以下、実施形態を図面に基づいて説明する。なお、図面は、各実施形態について、共通する箇所には共通の符号が付されており、本明細書では、重複する説明が省略されている。また、一の実施形態において記載されている事項は、適宜、他の実施形態についても適用することができる。さらに、図面は、概念図であり、細部構造の寸法まで規定するものではない。
<第一実施形態>
図1に示すように、回転電機10は、固定子20と、可動子30とを具備している。固定子20は、固定子鉄心21と、固定子巻線22とを備えている。固定子鉄心21には、複数(本実施形態では、60個)のスロット21cが形成されており、複数(60個)のスロット21cには、固定子巻線22が挿通されている。なお、本実施形態では、固定子巻線22は、三相の固定子巻線である。
可動子30は、固定子20に対して移動可能に支持されており、可動子鉄心31と、可動子鉄心31に設けられている少なくとも一対の可動子磁極32a,32b(本実施形態では、四組の一対の可動子磁極32a,32b)とを備えている。このように、本実施形態の回転電機10は、8極60スロット構成の回転電機(可動子30の磁極数が2極、固定子20のスロット数が15スロットを基本構成とする回転電機)であり、毎極毎相スロット数は2.5である。つまり、本実施形態の回転電機10は、毎極毎相スロット数が整数でない分数スロット構成の回転電機である。
ここで、毎極毎相スロット数を帯分数で表したときの整数部分を整数部aとする。また、帯分数の真分数部分を既約分数で表したときの分子部分を分子部b、分母部分を分母部cとする。なお、整数部aは、0(ゼロ)または正の整数とし、分子部bおよび分母部cは、いずれも正の整数とする。また、三相の回転電機10では、分母部cは、2以上、かつ、3の倍数でない整数とする。本実施形態では、毎極毎相スロット数が2.5であり、整数部aは2、分子部bは1、分母部cは2である。また、本明細書では、毎極毎相スロット数の分子部bおよび分母部cを用いて、b/c系列の回転電機10と表記する。本実施形態の回転電機10は、1/2系列の回転電機10である。なお、本明細書で記載されている事項は、分母部cが同じ場合、分子部bの値に関わらず適用することができる。そのため、本明細書では、b/c系列の回転電機10を集約して、1/c系列の回転電機10と総称する。
さらに、固定子20に対する可動子30の移動方向を第一方向(矢印X方向)とする。また、固定子20と可動子30の対向方向を第二方向(矢印Y方向)とする。さらに、第二方向(矢印Y方向)のうちの固定子20側から可動子30側に向かう方向を第二方向可動子側(矢印Y1方向)とする。また、第二方向(矢印Y方向)のうちの可動子30側から固定子20側に向かう方向を第二方向固定子側(矢印Y2方向)とする。さらに、第一方向(矢印X方向)および第二方向(矢印Y方向)のいずれの方向に対しても直交する方向を第三方向(矢印Z方向)とする。
図1に示すように、本実施形態の回転電機10は、固定子20および可動子30が同軸に配されるラジアル空隙型の円筒状回転電機である。よって、第一方向(矢印X方向)は、回転電機10の周方向に相当し、固定子20に対する可動子30の回転方向に相当する。また、第二方向(矢印Y方向)は、回転電機10の径方向に相当する。さらに、第三方向(矢印Z方向)は、回転電機10の軸線方向に相当する。
固定子鉄心21は、例えば、電磁鋼板21xが第三方向(矢印Z方向)に複数積層されて形成されている。複数の電磁鋼板21xは、例えば、ケイ素鋼板を用いることができ、複数の電磁鋼板21xの各々は、薄板状に形成されている。固定子鉄心21は、ヨーク部21aと、ヨーク部21aと一体に形成されている複数(本実施形態では、60個)のティース部21bとを備えている。
ヨーク部21aは、第一方向(矢印X方向)に沿って形成されている。複数(60個)のティース部21bは、ヨーク部21aから第二方向可動子側(矢印Y1方向)に突出するように形成されている。また、第一方向(矢印X方向)に隣接するティース部21b,21bによって、スロット21cが形成されており、複数(60個)のスロット21cには、固定子巻線22が挿通されている。さらに、複数(60個)のティース部21bの各々は、ティース先端部21dを備えている。ティース先端部21dは、ティース部21bの第二方向可動子側(矢印Y1方向)の先端部をいい、第一方向(矢印X方向)に幅広に形成されている。
固定子巻線22は、例えば、銅などの導体表面がエナメルなどの絶縁層で被覆されている。固定子巻線22の断面形状は、特に限定されるものではなく、任意の断面形状とすることができる。例えば、断面円形状の丸線、断面多角形状の角線などの種々の断面形状の巻線を用いることができる。また、複数のより細い巻線素線を組み合わせた並列細線を用いることもできる。並列細線を用いる場合、単線の場合と比べて固定子巻線22に発生する渦電流損を低減することができ、回転電機10の効率が向上する。また、巻線成形に要する力を低減することができるので、成形性が向上して製作が容易になる。
固定子巻線22は、分数スロット構成の固定子20に巻装可能であれば良く、巻装方式は限定されない。固定子巻線22は、例えば、二層重巻、波巻、同心巻によって巻装することができる。また、図2に示すように、固定子巻線22は、第二方向(矢印Y方向)において、二層に形成することができる。
図2は、図1に示す回転電機10の二磁極分(一磁極対分)の相配置の一例を示している。本実施形態の回転電機10は、三相機であり、固定子巻線22は、U相(第一相)巻線と、V相(第二相)巻線と、W相(第三相)巻線とを備えている。U相巻線、V相巻線およびW相巻線は、電気角で120°ずつ位相がずれている。U相巻線、V相巻線およびW相巻線は、この順に位相が遅れているものとする。また、U相巻線は、U1相巻線、U2相巻線、U3相巻線、U4相巻線およびU5相巻線を備えている。U1相巻線、U2相巻線およびU3相巻線は、第一方向(矢印X方向)に1スロットピッチずつ、ずらされて配置されている。U4相巻線およびU5相巻線は、第一方向(矢印X方向)に1スロットピッチ、ずらされて配置されている。U3相巻線とU4相巻線との間は、第一方向(矢印X方向)に6スロットピッチ、ずらされて配置されている。このように、U1相巻線、U2相巻線、U3相巻線、U4相巻線およびU5相巻線は、同相(U相)ではあるが、固定子20上の配置が異なる。
また、同図では、固定子巻線22の通電方向は、アスタリスクの有無で表されている。具体的には、アスタリスクが付されている相(例えば、U1*)は、アスタリスクが付されていない相(例えば、U1)に対して、固定子巻線22の通電方向が逆方向に設定される。U相巻線について上述したことは、V相巻線およびW相巻線についても同様に言える。本実施形態の回転電機10は、毎極毎相スロット数が2.5である。そのため、第一方向(矢印X方向)に隣接する同相の数は、各層で、2と3とが交互に繰り返される。
このように、本実施形態では、固定子巻線22は、分布巻で巻装されている。分布巻では、固定子巻線22の巻線ピッチが、1スロットピッチより大きく設定され、複数磁極に亘って巻装される。分布巻では、既述した毎極毎相スロット数の整数部aは、1以上の正の整数(本実施形態では、2)になる。また、三相の固定子巻線22は、Y結線で電気的に接続されている。なお、固定子巻線22は、集中巻で巻装することもできる。集中巻では、固定子巻線22の巻線ピッチが、1スロットピッチ分に設定され、一磁極において巻装される。集中巻では、毎極毎相スロット数の整数部aは、0(ゼロ)になる。また、三相の固定子巻線22は、Δ結線で電気的に接続することもできる。さらに、固定子巻線22の相数は、限定されない。
可動子鉄心31は、例えば、電磁鋼板31xが第三方向(矢印Z方向)に複数積層されて形成されている。複数の電磁鋼板31xは、例えば、ケイ素鋼板を用いることができ、複数の電磁鋼板31xの各々は、薄板状に形成されている。本実施形態の回転電機10は、円筒状回転電機であり、可動子鉄心31は、円柱状に形成されている。また、可動子鉄心31には、第一方向(矢印X方向)に沿って複数の磁石収容部(図示略)が設けられている。
複数の磁石収容部には、所定磁極数分(本実施形態では四磁極対分)の永久磁石(四組の一対の可動子磁極32a,32b)が埋設されており、永久磁石と固定子20に発生する回転磁界とによって、可動子30が移動可能(回転可能)になっている。本明細書では、一対の可動子磁極32a,32bのうちの一方の極性(例えば、N極)を備える可動子磁極を可動子磁極32aで示し、一対の可動子磁極32a,32bのうちの他方の極性(例えば、S極)を備える可動子磁極を可動子磁極32bで示している。
永久磁石は、例えば、公知のフェライト系磁石や希土類系磁石を用いることができる。また、永久磁石の製法は、限定されない。永久磁石は、例えば、樹脂ボンド磁石や焼結磁石を用いることができる。樹脂ボンド磁石は、例えば、フェライト系の原料磁石粉末と樹脂などを混合して、射出成形などによって可動子鉄心31に鋳込み形成される。焼結磁石は、例えば、希土類系の原料磁石粉末を磁界中で加圧成形して、高温で焼き固めて形成される。なお、可動子30は、表面磁石形にすることもできる。表面磁石形の可動子30は、固定子鉄心21の各ティース先端部21dと対向する可動子鉄心31の表面(外側表面)に永久磁石が設けられる。
本実施形態では、可動子30は、固定子20の内方(回転電機10の軸心側)に設けられており、固定子20に対して移動可能(回転可能)に支持されている。具体的には、可動子鉄心31には、シャフト(図示略)が設けられており、シャフトは、可動子鉄心31の軸心を第三方向(矢印Z方向)に貫通している。シャフトの第三方向(矢印Z方向)の両端部は、軸受部材(図示略)によって、回転可能に支持されている。これにより、可動子30は、固定子20に対して、移動可能(回転可能)になっている。
図3は、参考形態に係り、複数のティース部21bと、一対の可動子磁極32a,32bとの間の磁極対向状態の一例を示している。同図では、円環状の固定子鉄心21が直線状に展開されて図示されており、第三方向(矢印Z方向)視の固定子鉄心21が示されている。なお、同図では、ヨーク部21aおよび固定子巻線22は、図示が省略されており、各ティース部21bには、固定子鉄心21に形成される固定子磁極の識別番号(以下、固定子磁極番号という。)が付されている。本明細書では、説明の便宜上、固定子磁極番号60と固定子磁極番号1との間のスロット21c(スロット番号0とする。)の中央位置を一対の可動子磁極32a,32bの位置基準(位置座標0)としている。
また、同図では、円弧状に配置されている一対の可動子磁極32a,32bが直線状に展開されて図示されており、第三方向(矢印Z方向)視の一対の可動子磁極32a,32bが示されている。同図では、一対の可動子磁極32a,32bが一組、図示されており、他の三組の一対の可動子磁極32a,32bは、図示が省略されている。また、一対の可動子磁極32a,32b内の矢印は、既述した一対の可動子磁極32a,32bの極性(N極およびS極)の相違を示している。上述した図3の記載方法については、概ね、後述する同様の図面についても言える。但し、特記する場合の他、例えば、一対の可動子磁極32a,32bは、二組、図示する場合がある。また、記載スペースの都合上、一対の可動子磁極32a,32bの各磁極中心位置および各両端部位置は、括弧内の数値のみで示す場合がある。
図3に示すように、可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの一方の端部32a1(位置座標0)は、スロット21cの中央位置に対向している。これに対して、可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの他方の端部32a2(位置座標7.5)は、ティース部21bの中央位置に対向している。そのため、可動子磁極32aの磁極中心位置32a3(位置座標3.75)は、ティース部21bの磁極中心位置(固定子磁極番号4のティース部21b)に対して、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれて配設されている。
その結果、複数のティース部21bに作用する第二方向(矢印Y方向)の電磁気的な吸引力分布(以下、「複数のティース部21bに作用する吸引力分布」ともいい、単に「吸引力分布」ともいう。)は、図4の棒グラフで表される分布となる。図4は、参考形態に係り、複数のティース部21bに作用する第二方向(矢印Y方向)の電磁気的な吸引力分布の一例を示している。参考形態の回転電機は、可動子30が後述する連続スキュー部位42を具備していない点で、本実施形態の回転電機10と異なる。
複数のティース部21bに作用する吸引力分布は、例えば、磁界解析によって取得することができる。このことは、後述する実施形態の吸引力分布についても同様に言える。実線L11は、棒グラフで表された固定子磁極毎の吸引力分布を直線で近似した近似直線を示している。同図に示すように、可動子磁極32aの吸引力分布のピーク値は、固定子磁極の磁極中心位置(固定子磁極番号4のティース部21b)に対して、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれている。このような吸引力分布が生じる磁極対向状態を磁極対向状態M10とする。
一方、図3に示す可動子磁極32bの第一方向(矢印X方向)の両端部32b1,32b2のうちの一方の端部32b1(位置座標7.5)は、ティース部21bの中央位置に対向している。これに対して、可動子磁極32bの第一方向(矢印X方向)の両端部32b1,32b2のうちの他方の端部32b2(位置座標15)は、スロット21cの中央位置に対向している。そのため、可動子磁極32bの磁極中心位置32b3(位置座標11.25)は、ティース部21bの磁極中心位置(固定子磁極番号12のティース部21b)に対して、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずれて配設されている。
その結果、複数のティース部21bに作用する吸引力分布は、図4の棒グラフで表される分布になる。実線L12は、棒グラフで表された固定子磁極毎の吸引力分布を直線で近似した近似直線を示している。同図に示すように、可動子磁極32bの吸引力分布のピーク値は、概ね、固定子磁極の磁極中心位置(固定子磁極番号12のティース部21b)にある。このような吸引力分布が生じる磁極対向状態を磁極対向状態M11とする。
このように、1/2系列の回転電機10では、二種類の磁極対向状態M10および磁極対向状態M11を備えており、二種類の吸引力分布を備えている。そのため、第一方向(矢印X方向)に隣接する一対の可動子磁極32a,32bは、互いに吸引力分布が異なる。その結果、複数のティース部21bに作用する吸引力分布は、一磁極毎には等価にならず、一磁極対毎(二磁極毎)に隔極で等価になる。上述したことは、図示が省略されている他の一対の可動子磁極32a,32bについても同様に言える。1/2系列の回転電機10では、互いに吸引力分布が異なる第一方向(矢印X方向)に隣接する一対の可動子磁極32a,32bを単位として、第一方向(矢印X方向)に平行移動させた状態で、多極化(本実施形態では、8極化)されている。
図4に示すように、二種類の吸引力分布(二種類の磁極対向状態M10および磁極対向状態M11)は、鏡面33に対して、概ね対称(鏡面対称)になっている。鏡面33は、第二方向(矢印Y方向)および第三方向(矢印Z方向)によって形成される仮想の基準面をいう。例えば、固定子磁極番号9のティース部21bの中央位置に形成される鏡面33を考える。このとき、一対の可動子磁極32a,32bの吸引力分布(磁極対向状態M10および磁極対向状態M11)は、鏡面33に対して、概ね対称(鏡面対称)になっている。そのため、実線L11を鏡面33に対して折り返すと、実線L12と概ね一致する。上述したことは、他の一対の可動子磁極32a,32bについても同様に言える。なお、図4の破線L13は、第一方向(矢印X方向)に可動子30の一磁極分、実線L11を平行移動させたものを示している。また、図4に示す破線で囲まれた領域は、ティース部21b(固定子磁極)と、一対の可動子磁極32a,32bとの間の磁極対向状態の相違を示している。
二種類の吸引力分布(二種類の磁極対向状態M10および磁極対向状態M11)は、固定子鉄心21に対して、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))と比べて、より低次(本実施形態では、4次(空間4次))の起振力の成分を備える。図5A〜図5Cに示すように、起振力が固定子鉄心21に作用すると、固定子鉄心21の外周は、破線で示す形状に変形し易い。図5A〜図5Cは、第三方向(矢印Z方向)視の固定子鉄心21の外周形状の一例を示している。変形前の固定子鉄心21の外周形状は、実線で示され、変形後の固定子鉄心21の外周形状は、破線(曲線21s8、曲線21s4、曲線21s2)で示されている。
可動子30の磁極数が8極の回転電機10(8極機)において吸引力のピーク値が毎極で等価な場合(例えば、8極24スロット構成、8極48スロット構成などの回転電機)、固定子鉄心21の一周あたり、起振力の強弱が8回繰り返される。その結果、固定子鉄心21の外周は、図5Aの曲線21s8で示す形状に変形し易い。このように、整数スロット構成の8極の回転電機10では、8次(空間8次)の起振力の成分を備える。8次(空間8次)の起振力は、可動子30の磁極数(この場合、8極)に依拠し、一磁極を単位として繰り返される。
一方、吸引力のピーク値が一磁極毎には等価にならず、一磁極対毎(二磁極毎)に隔極で等価になる場合(例えば、8極36スロット構成、8極60スロット構成などの回転電機)、固定子鉄心21の一周あたり、起振力の強弱が4回繰り返される。その結果、固定子鉄心21の外周は、図5Bの曲線21s4で示す形状に変形し易い。このように、分数スロット構成(1/2系列)の8極の回転電機10では、4次(空間4次)の起振力の成分を備える。
また、吸引力のピーク値が一磁極毎、一磁極対毎には等価にならず、二磁極対毎(四磁極毎)に等価になる場合(例えば、8極30スロット構成、8極54スロット構成などの回転電機)、固定子鉄心21の一周あたり、起振力の強弱が2回繰り返される。その結果、固定子鉄心21の外周は、図5Cの曲線21s2で示す形状に変形し易い。このように、分数スロット構成(1/4系列)の8極の回転電機10では、2次(空間2次)の起振力の成分を備える。
このように、分数スロット構成の回転電機10では、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))の起振力と比べて、より低次(本実施形態では、4次(空間4次))の起振力の成分を備える。そのため、駆動回転数が広範囲に亘る回転電機10では、固定子鉄心21の固有振動数と一致する回転数が、駆動回転数範囲内に生じ易くなる。その結果、固定子20の共振が発生し、回転電機10の騒音および振動が増大する可能性がある。そこで、本実施形態の回転電機10は、吸引力分布を整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化する。以下、図6A、図6B、図6C、図7Aおよび図7Bを参照しつつ具体的に説明する。
図6Aは、本実施形態に係り、複数のティース部21bと、一対の可動子磁極32a,32bとの間の磁極対向状態の一例を示している。同図は、説明の便宜上、図3の図示の方法と一部異なる。具体的には、固定子20は、第三方向(矢印Z方向)視の複数のティース部21b(複数の固定子磁極)と、複数のスロット21cとが図示されており、図3と同様である。一方、可動子30は、固定子20の第二方向(矢印Y方向)と、可動子30の第三方向(矢印Z方向)とが同一紙面上で一致するように、図示されており、固定子20と可動子30との間の空隙を境界にして、図示の方法が切り替わる。このように、同図では、第三方向(矢印Z方向)視の固定子20と、第二方向(矢印Y方向)視の可動子30とが併記されている。これは、可動子30に施した連続スキューと、固定子20の第一方向(矢印X方向)との位置関係を明示するために便宜的に図示したものであり、図3の図示の方法と異なる。
同図に示すように、本実施形態では、可動子30は、第一基準部位41と、連続スキュー部位42とを備えている。第一基準部位41は、スキューの基準になる部位をいう。連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)に徐々にずらされて、第三方向(矢印Z方向)に配設されている部位をいう。本実施形態では、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。
なお、同図では、第一基準部位41および連続スキュー部位42は、一対の可動子磁極32a,32bを例に図示されているが、可動子鉄心31においても同様に形成されている。つまり、可動子鉄心31を形成する複数の電磁鋼板31x(連続スキュー部位42)は、可動子鉄心31を形成する一つの電磁鋼板31x(第一基準部位41)に対して、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設(積層)されている。
また、連続スキュー部位42を第三方向(矢印Z方向)に垂直な平面で第一方向(矢印X方向)に沿って二等分したときの各部位を、第一基準部位41側の部位から順に、第一連続スキュー部位42a、第二連続スキュー部位42bとする。このように、説明の便宜上、連続スキュー部位42は、第一連続スキュー部位42aと、第二連続スキュー部位42bとに分けて図示されているが、連続スキュー部位42は、一体に形成されている。なお、同図では、第一基準部位41は、一対の可動子磁極32a,32bの第三方向(矢印Z方向)の一端側端面である。また、第二連続スキュー部位42bの第三方向(矢印Z方向)の両端面のうち、第一連続スキュー部位42aと第二連続スキュー部位42bとの境界面と異なる側の端面は、一対の可動子磁極32a,32bの第三方向(矢印Z方向)の他端側端面である。
連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が、複数(本実施形態では、60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定されている。本実施形態では、可動子30が、第一基準部位41と、連続スキュー部位42とを備えており、固定子20は、これらを具備していない。そのため、固定子20におけるスキュー量は0であり、可動子30の連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。
具体的には、図6Aに示すように、第一連続スキュー部位42aと第二連続スキュー部位42bとの境界面の一対の可動子磁極32a,32bは、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、1/2スロットピッチ(1/2sp)分、ずらされて配設されている。また、一対の可動子磁極32a,32bの第三方向(矢印Z方向)の他端側端面は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、1スロットピッチ(1sp)分、ずらされて配設されている。なお、本実施形態の回転電機10は、8極60スロット構成の回転電機(可動子30の磁極数が2極、固定子20のスロット数が15スロットを基本構成とする回転電機)であり、1スロットピッチ(1sp)分は、電気角24°(=360°/15スロット)に相当する。
第一基準部位41の可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの一方の端部32a1(位置座標0であり、位置PA1で示す。)は、スロット21cの中央位置に対向している。第一基準部位41の可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの他方の端部32a2(位置座標7.5であり、位置PB1で示す。)は、ティース部21bの中央位置に対向している。このとき、第一基準部位41の可動子磁極32aの磁極中心位置32a3(位置座標3.75であり、位置PC1で示す。)は、ティース部21bの磁極中心位置(固定子磁極番号4のティース部21b)に対して、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれて配設されている。
第一連続スキュー部位42aと第二連続スキュー部位42bとの境界面の可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの一方の端部32a1(位置座標0.5であり、位置PA2で示す。)は、ティース部21bの中央位置に対向している。当該可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの他方の端部32a2(位置座標8であり、位置PB2で示す。)は、スロット21cの中央位置に対向している。このとき、当該可動子磁極32aの磁極中心位置32a3(位置座標4.25であり、位置PC2で示す。)は、ティース部21bの磁極中心位置(固定子磁極番号5のティース部21b)に対して、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずれて配設されている。
位置PC1(位置座標3.75)において形成される吸引力分布と、位置PC2(位置座標4.25)において形成される吸引力分布と、が混成されて、これらの吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。つまり、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))と比べて、より低次(本実施形態では、4次(空間4次))の起振力の成分が空間的に半波長ずらして重ね合わされて、これらの吸引力分布は、整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化される。
本明細書では、毎極毎相スロット数の分母部cを用いて表される第一方向(矢印X方向)に1/cスロットピッチ(本実施形態では、1/2スロットピッチ(1/2sp))離間する部位を離間部位という。位置PC1(位置座標3.75)で示す部位と、位置PC2(位置座標4.25)で示す部位とは、離間部位である。位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位間について上述したことは、第三方向(矢印Z方向)の他の離間部位間においても、同様に言える。
図6Bは、図6Aの破線で囲まれた領域の磁極対向状態を説明する模式図である。同図の白色丸印は、上述した位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位を表している。四角印は、位置PD1(位置座標4)および位置PD2(位置座標4.5)で示す離間部位を表している。三角印は、位置PE1(位置座標4.25)および位置PE2(位置座標4.75)で示す離間部位を表している。同図に示すように、これらの離間部位は、可動子磁極32aの磁極中心位置32a3を示す破線上に位置している。いずれの離間部位間においても、位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位間について上述したことが同様に言える。
また、図示されている離間部位以外の離間部位間(磁極中心位置32a3を示す破線上に位置する離間部位間)についても、上述したことが同様に言える。つまり、可動子30の第三方向(矢印Z方向)の全体に亘って、上述した関係と同様の関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成り立つ。また、同図に示す磁極対向状態は、可動子30の移動(可動子磁極32aの磁極中心位置32a3が複数(60個)のスロット21cの1スロットピッチ(1sp)分、移動)に伴い、複数(60個)のスロット21cの1スロットピッチ(1sp)単位で、第一方向(矢印X方向)において繰り返される。
このように、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されることにより、可動子30の第三方向(矢印Z方向)の全体に亘って、吸引力分布が混成されて、吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。具体的には、離間部位間(図6Bに示す例では、例えば、白色丸印の部位間、四角印の部位間、三角印の部位間)において、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))と比べて、より低次(本実施形態では、4次(空間4次))の起振力の成分が空間的に半波長ずらして重ね合わされて、これらの吸引力分布は、整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化される。
なお、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されていない場合、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立しない領域が生じる。その結果、当該領域において、低次(本実施形態では、4次(空間4次))の起振力の成分が残存し、可動子30の第三方向(矢印Z方向)の全体に亘って、吸引力分布の混成、平均化および均等化を図ることが困難になる。以下、図6Cに基づいて、詳細に説明する。
図6Cは、参考形態に係り、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されていない場合の磁極対向状態を説明する模式図である。同図は、第一ケースおよび第二ケースについて、図6Bに示す各離間部位の配置を再現しようとした図である。第一ケースでは、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの3/4スロットピッチ(3/4sp)分に設定されている。第二ケースでは、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの5/4スロットピッチ(5/4sp)分に設定されている。
図6Bの位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位は、図6Cの第一ケースでは、位置PC1(位置座標3.75)および位置PC21(位置座標4.25)で示す離間部位に相当する。これらの離間部位は、図6Bと同様に白色丸印で表されている。また、図6Bの位置PD1(位置座標4)および位置PD2(位置座標4.5)で示す離間部位は、図6Cの第一ケースでは、位置PD11(位置座標4)および位置PD21(位置座標4.5)で示す離間部位に相当する。これらの離間部位は、図6Bと同様に四角印で表されている。いずれの離間部位間においても、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立する。
一方、図6Bの位置PE1(位置座標4.25)および位置PE2(位置座標4.75)で示す離間部位は、図6Cの第一ケースでは、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立しない。具体的には、図6Cの第一ケースでは、図6Bの位置PE1(位置座標4.25)に相当する位置PE11(位置座標4.25)で示す部位は、存在する。しかしながら、図6Bの位置PE2(位置座標4.75)で示す部位に相当する部位は、存在しない。このように、第一ケースでは、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立しない領域ZN1が生じる。この場合、領域ZN1は、連続スキュー部位42のうち、第一基準部位41に対するスキュー量が、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分に設定される部位から、1/2スロットピッチ(1/2sp)分に設定される部位までの領域になる。
図6Bの位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位は、図6Cの第二ケースでは、位置PC1(位置座標3.75)および位置PC22(位置座標4.25)で示す離間部位に相当する。これらの離間部位は、図6Bと同様に白色丸印で表されている。また、図6Bの位置PD1(位置座標4)および位置PD2(位置座標4.5)で示す離間部位は、図6Cの第二ケースでは、位置PD12(位置座標4)および位置PD22(位置座標4.5)で示す離間部位に相当する。これらの離間部位は、図6Bと同様に四角印で表されている。さらに、図6Bの位置PE1(位置座標4.25)および位置PE2(位置座標4.75)で示す離間部位は、図6Cの第二ケースでは、位置PE12(位置座標4.25)および位置PE22(位置座標4.75)で示す離間部位に相当する。これらの離間部位は、図6Bと同様に三角印で表されている。いずれの離間部位間においても、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立する。
しかしながら、図6Cの第二ケースにおいても、上述した関係(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する離間部位間の関係)が成立しない領域ZN2が生じる。この場合、領域ZN2は、連続スキュー部位42のうち、第一基準部位41に対するスキュー量が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定される部位から、5/4スロットピッチ(5/4sp)分に設定される部位までの領域になる。なお、見掛け上、領域ZN2と、位置PC22から位置PD22までの領域とは、離間部位間の関係になる。しかしながら、位置PC22から位置PD22までの領域は、位置PC1から位置PD12までの領域と、既に離間部位間の関係になっている。そのため、吸引力分布の混成、平均化および均等化の観点において、領域ZN2と離間部位間の関係が成立する領域は、存在しない。
このように、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されていない場合、可動子30の第三方向(矢印Z方向)の全体に亘って、吸引力分布の混成、平均化および均等化を図ることが困難になる。したがって、本実施形態では、第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。
図7Aは、本実施形態に係り、複数のティース部21bに作用する第二方向(矢印Y方向)の電磁気的な吸引力分布の一例を示している。実線L21は、棒グラフで表される固定子磁極毎の吸引力分布を直線で近似した近似直線を示している。同図は、上述した吸引力分布の混成、平均化および均等化によって、吸引力のピーク値が毎極において等価になる吸引力分布(整数スロット構成の吸引力分布)に近づいていることを示している。なお、吸引力ピッチLP0は、吸引力のピーク値の第一方向(矢印X方向)の間隔を示している。吸引力ピッチLP0は、毎極において均等になっている。
図7Bは、離間部位毎の吸引力分布の混成、平均化および均等化を説明する模式図である。図6Bの位置PC1(位置座標3.75)および位置PC2(位置座標4.25)で示す離間部位間(白色丸印で表す)において、吸引力分布の混成、平均化が行われる。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。実線L31は、このときの吸引力分布である第一吸引力分布を直線で近似した近似直線を示している。また、吸引力ピッチLP1は、第一吸引力分布における吸引力のピーク値の第一方向(矢印X方向)の間隔を示している。吸引力ピッチLP1は、毎極において均等になっている。
同様に、図6Bの位置PD1(位置座標4)および位置PD2(位置座標4.5)で示す離間部位間(四角印で表す)において、吸引力分布の混成、平均化が行われる。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。破線L32は、このときの吸引力分布である第二吸引力分布を直線で近似した近似直線を示している。また、吸引力ピッチLP2は、第二吸引力分布における吸引力のピーク値の第一方向(矢印X方向)の間隔を示している。吸引力ピッチLP2は、毎極において均等になっている。さらに、図6Bの位置PE1(位置座標4.25)および位置PE2(位置座標4.75)で示す離間部位間(三角印で表す)において、吸引力分布の混成、平均化が行われる。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。実線L33は、このときの吸引力分布である第三吸引力分布を直線で近似した近似直線を示している。また、吸引力ピッチLP3は、第三吸引力分布における吸引力のピーク値の第一方向(矢印X方向)の間隔を示している。吸引力ピッチLP3は、毎極において均等になっている。
第二吸引力分布は、第一吸引力分布に対して、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分、第一方向(矢印X方向)の一の方向(矢印X1方向)に、吸引力のピーク値が、ずれている。また、第三吸引力分布は、第一吸引力分布に対して、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分、第一方向(矢印X方向)の一の方向(矢印X1方向)に、吸引力のピーク値が、ずれている。可動子30の全体では、高次化されたこれらの吸引力分布が、最小の0スロットピッチから、最大の1/2スロットピッチ(1/2sp)分、第一方向(矢印X方向)の一の方向(矢印X1方向)に、ずれて加算され、吸引力分布の高次化が維持される。つまり、図7Aに示すように、可動子30の全体においても、吸引力ピッチLP0は、毎極において均等になっている。
なお、図6Aと、図7Aの実線L21とを併せて参照すると、可動子磁極32aの磁極中心位置32a3および可動子磁極32bの磁極中心位置32b3において、吸引力は、最大になり、騒音および振動に対する影響が最も大きくなる。一方、磁極中心位置32a3から、可動子磁極32aと可動子磁極32bとの磁極境界に向かって、吸引力は、次第に低下し、騒音および振動に対する影響が小さくなる。磁極中心位置32b3から、可動子磁極32aと可動子磁極32bとの磁極境界に向かう場合についても、同様である。このような事情に鑑みて、本明細書では、可動子磁極32aの磁極中心位置32a3に沿って位置する離間部位を代表して、騒音および振動に対する影響が説明されている。
本実施形態の回転電機10によれば、可動子30は、第一基準部位41と、連続スキュー部位42とを備えている。また、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値(本実施形態では、1スロットピッチ(1sp)分)が設定されている。これにより、本実施形態の回転電機10は、第三方向(矢印Z方向)の全体に亘って、固定子20と可動子30との間に発生する電磁気的な吸引力分布を混成することができ、当該吸引力分布を平均化することができる。その結果、毎極における当該吸引力分布の均等化を図ることができる。よって、本実施形態の回転電機10は、当該吸引力分布を整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化し、固定子鉄心21の固有振動数と一致する回転数を高めて、例えば、駆動回転数範囲外に設定することが可能になる。つまり、本実施形態の回転電機10は、固定子20の共振機会を回避して、回転電機10の騒音および振動を低減することができる。
連続スキュー部位42は、第三方向(矢印Z方向)の一端側から他端側にかけて、第一基準部位41に対するスキュー量の増加割合または減少割合が一定に設定されていると好適である。本明細書では、連続スキュー部位42が第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされる場合、連続スキュー部位42のスキュー量は、増加するものとする。逆に、連続スキュー部位42が第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされる場合、連続スキュー部位42のスキュー量は、減少するものとする。
また、図6Aに示すように、第三方向(矢印Z方向)の他端側端面の可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの一方の端部32a1を、位置PA3(位置座標1)とする。当該可動子磁極32aの第一方向(矢印X方向)の両端部32a1,32a2のうちの他方の端部32a2を、位置PB3(位置座標8.5)とする。このときの当該可動子磁極32aの磁極中心位置32a3を、位置PC3(位置座標4.75)とする。
本実施形態の回転電機10によれば、連続スキュー部位42は、第三方向(矢印Z方向)の一端側から他端側にかけて、第一基準部位41に対するスキュー量の増加割合が一定に設定されている。例えば、位置PC1(位置座標3.75)と、位置PC2(位置座標4.25)との間では、位置PC1(位置座標3.75)に対するスキュー量の増加量は、1/2スロットピッチ(1/2sp)分である。また、位置PC2(位置座標4.25)と、位置PC3(位置座標4.75)との間では、位置PC2(位置座標4.25)に対するスキュー量の増加量は、1/2スロットピッチ(1/2sp)分である。このように、位置PC1(位置座標3.75)から位置PC3(位置座標4.75)に亘って、スキュー量は、一定割合で、一様に増加している。
このように、連続スキュー部位42は、第三方向(矢印Z方向)の一端側から他端側にかけて、第一基準部位41に対するスキュー量の増加割合が一定に設定されているので、第一基準部位41に対するスキュー量が不連続に変化する場合と比べて、主に、第三方向(矢印Z方向)の漏れ磁束を低減することができる。また、製造工程の簡素化を図ることもできる。上述したことは、第一基準部位41に対するスキュー量の減少割合が一定に設定される場合についても、同様に言える。この場合、連続スキュー部位42は、第一基準部位41に対して、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設される。
また、本実施形態の回転電機10によれば、可動子30は、連続スキュー部位42を備えているので、回転電機10の騒音および振動の低減と併せて、トルクリップルも低減することができる。回転電機10のトルクリップルは、回転電機10の出力トルクに生じる脈動であり、可動子30の移動に伴う固定子20と可動子30との間の磁束変化の変動に起因して発生する。トルクリップルの一例として、コギングトルク、スロットリップル、ポールリップルなどが挙げられる。コギングトルクは、無通電時において、固定子磁極と可動子磁極の磁極対向状態が不連続に(段階的に)変化することに起因して発生する。本実施形態の回転電機10では、コギングトルクの増減に合わせて、トルクリップルが増減する傾向にあるので、コギングトルクを例に説明する。
既述したように、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)に徐々にずらされて、第三方向(矢印Z方向)に配設されている。また、本実施形態では、連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が1スロットピッチ(1sp)分に設定されている。そのため、可動子30の第一方向(矢印X方向)の任意の位置部位が、第一方向(矢印X方向)に、複数(60個)のスロット21cの1スロットピッチ(1sp)分の幅をもって広がって、固定子20と対向することになるので、固定子20のスロット21cの開口部における磁気変動が徐々に変化し、トルクリップル(コギングトルク)が低減される。
なお、分数スロット構成の回転電機10では、第一方向(矢印X方向)において、異なる磁極対向状態が繰り返されるので、トルクリップル(コギングトルク)は、整数スロット構成の回転電機と比べて、減少する傾向にある。本実施形態の回転電機10によれば、可動子30は、連続スキュー部位42を備えているので、トルクリップル(コギングトルク)がさらに低減され、固定子磁極と可動子磁極の磁極対向状態に起因するトルクリップル(コギングトルク)がさらに低減される。また、本実施形態の回転電機10によれば、可動子30は、連続スキュー部位42を備えているので、磁束の急峻な変化が抑制され、鉄損の低減、磁石渦損の低減、銅渦損の低減などを図ることもできる。
なお、非特許文献1に記載されているように、トルクリップルのみを低減するには、固定子20の複数(60個)のスロット21cの1/cスロットピッチ分の連続スキュー(第一基準部位41に対するスキュー量の最大値を1/cスロットピッチに設定する)を施せば良い。同様の効果は、固定子20の複数(60個)のスロット21cのn/cスロットピッチ(nは、自然数。)分の連続スキューによっても得られる。但し、自然数nが大きくなる程、回転電機10のトルク目減りが増大する。また、製造上煩雑になる傾向がある。そのため、通常は、自然数nとして1を選択する。本実施形態では、分数スロット構成の回転電機10において、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値(本実施形態では、1スロットピッチ(1sp)分)が設定されている。これにより、回転電機10の騒音および振動の低減と併せて、トルクリップル(コギングトルク)、出力波形に含まれる高調波成分も低減することができる。
また、回転電機10の騒音、振動およびトルクリップル(コギングトルク)を低減する方法として、固定子鉄心21の各ティース先端部21d、または、各ティース先端部21dと対向する可動子鉄心31の表面(外側表面)に、切り欠きを設ける手法が挙げられる。しかしながら、この手法は、実質的に空隙の拡大となり、上述したスキューと比べて、トルク目減りが増大する。本実施形態の回転電機10は、トルク目減りを抑制しつつ、回転電機10の騒音、振動およびトルクリップル(コギングトルク)を低減することができる。
図8Aは、第三方向(矢印Z方向)視の複数のティース部21bと一対の可動子磁極32a,32bとの間の磁極対向状態の一例を示している。直線56aは、可動子30が固定子20の内方に設けられる回転電機10(インナーロータ型の回転電機)において、固定子20の内周面の一部を示している。具体的には、固定子20の内周面は、ティース先端部21dのうち、可動子30と対向する対向面に相当する。直線56bは、可動子30が固定子20の内方に設けられる回転電機10において、可動子30の外周面付近の一部を示している。具体的には、可動子30の外周面付近は、一対の可動子磁極32a,32bの第二方向(矢印Y方向)の両端面のうち、固定子20側の端面に相当する。
図8Bは、固定子20のスキューの状態の一例を示している。同図は、図8Aに示す直線56a付近の固定子20の内周面の一部を、第二方向(矢印Y方向)のうちの可動子30側から固定子20側に向かう方向である第二方向固定子側(矢印Y2方向)から視た図に相当する。図8Bに示す固定子20の内周面は、第一方向(矢印X方向)においては一部が示され、第三方向(矢印Z方向)においては全部が示されている。なお、図8Aにおいて、図8Bにおける図示の方向を矢印Y21で示している。
本実施形態では、固定子20におけるスキュー量は0である。そのため、固定子20のスキュー位置は、第三方向(矢印Z方向)に沿って形成される。直線51は、基準位置(例えば、図6Aに示す位置座標3.75)における固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側と、第三方向(矢印Z方向)の他端側とが、第三方向(矢印Z方向)に沿って結ばれている。
図8Cは、可動子30のスキューの状態の一例を示している。同図は、図8Aに示す直線56b付近の可動子30の外周面付近の一部を、第二方向固定子側(矢印Y2方向)から視た図に相当する。図8Cに示す可動子30の外周面付近は、第一方向(矢印X方向)においては一部が示され、第三方向(矢印Z方向)においては全部が示されている。なお、図8Aにおいて、図8Cにおける図示の方向を矢印Y22で示している。
本実施形態では、可動子30は、第一基準部位41と、連続スキュー部位42とを備える。そのため、可動子30のスキュー位置は、第三方向(矢印Z方向)の一端側から他端側に向かってスキュー量に応じて変位する。また、連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。直線52は、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置(例えば、位置座標3.75)と、第三方向(矢印Z方向)の他端側の基準位置から1スロットピッチ(1sp)分、離れた位置(この場合、位置座標4.75)と、が結ばれている。
なお、図8A、図8Bおよび図8Cにおいて図示されている部位は、図6Aの破線で囲まれる領域に相当する。また、図8Bに示す固定子20の基準位置と、図8Cに示す可動子30の基準位置とは、一致している。さらに、第二実施形態以降の実施形態では、適宜、図8Bおよび図8Cに相当する図面に基づいて説明する。この場合、図8Bおよび図8Cの記載方法について上述したことは、後述する図面においても同様に言える。
<第二実施形態>
本実施形態は、固定子20が第一基準部位41と、連続スキュー部位42とを備え、可動子30が、これらを具備していない点で、第一実施形態と異なる。以下、第一実施形態と異なる点を中心に説明する。
図9Aは、固定子20のスキューの状態の一例を示している。本実施形態では、固定子20は、第一基準部位41と、連続スキュー部位42とを備える。そのため、固定子20のスキュー位置は、第三方向(矢印Z方向)の一端側から他端側に向かってスキュー量に応じて変位する。また、連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。直線51は、固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1スロットピッチ(1sp)分、離れた位置と、が結ばれている。
本実施形態では、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。具体的には、固定子鉄心21を形成する複数の電磁鋼板21x(連続スキュー部位42)は、固定子鉄心21を形成する一つの電磁鋼板21x(第一基準部位41)に対して、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設(積層)されている。なお、第一実施形態と同様に、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらすこともできる。この場合、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設される。
図9Bは、可動子30のスキューの状態の一例を示している。本実施形態では、可動子30におけるスキュー量は0である。そのため、可動子30のスキュー位置は、第三方向(矢印Z方向)に沿って形成される。直線52は、基準位置における可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側と、第三方向(矢印Z方向)の他端側とが、第三方向(矢印Z方向)に沿って結ばれている。
本実施形態の回転電機10によれば、固定子20は、第一基準部位41と、連続スキュー部位42とを備えている。また、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値(本実施形態では、1スロットピッチ(1sp)分)が設定されている。よって、本実施形態の回転電機10は、第一実施形態で既述した作用効果と同様の作用効果を得ることができる。
<第三実施形態>
本実施形態は、固定子20および可動子30が、いずれも、第一基準部位41と、連続スキュー部位42とを備えている点で、第一実施形態と異なる。以下、第一実施形態と異なる点を中心に説明する。
図10Aは、固定子20のスキューの状態の一例を示している。本実施形態では、固定子20は、第一基準部位41と、連続スキュー部位42とを備える。そのため、固定子20のスキュー位置は、第三方向(矢印Z方向)の一端側から他端側に向かってスキュー量に応じて変位する。また、連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。直線51は、固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1/2スロットピッチ(1/2sp)分、離れた位置と、が結ばれている。
図10Bは、可動子30のスキューの状態の一例を示している。本実施形態では、可動子30は、第一基準部位41と、連続スキュー部位42とを備える。そのため、可動子30のスキュー位置は、第三方向(矢印Z方向)の一端側から他端側に向かってスキュー量に応じて変位する。また、連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。直線52は、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1/2スロットピッチ(1/2sp)分、離れた位置と、が結ばれている。
固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。一方、可動子30の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。よって、固定子20および可動子30の第三方向(矢印Z方向)の他端側において、固定子20と可動子30の相対スキュー量は、最大となり、固定子20と可動子30の相対スキュー量の最大値は、複数(60個)のスロット21cの1スロットピッチ(1sp)分になっている。
このように、固定子20および可動子30のうちの一方(本実施形態では、可動子30)の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされているときに、固定子20および可動子30のうちの他方(本実施形態では、固定子20)の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされていると好適である。また、固定子20の連続スキュー部位42におけるスキュー量の最大値と、可動子30の連続スキュー部位42におけるスキュー量の最大値とが同値(本実施形態では、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分)に設定されていると好適である。
図11Aは、第一比較形態に係り、固定子20のスキューの状態の一例を示している。本比較形態では、固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。直線51は、固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1/2スロットピッチ(1/2sp)分、離れた位置と、が結ばれている。
図11Bは、第一比較形態に係り、可動子30のスキューの状態の一例を示している。本比較形態では、可動子30の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの3/2スロットピッチ(1/2sp+1sp)分に設定されている。直線52は、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から3/2スロットピッチ(1/2sp+1sp)分、離れた位置と、が結ばれている。よって、固定子20および可動子30の第三方向(矢印Z方向)の他端側において、固定子20と可動子30の相対スキュー量は、最大となり、固定子20と可動子30の相対スキュー量の最大値は、複数(60個)のスロット21cの1スロットピッチ(1sp)分になっている。
このように、第一比較形態では、固定子20および可動子30は、いずれも、連続スキュー部位42が、第一基準部位41に対して同一方向(この場合、第一方向(矢印X方向)のうちの一の方向(矢印X1方向))にずらされている。そのため、可動子30の連続スキュー部位42におけるスキュー量の最大値は、複数(60個)のスロット21cの3/2スロットピッチ(1/2sp+1sp)分に設定される。つまり、第一比較形態では、本実施形態および第一実施形態と比べて、可動子30の連続スキュー部位42におけるスキュー量の最大値が増加している。
本実施形態の回転電機10によれば、固定子20および可動子30は、いずれも、第一基準部位41と、連続スキュー部位42とを備えている。また、可動子30の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされているときに、固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされている。これにより、本実施形態の回転電機10は、固定子20および可動子30のうちの一方のみでスキューを行う場合と比べて、スキュー量を低減することができる。また、本実施形態の回転電機10は、固定子20および可動子30の連続スキュー部位42,42が第一方向(矢印X方向)において逆方向にずらされているので、同一方向にずらされる場合と比べて、スキュー量の増加を抑制することができる。よって、本実施形態の回転電機10は、スキュー量の増加に伴うトルク目減りの増大を抑制することができる。また、本実施形態の回転電機10は、スキュー量の低減により、漏れ磁束を低減することができる。また、スキュー量の増加に伴う製造工程における作業性の悪化を抑制することもできる。
上述した効果は、固定子20の複数のスロット21cの数が少なくなるほど、顕著になる。既述したように、8極60スロット構成の回転電機(可動子30の磁極数が2極、固定子20のスロット数が15スロットを基本構成とする回転電機)では、1スロットピッチ(1sp)分は、電気角24°(=360°/15スロット)に相当する。一方、例えば、8極36スロット構成の回転電機(可動子30の磁極数が2極、固定子20のスロット数が9スロットを基本構成とする回転電機)では、1スロットピッチ(1sp)分は、電気角40°(=360°/9スロット)に相当する。つまり、8極36スロット構成の回転電機では、8極60スロット構成の回転電機と比べて、スキュー量は、増大する。本実施形態の回転電機10は、固定子20および可動子30のうちの一方のみでスキューを行う場合と比べて、スキュー量を低減することができるので、固定子20の複数のスロット21cの数が少ない回転電機10に適用すると特に好適である。
なお、上述したことは、固定子20の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされているときに、可動子30の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされている場合についても、同様に言える。つまり、固定子20および可動子30のうちの一方の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされているときに、固定子20および可動子30のうちの他方の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされていると好適である。
図12Aは、第二比較形態に係り、固定子20のスキューの状態の一例を示している。本比較形態では、固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分に設定されている。直線51は、固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1/4スロットピッチ(1/4sp)分、離れた位置と、が結ばれている。
図12Bは、第二比較形態に係り、可動子30のスキューの状態の一例を示している。本比較形態では、可動子30の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの3/4スロットピッチ(3/4sp)分に設定されている。直線52は、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から3/4スロットピッチ(3/4sp)分、離れた位置と、が結ばれている。よって、固定子20および可動子30の第三方向(矢印Z方向)の他端側において、固定子20と可動子30の相対スキュー量は、最大となり、固定子20と可動子30の相対スキュー量の最大値は、複数(60個)のスロット21cの1スロットピッチ(1sp)分になっている。
このように、第二比較形態では、固定子20の連続スキュー部位42におけるスキュー量の最大値と、可動子30の連続スキュー部位42におけるスキュー量の最大値とが異なっている。その結果、本比較形態では、本実施形態と比べて、可動子30の連続スキュー部位42におけるスキュー量が増大している。固定子20の連続スキュー部位42と比べて、可動子30の連続スキュー部位42におけるスキュー量が増大すると、特に、永久磁石(四組の一対の可動子磁極32a,32b)が焼結磁石の場合に、永久磁石を可動子鉄心31の磁石収容部に装着する際の作業性が悪化する可能性がある。なお、可動子30の連続スキュー部位42と比べて、固定子20の連続スキュー部位42におけるスキュー量を増大させることもできる。この場合は、固定子巻線22を固定子鉄心21の複数(60個)のスロット21cに組み付ける際の作業性が悪化する可能性がある。
本実施形態の回転電機10によれば、固定子20の連続スキュー部位42におけるスキュー量の最大値と、可動子30の連続スキュー部位42におけるスキュー量の最大値とが同値(複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分)に設定されている。これにより、本実施形態の回転電機10は、固定子20および可動子30の両方において、スキュー量を均等に分散させることができ、スキューに伴う固定子20および可動子30の製造の煩雑さを按分して、製造工程における作業性を向上させることができる。
なお、図10Aに示すように、第三方向(矢印Z方向)に沿った直線と、直線51とのなす角を、スキューの傾斜角θとする。図10Bに示すように、第三方向(矢印Z方向)に沿った直線と、直線52とのなす角についても、同様である。回転電機10の体格の相違により、同じスキュー量であっても、スキューの傾斜角θが異なる。すなわち、固定子鉄心21が同じ内径(第二方向(矢印Y方向)の寸法が同じ)および可動子鉄心31が同じ外径(第二方向(矢印Y方向)の寸法が同じ)であっても、軸長(第三方向(矢印Z方向)の寸法)が増大すると、スキューの傾斜角θは、小さくなり、軸方向(第三方向(矢印Z方向))の磁気漏れ、製造上の煩雑さは、低減する。また、同じスキュー量であっても、固定子20および可動子30の各構成、構造によって、製造上の難易度が異なる場合がある。以上を総合的に勘案し、固定子20および可動子30のうち、製造上の煩雑さが少ない側のスキュー量を多くし、製造上の煩雑さが多い側のスキュー量を少なくすることもできる。このように、回転電機10の体格、要求仕様などに応じて、固定子20と可動子30の相対スキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、固定子20の連続スキュー部位42の第一基準部位41に対するスキュー量の最大値と、可動子30の連続スキュー部位42の第一基準部位41に対するスキュー量の最大値とを、適宜、設定することができる。
<第四実施形態>
本実施形態は、固定子20が、第一基準部位41と、連続スキュー部位42とを備え、可動子30が、第二基準部位43と、段スキュー部位44とを備えている点で、第一実施形態と異なる。以下、第一実施形態と異なる点を中心に説明する。
図13Aは、固定子20のスキューの状態の一例を示している。本実施形態では、固定子20は、第一基準部位41と、連続スキュー部位42とを備える。そのため、固定子20のスキュー位置は、第三方向(矢印Z方向)の一端側から他端側に向かってスキュー量に応じて変位する。連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。直線51は、固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の他端側の基準位置から1/2スロットピッチ(1/2sp)分、離れた位置と、が結ばれている。
図13Bは、可動子30のスキューの状態の一例を示している。本実施形態では、可動子30は、第二基準部位43と、段スキュー部位44とを備える。第二基準部位43は、スキューの基準になる部位をいう。段スキュー部位44は、第二基準部位43に対して第一方向(矢印X方向)に階段状にずらされて第三方向(矢印Z方向)に配設されている部位をいう。本実施形態では、段スキュー部位44は、第二基準部位43に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に階段状(一段)にずらされて第三方向(矢印Z方向)に配設されている。なお、本実施形態においても、固定子20の基準位置(第一基準部位41の基準位置)と、可動子30の基準位置(第二基準部位43の基準位置)とは、一致している。
段スキュー部位44における第二基準部位43に対するスキュー量は、連続スキュー部位42における第一基準部位41に対するスキュー量の最大値の半分に設定される。既述したように、本実施形態では、固定子20の連続スキュー部位42における第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。そのため、可動子30の段スキュー部位44における第二基準部位43に対するスキュー量は、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分に設定する。これにより、固定子20および可動子30の第三方向(矢印Z方向)の他端側において、固定子20と可動子30の相対スキュー量は、最大となり、固定子20と可動子30の相対スキュー量の最大値(実質の最大値であり、連続スキュー換算)は、複数(60個)のスロット21cの1スロットピッチ(1sp)分になる。
図13Cは、連続スキュー部位42と段スキュー部位44のスキュー量の換算方法を示している。本実施形態では、固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されている。よって、仮に、可動子30が、第一基準部位41と、連続スキュー部位42とを備える場合、第三実施形態で既述したように、可動子30の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されると好適である。また、このときの第一基準部位41に対するスキュー量の最大値は、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分に設定されると好適である。図13Cに示す直線52は、可動子30が、第一基準部位41と、連続スキュー部位42とを備える場合の仮想のスキュー位置を示している。
上述した連続スキュー部位42における第一基準部位41に対するスキュー量の最大値(この場合、複数(60個)のスロット21cの1/2スロットピッチ(1/2sp)分)を、段スキュー部位44における第二基準部位43に対するスキュー量に換算する。同図に示すように、第一連続スキュー部位42a(段スキューの第二基準部位43に対応)における連続スキューの中心位置54aは、基準位置から第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(60個)のスロット21cの1/8スロットピッチ(1/8sp)分、移動した位置に相当する。また、第二連続スキュー部位42b(段スキューの段スキュー部位44に対応)における連続スキューの中心位置54bは、基準位置から第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(60個)のスロット21cの3/8スロットピッチ(3/8sp)分、移動した位置に相当する。
第一連続スキュー部位42aの中心位置54aと、第二連続スキュー部位42bの中心位置54bとの差分(この場合、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分)が、段スキュー部位44における第二基準部位43に対するスキュー量になる。なお、第一連続スキュー部位42aの中心位置54aを、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に、複数(60個)のスロット21cの1/8スロットピッチ(1/8sp)分、移動させると、基準位置と一致し、図13Bでは、第二基準部位43の中心位置53aとして図示されている。また、第二連続スキュー部位42bの中心位置54bを、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に、複数(60個)のスロット21cの1/8スロットピッチ(1/8sp)分、移動させると、図13Bに示す段スキュー部位44の中心位置53bと一致する。
本実施形態の回転電機10によれば、固定子20は、第一基準部位41と、連続スキュー部位42とを備え、可動子30は、第二基準部位43と、段スキュー部位44とを備えている。また、段スキュー部位44における第二基準部位43に対するスキュー量は、連続スキュー部位42における第一基準部位41に対するスキュー量の最大値の半分(本実施形態では、複数(60個)のスロット21cの1/4スロットピッチ(1/4sp)分)に設定されている。これにより、本実施形態の回転電機10は、スキューに伴う固定子20および可動子30の製造の煩雑さを軽減して、製造工程における作業性を向上させることができる。具体的には、固定子巻線22を固定子鉄心21の複数(60個)のスロット21cに組み付ける際の作業性を考慮すると、固定子20は、段スキュー部位44と比べて、連続スキュー部位42を備える方が良い。一方、永久磁石(四組の一対の可動子磁極32a,32b)が焼結磁石の場合に、永久磁石を可動子鉄心31の磁石収容部に装着する際の作業性を考慮すると、可動子30は、連続スキュー部位42と比べて、段スキュー部位44を備える方が良い。上述した構成により、本実施形態の回転電機10は、固定子20および可動子30の両方において、製造工程における作業性を向上させることができる。
なお、固定子20の連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設することもできる。この場合、可動子30の段スキュー部位44は、第二基準部位43に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に階段状(一段)にずらされて第三方向(矢印Z方向)に配設されると好適である。つまり、固定子20の連続スキュー部位42が、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずらされているときに、可動子30の段スキュー部位44は、第二基準部位43に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずらされていると好適である。これにより、第三実施形態で既述した作用効果と同様の作用効果を得ることができる。
また、段スキュー部位44は、第二基準部位43に対して第一方向(矢印X方向)に階段状(複数段)にずらされて第三方向(矢印Z方向)に配設することもできる。この場合も、図13Cに示す一段の場合と同様にして、連続スキューの各中心位置と、段スキューの各中心位置とを一致させて、段スキュー部位44の各段における第二基準部位43に対するスキュー量を換算することができる。
第一実施形態〜第三実施形態および本実施形態で示すように、固定子20および可動子30のうちの少なくとも一方は、第一基準部位41と、連続スキュー部位42とを備えている。また、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定されている。さらに、既述した実施形態のいずれにおいても、連続スキュー部位42は、第三方向(矢印Z方向)の一端側から他端側にかけて、第一基準部位41に対するスキュー量の増加割合または減少割合が一定に設定されていると好適である。これにより、第一実施形態で既述した作用効果と同様の作用効果を得ることができる。
<第五実施形態>
本実施形態は、第一基準部位41が第三方向一端側第一基準部位41aと、第三方向他端側第一基準部位41bとを備え、連続スキュー部位42が第三方向一端側連続スキュー部位45aと、第三方向他端側連続スキュー部位45bとを備えている点で、第一実施形態と異なる。以下、第一実施形態と異なる点を中心に説明する。
図14Aは、固定子20のスキューの状態の一例を示している。本実施形態では、固定子20におけるスキュー量は0である。そのため、固定子20のスキュー位置は、第三方向(矢印Z方向)に沿って形成される。直線51は、基準位置における固定子20のスキュー位置を示しており、第三方向(矢印Z方向)の一端側と、第三方向(矢印Z方向)の他端側とが、第三方向(矢印Z方向)に沿って結ばれている。
図14Bは、可動子30のスキューの状態の一例を示している。本実施形態においても、可動子30は、第一基準部位41と、連続スキュー部位42とを備える。但し、本実施形態では、第一基準部位41は、第三方向一端側第一基準部位41aと、第三方向他端側第一基準部位41bとを備える。第三方向一端側第一基準部位41aは、第三方向(矢印Z方向)の一端側に設けられる第一基準部位41をいう。第三方向他端側第一基準部位41bは、第三方向(矢印Z方向)の他端側に設けられる第一基準部位41をいう。
また、連続スキュー部位42は、第三方向一端側連続スキュー部位45aと、第三方向他端側連続スキュー部位45bとを備えている。第三方向一端側連続スキュー部位45aは、第三方向(矢印Z方向)の一端側の半分の部位が、第三方向一端側第一基準部位41aから第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)の中央部46まで配設されている部位をいう。第三方向他端側連続スキュー部位45bは、第三方向(矢印Z方向)の他端側の半分の部位が、中央部46から第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向他端側第一基準部位41bまで配設されている部位をいう。なお、本実施形態においても、固定子20の基準位置と、可動子30の基準位置(第三方向一端側第一基準部位41aの基準位置および第三方向他端側第一基準部位41bの基準位置)とは、一致している。
第三方向一端側連続スキュー部位45aは、第三方向一端側第一基準部位41aに対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。直線55aは、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の一端側の基準位置と、第三方向(矢印Z方向)の中央部46の基準位置から1スロットピッチ(1sp)分、離れた位置と、が結ばれている。同様に、第三方向他端側連続スキュー部位45bは、第三方向他端側第一基準部位41bに対するスキュー量の最大値が、複数(60個)のスロット21cの1スロットピッチ(1sp)分に設定されている。直線55bは、可動子30のスキュー位置を示しており、第三方向(矢印Z方向)の中央部46の基準位置から1スロットピッチ(1sp)分、離れた位置と、第三方向(矢印Z方向)の他端側の基準位置と、が結ばれている。これらにより、固定子20および可動子30の第三方向(矢印Z方向)の中央部46において、固定子20と可動子30の相対スキュー量は、最大となり、固定子20と可動子30の相対スキュー量の最大値は、複数(60個)のスロット21cの1スロットピッチ(1sp)分になっている。
本実施形態の回転電機10によれば、可動子30は、第一基準部位41と、連続スキュー部位42とを備えている。第一基準部位41は、第三方向一端側第一基準部位41aと、第三方向他端側第一基準部位41bとを備えている。連続スキュー部位42は、第三方向一端側連続スキュー部位45aと、第三方向他端側連続スキュー部位45bとを備えている。また、固定子20と可動子30の相対スキュー量の最大値が複数(60個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41(第三方向一端側第一基準部位41a、第三方向他端側第一基準部位41b)に対するスキュー量の最大値(本実施形態では、複数(60個)のスロット21cの1スロットピッチ(1sp)分)が設定されている。よって、本実施形態の回転電機10は、第一実施形態で既述した作用効果と同様の作用効果を得ることができる。
また、第三方向一端側連続スキュー部位45aは、第三方向(矢印Z方向)の一端側から中央部46にかけて、第三方向一端側第一基準部位41aに対するスキュー量の増加割合が一定に設定され、第三方向他端側連続スキュー部位45bは、第三方向(矢印Z方向)の中央部46から他端側にかけて、第三方向他端側第一基準部位41bに対するスキュー量の減少割合が一定に設定されていると好適である。また、スキュー量の増加割合の絶対値と、スキュー量の減少割合の絶対値とが同値に設定されていると好適である。これらにより、第一基準部位41(第三方向一端側第一基準部位41a、第三方向他端側第一基準部位41b)に対するスキュー量が不連続に変化する場合と比べて、漏れ磁束を低減することができる。また、製造工程の簡素化を図ることもできる。
さらに、本実施形態の回転電機10では、連続スキュー部位42は、第三方向一端側連続スキュー部位45aと、第三方向他端側連続スキュー部位45bとを備えているので、第三方向(矢印Z方向)の対称性が確保され、捻じれ共振を低減することができる。なお、永久磁石(四組の一対の可動子磁極32a,32b)が焼結磁石の場合に、永久磁石を可動子鉄心31の磁石収容部に装着する際の作業性が悪化する可能性がある。この場合、永久磁石を第三方向(矢印Z方向)に垂直な平面で第一方向(矢印X方向)に沿って二等分して分割すると良い。分割された一方の永久磁石を第三方向(矢印Z方向)の一端側から装着し、分割された他方の永久磁石を第三方向(矢印Z方向)の他端側から装着することにより、上述した作業性の悪化を軽減することができる。
なお、本実施形態では、第一実施形態で既述した離間部位(第一方向(矢印X方向)に、1/2スロットピッチ(1/2sp)離間する部位)の第三方向(矢印Z方向)の距離が、第一実施形態と比べて、概ね、半減する。したがって、本実施形態では、吸引力分布の高次化が、より有効に実現する。また、本実施形態は、固定子20および可動子30の軸長(第三方向(矢印Z方向)の寸法)が増大する場合においても、好適である。さらに、本実施形態の構成を第三方向(矢印Z方向)において繰り返し用いても良い。また、連続スキュー部位42において、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされる部位と、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされる部位とは、同数でなくても良い。これらは、回転電機10の体格、要求仕様などに応じて、適宜、選択することができる。なお、第一実施形態の構成において、同様の作用効果を得るために、第一実施形態の構成を第三方向(矢印Z方向)において繰り返す多重スキューが考えられる。しかしながら、この場合、多重スキューの各スキュー間で、第一方向(矢印X方向)における不連続部が生じ、磁気漏れが発生して出力トルクの低下等が発生するので望ましくない。
<第六実施形態>
本実施形態は、第一実施形態と比べて、毎極毎相スロット数が異なる。本実施形態の回転電機10は、8極30スロット構成の回転電機であり、毎極毎相スロット数は1.25である。つまり、本実施形態の回転電機10は、1/4系列の回転電機10である。以下、第一実施形態と異なる点を中心に説明する。
図15は、参考形態に係り、複数のティース部21bと、二組の一対の可動子磁極32a,32bとの間の磁極対向状態の一例を示している。本参考形態の回転電機10は、8極30スロット構成の回転電機であり、毎極毎相スロット数は1.25である。つまり、本参考形態の回転電機10は、1/4系列の回転電機10である。
図15に示すように、第一方向(矢印X方向)に隣接する二磁極対(四磁極)分の可動子磁極32a,32bを考える。1/4系列の回転電機10では、四種類の磁極対向状態(磁極対向状態M20、磁極対向状態M21、磁極対向状態M22および磁極対向状態M23)を備えており、四種類の吸引力分布を備えている。そのため、第一方向(矢印X方向)に隣接する二磁極対(四磁極)分の可動子磁極32a,32bでは、互いに吸引力分布が異なる。その結果、複数のティース部21bに作用する吸引力分布は、一磁極毎には等価にならず、二磁極対毎(四磁極毎)に等価になる。
上述したことは、図示が省略されている他の二組の一対の可動子磁極32a,32bについても同様に言える。このように、1/4系列の回転電機10では、互いに吸引力分布が異なる第一方向(矢印X方向)に隣接する二磁極対(四磁極)分の可動子磁極32a,32bを単位として、第一方向(矢印X方向)に平行移動させた状態で、多極化(本実施形態では、8極化)されている。
1/4系列の回転電機10では、固定子鉄心21の第二方向(矢印Y方向)の変位量は、大きさが異なる四種類のピーク値が生じる。そのため、1/4系列で8極の回転電機10は、固定子鉄心21の一周あたり2次(空間2次)の起振力の成分を備えている。固定子鉄心21の一周あたり2次(空間2次)の起振力は、二磁極対(四磁極)を単位として繰り返され、第一方向(矢印X方向)の四磁極対(八磁極)において、固定子鉄心21の第二方向(矢印Y方向)の変位量は、二つのピーク値が生じる。この場合、図5Cに示すように、固定子鉄心21は、曲線21s2で示す楕円状に変形し易い。
このように、1/4系列の回転電機10においても、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))の起振力と比べて、より低次(本実施形態では、2次(空間2次))の起振力の成分を備える。そのため、駆動回転数が広範囲に亘る回転電機10では、固定子鉄心21の固有振動数と一致する回転数が、駆動回転数範囲内に生じ易くなる。その結果、固定子20の共振が発生し、回転電機10の騒音および振動が増大する可能性がある。そこで、本実施形態においても、吸引力分布を整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化する。以下、図15、並びに、図16Aおよび図16Bを参照しつつ具体的に説明する。
図15に示すように、位置QA1(位置座標0)では、可動子磁極32aは、スロット21cの中央位置に対向している。位置QB1(位置座標3.75)では、可動子磁極32bは、ティース部21bの中央位置から第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれた位置で対向している。また、位置QC1(位置座標7.5)では、可動子磁極32aは、ティース部21bの中央位置に対向している。位置QD1(位置座標11.25)では、可動子磁極32bは、ティース部21bの中央位置から第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずれた位置で対向している。このように、位置QA1,QB1,QC1,QD1では、磁極対向状態がそれぞれ異なり、四種類の磁極対向状態が存在する。
ここで、位置QA1(位置座標0)から、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(30個)のスロット21cの1/4スロットピッチ(1/4sp)ずつ離れた位置を、位置QA2、位置QA3および位置QA4とする。また、位置QB1(位置座標3.75)から、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(30個)のスロット21cの1/4スロットピッチ(1/4sp)ずつ離れた位置を、位置QB2、位置QB3および位置QB4とする。同様に、位置QC1(位置座標7.5)から、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(30個)のスロット21cの1/4スロットピッチ(1/4sp)ずつ離れた位置を、位置QC2、位置QC3および位置QC4とする。また、位置QD1(位置座標11.25)から、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(30個)のスロット21cの1/4スロットピッチ(1/4sp)ずつ離れた位置を、位置QD2、位置QD3および位置QD4とする。
位置QA2,QB2,QC2,QD2では、位置QA1,QB1,QC1,QD1の磁極対向状態と比べて、順序は異なるが、同種類の磁極対向状態が存在する。具体的には、スロット21cの中央位置に対向する磁極対向状態、ティース部21bの中央位置に対向する磁極対向状態、ティース部21bの中央位置から第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれた位置で対向する磁極対向状態およびティース部21bの中央位置から第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずれた位置で対向する磁極対向状態の四種類の磁極対向状態が存在する。上述したことは、位置QA3,QB3,QC3,QD3についても同様であり、位置QA4,QB4,QC4,QD4についても同様である。
さらに、位置QA4,QB4,QC4,QD4から、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、複数(30個)のスロット21cの1/4スロットピッチ(1/4sp)ずつ離れた位置では、位置QA1,QB1,QC1,QD1と同等の磁極対向状態になる。そして、上述した磁極対向状態が、第一方向(矢印X方向)において、繰り返されている。よって、複数(30個)のスロット21cの1スロットピッチ(1sp)分、連続スキューした第三方向(矢印Z方向)の全体で、吸引力分布を混成し、吸引力分布を平均化する。これにより、毎極における当該吸引力分布の均等化を図る。
図16Aは、本実施形態に係り、複数のティース部21bと、二組の一対の可動子磁極32a,32bとの間の磁極対向状態の一例を示している。同図に示すように、可動子30は、第一基準部位41と、連続スキュー部位42とを備えている。また、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に徐々にずらされて第三方向(矢印Z方向)に配設されている。本実施形態では、連続スキュー部位42を第三方向(矢印Z方向)に垂直な平面で第一方向(矢印X方向)に沿って四等分したときの各部位を、第一基準部位41側の部位から順に、第一連続スキュー部位42a、第二連続スキュー部位42b、第三連続スキュー部位42c、第四連続スキュー部位42dとする。第一実施形態と同様に、連続スキュー部位42は、これらの部位に分けて図示されているが、連続スキュー部位42は、一体に形成されている。
なお、同図では、第一基準部位41は、二組の一対の可動子磁極32a,32bの第三方向(矢印Z方向)の一端側端面である。また、第四連続スキュー部位42dの第三方向(矢印Z方向)の両端面のうち、第三連続スキュー部位42cと第四連続スキュー部位42dとの境界面と異なる側の端面は、二組の一対の可動子磁極32a,32bの第三方向(矢印Z方向)の他端側端面である。
本実施形態においても、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が、複数(本実施形態では、30個)のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定される。本実施形態では、可動子30が、第一基準部位41と、連続スキュー部位42とを備えており、固定子20は、これらを具備していない。そのため、固定子20におけるスキュー量は0であり、可動子30の連続スキュー部位42は、第一基準部位41に対するスキュー量の最大値が、複数(30個)のスロット21cの1スロットピッチ(1sp)分に設定されている。
図16Aに示すように、第一連続スキュー部位42aと第二連続スキュー部位42bとの境界面の二組の一対の可動子磁極32a,32bは、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、1/4スロットピッチ(1/4sp)分、ずらされて配設されている。このときの磁極対向状態は、位置QA2,QB2,QC2,QD2における磁極対向状態と等価になる。また、第二連続スキュー部位42bと第三連続スキュー部位42cとの境界面の二組の一対の可動子磁極32a,32bは、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、1/2スロットピッチ(1/2sp)分、ずらされて配設されている。このときの磁極対向状態は、位置QA3,QB3,QC3,QD3における磁極対向状態と等価になる。
さらに、第三連続スキュー部位42cと第四連続スキュー部位42dとの境界面の二組の一対の可動子磁極32a,32bは、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、3/4スロットピッチ(3/4sp)分、ずらされて配設されている。このときの磁極対向状態は、位置QA4,QB4,QC4,QD4における磁極対向状態と等価になる。また、二組の一対の可動子磁極32a,32bの第三方向(矢印Z方向)の他端側端面は、第一基準部位41に対して第一方向(矢印X方向)のうちの一の方向(矢印X1方向)に、1スロットピッチ(1sp)分、ずらされて配設されている。このときの磁極対向状態は、位置QA1,QB1,QC1,QD1における磁極対向状態と等価になる。
本実施形態では、上述した磁極対向状態が、第一方向(矢印X方向)において、繰り返されている。そこで、第一実施形態と同様に、可動子磁極32aの磁極中心位置32a3における吸引力分布の混成、平均化および均等化を考える。なお、本実施形態の回転電機10は、8極30スロット構成の回転電機(可動子30の磁極数が4極、固定子20のスロット数が15スロットを基本構成とする回転電機)であり、1スロットピッチ(1sp)分は、電気角48°(=720°/15スロット)に相当する。
図16Bは、図16Aの破線で囲まれた領域の磁極対向状態を説明する模式図である。第一基準部位41の可動子磁極32aの磁極中心位置32a3(位置座標1.875)を位置QE1とする。また、第一連続スキュー部位42aと第二連続スキュー部位42bとの境界面の可動子磁極32aの磁極中心位置32a3(位置座標2.125)を位置QE2とする。さらに、第二連続スキュー部位42bと第三連続スキュー部位42cとの境界面の可動子磁極32aの磁極中心位置32a3(位置座標2.375)を位置QE3とする。また、第三連続スキュー部位42cと第四連続スキュー部位42dとの境界面の可動子磁極32aの磁極中心位置32a3(位置座標2.625)を位置QE4とする。
位置QE1は、ティース部21bの磁極中心位置(図16Aに示す固定子磁極番号2のティース部21b)に対して、第一方向(矢印X方向)のうちの一の方向(矢印X1方向)にずれて配設されている。一方、位置QE3は、ティース部21bの磁極中心位置(図16Aに示す固定子磁極番号3のティース部21b)に対して、第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)にずれて配設されている。よって、位置QE1において形成される吸引力分布と、位置QE3において形成される吸引力分布と、が混成されて、これらの吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間4次の起振力の成分が増加する。
位置QE2は、スロット21cの中央位置(図16Aに示す固定子磁極番号2のティース部21bと、固定子磁極番号3のティース部21bとの間の中央位置)に対向している。一方、位置QE4は、ティース部21bの磁極中心位置(図16Aに示す固定子磁極番号3のティース部21b)に対向している。よって、位置QE2において形成される吸引力分布と、位置QE4において形成される吸引力分布と、が混成されて、これらの吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間4次の起振力の成分が増加する。混成、平均化および均等化された吸引力分布同士がさらに混成、平均化および均等化されると、空間8次の起振力の成分が増加する。つまり、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))と比べて、より低次(本実施形態では、2次(空間2次))の起振力の成分が空間的に半波長ずらして重ね合わされて(本実施形態では、2回繰り返される(2次(空間2次)→4次(空間4次)→8次(空間8次))。)、これらの吸引力分布は、整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化される。
位置QE1(位置座標1.875)で示す部位と、位置QE2(位置座標2.125)で示す部位と、位置QE3(位置座標2.375)で示す部位と、位置QE4(位置座標2.625)で示す部位とは、第一方向(矢印X方向)に1/cスロットピッチ(本実施形態では、1/4スロットピッチ(1/4sp))離間しており、これらは、離間部位である。これらの離間部位間について上述したことは、第三方向(矢印Z方向)の他の離間部位間においても、同様に言える。
図16Bの白色丸印は、上述した位置QE1(位置座標1.875)、位置QE2(位置座標2.125)、位置QE3(位置座標2.375)および位置QE4(位置座標2.625)で示す離間部位を表している。四角印は、位置QF1(位置座標2)、位置QF2(位置座標2.25)、位置QF3(位置座標2.5)および位置QF4(位置座標2.75)で示す離間部位を表している。三角印は、位置QG1(位置座標2.125)、位置QG2(位置座標2.375)、位置QG3(位置座標2.625)および位置QG4(位置座標2.875)で示す離間部位を表している。同図に示すように、これらの離間部位は、可動子磁極32aの磁極中心位置32a3を示す破線上に位置している。いずれの離間部位間においても、位置QE1(位置座標1.875)、位置QE2(位置座標2.125)、位置QE3(位置座標2.375)および位置QE4(位置座標2.625)で示す離間部位間について上述したことが同様に言える。
また、図示されている離間部位以外の離間部位間(磁極中心位置32a3を示す破線上に位置する離間部位間)についても、上述したことが同様に言える。つまり、可動子30の第三方向(矢印Z方向)の全体に亘って、上述した関係と同様の関係(第一方向(矢印X方向)に、1/4スロットピッチ(1/4sp)離間する離間部位間の関係)が成り立つ。また、同図に示す磁極対向状態は、可動子30の移動(可動子磁極32aの磁極中心位置32a3が複数(30個)のスロット21cの1スロットピッチ(1sp)分、移動)に伴い、複数(30個)のスロット21cの1スロットピッチ(1sp)単位で、第一方向(矢印X方向)において繰り返される。
このように、第一基準部位41に対するスキュー量の最大値が、複数(30個)のスロット21cの1スロットピッチ(1sp)分に設定されることにより、可動子30の第三方向(矢印Z方向)の全体に亘って、吸引力分布が混成されて、吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができ、空間8次の起振力の成分が増加する。具体的には、離間部位間(図16Bに示す例では、例えば、白色丸印の部位間、四角印の部位間、三角印の部位間)において、可動子30の磁極数(本実施形態では、8極)に依拠する次数(本実施形態では、8次(空間8次))と比べて、より低次(本実施形態では、2次(空間2次))の起振力の成分が空間的に半波長ずらして重ね合わされて、これらの吸引力分布は、整数スロット構成の回転電機と同程度(本実施形態では、8次(空間8次))まで高次化される。よって、本実施形態の回転電機10は、第一実施形態で既述した作用効果と同様の作用効果を得ることができる。
また、第一実施形態と同様に、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に、ずらすこともできる。この場合、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)のうちの他の一の方向(矢印X2方向)に徐々にずらされて第三方向(矢印Z方向)に配設される。さらに、連続スキュー部位42は、第三方向(矢印Z方向)の一端側から他端側にかけて、第一基準部位41に対するスキュー量の増加割合または減少割合が一定に設定されていると好適である。
<1/c系列の回転電機10>
上述した実施形態では、1/2系列の回転電機10または1/4系列の回転電機10を例に説明されている。しかしながら、回転電機10は、これらに限定されるものではなく、1/c系列の回転電機10に適用することができる。
既述したように、毎極毎相スロット数を帯分数で表したときの整数部分を整数部aとする。また、帯分数の真分数部分を既約分数で表したときの分子部分を分子部b、分母部分を分母部cとする。なお、整数部aは、0(ゼロ)または正の整数とし、分子部bおよび分母部cは、いずれも正の整数とする。また、三相の回転電機10では、分母部cは、2以上、かつ、3の倍数でない整数とする。さらに、毎極毎相スロット数を帯分数で表したときの分子部bおよび分母部cを用いて、b/c系列の回転電機10と表記する。分母部cが同じ場合、分子部bの値に関わらず適用することができるので、b/c系列の回転電機10を集約して、1/c系列の回転電機10と総称する。
1/c系列の回転電機10においても、固定子20および可動子30のうちの少なくとも一方は、第一基準部位41と、連続スキュー部位42とを備える。また、分母部cに関わらず、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が、複数のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定される。
1/c系列の回転電機10では、磁極対向状態がc種類あり、吸引力分布は、可動子30のc極毎に等価になる。固定子20と可動子30の相対スキュー量の最大値が、複数のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定されることにより、可動子30の第三方向(矢印Z方向)の全体に亘って、c種類の磁極対向状態に基づいて形成される吸引力分布が混成されて、これらの吸引力分布は、平均化される。その結果、毎極における当該吸引力分布の均等化を図ることができる。具体的には、第一方向(矢印X方向)に1/cスロットピッチ離間する離間部位間において、可動子30の磁極数(2×p極)に依拠する次数(2×p次(空間2×p次))と比べて、より低次(2×p/c次(空間2×p/c次))の起振力の成分が空間的に半波長ずらして重ね合わされて、これらの吸引力分布は、整数スロット構成の回転電機と同程度(2×p次(空間2×p次))まで高次化される。よって、1/c系列の回転電機10は、固定子鉄心21の固有振動数と一致する回転数を高めて、例えば、駆動回転数範囲外に設定することが可能になる。つまり、1/c系列の回転電機10においても、固定子20の共振機会を回避して、回転電機10の騒音および振動を低減することができる。
また、連続スキュー部位42は、第一基準部位41に対して第一方向(矢印X方向)に徐々にずらされて、第三方向(矢印Z方向)に配設されている。さらに、分母部cに関わらず、連続スキュー部位42は、固定子20と可動子30の相対スキュー量の最大値が、複数のスロット21cの1スロットピッチ(1sp)分になるように、第一基準部位41に対するスキュー量の最大値が設定されている。そのため、可動子30の第一方向(矢印X方向)の任意の位置部位が、第一方向(矢印X方向)に、複数のスロット21cの1スロットピッチ(1sp)分の幅をもって広がって、固定子20と対向することになるので、固定子20のスロット21cの開口部における磁気変動が徐々に変化し、トルクリップル(コギングトルク)が低減される。
<その他>
本発明は、上記した実施形態および図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施することができる。例えば、既述の実施形態では、可動子30は、固定子20の内方に設けられている(インナーロータ型の回転電機)。しかしながら、可動子30は、固定子20の外方に設けることもできる(アウターロータ型の回転電機)。また、回転電機10は、固定子20および可動子30が同軸に配されるラジアル空隙型やアキシャル空隙型の回転電機に限定されるものではなく、固定子20および可動子30が直線上に配され、可動子30が固定子20に対して直線上に移動するリニア型に適用することもできる。さらに、回転電機10は、分数スロット構成の種々の回転電機に用いることができ、例えば、車両の駆動用電動機、発電機、産業用または家庭用の電動機、発電機などに用いることができる。