであり,非接触タイプであることが望ましい。
コントローラ7の記憶部72には,例えば,図4に示すように,製造環境の空気温度と相対湿度とに対応する露点温度を示す露点温度表73が記憶されている。なお,図4に例示した露点温度表73は,一部分であり,より広い温度や湿度の範囲に亘って,より細かく分けた表を記憶することが望ましい。
そして,CPU71は,温湿度センサ9の出力信号と温度センサ8の出力信号とに基づいて,露点温度表73を参照し,冷却後の金属箔11の温度が所定の範囲内となるように,チラー6の設定温度を制御する。具体的に,CPU71は,冷却後の金属箔11の温度が露点温度より高く製造環境の空気温度より低い範囲内でできるだけ低い温度となるように,チラー6の設定温度を制御する。
そのために,CPU71は,温湿度センサ9の出力信号に基づいて,製造環境の空気温度と相対湿度とを取得する。そして,CPU71は,露点温度表73を参照して,取得した空気温度と相対湿度とに対応する露点温度を取得する。そして,チラー6の設定温度を,取得した露点温度に所定の余裕幅を加えた温度とする。余裕幅は,0より大きい値であり,固定値でもよいし,空気温度に応じて異なる可変値でもよい。
冷却後の金属箔11の温度が製造環境の空気温度以上であると,成膜ギャップG2における伝熱効果が小さくなる。本形態では,冷却後の金属箔11の温度が製造環境の空気温度より低くなるように,CPU71がチラー6の設定温度を設定するので,成膜ギャップG2における伝熱効果が大きい。また,金属箔11が露点温度以下となると,金属箔11に水滴が付着する可能性があり,成膜ギャップG2での転写性が低下する可能性がある。また,金属箔11からCロール3に水滴が付着した場合には,Cロール3または周辺の駆動部等への錆の発生を招く虞がある。本形態では,金属箔11を露点温度以下とならないように,CPU71がチラー6の設定温度を設定するので,金属箔11への水滴の付着は抑制されている。
続いて,本形態の製造装置100を用いて電極を製造する製造方法について説明する。本形態の製造方法は,図5に示すように,以下の(A)〜(F)の各工程を含んでいる。
(A)造粒体10と金属箔11とを準備する準備工程
(B)環境の空気温度及び相対湿度を取得する環境条件取得工程
(C)空気温度及び相対湿度に基づいて露点温度を取得する露点温度取得工程
(D)露点温度に基づいてチラー6の設定温度を決定する冷却温度決定工程
(E)チラー6を駆動して冷却ロール51〜53に冷却水を供給する冷却工程
(F)金属箔11に造粒体10を転写させる転写工程
(A)準備工程では,造粒体10と金属箔11とを準備する。そして,図1に示したように,冷却ロール51〜53の表面に接触するように金属箔11を巻き付ける。図1では,2つの補助ロール54,55を使用して,金属箔11の搬送方向について冷却ロール51〜53に接触する長さを大きくしている。
(B)環境条件取得工程では,CPU71は,温湿度センサ9の出力信号に基づいて,製造環境の空気温度と相対湿度とを取得する。
(C)露点温度取得工程では,CPU71は,記憶部72に記憶されている露点温度表73を参照し,(B)にて取得した空気温度と相対湿度とに基づいて,露点温度を取得する。なお,(B)と(C)とは,(A)より先に行ってもよい。また,(B)と(C)は,一連の製造工程の開始前に1度行うとしてもよいし,例えば所定の時間毎に繰り返して行うとしてもよい。
(D)冷却温度決定工程では,チラー6の設定温度を,(C)で取得した露点温度に余裕幅を加えた温度に決定する。本形態では,例えば,設定温度を露点温度+0.5℃とする。余裕幅を設けることで,チラー6の温度制御性能の範囲内で最低の温度となっても,冷却後の金属箔11の温度が露点温度以下とならないように,各冷却ロール51〜53を冷却できる。
(E)冷却工程では,チラー6を駆動して冷却ロール51〜53に冷却水を供給し,冷却ロール51〜53の表面及び,巻き付けられている金属箔11を冷却する。なお,冷却を開始するタイミングは,(F)の転写工程の開始前でもよいし,転写工程の開始と同時でもよいし,転写工程の開始から所定の時間が経過した後でもよい。あるいは,例えば,転写工程の開始後,Bロール2の温度またはCロール3の温度が所定の限界温度に達した後としてもよい。
(F)転写工程では,Aロール1とBロール2とCロール3とをそれぞれ所定の回転速度で回転駆動するとともに,供給部4から供給ギャップG1へ造粒体10を供給する。供給ギャップG1に供給された造粒体10は,Bロール2にて成膜ギャップG2へ搬送され,成膜ギャップG2で金属箔11に転写される。これにより,電極12が製造される。前述したように(E)が開始された後は,(E)と(F)とは並行して実行される。
さらに,本形態の製造方法では,CPU71は,図5に示すように,転写工程の開始後,金属箔11の温度を監視してフィードバック制御を行う。具体的に,CPU71は,箔温度取得工程(G)にて,温度センサ8の出力信号に基づいて,金属箔11の温度を取得する。さらに,CPU71は,判断工程(H)にて,(G)で取得した温度が,(B)で取得した空気温度や(C)で取得した露点温度に対して,適正な温度範囲内となっているか否かを判断する。なお,(B)と(C)とを繰り返して行う場合には,(H)では,新たに取得した空気温度や露点温度に基づいて,判断するとよい。
そして,CPU71は,適正な温度範囲内ではないと判断した場合,(D)の冷却温度決定工程に戻って,チラー6の設定温度を変更する。例えば,CPU71は,金属箔11の温度が露点温度に比較して高すぎると判断した場合は,チラー6の設定温度をより低い温度に変更する。例えば,チラー6の設定温度を露点温度と等しい温度とする。また,CPU71は,金属箔11の温度が露点温度に近すぎると判断した場合は,チラー6の設定温度をより高い温度に変更する。例えば,チラー6の設定温度を露点温度+1.0℃とする。
一方,適正な温度範囲内であると判断した場合,CPU71は,製造工程を終了するか否かを判断する(I)。終了しない場合には,適宜,金属箔11の温度を取得して,フィードバック制御を行い,製造を継続する。製造工程を終了すると判断した場合には,Bロール2やCロール3の回転駆動,および,チラー6の駆動を停止する。
続いて,本形態の製造方法について,発明者が行った実験の結果について説明する。発明者は,本形態の製造装置100による電極の製造を行い,冷却部5を含まない従来の装置による製造結果と比較した。実験に使用した製造装置100は,冷却部5として,図6に示すように,1個の冷却ロール501と,冷却ロールの両側に2個の補助ロール502,503とを備える。2個の補助ロール502,503により,冷却ロール501と金属箔11との接触範囲が確保される。
この実験では,造粒体10として,固形分78%の正極用造粒体を使用し,金属箔11として,厚さ12μmのアルミ箔を使用して,正極用電極を製造した。また,冷却ロール501として,外径50mmの市販の冷却ロールを使用し,巻き付け角が約180度となるように配置した。また,チラー6としては,市販の卓上型小型低温恒温水槽を用いた。
実験を行ったときの製造環境は,空気温度が約23±2℃,相対湿度が約50±10%であった。この環境条件では,露点温度は,約6.9〜16.7℃の範囲内である。そこで,チラー6の設定温度を17.5±0.5℃とした。
本実験では,金属箔11を搬送速度30〜60m/分で搬送し,前述した造粒体10を供給して,電極12の製造を10分程度連続して行った。製造された電極12中の造粒体10の層の目付の変化を,図7に示す。図7のグラフは,縦軸は目付の大きさ,横軸は連続して製造された電極12の長さであり,冷却部5を設けた本形態の製造装置100による製造の結果を実線,冷却部5を設けない製造装置による結果を破線で示している。なお,目付は,製造後の電極12の単位面積中の造粒体10の重量である。実験では,製造された電極12から所定面積の部分を切り出し,造粒体10を金属箔11から剥がしてその重量を測定することにより,目付を算出した。
図7に実線で示すように,本形態の製造装置100で製造した電極12の目付は,長時間連続して製造しても規格の範囲内であった。目付の規格範囲は,図7中にて一点鎖線で示している範囲である。つまり,金属箔11を冷却することで,連続して製造しても目付は減少せず,造粒体10の層厚や目付を適正範囲内に維持できることが確認された。一方,図7に破線で示すように,冷却部5を設けていない従来の装置では,連続して製造するにつれて,次第に目付が減少した。
以上詳細に説明したように第1の形態の電極の製造方法によれば,金属箔11は,Cロール3よりも上流側の位置で,冷却部5によって冷却され,冷却された状態で成膜ギャップG2に到達する。そのため,成膜ギャップG2で発生する加工熱は,金属箔11に奪われ易くなるので,Bロール2とCロール3とのいずれにおいても温度の上昇は抑制される。従って,長期に連続して製造を行った場合でも,成膜ギャップG2が小さくなる可能性は小さく,製造された電極12における造粒体10の層厚や目付を適切な範囲内に維持できる可能性が高い。
続いて,本発明を具体化した第2の形態について,添付図面を参照しつつ詳細に説明する。本形態は,第1の形態と同様の,帯状の電極を製造する工程にて用いられる製造装置に,本発明を適用したものである。第1の形態と同様の構成や工程については,同じ符号を付して説明を省略する。
第2の形態の製造装置1000の概略構成を,図8に示す。本形態の製造装置1000は,第1の形態と同様に,例えば,リチウムイオン二次電池に用いられる帯状の電極を製造するための装置である。製造装置1000は,複数のロールを使用して,活物質を含む活物質材料である造粒体10を金属箔11に転写することにより,金属箔11上に活物質の層を形成した積層シート状の電極12を製造する装置である。
本形態の製造装置1000は,Aロール1と,Bロール2と,Cロール3と,供給部4と,冷却部5と,冷却部5の冷却ロール51〜53を冷却するチラー6と,加温部20と,を備える。加温部20は,ヒータ21と,温度センサ22と,を備える。加温部20以外の各部材は,第1の形態と同様のものである。
ヒータ21は,例えば,ニクロム線電熱器であり,Bロール2の少なくとも外周面を,回転軸方向の全体についてできるだけ均一に加温する。ヒータ21は,図8に示すように,Bロール2の外周側にてBロール2に接触しない位置に設けられる。なお,ヒータ21としては,ハロゲンヒータ,セラミックヒータ等のニクロム線以外の電熱器でもよいし,コイルを備えた電磁誘導加熱方式の加熱部材でもよい。また,ヒータ21は,Bロール2の内周側に空洞を設けてその中に配置されてもよい。
温度センサ22は,例えば,サーミスタであり,Bロール2の外周面の温度に応じて異なる信号を出力する。温度センサ22は,Bロール2の表面温度を直接測定してもよいし,例えば,Bロール2の回転軸の温度等,測定結果からBロール2の表面温度を推定できる箇所の温度を測定してもよい。また,温度センサ22は,1つのみでもよいし,複数設けてもよい。
本形態の製造装置1000の電気的構成の例を図9に示す。製造装置1000は,各部の温度を制御するコントローラ70を備える。そして,コントローラ70には,温湿度センサ9と,温度センサ8と,チラー6と,ヒータ21と,温度センサ22とが電気的に接続されている。温湿度センサ9と温度センサ8とチラー6とは,第1の形態と同様のものである。そして,コントローラ70は,冷却部5の温度制御と,加温部20の温度制御とを行う。
コントローラ70は,第1の形態と同様に,温湿度センサ9の出力信号と温度センサ8の出力信号とに基づいて,チラー6の設定温度を決定する。コントローラ70は,さらに,決定したチラー6の設定温度に基づいて,加温部20の目標温度を決定する。コントローラ70は,冷却部5によって冷却された金属箔11の温度よりも,Bロール2の表面温度の方が所定温度以上高い温度となるように,加温部20の目標温度を決定する。具体的には,コントローラ70は,Bロール2の表面の目標温度を,金属箔11の設定温度に対して,温度差が10℃以上25℃未満の範囲内となるように決定する。温度差が15℃以上20℃未満の範囲内であるとさらによい。
さらに,コントローラ70は,温度センサ22の出力信号に基づいて,ヒータ21を制御する。コントローラ70は,Bロール2の表面温度が,決定した目標温度に対して所定の温度範囲内となるように制御する。所定の温度範囲は,例えば,目標温度±1℃である。つまり,コントローラ70は,例えば,Bロール2の表面温度が所定の温度範囲の上限以上となったらヒータ21をオフし,Bロール2の表面温度が所定の温度範囲の下限以下となったらヒータ21をオンする。
本形態では,造粒体10は,加温されたBロール2にて成膜ギャップG2に向けて搬送される。そして,造粒体10は,Bロール2とCロール3との間の成膜ギャップG2にて,金属箔11とBロール2とに挟まれて圧縮される。それにより,例えば,造粒体10中の粒体同士の摩擦によって,熱が発生する。
造粒体10に発生した熱は,成膜ギャップG2から周辺の部材に伝わる。Bロール2は,予め加温されているので,少なくとも成膜ギャップG2に至る前の造粒体10よりも高温となっている。一方,金属箔11は,冷却されているので,造粒体10よりも低温となっている。そのため,造粒体10に発生した熱は,温度の低い金属箔11の側に多く移動し,Bロール2の側に移動する熱の量は第1の形態の場合よりもさらに小さい。
また,Bロール2を加温する加温部20は,コントローラ70にて制御されている。Bロール2の表面温度が目標温度より上がりすぎた場合には,コントローラ70によってヒータ21がオフされるので,Bロール2の表面温度は,早期に目標温度となる可能性が高い。
従って,Bロール2への熱の蓄積や,その結果によるBロール2の膨張は,第1の形態よりもさらに抑制されている。つまり,長尺の金属箔11を使用して,連続して電極を製造した場合でも,Bロール2やCロール3の径は変化し難い。これにより,製造を開始した後に成膜ギャップG2の大きさが変化する可能性は小さいので,製造された電極12の活物質層の層厚を適正な範囲内に維持できる可能性が高まる。なお,本形態では,目標温度まで加温した後のBロール2の径に基づいて,成膜ギャップG2の大きさが所定の大きさとなるように,各ロール2,3を配置するとよい。
続いて,本形態の製造装置1000を用いて電極を製造する製造方法について説明する。本形態の製造方法では,コントローラ70は,図10に示すように,以下の(A),(J),(B),(C),(D),(K),(L),(F)の各工程を含む製造工程を実施する。なお,(A),(B),(C),(D),(F)の各工程は,第1の形態と同様の工程である。
(A)造粒体10と金属箔11とを準備する準備工程
(J)Bロール2を加温する加温工程
(B)環境の空気温度及び相対湿度を取得する環境条件取得工程
(C)空気温度及び相対湿度に基づいて露点温度を取得する露点温度取得工程
(D)露点温度に基づいてチラー6の設定温度を決定する冷却温度決定工程
(K)Bロール2の目標温度を決定する加温温度決定工程
(L)冷却部5による冷却と加温部20による加温とを行う冷却加温工程
(F)金属箔11に造粒体10を転写させる転写工程
(J)加温工程では,Bロール2を,常温の状態から予め設定した仮の目標温度まで加温する。仮の目標温度は,例えば,35℃である。本形態では,(B)の環境条件取得工程にて環境条件を取得する前に,(J)の加温工程を行い,Bロール2の温度が安定してから,次の(B)工程にて環境温度を取得する。なお,(J)の加温工程を(A)の準備工程より前に行ってもよい。
(K)加温温度決定工程では,(D)冷却温度決定工程にて決定した設定温度に基づいて,加温部20の目標温度を決定する。前述したように,加温部20の目標温度は,冷却部5の設定温度より少なくとも10℃以上,さらに好ましくは15℃以上高い温度とするとよい。
(L)冷却加温工程では,第1の形態の(E)冷却工程にて説明したように金属箔11を冷却するとともに,加温部20によってBロール2を加温する。そして,Bロール2が目標温度に到達した後,(F)転写工程にて金属箔11の搬送を開始する。なお,(K)加温温度決定工程にて決定した目標温度が仮の目標温度から大きく離れている場合には,(L)冷却加温工程にて加温を開始した後,(F)転写工程を開始する前に,(B)〜(D)の各工程をやり直してもよい。
さらに,本形態でも,第1の形態と同様に,フィードバック制御を行う。(M)温度取得工程では,金属箔11の温度だけでなく,Bロール2の温度も取得する。そして,(H)判断工程にて,適正な温度範囲であるか否かを判断し,冷却部5の温度と加温部20の温度とを調整する。つまり,コントローラ70は,Bロール2の表面温度が目標温度から所定の温度範囲以内となるように,ヒータ21を制御する。さらに,(I)終了判断工程にて終了すると判断するまで,(L)〜(H)の各工程を繰り返す。
続いて,本形態の製造方法について,発明者が行った実験の結果について説明する。発明者は,本形態の製造装置1000による電極の製造を行い,従来の装置による製造結果,および,加温を行わず金属箔11の冷却のみを行った第1の形態の製造装置による製造結果と比較した。冷却部5の構成は,第1の形態にて行った実験と同様である。
本実験では,造粒体10として固形分72%の正極用造粒体を使用し,金属箔11として厚さ12μmのアルミ箔を使用して,正極用電極を製造した。金属箔11を搬送速度30〜60m/分で搬送し,造粒体10を供給して,電極12の製造を10分程度連続して行った。そして,製造済みの箇所の目付をインライン測定で測定しながら電極12を製造することで,目付の変動を確認した。なお,造粒体10の成分や,目付の規格は,第1の形態にて説明した実験における条件とは異なる。
実験の結果を,図11のグラフに示す。このグラフで,縦軸は目付の大きさ,横軸は連続して製造された電極12の長さである。このグラフでは,本形態の製造装置1000による結果を太い実線,第1の形態の製造装置100による結果を細い実線,従来の製造装置による結果を破線で示した。この実験での目付の規格範囲は,図11中にて一点鎖線で示している範囲である。
図11に示すように,従来の製造装置で製造した電極12の目付は,次第に減少し,図中の成膜距離P1にて規格範囲を下回った。第1の形態の製造装置100で製造した電極12の目付も次第に減少したが,従来の成膜距離P1に比較してかなり長い成膜距離P2まで規格範囲を下回ることはなかった。この実験結果からも,第1の形態の製造装置100によれば,従来のものよりも,目付を適切な範囲内に維持しての連続した製造が長期に可能であった。つまり,冷却部5を備えて加温部20を備えない第1の形態によっても,本願発明の効果が得られた。
一方,第2の形態の製造装置1000によれば,図11に示すように,目付を適切な範囲内に維持しての連続した製造が,第1の形態の製造装置100よりもさらに長期間にわたって可能であった。つまり,冷却部5と加温部20とをともに備える第2の形態の製造装置1000によれば,第1の形態よりもさらに良好な効果が得られた。
以上詳細に説明したように第2の形態の電極の製造方法によれば,造粒体10は,成膜ギャップG2にて,冷却部5にて冷却された金属箔11と加温部20にて加温されたBロール2とによって挟まれる。そのため,造粒体10に発生した加工熱は,積極的に金属箔11側に移動するので,Bロール2の温度の上昇は第1の形態よりもさらに抑制される。従って,長期に連続して製造を行った場合でも,成膜ギャップG2が小さくなる可能性は小さく,製造された電極12における造粒体10の層厚や目付を適切な範囲内に維持できる可能性が高い。
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,本発明は,金属板に粉体材料による層を形成してシート状の電極を製造する製造方法であれば,リチウムイオン二次電池用の電極に限らず,各種の電池の電極の製造方法に適用可能である。
また,製造装置100の構成は,実施の形態にて図示した例に限らない。例えば,各ロール1,2,3の配置やロール径,ロール間のギャップの大きさは,図示の例に限らない。例えば,ロール1,2,3として,同径のロールを用いてもよい。また,造粒体10の供給方法は,Aロール1とBロール2の間に投入するものに限らない。つまり,Aロール1は無くてもよい。
また,実施の形態では,図1にて,3個の冷却ロール51〜53の組を図示したが,冷却ロールの数は,1個以上であればいくつでもよい。ただし,複数ある方が冷却能力が高いので好ましい。また,実施の形態では,冷却ロール51〜53は回転自在であるとしたが,これらの少なくとも1つに回転駆動力を備え,金属箔11を搬送するようにしてもよい。また,補助ロールは,なくてもよい。
また,図1では,3つの冷却ロール51〜53へ1台のチラー6からそれぞれ冷却水を供給する構成を示したが,3つの冷却ロール51〜53を順に冷却水が通過するようにしてもよい。あるいは,各冷却ロール51〜53にそれぞれのチラーを設けてもよい。このようにすれば,例えば,各冷却ロール51〜53で異なる温度の冷却水を供給することもできる。また,冷却部5による冷却方法は,冷却ロールに限らず,例えば,冷蔵室を通過させる,冷風を吹き付ける,としてもよい。
また,製造装置100では,CPU71によるチラー6の設定温度の制御を行わなくてもよい。つまり,図5の(B)〜(D)は無くてもよい。例えば露点温度以下まで冷やしてもよい。ただし,露点温度より高い温度となるように制御すれば,金属箔11への水滴の付着を抑制できるので好ましい。また,フィードバック制御は行わなくてもよい。つまり,図5の(G)と(H)は無くてもよい。ただし,フィードバック制御を行えば,より適切な温度に近づけることができるので,更に好ましい。温度制御を行わない場合には,温度センサ8や温湿度センサ9,記憶部72の露点温度表73は不要である。
また,フィードバック制御において,製造環境が変化した場合には,冷暖房装置や空気乾燥機等を使用して製造環境を調整してもよい。
また,製造装置1000では,冷却部5の設定温度と加温部20の設定温度とは,所定温度以上の温度差が設けられればよく,いずれを先に決定してもよいし,それぞれ独立に決定してもよい。また,チラー6を制御するコントローラと,ヒータ21を制御するコントローラとは,一体のものに限らず,別体でもよい。
また,(J)の実行の順序は,図10に示したものに限らず,(J)を(B)〜(D)より後で実行してもよい。あるいは,(J)加温工程はなくてもよい。例えば,(K)にて加温温度を決定した後,(L)にて加温してもよい。
また,加温部20の温度制御やフィードバック制御はしなくてもよい。その場合,温度センサ22は無くてもよい。例えば,ヒータ21による加温を開始した後,加温し続ける構成でもよい。ただし,加温し続ける構成では,Bロール2の表面温度が上がりすぎ,Bロール2が膨張して電極12の目付が小さくなる可能性があるので,温度制御を行う方が好ましい。
2 Bロール
3 Cロール
5 冷却部
6 チラー
20 加温部
71 CPU

Claims (11)

  1. 活物質を含む材料である活物質材料を搬送する第1ロールと,前記第1ロールに隣接して平行に配置され,箔を搬送する第2ロールと,を用い,前記第1ロールと前記第2ロールとを互いに逆方向に回転させ,前記活物質材料を前記箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造方法であって,
    前記箔の搬送方向について前記第2ロールより上流側にて,冷却装置を用いて前記箔を冷却する冷却工程を含み,
    前記冷却工程では,冷却後の前記箔の温度が,製造環境の空気温度よりも低く,かつ,製造環境の露点温度より高い温度となるように,前記箔を冷却する
    ことを特徴とする電極の製造方法。
  2. 請求項1に記載の電極の製造方法において,
    前記冷却装置は,冷却ロールを備え,
    前記冷却工程では,前記冷却ロールの外周面を製造環境の空気温度よりも低温に維持しつつ,前記冷却ロールに前記箔を接触させることにより,前記箔を冷却することを特徴とする電極の製造方法。
  3. 請求項2に記載の電極の製造方法において,
    前記冷却装置は,前記冷却ロールに冷媒を供給する冷媒供給部を備え,
    前記冷却工程では,前記冷媒供給部にて,前記冷却ロールに,製造環境の空気温度よりも低温の冷媒を流通させることを特徴とする電極の製造方法。
  4. 請求項1から請求項3までのいずれか1つに記載の電極の製造方法において,
    前記冷却装置は,製造環境の空気温度と相対湿度とに応じて異なる信号を出力するセンサを備え,
    前記冷却工程では,センサの出力信号に基づいて製造環境の空気温度と相対湿度とを取得し,取得された前記空気温度と前記相対湿度とから露点温度を取得し,さらに,冷却後の前記箔の温度が,取得された前記空気温度よりも低く,かつ,取得された前記露点温度より高い温度となるように,前記冷却装置での前記箔を冷却する温度を決定することを特徴とする電極の製造方法。
  5. 請求項1から請求項までのいずれか1つに記載の電極の製造方法において,
    前記第1ロールの外周面の温度が冷却後の前記箔の温度より所定温度以上高い温度となるように,前記第1ロールを加温する加温工程を含むことを特徴とする電極の製造方法。
  6. 活物質を含む材料である活物質材料を搬送する第1ロールと,前記第1ロールに隣接して平行に配置され,箔を搬送する第2ロールと,を用い,前記第1ロールと前記第2ロールとを互いに逆方向に回転させ,前記活物質材料を前記箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造方法であって,
    前記箔の搬送方向について前記第2ロールより上流側にて,冷却装置を用いて前記箔を冷却する冷却工程を含み,
    前記第1ロールの外周面の温度が冷却後の前記箔の温度より所定温度以上高い温度となるように,前記第1ロールを加温する加温工程を含むことを特徴とする電極の製造方法。
  7. 活物質を含む材料である活物質材料を箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造装置であって,
    前記活物質材料を搬送する第1ロールと,
    前記第1ロールに隣接して平行に配置され,前記箔を搬送する第2ロールと,
    前記箔の搬送方向について前記第2ロールより上流側にて前記箔に接触する位置に配置され,内部に冷媒が通過する流路が形成された冷却ロールと,
    を有し,
    前記冷却ロールにおいて,冷却後の前記箔の温度が,製造環境の空気温度よりも低く,かつ,製造環境の露点温度より高い温度となるように,前記箔を冷却することを特徴とする電極の製造装置。
  8. 請求項7に記載の電極の製造装置において,
    前記冷却ロールに前記冷媒を供給する冷媒供給部を備えることを特徴とする電極の製造装置。
  9. 請求項7または請求項8に記載の電極の製造装置において,
    前記冷却ロールを複数備えることを特徴とする電極の製造装置。
  10. 請求項7から請求項9までのいずれか1つに記載の電極の製造装置において,
    前記第1ロールを加温する加温部を備えることを特徴とする電極の製造装置。
  11. 活物質を含む材料である活物質材料を箔に転写することによって,前記箔の表面に前記活物質材料の層を形成する電極の製造装置であって,
    前記活物質材料を搬送する第1ロールと,
    前記第1ロールに隣接して平行に配置され,前記箔を搬送する第2ロールと,
    前記箔の搬送方向について前記第2ロールより上流側にて前記箔に接触する位置に配置され,内部に冷媒が通過する流路が形成された冷却ロールと,
    を有し,
    前記第1ロールを加温する加温部を備えることを特徴とする電極の製造装置。
JP2017056273A 2016-06-29 2017-03-22 電極の製造方法及び電極の製造装置 Active JP6825440B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710473984.9A CN107546369B (zh) 2016-06-29 2017-06-21 电极的制造方法和电极的制造装置
KR1020170078864A KR101931018B1 (ko) 2016-06-29 2017-06-22 전극의 제조 방법 및 전극의 제조 장치
US15/634,168 US10403877B2 (en) 2016-06-29 2017-06-27 Manufacturing method of electrode and manufacturing apparatus of electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016128418 2016-06-29
JP2016128418 2016-06-29

Publications (2)

Publication Number Publication Date
JP2018010854A JP2018010854A (ja) 2018-01-18
JP6825440B2 true JP6825440B2 (ja) 2021-02-03

Family

ID=60995752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017056273A Active JP6825440B2 (ja) 2016-06-29 2017-03-22 電極の製造方法及び電極の製造装置

Country Status (2)

Country Link
JP (1) JP6825440B2 (ja)
KR (1) KR101931018B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780599B2 (ja) * 2017-02-08 2020-11-04 トヨタ自動車株式会社 ペースト層付きシートの製造方法、塗布装置
JP7003879B2 (ja) * 2018-09-03 2022-01-21 トヨタ自動車株式会社 粉体搬送システム
CN110509475A (zh) * 2019-09-04 2019-11-29 安徽省聚科石墨烯科技股份公司 一种用于生产塑料薄膜无结露含石墨烯的冷却辊智能设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338259A (ja) * 1991-05-15 1992-11-25 Kawasaki Steel Corp 金属ストリップの塗装用コータロール及び金属ストリップの連続塗装設備
DE19812471A1 (de) * 1998-03-23 1999-09-30 Schaefer Hans Juergen Verfahren und Vorrichtung zur zweischichtigen Beschichtung von Kupferfolien mit schmelzbaren Beschichtungsmitteln
JP3912769B2 (ja) * 2001-10-09 2007-05-09 富士フイルム株式会社 塗布方法および塗布ライン
JP2008293970A (ja) * 2007-04-26 2008-12-04 Panasonic Corp 電気化学素子用電極およびその製造方法
JP2011023129A (ja) * 2009-07-13 2011-02-03 Panasonic Corp 非水系二次電池用正極板の製造方法およびその製造装置
JP5589591B2 (ja) * 2010-06-17 2014-09-17 日産自動車株式会社 塗工装置及び電極箔の製造方法
JP2012181967A (ja) * 2011-02-28 2012-09-20 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法および非水電解質二次電池用塗布極板の乾燥装置
JP2013038011A (ja) * 2011-08-10 2013-02-21 Sumitomo Heavy Ind Ltd 蓄電装置及び蓄電装置を搭載した作業機械
JP2015138617A (ja) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 非水電解質二次電池
JP6277491B2 (ja) * 2014-02-25 2018-02-14 パナソニックIpマネジメント株式会社 塗膜物の製造装置
JP6284020B2 (ja) * 2014-04-07 2018-02-28 トヨタ自動車株式会社 電極シートの製造方法
JP6428536B2 (ja) * 2014-08-29 2018-11-28 日産自動車株式会社 塗膜を形成したシート材の製造装置、および塗膜を形成したシート材の製造方法
JP6283917B2 (ja) * 2014-09-18 2018-02-28 パナソニックIpマネジメント株式会社 塗膜物の製造方法および塗膜物の製造装置
JP2016081829A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法

Also Published As

Publication number Publication date
JP2018010854A (ja) 2018-01-18
KR20180002512A (ko) 2018-01-08
KR101931018B1 (ko) 2018-12-19

Similar Documents

Publication Publication Date Title
CN107546369B (zh) 电极的制造方法和电极的制造装置
JP6825440B2 (ja) 電極の製造方法及び電極の製造装置
KR101467640B1 (ko) 전극 건조 방법 및 전극 건조 장치
KR102227863B1 (ko) 리튬 이온 이차 전지 전극용 시트의 제조 방법
WO2014049692A1 (ja) 二次電池用電極の製造方法および熱風乾燥炉
WO2011105348A1 (ja) リチウムイオン電池用電極塗膜の乾燥方法
JP5834898B2 (ja) 電極製造方法及び電極製造装置
CN102500524B (zh) 一种锂电池涂布工艺
KR102073188B1 (ko) 전지용 활물질 도포장치 및 이용방법
JP6423267B2 (ja) 水平型両面塗工装置
JP6188117B2 (ja) 多層構造体における対象の層の厚さを求めるのに使用されるシステムおよび方法
JP5644856B2 (ja) 塗布装置
JP2010287405A (ja) 電池極板の製造方法
JP6011478B2 (ja) 電池用電極板の製造装置及び電池用電極板の製造方法
JP2014127438A (ja) 電極の製造方法及び乾燥装置
JP5944853B2 (ja) リチウムイオン二次電池電極用シートの製造装置およびリチウムイオン二次電池電極用シートの製造方法
JP2011238474A (ja) 電極シート製造装置
JP6044510B2 (ja) プレスロール装置
JP6828634B2 (ja) 負極の製造方法
JP2003178752A (ja) シート状電極の乾燥評価方法
JP5381301B2 (ja) 金属焼結体の製造方法および通電焼結装置
JP2015044132A (ja) 塗膜形成装置
JP6028591B2 (ja) 電極の製造方法、及び電極の製造装置
JP2016219529A (ja) フィルム製造装置
US20230155103A1 (en) Electrode manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201228

R151 Written notification of patent or utility model registration

Ref document number: 6825440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151