WO2014049692A1 - 二次電池用電極の製造方法および熱風乾燥炉 - Google Patents

二次電池用電極の製造方法および熱風乾燥炉 Download PDF

Info

Publication number
WO2014049692A1
WO2014049692A1 PCT/JP2012/074584 JP2012074584W WO2014049692A1 WO 2014049692 A1 WO2014049692 A1 WO 2014049692A1 JP 2012074584 W JP2012074584 W JP 2012074584W WO 2014049692 A1 WO2014049692 A1 WO 2014049692A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot air
temperature
nozzle
electrode
measured
Prior art date
Application number
PCT/JP2012/074584
Other languages
English (en)
French (fr)
Inventor
憲司 土屋
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014537873A priority Critical patent/JP5954599B2/ja
Priority to US14/430,572 priority patent/US10276857B2/en
Priority to KR1020157009670A priority patent/KR101867659B1/ko
Priority to CN201280075964.1A priority patent/CN104662711B/zh
Priority to PCT/JP2012/074584 priority patent/WO2014049692A1/ja
Publication of WO2014049692A1 publication Critical patent/WO2014049692A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • F26B13/108Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials using one or more blowing devices, e.g. nozzle bar, the effective area of which is adjustable to the width of the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/004Nozzle assemblies; Air knives; Air distributors; Blow boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a secondary battery electrode and a hot air drying furnace used in the method.
  • the process of manufacturing the electrode constituting the secondary battery includes a process of applying the electrode paste on the surface of the electrode foil, a process of drying the electrode paste (that is, removing the solvent), and the like.
  • a hot air drying furnace is generally used for drying the electrode paste.
  • the outline of the process of drying the electrode paste using a hot air drying furnace is that the electrode foil coated with the electrode paste on the surface is transported to the inside of the hot air drying furnace, and inside the hot air drying furnace, Hot air is blown from the nozzle to the upper electrode paste to evaporate the solvent (NMP (N-methylpyrrolidone), water, etc.) contained in the electrode paste, thereby removing the solvent.
  • “removal” is a concept including making the residual amount of the solvent not more than a predetermined standard value, and does not mean that the solvent is completely removed.
  • the temperature of the hot air is lowered by the latent heat of evaporation generated when the solvent evaporates.
  • the standard value for the residual amount of solvent after drying is set for the secondary battery electrode, it has been found that the residual amount of solvent increases when the temperature of the hot air decreases.
  • the conventional hot air drying furnace is configured to increase the amount of hot air so as to suppress the effect of temperature drop due to latent heat of vaporization and to ensure a drying condition in which the residual amount of solvent is not more than a standard value.
  • the amount of hot air in the hot air drying furnace that is, the amount of outside air introduced
  • the increase in the amount of outside air introduced directly leads to an increase in the air conditioning load in the area where the hot air drying furnace is installed. It was.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 1 Japanese Patent Document 1
  • the temperature of the hot air is set to a temperature that takes into account the temperature decrease due to latent heat of evaporation, and the temperature decreases due to latent heat of evaporation.
  • the air volume of hot air is reduced without exceeding the allowable upper limit temperature of the workpiece.
  • the binder contained in the electrode material such as a lithium ion secondary battery is a resin component, it has a property of solidifying when the hot air temperature exceeds a predetermined temperature, and the solidification of the binder is the battery resistance of the secondary battery. It will cause a rise.
  • Patent Document 1 since the heat capacity of the electrode paste is small, the temperature decrease due to the latent heat of evaporation becomes small at the timing when the amount of solvent evaporation is small as in the beginning of the drying process. In some cases, the temperature of the hot air exceeds the temperature at which the binder solidifies.
  • the temperature of the hot air is lowered in order to prevent the binder from solidifying, it takes time (that is, the drying efficiency is lowered) to reduce the residual amount of the solvent to a predetermined standard value or less. That is, conventionally, when reducing the air volume in the hot air drying furnace, it has been difficult to ensure the drying efficiency while reliably adjusting the temperature of the hot air to a predetermined temperature or lower.
  • the present invention has been made in view of such a problem of the present situation, and a secondary battery capable of appropriately maintaining the temperature of the hot air while having a lower air volume than the conventional one in order to reduce the cost of the secondary battery.
  • An object of the present invention is to provide a method for producing an electrode for use and a hot air drying furnace used in the method.
  • the first invention comprises a transport roller for transporting an electrode foil coated with an electrode paste, a nozzle for blowing hot air, which is a gas heated to the electrode paste, and hot air to the nozzle.
  • a manufacturing method of an electrode for a secondary battery by a hot air drying furnace provided with an exhaust fan and an exhaust duct for exhausting hot air after being sprayed on the electrode paste The temperature of the hot air at a certain first position is measured by a first temperature sensor, and is located downstream of the first position in the flow direction of the hot air blown from the nozzle.
  • the temperature of the hot air at the second position which is the flow field of the hot air blown from the nozzle, is measured by a second temperature sensor, and in the flow direction of the hot air blown from the nozzle, from the second position
  • the temperature of the hot air at the third position which is the flow field of the hot air blown out from the nozzle, is also measured on the downstream side by the third temperature sensor, and measured by the second temperature sensor by the control device
  • the temperature decrease amount of the hot air at the first position due to the latent heat of vaporization of the electrode paste is calculated
  • the corrected temperature of the hot air at the first position is calculated by adding the calculated temperature drop amount to the set temperature of the hot air at the first position to calculate the corrected temperature of the hot air at the first position.
  • the corrected temperature of the hot air at the first position is calculated by adding the calculated temperature drop amount to the set temperature of the hot air at the first position to calculate the corrected temperature of the hot air at the first position.
  • the control device includes a temperature drop amount of the hot air at the first position due to the latent heat of vaporization of the electrode paste, a temperature of the hot air at the second position, and the third position.
  • Map information which is information obtained in advance with a correlation with the temperature of the hot air at the position, the measured temperature of the hot air at the second position by the second temperature sensor, and the temperature by the third temperature sensor Based on the measured temperature of the hot air at the third position, the amount of temperature drop of the hot air at the first position is calculated using the map information.
  • the third invention is a transport roller for web transporting the electrode foil in a state where the electrode paste is applied, and a nozzle for discharging hot air which is a heated gas sprayed on the electrode paste.
  • a hot-air drying furnace comprising a control device for adjusting, an exhaust fan and an exhaust duct for exhausting hot air discharged from the nozzle, wherein the control device has a first blowing position of the nozzle.
  • a first temperature sensor for detecting the temperature of the hot air at one position, and a downstream side of the first position in the flow direction of the hot air discharged from the nozzle;
  • a second temperature sensor for detecting a temperature of the hot air at a second position, which is a flow field of the hot air discharged from the nozzle, and a flow direction of the hot air discharged from the nozzle, from the second position.
  • a third temperature sensor for detecting the temperature of the hot air at a third position, which is a flow field of the hot air discharged from the nozzle, which is located on the downstream side, and connected to the electrode paste This is information obtained in advance by correlating the amount of decrease in hot air temperature at the first position due to latent heat of vaporization, the temperature of hot air at the second position, and the temperature of hot air at the third position.
  • Map information is stored, and the control device, based on the hot air temperature measured by the second temperature sensor and the hot air temperature measured by the third temperature sensor, Using the information, calculate the temperature drop amount of the hot air at the first position, and add the calculated temperature drop amount of the hot air at the first position to the set temperature of the hot air at the first position, The corrected set temperature of the hot air at the first position is calculated, and the output of the heater is calculated based on the difference between the corrected set temperature of the hot air and the temperature of the hot air measured by the first temperature sensor. It adjusts and controls the temperature of the hot air in said 1st position.
  • the first to third inventions can reliably prevent the temperature of the hot air from exceeding the allowable upper limit temperature of the workpiece while reducing the amount of hot air for drying the electrode paste. Thereby, reduction of an air-conditioning load can be aimed at and the reduction of the manufacturing cost of a secondary battery is realizable.
  • the flowchart which shows the flow of the manufacturing method of the secondary battery which concerns on one Embodiment of this invention.
  • the schematic diagram which shows the whole structure of the manufacturing apparatus (hot air drying furnace) of the electrode for secondary batteries which concerns on 1st embodiment of this invention.
  • the schematic diagram which shows the flow of the hot air in the hot air drying furnace which concerns on 1st embodiment in this invention, (a) A schematic perspective view, (b) The partial expansion schematic diagram around a nozzle.
  • Control flow diagram of hot air drying furnace (a) In the case of a hot air drying furnace according to an embodiment of the present invention, (b) In the case of a conventional hot air drying furnace.
  • the schematic diagram which shows the whole structure of the manufacturing apparatus (hot air drying furnace) of the electrode for secondary batteries which concerns on 2nd embodiment of this invention.
  • the schematic diagram which shows the flow of the hot air in the hot air drying furnace which concerns on 2nd embodiment to this invention, (a) A schematic perspective view, (b) The partial expansion schematic diagram around a nozzle. The figure which shows the experimental result for confirming the application effect of the hot air drying furnace which concerns on one Embodiment of this invention.
  • the secondary battery includes an electrode paste preparation step (Step-1), a coating step (Step-2), a drying step (Step-3), a slitting step (Step-4), and a pressing step (Step-5).
  • the electrode body manufacturing process (Step-6), the assembly process (Step-7), the initial charge and the aging process (Step-8), etc. are shipped (Step-9).
  • the electrode paste production step (Step-1) is a step for producing a paste for producing a positive electrode or a negative electrode (referred to as electrode paste).
  • the positive electrode paste is produced by, for example, kneading nickel manganese cobaltate as a positive electrode active material, acetylene black as a conductive material, PVDF as a binder with a solvent (for example, NMP), further diluting, and the like.
  • the electrode paste for the negative electrode is produced, for example, by kneading graphite as a negative electrode active material, CMC as a thickener, and SBR as a binder together with a solvent (for example, water), and further diluting.
  • the coating step (Step-2) is a step of applying the positive electrode or negative electrode electrode paste generated in the electrode paste preparation step (Step-1) to the surface of the electrode foil, such as a die coater. Using the equipment, the electrode paste is applied to the surface of the electrode foil with a predetermined basis weight.
  • the drying step (Step-3) is a step of drying the electrode paste coated on the surface of the electrode foil to form a composite layer, and more specifically, a solvent (NMP) contained in the electrode paste by heating. Or the like is evaporated to evaporate the residual amount of the solvent in the mixture layer to a predetermined standard value or less.
  • the drying step (STEP-3) is performed using a hot air drying furnace.
  • the pressing step (Step-4) is a step for pressing the composite material layer formed through the drying step (Step-3) together with the electrode foil to increase the density of the composite material layer to a predetermined density.
  • the slitting step (Step-5) is a step of cutting the electrode foil and the composite material layer continuous in the length direction with a predetermined length and a predetermined width suitable for constituting the electrode body.
  • Each of the above steps (Step-1) to (Step-5) is a step (electrode manufacturing step) for manufacturing an electrode (positive electrode and negative electrode) for a secondary battery.
  • a negative electrode and a separately manufactured separator are laminated, and the laminated body is wound to produce an electrode body (Step-6).
  • Step-7 a terminal is attached to the manufactured electrode body, and the electrode body is sealed in a case together with an electrolytic solution to assemble a secondary battery (Step-7). Then, the assembled secondary battery is initially charged and subjected to a predetermined aging process (Step-8), and then the secondary battery is shipped (Step-9).
  • the manufacturing process of the secondary battery includes various processes such as a process for manufacturing a separator and a process for manufacturing a case. However, for convenience of explanation, those explanations are omitted here.
  • a method for manufacturing a secondary battery electrode according to an embodiment of the present invention is a manufacturing method related to the drying step (Step-3) of the electrode manufacturing steps described above, and hot air according to an embodiment of the present invention.
  • the drying furnace is used for realizing the manufacturing method in the drying step (Step-3).
  • the hot air drying furnace 1 according to the first embodiment of the present invention is an apparatus used in the drying step (see FIG. 1) among the steps of manufacturing the secondary battery electrode, .., A plurality of nozzles 4..., A control device 5, a plurality of temperature sensors 7, 8, 9, and the like.
  • an electrode paste having a predetermined width is provided on the surface of the electrode foil 6 which is a work introduced into the hot air drying furnace 1 so as to be continuous in the length direction of the electrode foil 6. 6a is coated.
  • the nozzle 4 has a structure capable of discharging hot air in two directions, upstream and downstream with respect to the conveying direction of the electrode foil 6 in the hot air drying furnace 1. Yes.
  • the control device 5 is discharged from the nozzle 4 in order to adjust the drying state of the electrode paste 6 a (see FIG. 3A) on the electrode foil 6 introduced into the hot air drying furnace 1.
  • This is a device for controlling the temperature of hot air.
  • the control device 5 is connected to a plurality (three systems) of temperature sensors 7, 8, and 9, and is configured to receive the temperature measurement results from the temperature sensors 7, 8, and 9.
  • the hot air drying furnace 1 includes an air supply facility 11 for supplying gas to the nozzles 4, 4... And an exhaust facility for exhausting the gas supplied by the air supply facility 11 from the hot air drying furnace 1. 12 is provided. And in this embodiment, it is set as the structure which uses air (outside air) as "gas” supplied to each nozzle 4 * 4 ....
  • the “gas” supplied to the nozzles 4, 4... Is not limited to air, and for example, a “gas” other than air such as an inert gas should be adopted. Is also possible.
  • the air supply facility 11 includes an air supply fan 11a and an air supply duct 11b, and a heater for heating a gas (air in this embodiment) supplied to the hot air drying furnace 1 in the middle of the air supply duct 11b. 10 is provided.
  • a gas (air in this embodiment) heated by the heater 10 supplied by the air supply facility 11 is referred to as “hot air”.
  • the air supply duct 11 b of the air supply facility 11 is connected to a branch duct 13 provided inside the furnace body 2, and the hot air supplied from the air supply facility 11 is supplied to each nozzle 4. It is set as the structure distributed to 4 ....
  • the exhaust facility 12 includes an exhaust fan 12a and an exhaust duct 12b, and is connected to the furnace body 2 and exhausts hot air supplied to the furnace body 2 to the outside of the furnace body 2 through the exhaust duct 12b. It is configured to do.
  • the heater 10 is connected to the control device 5 and can adjust the output of the heater 10 in accordance with a signal output from the control device 5. Further, the air supply fan 11a and the exhaust fan 12a are connected to the control device 5, and in accordance with a signal output from the control device 5, the fan rotation speed of each fan 11a and 12a (more specifically, each fan 11a The setting frequency of each inverter included in 12a) can be changed to adjust the air volume of each fan 11a and 12a.
  • the electrode paste 6a is coated on the surface of the electrode foil 6 conveyed by the plurality of conveying rollers 3 ⁇ in the coating step (Step-2). Are transported by the transport rollers 3, 3..., And hot air discharged from the plurality of nozzles 4, 4... Is sprayed onto the electrode paste 6a on the electrode foil 6.
  • a plurality (three in the present embodiment) of temperature sensors 7, 8, 9 are arranged at positions along the flow of hot air blown out from the nozzle 4.
  • the hot air discharged from the nozzle 4 flows along the surface of the electrode foil 6 (that is, the electrode paste 6a). It flows so that it may wrap around to the back side, and it is comprised so that it may flow toward the connection direction of the exhaust duct 12b after that.
  • the other part of the hot air that flows along the surface of the electrode foil 6 that is, the electrode paste 6a
  • the hot air is distributed to the plurality of nozzles 4, 4... By the branch duct 13 inside the furnace body 1.
  • the nozzle 4 having a shorter flow path length higher-temperature hot air is emitted.
  • the nozzle 4 having the shortest flow path length from the heater 10 is selected, and the temperature sensors 7, 8, 9 are arranged along the flow of hot air blown from the nozzle 4. It is configured.
  • the temperature of the hot air blown out from the nozzle 4 having the shortest flow path length from the heater 10 is adjusted to a predetermined temperature or lower so that the temperature of the hot air in the entire hot air drying furnace 1 is cured.
  • the temperature is adjusted to a temperature that does not occur.
  • the temperature of the hot air discharged from the nozzles 4,... Other than the nozzle 4 to be detected by the temperature sensor 7 is the same.
  • the first temperature sensor 7 is disposed at a point A located immediately below the nozzle 4, that is, at the outlet of the nozzle 4. It is set as the structure which measures the temperature TA of the hot air in A.
  • the target temperature of the hot air at this point A is defined as a set temperature T S, and the temperature of the hot air blown from the nozzle 4 is matched with the set temperature T S at the point A (see FIG. 2).
  • the output to the heater 10 is adjusted.
  • Temperature T A of the hot air in the point A is influenced by the latent heat of vaporization of the electrode paste 6a, it is lower than the temperature of the immediately preceding speech balloon.
  • the point A in the hot air drying furnace 1 is a position 5 mm above the electrode foil 6, and the hot air setting temperature T S at the point A is 150 ° C. That is, the height of the blowing position on the lower surface of the nozzle 4 is 5 mm above the electrode foil 6.
  • the second temperature sensor 8 is disposed at a point B located downstream of the point A where the first temperature sensor 7 is disposed in the flow direction of the hot air discharged from the nozzle 4. by 8, it has a configuration for measuring the temperature T B of the hot air at the point B. Further, point B avoids a portion where the flow of hot air is turbulent due to the influence of hot air emitted from other nozzles 4, and more than a portion where hot air emitted from each nozzle 4, 4 collides with each other. The position where the hot air on the upstream side in the flow direction of the hot air flows in a laminar flow is selected. The temperature T B of the hot air at the point B is lower than the temperature T A because the hot air flows along the electrode foil 6 and is further influenced by the latent heat of vaporization of the electrode paste 6a than the point A. .
  • the point B in the hot air drying furnace 1 is a position where the length of the hot air flow path becomes 200 mm from the point A toward the downstream side in the hot air flow direction, and 10 mm above the electrode foil 6. And position.
  • the third temperature sensor 9 is disposed at a point C located downstream of the point B where the second temperature sensor 8 is disposed in the flow direction of the hot air discharged from the nozzle 4. by 9, it is configured to measure the temperature T C of the hot air at the point C. Further, the point C avoids a portion where the flow of hot air is turbulent due to the influence of hot air emitted from the other nozzles 4 and is hotter than a portion where hot air emitted from the nozzles 4 and 4 joins. The position where the upstream hot air in the flow direction is flowing in a laminar flow is selected. The temperature T C of the hot air at the point C is lower than the temperature T B because it is further influenced by the latent heat of vaporization of the electrode paste 6 a than the point B while the hot air flows along the electrode foil 6. .
  • the point C in the hot air drying furnace 1 is a position where the length of the hot air flow path is 500 mm from the point A toward the downstream side in the hot air flow direction, and 30 mm below the electrode foil 6. And position.
  • the hot air temperature is lowered due to the influence of the latent heat of vaporization of the electrode paste 6 a, but this temperature drop is very small, so the temperature sensor 7 arranged at the point A It is difficult to accurately detect this minute temperature drop.
  • the points B ⁇ C to measure the temperature T B and the temperature T C is the flow passage cross-sectional area than the point A has been enlarged, because the velocity of the hot air is low, a small temperature change it is capable of stably performing a measurement of the temperature than the temperature T a with, and, since the temperature variation is large, it is possible to easily secure the detection accuracy of the temperature.
  • the hot air the temperature T B and the detected downstream of the position (point B and point C) in the flow direction of the hot air than the point A
  • the detection accuracy of the temperature drop amount dT can be improved.
  • the temperature decrease dT each temperature of the hot air downstream of the point B and the point C than the point A (temperature T B and the temperature T C ). More specifically, in the manufacturing method of the electrode for a secondary battery according to an embodiment of the present invention, the temperature T B and the temperature T C, the correlation of the temperature decrease dT at the point A, the map information as shown in FIG. 4 As previously described, it is configured to be obtained through experiments or the like. Then, as measured from the temperature T B and the temperature T C, using the map information, and configured to calculate the temperature decrease dT.
  • the temperature T A at the point A it can be seen that becomes low 18 ° C. than the set temperature T S.
  • the set temperature T Sn is set by adding (T S +18) ° C. by adding the temperature decrease amount dT to the set temperature T S. It is configured to do.
  • the drying efficiency is configured to prevent the lowering.
  • map information changes depending on the basis weight and the solid content ratio of the electrode paste 6a
  • different map information is prepared according to the specifications of the electrode paste 6a used for manufacturing the secondary battery electrode. Is preferred.
  • the temperature T B and the temperature T C advance Chitoku the map information representing the correlation of the temperature decrease dT at point A, and calculates the temperature decrease dT using the map information
  • the measurement result of the temperature T B and the temperature T C, performing the direct computation may be configured to calculate the temperature decrease dT.
  • the control device 5 controls the temperatures T B and T at points B and C, respectively.
  • the temperature drop amount dT at point A is calculated from C.
  • the set temperature T S is corrected in consideration of the calculated temperature decrease amount dT
  • the corrected set temperature T Sn is calculated
  • the control amount is calculated from the difference between the corrected set temperature T Sn and the temperature T A at the point A. and calculates the dT a.
  • map information (see FIG. 4) is stored in advance in the control device 5, and calculation is performed using the map information. based on the temperature decrease dT, it is configured to modify the set temperature T S.
  • a value (T S + dT) obtained by adding the temperature decrease amount dT to the set temperature T S of the temperature T A is set as a new set temperature T Sn.
  • the configuration is set as And this with the new set temperature T Sn, on the basis of the difference dT A between the temperature T A at the point A, the control device 5 (more specifically, indicating controller the controller 5 is provided) by, for heating the hot air
  • the output to the heater 10 as the means is adjusted.
  • the hot-air drying furnace 21 which is the secondary battery electrode manufacturing apparatus according to the second embodiment of the present invention includes a drying process (FIG. 1) among the processes for manufacturing the secondary battery electrode. .., A plurality of conveying rollers 3..., A plurality of nozzles 24, 24. That is, the hot air drying furnace 21 according to the second embodiment is different from the hot air drying furnace 1 according to the first embodiment in the configuration of the nozzles provided, and the other configurations are common. ing.
  • the nozzle 24 has a structure capable of discharging hot air only in one direction upstream from the conveying direction of the electrode foil 6.
  • the hot air discharged from the nozzle 24 flows along the surface of the electrode foil 6 (that is, the electrode paste 6a). It flows so that it may wrap around to the back side, and it is comprised so that it may flow toward the connection direction of the exhaust duct 12b after that.
  • the other part of the hot air that flows along the surface of the electrode foil 6 that is, the electrode paste 6a
  • the hot air is discharged in one direction from the nozzle 24, and therefore the distance until the hot air discharged from the nozzle 24 collides with the hot air discharged from the other nozzles 24 is larger than that in the hot air drying furnace 1. And big. For this reason, in the hot air drying furnace 21, the range of the site where the hot air discharged from the nozzle 24 flows in a laminar flow state is wider than that in the hot air drying furnace 1, and in particular, the distance between the points A and B. Therefore, there is an advantage that the temperature decrease amount dT at the point A can be calculated with higher accuracy.
  • the air volume of the conventional hot air drying furnace is 25 m 3 / min
  • the air volume of the hot air drying furnace 1 according to the first embodiment of the present invention is 22.5 m 3 / min. That is, the hot air drying furnace 1 according to the first embodiment of the present invention reduces the air volume by 10% compared to the conventional hot air drying furnace.
  • the slit width of the blowout port formed in the nozzle 4 is 5 mm, and the air supply fan 11a and the exhaust fan are controlled by the control device 5 so that the wind speed of the hot air blown from the nozzle 4 is 22.5 m / s. It is set as the structure which adjusts the air volume of 11b. In addition, the number of nozzles 4 is six.
  • the furnace length of the hot air drying furnace 1 is 6 m
  • the conveying speed of the electrode foil 6 in the inside is 30 m / min
  • the drying time is 12 seconds. That is, in the hot air drying furnace 1, the time from when the electrode foil 6 is introduced into the furnace body 2 to when it is discharged is set to 12 seconds, and during this 12 seconds, it is included in the electrode paste 6a. It is set as the structure dried so that the quantity of a solvent may become below a predetermined standard value.
  • the electrode foil 6 is a copper foil
  • the electrode paste 6a uses a paste generated using graphite as a negative electrode active material as a main material.
  • the solid content rate of the electrode paste 6a is 50%
  • the basis weight is 8 mg / cm 2 .
  • the manufacturing method of the electrode for a secondary battery includes a transport roller 3, 3... For transporting the electrode foil 6 in a state where the electrode paste 6 a is applied, and the web.
  • the nozzles 4, 4,... Or nozzles 24, 24,... For discharging hot air, which is a heated gas (air in the present embodiment) sprayed on the electrode paste 6a, and hot air are applied to the nozzles 4 or 24.
  • An air supply fan 11a and an air supply duct 11b for supplying, a heater 10 for heating air supplied to the nozzle 4 or the nozzle 24, arranged in the air supply duct 11b, and an output of the heater 10 are adjusted.
  • Each of the hot air drying furnaces 1 and 2 includes a control device 5 for exhausting the exhaust air and an exhaust fan 12a and an exhaust duct 12b for exhausting the hot air discharged from the nozzle 4 or the nozzle 24.
  • a manufacturing method according to the hot-air temperature T A of the first position the barrel point A is a blowout position of the nozzle 4 or nozzle 24 is measured by the first temperature sensor 7, blown out of the nozzle 4 or nozzle 24
  • the temperature T B of the hot air at the second position B which is the flow field of the hot air blown from the nozzle 4 or the nozzle 24, which is located downstream of the point A in the flow direction of the hot air, is the second temperature sensor.
  • the control device 5 was measured by the second temperature sensor 8 temperature And B, and the temperature T C as measured by the third temperature sensor 9, on the basis of, calculating the temperature drop amount dT of the hot air in the point A due to the latent heat of vaporization of the electrode paste 6a, setting of hot air at point A
  • the calculated temperature drop amount dT is added to the temperature T S to calculate a corrected hot air set temperature T Sn at the point A, and the corrected hot air set temperature T Sn and the temperature measured by the first temperature sensor 7 are calculated. according to the difference dT a of T a, and adjusts the output to the heater 10.
  • the control apparatus 5 has the temperature fall amount dT of the hot air in the point A resulting from the evaporation latent heat of the electrode paste 6a, and the hot air in the point B. and the temperature T B which includes a map information, measured by the second temperature sensor 8 at the temperature T B and the point C is information acquired in advance the correlation between the temperature T C of the hot air, the third temperature sensor and the temperature T C as measured by 9, based on, using the map information, and calculates the temperature decrease amount dT of the hot air at the point a.
  • each hot-air drying furnace 1.21 which concerns on one Embodiment of this invention has the conveyance roller 3,3 ... for carrying the web of the electrode foil 6 of the state by which the paste 6a for electrodes was coated, and an electrode ... Or nozzles 24....
  • hot air which is a heated gas (air in this embodiment) sprayed on the paste 6 a, and hot air is supplied to the nozzles 4 or 24.
  • An air supply fan 11a and an air supply duct 11b, a heater 10 for raising the temperature of air supplied to the nozzle 4 or the nozzle 24, and an output of the heater 10 are adjusted.
  • an exhaust fan 12a and an exhaust duct 12b for exhausting hot air discharged from the nozzle 4 or the nozzle 24.
  • the first temperature sensor 7 for detecting the temperature T A of the hot air in the first position the barrel point A is a blowout position of the nozzle 4 or nozzle 24, discharged from the nozzle 4 or nozzle 24 hot air 2 for detecting the temperature T B of the hot air at the point B, which is the second position, which is the flow field of the hot air discharged from the nozzle 4 or the nozzle 24, which is located downstream of the point A in the flow direction of.
  • a temperature decrease amount dT of the map information is information acquired in advance the correlation between the temperature T C of the hot air at the temperature T B and the point C of the hot air at the point B, and is stored, the control unit 5, first and the temperature T B as measured by second temperature sensor 8, and a temperature T C as measured by the third temperature sensor 9, on the basis of, using the map information, and calculates the temperature decrease amount dT of hot air at point a , by adding the hot air temperature decrease dT of the calculated point a hot air set temperature T S at point a, to calculate the set temperature T Sn of the hot modified at the point a, the hot air that fixes the set temperature T Sn
  • the temperature T a measured by the first temperature sensor 7, based on the difference to adjust the output of the heater 10, and controls the temperature T a of the hot air at the point
  • the work in this embodiment, electrode paste 6a
  • the work can be reliably prevented from exceeding the allowable upper limit temperature. Therefore, it is possible to reduce the air conditioning load and reduce the manufacturing cost of the secondary battery.
  • the present invention can be widely applied not only to a hot air drying furnace used for manufacturing a secondary battery but also to a hot air drying furnace used in a process of drying a paste coated in a film shape. It is possible to apply as a technique for manufacturing the etc.
  • Hot air drying furnace (first embodiment) 4 Nozzle (first embodiment) DESCRIPTION OF SYMBOLS 5 Control apparatus 6 Electrode foil 6a Electrode paste 7 Temperature sensor 8 Temperature sensor 9 Temperature sensor 10 Heater 11a Air supply fan 11b Air supply duct 21 Hot air drying furnace (2nd embodiment) 24 nozzles (second embodiment)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)

Abstract

本発明は、二次電池のコスト低減を図るべく、従来に比して低風量でありながら、熱風の温度を適切に維持できる二次電池用電極の製造方法およびその製造方法に用いる熱風乾燥炉を提供する。ノズル(4)の吹き出し位置(点A)における熱風温度TAを温度センサ(7)によって測定し、熱風の流れ方向において、点Aよりも下流側の点Bにおける熱風温度TBを温度センサ(8)によって測定し、点Bよりも下流側の点Cにおける熱風温度TCを温度センサ(9)によって測定し、制御装置(5)によって、温度TBと温度TCとに基づいて、電極用ペーストの蒸発潜熱に起因する点Aにおける熱風の温度低下量dTを算出し、点Aにおける熱風の設定温度TSに温度低下量dTを加算して、修正した熱風の設定温度TSnを算出し、修正した設定温度TSnと温度センサ(7)により測定した温度TAの差分dTAに応じて、ヒータ(10)への出力を調整する。

Description

二次電池用電極の製造方法および熱風乾燥炉
 本発明は、二次電池用電極の製造方法およびその製造方法に用いる熱風乾燥炉の技術に関する。
 二次電池を構成する電極を製造する工程では、電極箔の表面に電極用ペーストを塗工する工程や、電極用ペーストを乾燥させる(即ち、溶媒を除去する)工程等が含まれており、電極用ペーストの乾燥には、熱風乾燥炉が一般的に用いられている。
 熱風乾燥炉を用いて電極用ペーストを乾燥させる工程の概要は、表面に電極用ペーストが塗工された電極箔を熱風乾燥炉の内部にウェブ搬送し、熱風乾燥炉の内部で、電極箔の上の電極用ペーストにノズルから熱風を吹き付けて、電極用ペーストに含まれる溶媒(NMP(N-メチルピロリドン)や水等)を蒸発させて、溶媒を除去する構成としている。
 尚、ここでいう「除去」とは、溶媒の残留量を所定の規格値以下にすることを含む概念であり、溶媒を完全に除去することのみを意味するものではない。
 このように、熱風乾燥炉を用いて電極用ペーストを乾燥させる場合、溶媒が蒸発するときに生じる蒸発潜熱によって、熱風の温度低下が生じることが知られている。
 二次電池用電極には、乾燥後における溶媒の残留量についての規格値が設定されているが、熱風の温度低下が生じると、溶媒の残留量が多くなってしまうことが判っている。
 従来の熱風乾燥炉では、熱風の風量を多くすることによって、蒸発潜熱による温度低下の影響を抑えて、溶媒の残留量が規格値以下となる乾燥条件を確保する構成としている。
 しかしながら、熱風乾燥炉における熱風の風量(即ち、外気の導入量)を多くすると、併せて熱風乾燥炉からの排気量も多くすることが必要になる。
 外気導入量の増加は、熱風乾燥炉を設置するエリアにおける空調負荷の増大に直結することから、従来は、熱風乾燥炉のランニングコストが多大となり、二次電池のコスト低減を阻害する要因ともなっていた。
 そこで、熱風乾燥炉の風量を低減するための技術が種々検討されるに至っており、例えば、以下に示す特許文献1に開示されたものが公知となっている。
 特許文献1に開示されている従来技術では、電極用ペーストを塗工した後の乾燥工程において、熱風の温度を、蒸発潜熱による温度低下分を予め考慮した温度に設定し、蒸発潜熱による温度低下を相殺することで、ワークの許容上限温度を超えずに、熱風の風量を削減する構成としている。
特開2010-210231号公報
 リチウムイオン二次電池等の電極用材料に含まれるバインダは樹脂成分であるため、熱風温度が所定の温度を超えると固化する性質を有しており、バインダの固化は二次電池における電池抵抗の上昇を招くものである。
 そして、特許文献1に開示されている従来技術では、電極用ペーストの熱容量が小さいため、乾燥工程の始動当初のように溶媒の蒸発量が少ないタイミングでは、蒸発潜熱による温度の低下幅が小さくなって、熱風の温度が、バインダの固化する温度を超えてしまうような場合があった。
 一方、バインダの固化を防止するために熱風の温度を下げたとすると、溶媒の残留量を所定の規格値以下にするのに時間を要する(即ち、乾燥効率が低下する)こととなる。
 即ち従来は、熱風乾燥炉における風量を低減しようとするときには、熱風の温度を確実に所定の温度以下に調整しつつ、乾燥効率を確保することが困難であった。
 本発明は、斯かる現状の課題を鑑みてなされたものであり、二次電池のコスト低減を図るべく、従来に比して低風量でありながら、熱風の温度を適切に維持できる二次電池用電極の製造方法およびその製造方法に用いる熱風乾燥炉を提供することを目的としている。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、第一の発明は、電極用ペーストが塗工された電極箔を搬送するための搬送ローラと、前記電極用ペーストに加熱された気体である熱風を吹き付けるためのノズルと、前記ノズルに熱風を供給するための給気ファンおよび給気ダクトと、前記給気ダクトの途中に配置される、前記ノズルに供給する気体を加熱するためのヒータと、前記ヒータの出力を調整するための制御装置と、前記電極用ペーストに吹き付けられた後の熱風を排気するための排気ファンおよび排気ダクトと、を備えた熱風乾燥炉による二次電池用電極の製造方法であって、前記ノズルの吹き出し位置である第一の位置における熱風の温度を第一の温度センサによって測定し、前記ノズルから吹き出された熱風の流れ方向において、前記第一の位置よりも下流側に位置する、前記ノズルから吹き出された熱風の流れ場である第二の位置における熱風の温度を第二の温度センサによって測定し、前記ノズルから吹き出された熱風の流れ方向において、前記第二の位置よりも下流側に位置する、前記ノズルから吹き出された熱風の流れ場である第三の位置における熱風の温度を第三の温度センサによって測定し、前記制御装置によって、前記第二の温度センサにより測定した熱風の温度と、前記第三の温度センサにより測定した熱風の温度と、に基づいて、前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量を算出し、前記第一の位置における熱風の設定温度に、算出した前記温度低下量を加算して、前記第一の位置における修正した熱風の設定温度を算出し、前記修正した熱風の設定温度と前記第一の温度センサにより測定した熱風の温度の差分に応じて、前記ヒータへの出力を調整するものである。
 また、第二の発明は、前記制御装置は、前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量と、前記第二の位置における熱風の温度および前記第三の位置における熱風の温度との相関を予め取得しておいた情報であるマップ情報を備え、前記第二の温度センサによる前記第二の位置における熱風の測定温度と、前記第三の温度センサによる前記第三の位置における熱風の測定温度と、に基づいて、前記マップ情報を用いて、前記第一の位置における熱風の温度低下量を算出するものである。
 また、第三の発明は、電極用ペーストが塗工された状態の電極箔をウェブ搬送するための搬送ローラと、前記電極用ペーストに吹き付ける加熱された気体である熱風を放出させるためのノズルと、前記ノズルに熱風を供給するための給気ファンおよび給気ダクトと、前記給気ダクトの途中に配置される、前記ノズルに供給する気体を昇温するためのヒータと、前記ヒータの出力を調整するための制御装置と、前記ノズルから放出された熱風を排気するための排気ファンおよび排気ダクトと、を備える熱風乾燥炉であって、前記制御装置には、前記ノズルの吹き出し位置である第一の位置における熱風の温度を検出するための第一の温度センサと、前記ノズルから放出された熱風の流れ方向において、前記第一の位置よりも下流側に位置する、前記ノズルから放出された熱風の流れ場である第二の位置における熱風の温度を検出するための第二の温度センサと、前記ノズルから放出された熱風の流れ方向において、前記第二の位置よりも下流側に位置する、前記ノズルから放出された熱風の流れ場である第三の位置における熱風の温度を検出するための第三の温度センサと、が接続されるとともに、前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量と、前記第二の位置における熱風の温度および前記第三の位置における熱風の温度との相関を予め取得しておいた情報であるマップ情報、が記憶され、前記制御装置は、前記第二の温度センサにより測定した熱風の温度と、前記第三の温度センサにより測定した熱風の温度と、に基づいて、前記マップ情報を用いて、前記第一の位置における熱風の温度低下量を算出するとともに、算出した前記第一の位置における熱風の温度低下量を前記第一の位置における熱風の設定温度に加算して、前記第一の位置における修正した熱風の設定温度を算出し、前記修正した熱風の設定温度と、前記第一の温度センサにより測定した熱風の温度と、の差分に基づいて、前記ヒータの出力を調整して、前記第一の位置における熱風の温度を制御するものである。
 本発明の効果として、以下に示すような効果を奏する。
 第一ないし第三の発明は、電極用ペーストを乾燥させるための熱風の風量を低減しつつ、熱風の温度が、ワークの許容上限温度を超えることを確実に防止することができる。
 これにより、空調負荷の低減を図って、二次電池の製造コストの低減を実現できる。
本発明の一実施形態に係る二次電池の製造方法の流れを示すフロー図。 本発明の第一の実施形態に係る二次電池用電極の製造装置(熱風乾燥炉)の全体構成を示す模式図。 本発明に第一の実施形態に係る熱風乾燥炉における熱風の流れを示す模式図、(a)斜視模式図、(b)ノズル回りの部分拡大模式図。 本発明の一実施形態に係る熱風乾燥炉に用いるマップ情報の一例。 熱風乾燥炉の制御フロー図、(a)本発明の一実施形態に係る熱風乾燥炉の場合、(b)従来の熱風乾燥炉の場合。 本発明の第二の実施形態に係る二次電池用電極の製造装置(熱風乾燥炉)の全体構成を示す模式図。 本発明に第二の実施形態に係る熱風乾燥炉における熱風の流れを示す模式図、(a)斜視模式図、(b)ノズル回りの部分拡大模式図。 本発明の一実施形態に係る熱風乾燥炉の適用効果を確認するための実験結果を示す図。
 次に、発明の実施の形態を説明する。
 まず始めに、二次電池の製造工程の概要について、図1を用いて説明をする。
 二次電池を製造するための各工程は、図1に示すような流れとなっている。
 即ち、二次電池は、電極用ペースト作成工程(Step-1)、塗工工程(Step-2)、乾燥工程(Step-3)、スリット工程(Step-4)、プレス工程(Step-5)、電極体製造工程(Step-6)、組み立て工程(Step-7)、初充電およびエージング工程(Step-8)等の各工程を経て、出荷(Step-9)される。
 電極用ペースト作成工程(Step-1)は、正極あるいは負極を製造するためのペースト(電極用ペーストと呼ぶ)を製造するための工程である。
 正極用の電極用ペーストは、例えば、正極活物質たるニッケルマンガンコバルト酸リチウム、導電材たるアセチレンブラック、結着材たるPVDFを溶媒(例えば、NMP)とともに混練し、さらに希釈等して生成される。
 また、負極用の電極用ペーストは、例えば、負極活物質たる黒鉛、増粘剤たるCMC、結着剤たるSBRを溶媒(例えば、水)とともに混練し、さらに希釈等して生成される。
 塗工工程(Step-2)は、電極用ペースト作成工程(Step-1)において生成された正極あるいは負極の電極用ペーストを電極箔の表面に塗工する工程であり、例えば、ダイコーター等の設備を用いて、電極箔の表面に所定の目付量で電極用ペーストを塗工する。
 乾燥工程(Step-3)は、電極箔の表面に塗工された電極用ペーストを乾燥させて合材層を形成する工程であり、より詳しくは、加熱によって電極用ペーストに含まれる溶媒(NMPや水等)を蒸発させて、合材層における溶媒の残留量を所定の規格値以下とするために行われる工程である。
 乾燥工程(STEP-3)は、本実施形態では熱風乾燥炉を用いて行われる。
 プレス工程(Step-4)は、乾燥工程(Step-3)を経て形成された合材層を電極箔ごとプレスして、合材層の密度を所定の密度にまで高めるための工程である。
 そして、スリット工程(Step-5)は、長さ方向に連続する電極箔および合材層を、電極体を構成するのに適した所定の長さおよび所定の幅で切断する工程である。
 そして、上記各工程(Step-1)~(Step-5)が二次電池用の電極(正極と負極)を製造するための工程(電極製造工程)となっており、ここで製造した正極および負極と、別途製造したセパレータを積層するとともに、その積層したものを巻回して電極体を製造する(Step-6)。
 次に、製造した電極体に端子を付設するとともに、該電極体を電解液とともにケースに封入して、二次電池が組み立てられる(Step-7)。
 そして、組み立てられた二次電池に初充電を施すとともに、所定のエージング処理等を施して(Step-8)、その後二次電池を出荷する(Step-9)構成としている。
 尚、二次電池の製造工程には、図1で示した(Step-1)~(Step-9)の他に、セパレータを製造するための工程やケースを製造するための工程等、その他種々の工程が存在しているが、説明の便宜上、ここではそれらの説明を省略している。
 そして、本発明の一実施形態に係る二次電池用電極の製造方法は、前述した電極製造工程のうちの乾燥工程(Step-3)に関する製造方法であり、本発明の一実施形態に係る熱風乾燥炉は、その乾燥工程(Step-3)において、その製造方法を実現するために用いられるものである。
 次に、本発明の第一の実施形態に係る熱風乾燥炉の全体構成について、図2から図5を用いて説明をする。
 図2に示す如く、本発明の第一の実施形態に係る熱風乾燥炉1は、二次電池用電極を製造する各工程のうち、乾燥工程(図1参照)において用いられる装置であって、炉本体2、複数の搬送ローラ3・3・・・、複数のノズル4・4・・・、制御装置5、複数の温度センサ7・8・9等を備える構成としている。
 そして、図3(a)に示す如く、熱風乾燥炉1に導入されるワークである電極箔6の表面には、該電極箔6の長さ方向に連続するように所定の幅で電極用ペースト6aが塗工されている。
 ノズル4は、図3(a)(b)に示すように、熱風乾燥炉1における電極箔6の搬送方向に対する上流側および下流側の2方向に熱風を放出することができる構造を有している。
 図2に示す如く、制御装置5は、熱風乾燥炉1に導入される電極箔6上の電極用ペースト6a(図3(a)参照)の乾燥状態を調整するために、ノズル4から放出される熱風の温度を制御するための装置である。
 また、制御装置5は、複数(3系統)の各温度センサ7・8・9と接続され、各温度センサ7・8・9による温度の測定結果が入力される構成としている。
 また、熱風乾燥炉1は、各ノズル4・4・・・に気体を供給するための給気設備11と、給気設備11により供給された気体を熱風乾燥炉1から排気するための排気設備12を備えている。
 そして、本実施形態では、各ノズル4・4・・・に供給する「気体」として空気(外気)を使用する構成としている。
 尚、熱風乾燥炉1において、各ノズル4・4・・・に供給する「気体」は、空気に限定されるものではなく、例えば、不活性ガス等の空気以外の「気体」を採用することも可能である。
 給気設備11は、給気ファン11aと給気ダクト11bを備えており、給気ダクト11bの途中に、熱風乾燥炉1に給気する気体(本実施形態では空気)を加熱するためのヒータ10を備えている。
 尚、以下では、給気設備11により供給される、ヒータ10によって加熱された気体(本実施形態では空気)のことを「熱風」と呼ぶものとする。
 そして、給気設備11の給気ダクト11bは、炉本体2の内部に設けた分岐ダクト13に接続しており、該分岐ダクト13によって、給気設備11より供給される熱風を各ノズル4・4・・・に分配する構成としている。
 また、排気設備12は、排気ファン12aと排気ダクト12bを備えており、炉本体2に接続され、炉本体2に供給された熱風を、排気ダクト12bを介して、炉本体2の外部に排気する構成としている。
 ヒータ10は、制御装置5と接続されており、制御装置5から出力する信号に応じて、ヒータ10の出力を調整することができる構成としている。
 さらに、給気ファン11aおよび排気ファン12aは、制御装置5と接続されており、制御装置5から出力する信号に応じて、各ファン11a・12aのファン回転数(より詳しくは、各ファン11a・12aが備える各インバータの設定周波数)を変更して、各ファン11a・12aの風量を調整することができる構成としている。
 即ち、複数の搬送ローラ3・3・・・によってウェブ搬送される電極箔6の表面には、塗工工程(Step-2)において電極用ペースト6aが塗工されており、炉本体2の内部を搬送ローラ3・3・・・によって搬送されながら、複数のノズル4・4・・・から放出される熱風が、電極箔6上の電極用ペースト6aに吹き付けられる構成としている。
 そして、熱風乾燥炉1では、ノズル4から吹き出される熱風の流れに沿う位置に、複数(本実施形態では3個)の温度センサ7・8・9を配置する構成としている。
 ここで、各温度センサ7・8・9の配置位置について、図3を用いて説明をする。
 図3(a)(b)に示す如く、ノズル4から放出された熱風は、電極箔6の表面(即ち、電極用ペースト6a)に沿って流れ、その後、その一部は、電極箔6の裏側に回り込むようにして流れ、その後、排気ダクト12bの接続方向に向けて流れるように構成されている。
 尚、電極箔6の表面(即ち、電極用ペースト6a)に沿って流れた熱風のその他の一部は、ノズル4に隣接する他のノズル4から放出された熱風と衝突して巻き上がるように流れるため、炉本体2の内部においては、熱風が乱流化している部位も存在している。
 熱風乾燥炉1では、炉本体1の内部の分岐ダクト13によって、熱風を複数の各ノズル4・4・・・に分配する構成としており、各ノズル4・4・・・のうち、ヒータ10からの流路長さがより短いノズル4において、より高温の熱風が出る。
 そして、熱風乾燥炉1では、ヒータ10からの流路長さが最も短いノズル4を選んで、そのノズル4から吹き出される熱風の流れに沿って、各温度センサ7・8・9を配置する構成としている。
 そして、このヒータ10からの流路長が最も短いノズル4から吹き出される熱風の温度を、所定の温度以下に調整することによって、熱風乾燥炉1全体における熱風の温度を、合材層の硬化が生じない温度未満に調整する構成としている。
 熱風乾燥炉1では、温度センサ7により温度を検出する対象たるノズル4以外の他のノズル4・4・・・では、そこから放出される熱風の温度は成り行きとなっている。
 複数の各温度センサ7・8・9のうち、第一の温度センサ7は、ノズル4直下、即ちノズル4の吹き出し口に位置する点Aに配置するものであり、温度センサ7によって、その点Aにおける熱風の温度Tを測定する構成としている。
 また、この点Aにおける熱風の狙い温度を設定温度Tと規定し、ノズル4から吹き出される熱風の温度が、点Aにおいて、設定温度Tに一致するように、制御装置5(図2参照)によって、ヒータ10(図2参照)への出力を調整する構成としている。
 この点Aにおける熱風の温度Tは、電極用ペースト6aの蒸発潜熱による影響を受けて、吹き出し直前の温度に比して低くなっている。
 具体的には、熱風乾燥炉1における点Aは、電極箔6の上方5mmの位置としており、点Aにおける熱風の設定温度T=150℃としている。
 即ち、ノズル4の下面における吹き出し位置の高さは、電極箔6の上方5mmの位置としている。
 また、第二の温度センサ8は、ノズル4から放出される熱風の流れ方向において、第一の温度センサ7を配置する点Aよりも下流に位置する点Bに配置するものであり、温度センサ8によって、その点Bにおける熱風の温度Tを測定する構成としている。
 また、点Bは、他のノズル4から放出される熱風等の影響により熱風の流れが乱流化している部分を避けて、各ノズル4・4から放出される熱風同士が衝突する部位よりも熱風の流れ方向における上流側の熱風が層流状に流れている位置選択するようにしている。
 点Bにおける熱風の温度Tは、熱風が電極箔6に沿って流れる間に点Aよりもさらに電極用ペースト6aの蒸発潜熱による影響を受けるため、温度Tに比して低くなっている。
 具体的には、熱風乾燥炉1における点Bは、点Aから熱風の流れ方向における下流側に向かって、熱風の流れ経路の長さが200mmとなる位置であって、電極箔6の上方10mmの位置としている。
 さらに、第三の温度センサ9は、ノズル4から放出される熱風の流れ方向において、第二の温度センサ8を配置する点Bよりも下流に位置する点Cに配置するものであり、温度センサ9によって、その点Cにおける熱風の温度Tを測定する構成としている。
 また、点Cは、他のノズル4から放出される熱風等の影響により熱風の流れが乱流化している部分を避けて、各ノズル4・4から放出される熱風が合流する部位よりも熱風の流れ方向における上流側の熱風が層流状に流れている位置を選択するようにしている。
 点Cにおける熱風の温度Tは、熱風が電極箔6に沿って流れる間に点Bよりもさらに電極用ペースト6aの蒸発潜熱による影響を受けるため、温度Tに比して低くなっている。
 具体的には、熱風乾燥炉1における点Cは、点Aから熱風の流れ方向における下流側に向かって、熱風の流れ経路の長さが500mmとなる位置であって、電極箔6の下方30mmの位置としている。
 ノズル4直下の点Aにおいては、電極用ペースト6aの蒸発潜熱による影響を受けて熱風温度が低下しているが、この温度低下量は微小であるため、点Aに配置した温度センサ7によって、この微小な温度低下を精度よく検出することが困難である。
 一方、温度Tおよび温度Tを測定する各点B・Cは、点Aに比して流路断面積が拡大されており、熱風の風速が低くなっているため、微小な温度変化を伴う温度Tに比して温度の測定を安定して行うことが可能であって、かつ、温度変化量も大きいことから、温度の検出精度を容易に確保することが可能である。
 このため、本発明の第一の実施形態に係る熱風乾燥炉1のように、点Aよりも熱風の流れ方向における下流の位置(点Bおよび点C)において検出した熱風の各温度TおよびTに基づいて、点Aにおける熱風の温度低下量dTを精度よく算出することによって、温度低下量dTの検出精度を向上させることができる。
 また、本発明の一実施形態に係る二次電池用電極の製造方法では、温度低下量dTは、点Aよりも下流の点Bおよび点Cにおける熱風の各温度(温度Tと温度T)の相関により求める構成としている。
 より詳しくは、本発明の一実施形態に係る二次電池用電極の製造方法では、温度Tおよび温度Tと、点Aにおける温度低下量dTの相関を、図4に示すようなマップ情報として予め実験等により知得しておく構成としている。
 そして、測定した、温度Tおよび温度Tから、マップ情報を用いて、温度低下量dTを算出する構成としている。
 例えば、図4に示すマップ情報によれば、点Bにおける熱風の温度Tが130℃であって、点Cにおける熱風の温度Tが120℃であるとき、点Aにおける温度低下量dT=18℃であると容易に算出することができる。
 そして、点Aにおける温度低下量dTが判ると、設定温度Tが現状のままでは、点Aにおける温度Tが、設定温度Tに比して18℃低くなってしまうことが判る。
 このため、本発明の一実施形態に係る二次電池用電極の製造方法では、設定温度Tに温度低下量dTを加算して、(T+18)℃を修正した設定温度TSnを設定する構成としている。
 これにより、溶媒の蒸発潜熱によって、熱風の温度が設定温度Tに比して低くなり、乾燥効率が低下することを防止する構成としている。
 また、マップ情報は、電極用ペースト6aの目付量や固形分率によって変化するため、二次電池用電極の製造に用いる電極用ペースト6aの仕様に応じて、異なったマップ情報を準備しておくのが好適である。
 尚、本実施形態では、温度Tおよび温度Tと、点Aにおける温度低下量dTの相関を表すマップ情報を予め知得しておき、このマップ情報を用いて温度低下量dTを算出する構成としているが、マップ情報を用いずに、温度Tおよび温度Tの測定結果から、直接演算を行って、温度低下量dTを算出する構成であってもよい。
 ここで、制御装置5によるヒータ10に対する出力の制御方法について、図5を用いて説明をする。
 例えば従来は、図5(b)に示すように、点Aにおける温度Tと設定温度の差分から直接制御量dTを算出していたが、温度Tは感度が鈍く、電極用ペースト6aの蒸発潜熱に起因する温度変化を精度よく検出できないため、ヒータ10の制御が安定しなかった。
 一方、本発明の一実施形態に係る二次電池の製造装置である熱風乾燥炉1では、図5(a)に示すように、制御装置5によって、点B、Cにおける各温度T、Tから、点Aにおける温度低下量dTを算出する構成としている。
 そして、算出した温度低下量dTを考慮して設定温度Tを修正して、修正した設定温度TSnを算出するとともに、修正した設定温度TSnと点Aにおける温度Tの差分から制御量dTを算出している。
 このような構成にすることで、電極用ペースト6aの蒸発潜熱に起因する温度変化量dTを考慮することができるため、ヒータ10の制御の応答性を向上させることが可能になる。
 さらに、本発明の一実施形態に係る二次電池の製造装置である熱風乾燥炉1では、制御装置5にマップ情報(図4参照)を予め記憶させておき、そのマップ情報を用いて算出した温度低下量dTに基づいて、設定温度Tを修正する構成としている。
 即ち、本発明の一実施形態に係る二次電池用電極の製造方法では、温度Tの設定温度Tに温度低下量dTを加算した値(T+dT)を、新たな設定温度TSnとして設定する構成としている。
 そして、この新たな設定温度TSnと、点Aにおける温度Tとの差分dTに基づいて、制御装置5(より詳しくは、制御装置5が備える指示調節計)によって、熱風を加熱するための手段たるヒータ10に対する出力を調整する構成としている。
 次に、本発明の第二の実施形態に係る二次電池用電極の製造装置の全体構成について、図6および図7を用いて説明をする。
 図6に示す如く、本発明の第二の実施形態に係る二次電池用電極の製造装置である熱風乾燥炉21は、二次電池用電極を製造する各工程のうち、乾燥工程(図1参照)において用いられる装置であって、炉本体2、複数の搬送ローラ3・3・・・、複数のノズル24・24・・・、制御装置5等を備える構成としている。
 即ち、第二の実施形態に係る熱風乾燥炉21は、第一の実施形態に係る熱風乾燥炉1に比して、備えているノズルの構成が相違しており、その他の構成については共通している。
 図7(a)(b)に示す如く、ノズル24は、電極箔6の搬送方向に対する上流側の1方向にのみ熱風を放出することができる構造を有している。
 図7(a)(b)に示す如く、ノズル24から放出された熱風は、電極箔6の表面(即ち、電極用ペースト6a)に沿って流れ、その後、その一部は、電極箔6の裏側に回り込むようにして流れ、その後、排気ダクト12bの接続方向に向けて流れるように構成されている。
 尚、電極箔6の表面(即ち、電極用ペースト6a)に沿って流れた熱風のその他の一部は、ノズル24に隣接する他のノズル24から放出された熱風と衝突して巻き上がるように流れるため、炉本体2の内部においては、熱風が乱流化している部位も存在している。
 熱風乾燥炉21では、ノズル24から1方向に熱風が放出されるため、ノズル24から放出された熱風が他のノズル24から放出された熱風と衝突するまでの距離が、熱風乾燥炉1に比して大きい。
 このため、熱風乾燥炉21では、ノズル24から放出された熱風が層流状態で流れている部位の範囲が、熱風乾燥炉1の場合に比して広くなり、特に点Aと点Bの距離を確保しやすくなるため、点Aにおける温度低下量dTをより精度よく算出できるという利点がある。
 次に、本発明の一実施形態に係る熱風乾燥炉の適用効果について、図8を用いて説明をする。
 図8には、従来の(風量の多い)熱風乾燥炉を用いた場合と、本発明の第一の実施形態に係る熱風乾燥炉1を用いた場合の、それぞれにおける乾燥後の合材層における溶媒の残留量を比較した実験結果を示している。
 この実験では、従来の熱風乾燥炉の風量を25m/minとし、本発明の第一の実施形態に係る熱風乾燥炉1の風量を22.5m/minとしている。
 即ち、本発明の第一の実施形態に係る熱風乾燥炉1は、従来の熱風乾燥炉に比して風量を10%低減している。
 さらに、ノズル4に形成された吹き出し口のスリット幅は5mmであり、ノズル4から吹き出される熱風の風速が22.5m/sとなるように、制御装置5によって、給気ファン11aおよび排気ファン11bの風量を調整する構成としている。
 また、ノズル4の配置個数は、6個としている。
 さらに、熱風乾燥炉1の炉長は6mであり、その内部における電極箔6の搬送速度を30m/minとして、乾燥時間を12秒としている。
 即ち、熱風乾燥炉1では、電極箔6が炉本体2に導入されてから、排出されるまでの時間を12秒に設定しており、この12秒の間に、電極用ペースト6aに含まれる溶媒の量を所定の規格値以下となるように乾燥させる構成としている。
 また、熱風乾燥炉1により乾燥させるワークの構成について説明すると、電極箔6は銅箔であって、電極用ペースト6aは、負極活物質たる黒鉛を主材として生成されるペーストを用いる構成としている。
 また、電極用ペースト6aの固形分率は50%とし、その目付量を8mg/cmとしている。
 また、従来の熱風乾燥炉と熱風乾燥炉1をそれぞれ用いてワークを乾燥させた後に、カールフィッシャー法で水分率(ppm)を算出して、溶媒(水)の残留量を評価するものとしている。
 また、従来の熱風乾燥炉と熱風乾燥炉1のそれぞれに対して、8個ずつ(合計16個)のサンプルを用意して、これらの各サンプルにおける水分率の測定結果を図8にまとめた。
 そして、図8に示す実験結果によれば、従来の熱風乾燥炉を用いた場合と、本発明の第一の実施形態に係る熱風乾燥炉1を用いた場合において、乾燥後の水分率の平均値およびばらつきには、有意差が認められなかった。
 即ち、図8に示す実験結果から、本発明の第一の実施形態に係る熱風乾燥炉1を用いれば、従来の熱風乾燥炉に比して10%の風量低下を実現しながら、従来の熱風乾燥炉を用いた場合と同等の乾燥効率を維持することが可能であることが確認できた。
 即ち、本発明の一実施形態に係る二次電池用電極の製造方法は、電極用ペースト6aが塗工された状態の電極箔6をウェブ搬送するための搬送ローラ3・3・・・と、電極用ペースト6aに吹き付ける加熱された気体(本実施形態では空気)である熱風を放出させるためのノズル4・4・・・あるいはノズル24・24・・・と、ノズル4あるいはノズル24に熱風を供給するための給気ファン11aおよび給気ダクト11bと、給気ダクト11bの途中に配置される、ノズル4あるいはノズル24に供給する空気を加熱するためのヒータ10と、ヒータ10の出力を調整するための制御装置5と、ノズル4あるいはノズル24から放出された熱風を排気するための排気ファン12aおよび排気ダクト12bと、を備える各熱風乾燥炉1・21による製造方法であって、ノズル4あるいはノズル24の吹き出し位置である第一の位置たる点Aにおける熱風の温度Tを第一の温度センサ7によって測定し、ノズル4あるいはノズル24から吹き出された熱風の流れ方向において、点Aよりも下流側に位置する、ノズル4あるいはノズル24から吹き出された熱風の流れ場である第二の位置たる点Bにおける熱風の温度Tを第二の温度センサ8によって測定し、ノズル4あるいはノズル24から吹き出された熱風の流れ方向において、点Bよりも下流側に位置する、ノズル4あるいはノズル24から吹き出された熱風の流れ場である第三の位置たる点Cにおける熱風の温度Tを第三の温度センサ9によって測定し、制御装置5によって、第二の温度センサ8により測定した温度Tと、第三の温度センサ9により測定した温度Tと、に基づいて、電極用ペースト6aの蒸発潜熱に起因する点Aにおける熱風の温度低下量dTを算出し、点Aにおける熱風の設定温度Tに、算出した温度低下量dTを加算して、点Aにおける修正した熱風の設定温度TSnを算出し、修正した熱風の設定温度TSnと第一の温度センサ7により測定した温度Tの差分dTに応じて、ヒータ10への出力を調整するものである。
 また、本発明の一実施形態に係る二次電池用電極の製造方法において、制御装置5は、電極用ペースト6aの蒸発潜熱に起因する点Aにおける熱風の温度低下量dTと、点Bにおける熱風の温度Tおよび点Cにおける熱風の温度Tとの相関を予め取得しておいた情報であるマップ情報を備え、第二の温度センサ8により測定した温度Tと、第三の温度センサ9により測定した温度Tと、に基づいて、マップ情報を用いて、点Aにおける熱風の温度低下量dTを算出するものである。
 さらに、本発明の一実施形態に係る各熱風乾燥炉1・21は、電極用ペースト6aが塗工された状態の電極箔6をウェブ搬送するための搬送ローラ3・3・・・と、電極用ペースト6aに吹き付ける加熱された気体(本実施形態では空気)である熱風を放出させるためのノズル4・4・・・あるいはノズル24・24・・・と、ノズル4あるいはノズル24に熱風を供給するための給気ファン11aおよび給気ダクト11bと、給気ダクト11bの途中に配置される、ノズル4あるいはノズル24に供給する空気を昇温するためのヒータ10と、ヒータ10の出力を調整するための制御装置5と、ノズル4あるいはノズル24から放出された熱風を排気するための排気ファン12aおよび排気ダクト12bと、を備えるものであって、制御装置5には、ノズル4あるいはノズル24の吹き出し位置である第一の位置たる点Aにおける熱風の温度Tを検出するための第一の温度センサ7と、ノズル4あるいはノズル24から放出された熱風の流れ方向において、点Aよりも下流側に位置する、ノズル4あるいはノズル24から放出された熱風の流れ場である第二の位置たる点Bにおける熱風の温度Tを検出するための第二の温度センサ8と、ノズル4あるいはノズル24から放出された熱風の流れ方向において、点Bよりも下流側に位置する、ノズル4あるいはノズル24から放出された熱風の流れ場である第三の位置たる点Cにおける熱風の温度Tを検出するための第三の温度センサ9と、が接続されるとともに、電極用ペースト6aの蒸発潜熱に起因する点Aにおける熱風の温度低下量dTと、点Bにおける熱風の温度Tおよび点Cにおける熱風の温度Tとの相関を予め取得しておいた情報であるマップ情報、が記憶され、制御装置5は、第二の温度センサ8により測定した温度Tと、第三の温度センサ9により測定した温度Tと、に基づいて、マップ情報を用いて、点Aにおける熱風の温度低下量dTを算出するとともに、算出した点Aにおける熱風の温度低下量dTを点Aにおける熱風の設定温度Tに加算して、点Aにおける修正した熱風の設定温度TSnを算出し、修正した熱風の設定温度TSnと、第一の温度センサ7により測定した温度Tと、の差分に基づいて、ヒータ10の出力を調整して、点Aにおける熱風の温度Tを制御するものである。
 このような構成により、熱風の風量を低減しつつ、熱風の温度Tが、ワーク(本実施形態では、電極用ペースト6a)の許容上限温度を超えることを確実に防止することができる。
 またこれにより、空調負荷の低減を図って、二次電池の製造コストの低減を実現できる。
 本発明は、二次電池を製造するために用いる熱風乾燥炉のみならず、膜状に塗工したペーストを乾燥させる工程に用いる熱風乾燥炉に広く適用することが可能であり、例えば、半導体部品等を製造するための技術として応用することが可能である。
 1   熱風乾燥炉(第一の実施形態)
 4   ノズル(第一の実施形態)
 5   制御装置
 6   電極箔
 6a  電極用ペースト
 7   温度センサ
 8   温度センサ
 9   温度センサ
 10  ヒータ
 11a 給気ファン
 11b 給気ダクト
 21  熱風乾燥炉(第二の実施形態)
 24  ノズル(第二の実施形態)

Claims (3)

  1.  電極用ペーストが塗工された電極箔を搬送するための搬送ローラと、
     前記電極用ペーストに加熱された気体である熱風を吹き付けるためのノズルと、
     前記ノズルに熱風を供給するための給気ファンおよび給気ダクトと、
     前記給気ダクトの途中に配置される、前記ノズルに供給する気体を加熱するためのヒータと、
     前記ヒータの出力を調整するための制御装置と、
     前記電極用ペーストに吹き付けられた後の熱風を排気するための排気ファンおよび排気ダクトと、
     を備えた熱風乾燥炉による二次電池用電極の製造方法であって、
     前記ノズルの吹き出し位置である第一の位置における熱風の温度を第一の温度センサによって測定し、
     前記ノズルから吹き出された熱風の流れ方向において、前記第一の位置よりも下流側に位置する、前記ノズルから吹き出された熱風の流れ場である第二の位置における熱風の温度を第二の温度センサによって測定し、
     前記ノズルから吹き出された熱風の流れ方向において、前記第二の位置よりも下流側に位置する、前記ノズルから吹き出された熱風の流れ場である第三の位置における熱風の温度を第三の温度センサによって測定し、
     前記制御装置によって、
     前記第二の温度センサにより測定した熱風の温度と、
     前記第三の温度センサにより測定した熱風の温度と、に基づいて、
     前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量を算出し、
     前記第一の位置における熱風の設定温度に、算出した前記温度低下量を加算して、前記第一の位置における修正した熱風の設定温度を算出し、
     前記修正した熱風の設定温度と前記第一の温度センサにより測定した熱風の温度の差分に応じて、
     前記ヒータへの出力を調整する、
     ことを特徴とする二次電池用電極の製造方法。
  2.  前記制御装置は、
     前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量と、前記第二の位置における熱風の温度および前記第三の位置における熱風の温度との相関を予め取得しておいた情報であるマップ情報を備え、
     前記第二の温度センサによる前記第二の位置における熱風の測定温度と、
     前記第三の温度センサによる前記第三の位置における熱風の測定温度と、に基づいて、
     前記マップ情報を用いて、
     前記第一の位置における熱風の温度低下量を算出する、
     ことを特徴とする請求項1に記載の二次電池用電極の製造方法。
  3.  電極用ペーストが塗工された状態の電極箔をウェブ搬送するための搬送ローラと、
     前記電極用ペーストに吹き付ける加熱された気体である熱風を放出させるためのノズルと、
     前記ノズルに熱風を供給するための給気ファンおよび給気ダクトと、
     前記給気ダクトの途中に配置される、前記ノズルに供給する気体を昇温するためのヒータと、
     前記ヒータの出力を調整するための制御装置と、
     前記ノズルから放出された熱風を排気するための排気ファンおよび排気ダクトと、
     を備える熱風乾燥炉であって、
     前記制御装置には、
     前記ノズルの吹き出し位置である第一の位置における熱風の温度を検出するための第一の温度センサと、
     前記ノズルから放出された熱風の流れ方向において、前記第一の位置よりも下流側に位置する、前記ノズルから放出された熱風の流れ場である第二の位置における熱風の温度を検出するための第二の温度センサと、
     前記ノズルから放出された熱風の流れ方向において、前記第二の位置よりも下流側に位置する、前記ノズルから放出された熱風の流れ場である第三の位置における熱風の温度を検出するための第三の温度センサと、
     が接続されるとともに、
     前記電極用ペーストの蒸発潜熱に起因する前記第一の位置における熱風の温度低下量と、前記第二の位置における熱風の温度および前記第三の位置における熱風の温度との相関を予め取得しておいた情報であるマップ情報、が記憶され、
     前記制御装置は、
     前記第二の温度センサにより測定した熱風の温度と、
     前記第三の温度センサにより測定した熱風の温度と、
     に基づいて、
     前記マップ情報を用いて、前記第一の位置における熱風の温度低下量を算出するとともに、
     算出した前記第一の位置における熱風の温度低下量を前記第一の位置における熱風の設定温度に加算して、前記第一の位置における修正した熱風の設定温度を算出し、
     前記修正した熱風の設定温度と、前記第一の温度センサにより測定した熱風の温度と、の差分に基づいて、前記ヒータの出力を調整して、
     前記第一の位置における熱風の温度を制御する、
     ことを特徴とする熱風乾燥炉。
PCT/JP2012/074584 2012-09-25 2012-09-25 二次電池用電極の製造方法および熱風乾燥炉 WO2014049692A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014537873A JP5954599B2 (ja) 2012-09-25 2012-09-25 二次電池用電極の製造方法および熱風乾燥炉
US14/430,572 US10276857B2 (en) 2012-09-25 2012-09-25 Method of manufacturing electrode for secondary battery and hot-gas drying furnace
KR1020157009670A KR101867659B1 (ko) 2012-09-25 2012-09-25 2차 전지용 전극의 제조 방법 및 열풍 건조로
CN201280075964.1A CN104662711B (zh) 2012-09-25 2012-09-25 二次电池用电极的制造方法和热风干燥炉
PCT/JP2012/074584 WO2014049692A1 (ja) 2012-09-25 2012-09-25 二次電池用電極の製造方法および熱風乾燥炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074584 WO2014049692A1 (ja) 2012-09-25 2012-09-25 二次電池用電極の製造方法および熱風乾燥炉

Publications (1)

Publication Number Publication Date
WO2014049692A1 true WO2014049692A1 (ja) 2014-04-03

Family

ID=50387160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074584 WO2014049692A1 (ja) 2012-09-25 2012-09-25 二次電池用電極の製造方法および熱風乾燥炉

Country Status (5)

Country Link
US (1) US10276857B2 (ja)
JP (1) JP5954599B2 (ja)
KR (1) KR101867659B1 (ja)
CN (1) CN104662711B (ja)
WO (1) WO2014049692A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737717A (zh) * 2018-12-21 2019-05-10 浙江协和陶瓷有限公司 一种冷轧钢板快速烘干系统及烘干方法
JP2021190368A (ja) * 2020-06-03 2021-12-13 トヨタ自動車株式会社 電極板乾燥装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052083B2 (ja) * 2013-07-12 2016-12-27 トヨタ自動車株式会社 乾燥装置、乾燥方法、及び電池の製造方法
KR20150034973A (ko) * 2013-09-27 2015-04-06 제일모직주식회사 건조장치 및 건조방법
JP6444082B2 (ja) * 2014-07-23 2018-12-26 日本発條株式会社 スタビライザ製造装置およびその方法
US10403880B2 (en) * 2015-09-11 2019-09-03 Iftikhar Ahmad Apparatus and method for processing battery electrodes
KR102003704B1 (ko) * 2015-10-08 2019-07-25 주식회사 엘지화학 특정 방향에서 진공을 인가하여 전극 슬러리를 건조하는 과정을 포함하는 이차전지용 전극을 제조하는 방법
KR102170893B1 (ko) * 2016-02-12 2020-10-28 주식회사 엘지화학 이차전지 제조용 전극 건조 오븐
KR102075098B1 (ko) 2017-01-03 2020-02-07 주식회사 엘지화학 스크레치 테스터를 구비하는 이차전지용 전극 제조 시스템
CN107576177B (zh) * 2017-08-30 2019-11-26 骆雅雅 一种皮革纤维烘干装置
CN109910431B (zh) * 2019-03-05 2020-11-20 西安理工大学 一种不同油墨下单片机控制的风嘴可调的烘干装置
JP7241576B2 (ja) 2019-03-13 2023-03-17 株式会社Screenホールディングス ウェブ乾燥装置およびウェブ乾燥方法
US11837709B2 (en) * 2019-12-09 2023-12-05 Lg Energy Solution, Ltd. Manufacturing apparatus of electrode for secondary battery comprising heating part and manufacturing method of electrode for secondary battery comprising heating process, for heating electrode current collector before coating with electrode active material slurry
KR20210128721A (ko) 2020-04-17 2021-10-27 에스케이이노베이션 주식회사 이차전지 전극 극판 과건조 불량 개선을 위한 플렉시블 급기 댐퍼링 시스템
KR20220005110A (ko) * 2020-07-06 2022-01-13 에스케이이노베이션 주식회사 이차전지 전극 극판 건조 방법 및 건조 시스템
CN112269414B (zh) * 2020-09-16 2021-09-14 浙江中科玖源新材料有限公司 一种聚酰亚胺薄膜固化装置的气体温度控制系统和方法
KR20220067839A (ko) * 2020-11-18 2022-05-25 주식회사 엘지에너지솔루션 유량 분배용 가림막을 포함하는 전극 기재 건조 설비 및 방법
EP4297115A1 (en) * 2021-07-26 2023-12-27 LG Energy Solution, Ltd. Electrode drying apparatus, electrode manufacturing system comprising same, method for manufacturing electrode, and electrode manufactured thereby
KR20230055873A (ko) 2021-10-19 2023-04-26 주식회사 엘지에너지솔루션 전극 건조 장치
KR20230160562A (ko) 2022-05-17 2023-11-24 주식회사 엘지에너지솔루션 전극 시트 건조 장치 및 이를 이용한 전극 제조 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195281U (ja) * 1987-12-16 1989-06-23
JPH0566087A (ja) * 1991-09-06 1993-03-19 Iseki & Co Ltd 穀粒乾燥機の燃焼制御方式
JP2010155203A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 塗布膜の乾燥方法及び装置
JP2010185649A (ja) * 2009-01-15 2010-08-26 Omron Corp 熱風供給装置および熱風供給方法
JP2011080718A (ja) * 2009-10-09 2011-04-21 Panasonic Corp 塗布膜の乾燥方法と乾燥装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2039206A1 (de) * 1970-08-06 1972-02-10 Agfa Gevaert Ag Filmtrockner
JP3881272B2 (ja) 2002-03-29 2007-02-14 富士フイルムホールディングス株式会社 加熱乾燥装置
JP3953911B2 (ja) 2002-08-08 2007-08-08 松下電器産業株式会社 塗膜シートの製造方法
JP4440044B2 (ja) * 2004-08-31 2010-03-24 津田駒工業株式会社 熱風乾燥装置の温度制御方法及び熱風乾燥装置
JP2007204871A (ja) * 2006-02-01 2007-08-16 Tsudakoma Corp 経糸糊付装置に用いられる熱風乾燥装置の温度制御方法。
EP1967803B1 (en) * 2006-05-18 2016-09-28 FUJIFILM Corporation Method for drying a coated film
JP5272564B2 (ja) * 2008-08-04 2013-08-28 日産自動車株式会社 電極材乾燥方法および電極材乾燥装置
JP2010163634A (ja) * 2009-01-13 2010-07-29 Chugai Ro Co Ltd ストリップ材処理装置
JP2010203751A (ja) 2009-03-06 2010-09-16 Toppan Printing Co Ltd 塗膜の乾燥方法及び乾燥装置
JP5180133B2 (ja) * 2009-03-31 2013-04-10 富士フイルム株式会社 塗布方法、塗布装置、及び平版印刷版の製造方法
JP4795474B2 (ja) 2010-03-19 2011-10-19 気高電機株式会社 乾燥装置
KR101191627B1 (ko) * 2010-11-26 2012-10-17 삼성에스디아이 주식회사 이차전지의 전극판 건조장치 및 그 제어방법
JP5929190B2 (ja) * 2011-12-28 2016-06-01 日産自動車株式会社 電極乾燥方法および電極乾燥装置
JP5768744B2 (ja) * 2012-03-08 2015-08-26 トヨタ自動車株式会社 乾燥装置,溶剤回収装置,溶剤回収システム,溶剤蒸気量信号の出力方法,および溶剤回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195281U (ja) * 1987-12-16 1989-06-23
JPH0566087A (ja) * 1991-09-06 1993-03-19 Iseki & Co Ltd 穀粒乾燥機の燃焼制御方式
JP2010155203A (ja) * 2008-12-26 2010-07-15 Fujifilm Corp 塗布膜の乾燥方法及び装置
JP2010185649A (ja) * 2009-01-15 2010-08-26 Omron Corp 熱風供給装置および熱風供給方法
JP2011080718A (ja) * 2009-10-09 2011-04-21 Panasonic Corp 塗布膜の乾燥方法と乾燥装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737717A (zh) * 2018-12-21 2019-05-10 浙江协和陶瓷有限公司 一种冷轧钢板快速烘干系统及烘干方法
JP2021190368A (ja) * 2020-06-03 2021-12-13 トヨタ自動車株式会社 電極板乾燥装置
US11788789B2 (en) 2020-06-03 2023-10-17 Toyota Jidosha Kabushiki Kaisha Electrode sheet drying apparatus
JP7396207B2 (ja) 2020-06-03 2023-12-12 トヨタ自動車株式会社 電極板乾燥装置

Also Published As

Publication number Publication date
CN104662711B (zh) 2017-04-05
JP5954599B2 (ja) 2016-07-20
US20150255780A1 (en) 2015-09-10
CN104662711A (zh) 2015-05-27
KR20150058351A (ko) 2015-05-28
KR101867659B1 (ko) 2018-06-15
JPWO2014049692A1 (ja) 2016-08-22
US10276857B2 (en) 2019-04-30

Similar Documents

Publication Publication Date Title
JP5954599B2 (ja) 二次電池用電極の製造方法および熱風乾燥炉
KR101467640B1 (ko) 전극 건조 방법 및 전극 건조 장치
JP5655769B2 (ja) 電極の製造方法
KR101550487B1 (ko) 전극 건조 방법 및 전극 건조 장치
WO2014103786A1 (ja) 電池用電極塗膜の乾燥方法及び乾燥炉
KR101475429B1 (ko) 이차전지 제조용 전극 건조 오븐 자동 급기 유량 제어 장치
JP2008103098A (ja) 非水電解液二次電池用電極板の製造方法およびその製造装置
CN103168379B (zh) 涂敷装置以及涂敷膜形成系统
JP4904782B2 (ja) 電極板の製造方法およびその製造装置
US20120295037A1 (en) Method for manufacturing electrodes
JP6011478B2 (ja) 電池用電極板の製造装置及び電池用電極板の製造方法
JP5581850B2 (ja) 電池の製造方法および電極製造装置
KR101931018B1 (ko) 전극의 제조 방법 및 전극의 제조 장치
JP5751235B2 (ja) 電池用電極の製造方法及び装置
KR20150131561A (ko) 전극판 건조 장치 및 전극판 건조 방법
JP2014127438A (ja) 電極の製造方法及び乾燥装置
CN106000768A (zh) 涂布装置、涂布方法及涂膜形成系统
JP2013089573A (ja) 電極、電極製造装置及び電極製造方法
JP6417810B2 (ja) 乾燥装置及び電極の製造方法
JP2022080610A (ja) 電極の製造方法および電極ペースト塗工装置
JP6036358B2 (ja) 電極の製造装置、及び電極の製造方法
CN215235620U (zh) 干燥装置
JP2014143099A (ja) 電極の製造方法、及び電極の製造装置
JP2011096458A (ja) 電池の製造方法
KR20150131562A (ko) 전극판 건조 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014537873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14430572

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009670

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12885432

Country of ref document: EP

Kind code of ref document: A1