JP6724212B2 - 固体撮像素子および電子機器 - Google Patents

固体撮像素子および電子機器 Download PDF

Info

Publication number
JP6724212B2
JP6724212B2 JP2019090724A JP2019090724A JP6724212B2 JP 6724212 B2 JP6724212 B2 JP 6724212B2 JP 2019090724 A JP2019090724 A JP 2019090724A JP 2019090724 A JP2019090724 A JP 2019090724A JP 6724212 B2 JP6724212 B2 JP 6724212B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
layer
solid
pixel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019090724A
Other languages
English (en)
Other versions
JP2019169962A (ja
Inventor
功 広田
功 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JP2019169962A publication Critical patent/JP2019169962A/ja
Application granted granted Critical
Publication of JP6724212B2 publication Critical patent/JP6724212B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

本開示は、固体撮像素子および電子機器に関し、特に、撮像画像の高画質化を図ることができるようにする固体撮像素子および電子機器に関する。
光電変換素子として有機光電変換膜を用いた撮像素子がある(例えば、特許文献1参照)。有機光電変換膜は薄膜で色分離と受光を同時に行うことができるため、開口率が高く、オンチップマイクロレンズは基本的に不要である。
有機光電変換膜の下のシリコン層にもフォトダイオードを設け、有機光電変換膜で画像を取得しながら、シリコン層のフォトダイオードで位相差検出を行うようにしたものもある(例えば、特許文献2参照)。
特許第5244287号公報 特開2011−103335号公報
しかしながら、特許文献2に開示の構造では、オンチップレンズの焦光点をシリコン層のフォトダイオードに設定すると、オンチップレンズの曲率半径が小さくなり、斜入射特性が悪化してしまう。そのため、像高(光学中心からの距離)が大きくなるほど、受光量が少なくなり、シェーディングと呼ばれる感度ムラが発生する。
本開示は、このような状況に鑑みてなされたものであり、撮像画像の高画質化を図ることができるようにするものである。
本開示の第1の側面の固体撮像素子は、光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、第1の光電変換層の第1画素に入射された光が、第2の光電変換層の複数画素の前記光電変換部で受光される状態を含み、前記第1の光電変換層の画素は、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含み、前記第2の光電変換層の複数画素のうち少なくとも一つは、前記第1の光電変換層の第1画素に隣接する第2画素と、平面視において重なるように構成されている。
本開示の第2の側面の電子機器は、光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、第1の光電変換層の第1画素に入射された光が、第2の光電変換層の複数画素の前記光電変換部で受光される状態を含み、前記第1の光電変換層の画素は、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含み、前記第2の光電変換層の複数画素のうち少なくとも一つは、前記第1の光電変換層の第1画素に隣接する第2画素と、平面視において重なるように構成されている固体撮像素子を備える。
本開示の第1及び第2の側面においては、光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、第1の光電変換層の第1画素に入射された光が、第2の光電変換層の複数画素の前記光電変換部で受光される状態を含み、前記第1の光電変換層の画素が、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含み、前記第2の光電変換層の複数画素のうち少なくとも一つが、前記第1の光電変換層の第1画素に隣接する第2画素と、平面視において重なるように構成されている。
固体撮像素子及び電子機器は、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本開示の第1及び第2の側面によれば、撮像画像の高画質化を図ることができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本開示に係る固体撮像素子を含む撮像機構を示す図である。 上側基板と下側基板の概略構成を示す図である。 上側基板と下側基板の概略構成を示す図である。 第1の実施の形態に係る固体撮像素子の断面構成図である。 第1の実施の形態の変形例を示す断面構成図である。 第2の実施の形態に係る固体撮像素子の断面構成図である。 第3の実施の形態に係る固体撮像素子の断面構成図である。 2枚積層構造の固体撮像素子の回路配置構成例を示す図である。 3枚積層構造の固体撮像素子の回路配置構成例を示す図である。 3枚積層構造の固体撮像素子の断面構成図である。 3枚積層構造の固体撮像素子のその他の断面構成図である。 コントラスト法のフォーカス制御を説明する図である。 第4の実施の形態に係る固体撮像素子の断面構成図である。 第4の実施の形態の変形例を示す断面構成図である。 本開示に係る電子機器としての撮像装置の構成例を示すブロック図である。
以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(上側基板が表面照射型の構成例)
2.第2の実施の形態(上側基板が裏面照射型の構成例)
3.第3の実施の形態(光電変換膜が2層の場合の構成例)
4.第4の実施の形態(3枚の基板の積層構造で構成される構成例)
5.第5の実施の形態(コントラストAFを採用した構成例)
6.電子機器への適用例
<1.固体撮像素子の第1の実施の形態>
<撮像機構の構成>
図1は、本開示に係る固体撮像素子を含む撮像機構を示す図である。
本開示に係る固体撮像素子1は、図1に示されるように、光学レンズ2によって集光された被写体3の光を受光する。
固体撮像素子1は、例えば、2枚の半導体基板11Aと11Bとが積層された複合型の固体撮像素子である。半導体基板11Aと11Bのそれぞれには、光電変換部と、そこで光電変換された電荷を検出する電荷検出部を有する光電変換層が形成されている。半導体基板11Aと11Bの半導体は、例えば、シリコン(Si)である。2枚の半導体基板11Aと11Bの間には、アパーチャ12が形成されている。
なお、以下では、2枚の半導体基板11Aと11Bのうち、光学レンズ2に近い方の半導体基板11Aを上側基板11Aと称し、光学レンズ2から遠い方の半導体基板11Bを下側基板11Bと称する。また、2枚の半導体基板11Aと11Bを特に区別しない場合には、単に、基板11とも称する。
図2は、固体撮像素子1の上側基板11Aと下側基板11Bの概略構成を示す図である。
上側基板11Aには、画素21Aが2次元アレイ状に複数配列されている。各画素21Aには、オンチップレンズ22が形成されている。上側基板11Aに配列された複数の画素21Aで得られる画素信号は、画像生成用の信号として利用される。したがって、上側基板11Aは、画像センサとして機能する。
下側基板11Bにも、画素21Bが2次元アレイ状に複数配列されている。下側基板11Bに配列された複数の画素21Bで得られる画素信号は、位相差検出用の信号として利用される。したがって、下側基板11Bは、位相差検出センサとして機能する。
アパーチャ12には、図2に示されるように、上側基板11Aの画素21Aと同サイズの1画素サイズの開口部31が、所定の間隔で形成されている。これにより、上側基板11Aの画素21Aには、入射光を下側基板11Bへ透過させる画素と、下側基板11Bへ透過させない画素とがある。
例えば、図2に示されるように、アパーチャ12の開口部31に対応する上側基板11Aの1画素(以下、透過画素という。)を通過した入射光は、下側基板11Bの2×2の4画素に入射される構成とされている。
下側基板11Bの画素21Bは位相差検出用の画素であるので、上側基板11Aの透過画素を通過した入射光は、複数画素で受光される構成であればよく、例えば、図3に示されるように、4×4の16画素に入射されるような構成とすることもできる。
位相差検出においては、例えば、1つの透過画素を通過した光が、下側基板11Bの2×2の4画素に入射される場合、2×2の4画素のうち、左上と右下の画素どうしの信号、及び、右上と左下の画素どうしの信号を比較することにより、焦点位置を検出することができる。
なお、図2及び図3は、上側基板11Aの透過画素と、そこからの入射光を受光する下側基板11Bの受光画素との関係を説明するための図であり、上側基板11Aと下側基板11Bの画素サイズの縮尺が異なっている。
積層構造ではない単層構造のイメージセンサの一部に位相差画素を配置した像面位相差センサにおいて、オンチップレンズの集光点は、理想的には、シリコン層のフォトダイオード表面であるが、実際には、シリコン層の深い位置となる。そのため、撮像用の集光点と、位相差検出用の集光点が異なり、マイクロレンズの最適化が両立できにくいという問題があった。
また、シリコン層のフォトダイオード表面にオンチップレンズの焦光点を設定すると、オンチップレンズの曲率半径が小さくなり、斜入射特性が悪化してしまう。そのため、像高(光学中心からの距離)が大きくなるほど、受光量が少なくなり、シェーディングが発生する。
そこで、第1の実施の形態に係る固体撮像素子1では、2枚の基板11を積層し、位相差検出用の画素を下側基板11Bに配置することで、オンチップレンズの曲率半径を大きくすることができ、シェーディングの発生を抑制することができる。
また、上側基板11Aの1画素を通過した入射光を、2×2より大きい複数画素で受光するので、多視点分離を行えるようになり、位相差画素の分離性能を向上させ、位相差オートフォーカスの高性能化が可能になる。
図4は、図3のa−a’線における固体撮像素子1の断面構成図である。
図4に示されるように、固体撮像素子1は、表面照射型の上側基板11Aと、裏面照射型の下側基板11Bとが積層されて構成されている。
上側基板11Aはシリコン層51により構成され、そのシリコン層51の上側から、光が入射される。
シリコン層51の上側には、画素21Aごとに形成されたオンチップレンズ22と、B(青色)の波長の光を光電変換する青色光電変換膜52B、G(緑色)の波長の光を光電変換する緑色光電変換膜52G、及び、R(赤色)の波長の光を光電変換する赤色光電変換膜52Rが積層されている。
青色光電変換膜52B、緑色光電変換膜52G、及び赤色光電変換膜52Rの下面には、それぞれ、透明電極53B、53G、及び53Rが、画素21Aごとに形成されている。また、透明電極53B、53G、及び53Rは、シリコン層51に形成されたトランジスタ回路55B、55G、及び55Rと、それぞれ、接続電極54B、54G、及び54Rを介して接続されている。シリコン層51上面は、絶縁膜56により保護されている。
なお、図4においては、図が煩雑になるのを防ぐため、透明電極53B、53G、及び53R、接続電極54B、54G、及び54R、並びに、トランジスタ回路55B、55G、及び55Rのうち、Bに関する透明電極53B、接続電極54B、及びトランジスタ回路55Bそれぞれ一つについてのみ符号が付されている。
青色光電変換膜52B、緑色光電変換膜52G、及び赤色光電変換膜52Rそれぞれの上面には、電源電圧、GNDなどの所定の電圧が供給される透明電極が形成される場合もある。
光電変換膜52(52B,52G,52R)は、光電変換部として機能し、トランジスタ回路55(55B,55G,55R)は、光電変換部で光電変換された電荷を検出する電荷検出部として機能する。光電変換膜52は、受光領域全面にわたって形成されているが、透明電極53が、画素ごとに分離形成されていることで、画素単位で、R,G,Bの画素信号を取得することができる。
光電変換膜52は、例えば、有機光電変換膜で構成することができる。
Bの波長光で光電変換する青色光電変換膜52Bとしては、クマリン系色素、トリス−8−ヒドリキシキノリンAl(Alq3)、メラシアニン系色素等を含む有機光電変換材料を用いることができる。Gの波長光で光電変換する緑色光電変換膜52Gとしては、例えばローダーミン系色素、メラシアニン系色素、キナクリドン等を含む有機光電変換材料を用いることができる。Rの波長光で光電変換する赤色光電変換膜52Rとしては、フタロシアニン系色素を含む有機光電変換材料を用いることができる。
また、光電変換膜52は、無機光電変換膜で構成してもよい。無機光電変換膜としては、例えば、カルコパイライト構造の半導体薄膜であるCuInSe2(CIS系薄膜)、あるいは、これにGaを固溶したCu(In,Ga)Se2(CIGS系薄膜)などで形成することができる。
シリコン層51の下側には、アパーチャ12としての金属膜61が形成されており、金属膜61の透過画素の部分には、開口部31が形成されている。金属膜61は保護膜62で覆われている。
また、シリコン層51の開口部31に対応する領域には、入射された光を全透過させる透明層57が形成されている。透明層57は、例えば、シリコン(Si)を酸化させたSiO2などで形成することができる。透過画素のシリコン層51を、光を吸収しない透明層57とすることで、3層の光電変換膜52を通過した全波長の光を下側基板11Bに到達させることができる。
なお、本実施の形態では、光電変換部としての光電変換膜52がシリコン層51の上側に形成されており、シリコン層51にはフォトダイオードが形成されないため、シリコン層51の厚みを極めて薄く形成することができる。そのため、透明層57を形成せずに、シリコン層51のままでも十分に光を透過させることができるため、シリコン層51のままでもよい。
下側基板11Bはシリコン層70により構成され、そのシリコン層70内に、光電変換部としてのフォトダイオード(PD)71が、pn接合により画素ごとに形成されている。
図4において実線の矢印で示されるように、上側基板11Aの透過画素に入射された光が、下側基板11Bの4画素のフォトダイオード71に入射されるように、オンチップレンズ22の焦点距離に応じて、保護膜72と中間層73が形成されている。保護膜72は、例えば、酸化シリコン膜や窒化シリコン膜で形成することができ、中間層73は、例えば、ガラス層で形成することができる。また、中間層73は、保護膜72と同一材料としてもよい。
下側基板11Bは裏面照射型であるので、シリコン層70上に形成された多層配線層84側の反対側が上側基板11A側となるようにして、下側基板11Bと上側基板11Aが接合されている。
多層配線層84には、フォトダイオード71に蓄積された信号電荷を読み出す読み出し回路を構成する複数のトランジスタ回路81、1層以上の配線層82、層間絶縁膜83などが含まれる。
以上の構成を有する固体撮像素子1において、上側基板11Aでは、画素21Aごとに、R,G,Bの画素信号が出力され、カラー画像センサとしての機能を有する。また、下側基板11Bでは、上側基板11Aを通過した光を複数の画素21B(多視点)で受光して得られる位相差信号が出力され、位相差センサとしての機能を有する。
上側基板11Aにおいて、光電変換部として光電変換膜52を用いた場合には、薄膜で色分離と受光を同時に行うことができるため、開口率が高く、オンチップレンズ22は基本的に不要である。したがって、オンチップレンズ22は、下側基板11Bの複数のフォトダイオード71への入射に合わせて、長い焦点距離となるように形成することができる。したがって、斜入射特性を悪化させずに、画像信号と位相差信号の取得を実現することができる。
即ち、固体撮像素子1の第1の実施の形態によれば、斜入射特性の悪化を抑制し、シェーディングの発生を低減させることができるので、撮像画像の高画質化を図ることができる。
固体撮像素子1では、上側基板11Aの透過画素の間隔(間引き)を大きくしたり、中間層73の厚みを調整するなどして、例えば、上側基板11Aの透過画素を通過した入射光が、下側基板11Bの何画素の領域に入射されるようにするかを任意に調整することができる。例えば、1つの透過画素からの光が、2×2の4画素ではなく、4×4の16画素に入射されるように多視点化することにより、距離方向の分解能(位相差分解能)を高め、測距性能を向上させることもできる。
上側基板11Aでは、シリコン層51の外部に形成された光電変換膜52により光電変換するため、シリコン層51にはフォトダイオードを形成する必要がなく、トランジスタ回路55のみが形成できればよいため、シリコン層51の厚みは極めて薄くすることができる。これにより、シリコン層51のG(緑色)以上の波長の光の透過率を大幅に上げることができるので、下側基板11Bのフォトダイオード71への入射光量を大きくすることができる。
また、上側基板11Aのシリコン層51の透過画素領域を、光を全透過させる透明層57とした場合には、下側基板11Bのフォトダイオード71への入射光量をさらに大きくすることができる。
なお、光電変換膜52の吸収率が高く、R,G,Bの光の下側基板11Bへの入射光量が少ない場合には、可視光以外の近赤外光などを位相差検出に利用すればよい。
<第1の実施の形態の変形例>
図5は、第1の実施の形態に係る固体撮像素子1の変形例を示す断面構成図である。
なお、図5以降の各図面では、それまでに説明した実施の形態と対応する部分については同一の符号を付してあり、その部分の説明は適宜省略する。
上述したように、上側基板11Aの光電変換部として光電変換膜52を用いた場合、光電変換膜52に対してはオンチップレンズ22は不要である。したがって、固体撮像素子1は、入射光を下側基板11Bへ集光させるための何らかの構造を有していれば、積層された光電変換膜52の上側のオンチップレンズ22は省略することができる。
例えば、図5に示されるように、オンチップレンズ22に代えて、アパーチャ12の下側に層内レンズ91を設け、層内レンズ91によって入射光を下側基板11Bへ集光させる構造とすることもできる。
層内レンズ91は、アパーチャ12の下側ではなく、例えば、アパーチャ12の上側でもよいし、それ以外の任意の層に配置することができる。また、層内レンズ91は、透過画素のみに形成してもよいし、開口部31が形成されていない画素の領域については平坦に形成してもよい。同様に、アパーチャ12の位置も、シリコン層51の下側に限らず、シリコン層51の上側でもよい。
<2.固体撮像素子の第2の実施の形態>
図6は、本開示に係る固体撮像素子1の第2の実施の形態を示す断面構成図である。
図4に示した第1の実施の形態の断面構成では、上側基板11Aを表面照射型とし、下側基板11Bを裏面照射型として積層する構成例について説明した。
しかし、上側基板11Aは裏面照射型としてもよいし、下側基板11Bは表面照射型としてもよい。即ち、上側基板11A及び下側基板11Bそれぞれは、表面照射型と裏面照射型のどちらの構成を採用してもよい。
図6に示される第2の実施の形態では、上側基板11Aと下側基板11Bの両方を裏面照射型として積層した構成例とされている。換言すれば、図6の第2の実施の形態は、図4の第1の実施の形態と比較すると、上側基板11Aが裏面照射型に変更されている。
上側基板11Aは裏面照射型であるので、上側基板11Aの光が入射される側とは反対側(図6において上側基板11Aの下側)に多層配線層103が形成されている。多層配線層103は、1層以上の配線層101と層間絶縁膜102とで構成されている。
また、上側基板11Aを裏面照射型とした場合、図6に示されるように、多層配線層103のなかの1つの配線層101で、アパーチャ12を形成することができる。
<3.固体撮像素子の第3の実施の形態>
図4に示した第1の実施の形態の断面構成では、R、G、Bそれぞれについて1層ずつ光電変換膜52が設けられ、光電変換部が、3層の光電変換膜52を積層した構成とされていた。
しかし、光電変換部は、3層に限定されず、2層若しくは1層、または、4層以上の光電変換膜52とすることもできる。
図7は、本開示に係る固体撮像素子1の第3の実施の形態を示す断面構成図であり、光電変換部を2層の光電変換膜52とした構成例を示している。
なお、図7においても、紙面の制約上、符号の一部が省略されている。
第3の実施の形態では、2層の光電変換膜52が、光入射面側である半導体基板11Aの上側に形成されている。2層のうちの上側の光電変換膜52としては、G(緑色)の波長の光を光電変換する緑色光電変換膜52Gが全面にわたって形成されている。
一方、2層のうちの下側の光電変換膜52としては、R(赤色)の波長の光を光電変換する赤色光電変換膜52Rと、B(青色)の波長の光を光電変換する青色光電変換膜52Bのいずれか一方が、画素毎に分離されて形成されている。赤色光電変換膜52Rと青色光電変換膜52Bそれぞれは、光電変換する光の色(波長)が、例えば、垂直及び水平方向に隣接する画素では異なる色となるように、市松状に形成されている。
緑色光電変換膜52Gにより光電変換された電荷は、画素単位に形成された透明電極53G及び接続電極54Gを介して、シリコン層51に形成されたトランジスタ回路55Gによって取り出される。
同様に、青色光電変換膜52Bにより光電変換された電荷は、画素単位に形成された透明電極53B及び接続電極54Bを介して、シリコン層51に形成されたトランジスタ回路55Bによって取り出される。赤色光電変換膜52Rについても同様である。
第3の実施の形態では、透過画素、即ち、アパーチャ12において開口部31が形成されている画素21Aは、2層の光電変換膜52のうち、下側の光電変換膜52が、Bの波長の光を光電変換する青色光電変換膜52Bとなっている。この場合、透過画素では、上層の緑色光電変換膜52Gと下層の青色光電変換膜52Bとで吸収されなかった光である、Rの波長の光が、下側基板11Bに入射される。
従って、第3の実施の形態では、Rの波長の光の受光量に基づいて、位相差検出を行うことができる。
上述したように、下層の光電変換膜52において、赤色光電変換膜52Rと青色光電変換膜52Bそれぞれを市松状に配置した場合、Rの波長の光が吸収されない画素21A(以下、R非吸収画素という。)は、1画素おきに配置されることになり、全てのR非吸収画素を透過画素とすることができる。
例えば、受光領域内に配置された複数のR非吸収画素のうち、開口部31が配置されることにより透過画素とされた画素21Aと、開口部31が配置されずアパーチャ12で遮光された画素21Aがあるとする。
この場合、アパーチャ12で遮光された画素21Aでは、2層の光電変換膜52を通過した光が、アパーチャ12によって、再び光電変換膜52側へ反射されるが、開口部31が配置された画素21Aでは、2層の光電変換膜52を通過した光は、そのまま下側基板11Bへ通り抜ける。その結果、同じR非吸収画素やその周辺画素において、透過画素のところと、そうでないところとで、感度特性が異なることがあり得る。
そのため、第3の実施の形態では、開口部31の有無による特性差の発生を防止するため、全てのR非吸収画素が透過画素となっている。具体的には、2層の光電変換膜52が、緑色光電変換膜52Gと青色光電変換膜52Bの組み合わせとなっている全ての画素が透過画素となっている。下層の光電変換膜52では、青色光電変換膜52Bが1画素おきに配置されているので、全てのR非吸収画素を透過画素とすることができる。これにより、第3の実施の形態では、光電変換する入射光の色(波長)が同じ画素で感度特性が異なるという問題は発生しない。
しかしながら、逆に言うと、第3の実施の形態では、透過画素の配置が、緑色光電変換膜52Gと青色光電変換膜52Bの組み合わせの画素21Aに限定されることになる。
これに対して、第1及び第2の実施の形態のように、R、G、Bに対応する3層の光電変換膜52を積層した構成とした場合には、光電変換する光の波長が全画素で共通であるので、どの画素を透過画素としてもよく、受光領域内の透過画素の配置(ピッチ)を任意に設定することができる。
なお、上述した例では、市松状に配置された下層の赤色光電変換膜52Rと青色光電変換膜52Bのうち、青色光電変換膜52Bが形成された画素21Aを透過画素としたが、赤色光電変換膜52Rが形成された画素21Aを透過画素としてもよい。この場合、Bの波長の光が下側基板11Bに入射されることになり、Bの受光量に基づいて位相差検出が行われる。
また、2層の光電変換膜52のうち、上側の光電変換膜52を、Bの波長の光を光電変換する青色光電変換膜52B、または、Rの波長の光を光電変換する赤色光電変換膜52Rとしてもよい。下側の光電変換膜52で光電変換する光の波長も、上側の光電変換膜52で光電変換する波長に合わせて適宜変更することができる。すなわち、2層の光電変換膜52において、どの波長の光をどの層で光電変換させるかは、適宜決定することができる。
第3の実施の形態において市松状とした下層の2色の光電変換膜52の配置についても、適宜決定することができる。
<2層構造における回路配置構成例>
図8は、上側基板11Aと下側基板11Bの各基板11の回路配置構成例を示している。
図8のAは、上側基板11Aの受光領域151と下側基板11Bの受光領域161を同一サイズとして、上側基板11Aの受光領域151に対する下側基板11Bの位相差センサ領域のカバー率を100%とした回路配置構成例を示している。この場合、上側基板11Aの回路領域152と下側基板11Bの回路領域162のサイズも同一のサイズとなる。例えば、固体撮像素子1がAPS-Cサイズである場合、受光領域151は、15.75mm×23.6mm程度となる。
図8のBは、画像センサの受光感度を低下させずに、1チップサイズをできるだけ縮小させた場合の上側基板11Aと下側基板11Bの各基板11の回路配置構成例を示している。
上側基板11Aには、受光領域151のみが形成される。
一方、下側基板11Bには、位相差センサ領域としての受光領域171と、回路領域172が形成される。回路領域172には、図8のAにおける上側基板11Aの回路領域152と下側基板11Bの回路領域162のそれぞれの回路が集約されて配置される。そのため、回路領域172のサイズは、図8のAにおける下側基板11Bの回路領域162のサイズよりも大きくなる。しかしながら、上側基板11Aの受光領域151に対する下側基板11Bの位相差センサ領域のカバー率としては、少なくとも80%を確保することができる。
<3層構造における回路配置構成例>
また、固体撮像素子1は、上述した2枚の基板11による積層構造の他、3枚以上の基板11による積層構造で構成することもできる。
図9は、固体撮像素子1が3枚の基板11の積層構造で構成される場合の各基板11の回路配置構成例を示している。
3層構造の最上層となる上側基板11Cには、受光領域151のみが形成され、中間層となる中間基板11Dには、受光領域151と同一サイズで、上側基板11Cの受光領域151に対して位相差センサ領域のカバー率を100%とする受光領域161が形成されている。
3層構造の最下層となる下側基板11Eには、回路領域181が形成されている。
このように、固体撮像素子1を3層構造とすることにより、例えば、同一のAPS-Cサイズでありながらも、図8のAの2枚積層構造による固体撮像素子1よりもチップサイズを縮小することができる。また、位相差センサ領域のカバー率を、図8のBの2枚積層構造による固体撮像素子1よりも大きく確保することができる。
さらに、最下層となる下側基板11Eの全領域を回路領域181として利用することができるので、上側基板11Cの受光領域151と中間基板11Eの受光領域161の各画素を駆動する駆動回路の他、ADC(Analog-Digital Converter)、ロジック回路、メモリ等も、下側基板11Eの回路領域181に配置することができる。
また、最下層の下側基板11Eに、最上層の画像センサの信号処理と、中間層の位相差センサの信号処理を、並列的に処理させるように回路を配置した場合には、位相差オートフォーカスの検波速度を向上させることができる。
<4.固体撮像素子の第4の実施の形態>
<3層構造の構成例1>
図10は、固体撮像素子1の第4の実施の形態である、固体撮像素子1が3枚の基板11の積層構造で構成される場合の断面構成図を示している。
上側基板11Cと中間基板11Dは、図6に示した3層の光電変換膜52を有する固体撮像素子1の上側基板11Aと下側基板11Bに対応するので、その説明は省略する。上側基板11Cと中間基板11Dは、いずれも裏面照射型となるように接合されている。
そして、中間基板11Dの多層配線層84と、下側基板11Eの多層配線層214とが、例えば、Cu-Cuの金属結合により接合されている。多層配線層214は、1以上の配線層212と層間絶縁膜213とで構成される。図10において、配線層82と配線層212との間の破線は、中間基板11Dと下側基板11Eの接合面を表している。
下側基板11Eのシリコン層201には、複数のトランジスタ回路211などを含む信号処理回路が形成されている。
<3層構造の構成例2>
図11は、固体撮像素子1が3枚の基板11の積層構造で構成される場合のその他の断面構成図を示している。
上側基板11Cと中間基板11Dは、図7に示した2層の光電変換膜52を有する固体撮像素子1の上側基板11Aと下側基板11Bに対応するので、その説明は省略する。上側基板11Cと中間基板11Dは、いずれも裏面照射型となるように接合されている。
そして、中間基板11Dの多層配線層84と、下側基板11Eの多層配線層214とが、例えば、Cu-Cuの金属結合により接合されている。多層配線層214は、1以上の配線層212と層間絶縁膜213とで構成される。図11において、配線層82と配線層212との間の破線は、中間基板11Dと下側基板11Eの接合面を表している。
下側基板11Eのシリコン層201には、複数のトランジスタ回路211などを含む信号処理回路が形成されている。
<5.固体撮像素子の第5の実施の形態>
上述した第1乃至第3の実施の形態は、上側基板11Aで得られる画素信号については撮像画像を求める信号として利用し、下側基板11Bで得られる画素信号については位相差検出を行う信号として利用する構成であった。
以下では、フォーカス制御として、位相差検出ではなく、2枚の基板11で検出された画素信号のコントラスト差に基づいてフォーカス制御を行うコントラスト法を採用した構成について説明する。
<コントラスト法のフォーカス制御>
図12は、固体撮像素子1が行うコントラスト法のフォーカス制御を説明する図である。
図12左側に示されるFar Objectの状態、すなわち、焦点位置4よりも被写体3が遠い状態では、上側基板11Aで得られた画像のコントラストが、下側基板11Bで得られた画像のコントラストよりも強くなる。
反対に、図12右側に示されるNear Objectの状態、すなわち、焦点位置4よりも被写体3が近い状態では、下側基板11Bで得られた画像のコントラストが、上側基板11Aで得られた画像のコントラストよりも強くなる。
そして、図12中央に示されるJust Focusの状態、すなわち、焦点位置4と被写体3の位置が一致している状態では、上側基板11Aで得られた画像のコントラストと、下側基板11Bで得られた画像のコントラストが一致する。
以上のように、焦点位置によって、上側基板11Aで得られた画像のコントラストと、下側基板11Bで得られた画像のコントラストに差が出るので、上側基板11Aで得られた画像のコントラストと、下側基板11Bで得られた画像のコントラストを比較することで、フォーカス制御を行うことができる。
また、上側基板11Aで得られた画像のコントラストと、下側基板11Bで得られた画像のコントラストのどちらが強いかを検出することで、オートフォーカスの調整方向がわかるので、オートフォーカスを高速に行うことができる。
さらに、上側基板11Aで得られた画像のコントラストと、下側基板11Bで得られた画像のコントラストの差から、被写体3までの距離を推定することも可能であり、1回の撮像でフォーカス位置を合わせることも可能である。
図13は、本開示に係る固体撮像素子1の第5の実施の形態を示す断面構成図であって、コントラスト法によるフォーカス制御を行う場合の構成例を示している。
図13においては、図4に示した第1の実施の形態と対応する部分については同一の符号を付してあり、第1の実施の形態と異なる部分についてのみ説明する。
図13に示される第5の実施の形態に係る構成を、図4に示した第1の実施の形態に係る構成と比較すると、第5の実施の形態では、オンチップレンズ22と、アパーチャ12(金属膜61)が形成されていない点で、第1の実施の形態に係る構成と異なる。
上述したように、上側基板11Aの光電変換部を光電変換膜52で構成する場合には、オンチップレンズ22は必要ない。また、第5の実施の形態では、光学レンズ2(図1)によって、入射光が下側基板11Bのフォトダイオード71上面で結像されるように構成されればよく、下側基板11Bの受光においても、オンチップレンズ22は不要である。
また、位相差検出を行う場合には、1つの透過画素に対して、下側基板11Bの複数の画素が対応するため、透過画素以外の画素21Aをアパーチャ12によって遮光する必要があったが、コントラスト法によるフォーカス制御の場合は、遮光する必要がないため、アパーチャ12も不要となる。
以上のような構成を採用することにより、固体撮像素子1は、上側基板11Aの光電変換膜52により得られた画素信号と、下側基板11Bのフォトダイオード71により得られた画素信号とのコントラスト差を比較することにより、フォーカス制御を行うことができる。
なお、図13に示される構成では、上側基板11Aの上面に3層の光電変換膜52が形成されているため、下側基板11Bのフォトダイオード71に入射される光は、可視光以外の近赤外光などとなる。
これに対して、例えば、図14に示されるように、上側基板11Aの上面に形成する光電変換膜52の層数を2層とした場合には、R,G,Bの光のうちいずれか1つを下側基板11Bのフォトダイオード71で受光することができる。そして、下側基板11Bで受光できる光と同色の光を光電変換する上側基板11Aの光電変換膜52で得られた画素信号との比較によって、フォーカス制御を行うことができる。図14の構成例では、上側基板11Aの赤色光電変換膜52Rで得られる画素信号と、下側基板11Bのフォトダイオード71で得られる画素信号とのコントラスト差を比較することにより、フォーカス制御を行うことができる。
また、第5の実施の形態においても、図9乃至図11で説明したように、3枚の基板11による積層構造とすることもできる。
<6.電子機器への適用例>
上述した固体撮像素子1は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えたオーディオプレーヤといった各種の電子機器に適用することができる。
図15は、本開示に係る電子機器としての撮像装置の構成例を示すブロック図である。
図15に示される撮像装置301は、光学系302、シャッタ装置303、固体撮像素子304、制御回路305、信号処理回路306、モニタ307、およびメモリ308を備えて構成され、静止画像および動画像を撮像可能である。
光学系302は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を固体撮像素子304に導き、固体撮像素子304の受光面に結像させる。
シャッタ装置303は、光学系302と固体撮像素子304の間に配置され、制御回路305の制御に従って、固体撮像素子304への光照射期間および遮光期間を制御する。
固体撮像素子304は、上述した固体撮像素子1により構成される。固体撮像素子304は、光学系302およびシャッタ装置303を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。固体撮像素子304に蓄積された信号電荷は、制御回路305から供給される駆動信号(タイミング信号)に従って転送される。固体撮像素子304は、それ単体でワンチップとして構成されてもよいし、光学系302ないし信号処理回路306などと一緒にパッケージングされたカメラモジュールの一部として構成されてもよい。
制御回路305は、固体撮像素子304の転送動作、および、シャッタ装置303のシャッタ動作を制御する駆動信号を出力して、固体撮像素子304およびシャッタ装置303を駆動する。
信号処理回路306は、固体撮像素子304から出力された画素信号に対して各種の信号処理を施す。信号処理回路306が信号処理を施すことにより得られた画像(画像データ)は、モニタ307に供給されて表示されたり、メモリ308に供給されて記憶(記録)されたりする。
固体撮像素子304として、上述した各実施の形態に係る固体撮像素子1を用いることで、シェーディングの発生を抑制させ、かつ、高速で高精度なオートフォーカスを実現することができる。従って、ビデオカメラやデジタルスチルカメラ、さらには携帯電話機等のモバイル機器向けカメラモジュールなどの撮像装置301においても、撮像画像の高画質化を図ることができる。
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
基板11は、電子を信号電荷とする不純物領域構成、または、正孔を信号電荷とする不純物領域構成のいずれを採用してもよい。また、上述した各実施の形態では、電荷検出部としてのトランジスタ回路55及び81が基板11(シリコン基板)に形成されるようにしたが、トランジスタ回路55及び81は、有機トランジスタとしてもよい。
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、上述した複数の実施の形態の全てまたは一部を組み合わせた形態を採用することができる。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
なお、本開示は以下のような構成も取ることができる。
(1)
光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、
光学レンズに近い側の第1の光電変換層の1画素に入射された光が、前記光学レンズから遠い側の第2の光電変換層の複数画素の前記光電変換部で受光される状態を含むように構成されている
固体撮像素子。
(2)
前記第1の光電変換層の前記光電変換部は、光電変換膜で構成されている
前記(1)に記載の固体撮像素子。
(3)
前記光電変換膜は、有機光電変換膜である
前記(1)または(2)に記載の固体撮像素子。
(4)
前記光電変換膜は、無機光電変換膜である
前記(1)または(2)に記載の固体撮像素子。
(5)
前記第1の光電変換層の前記光電変換部は、2層以上の光電変換膜で構成されている
前記(1)乃至(4)のいずれかに記載の固体撮像素子。
(6)
前記第1の光電変換層の前記光電変換部は、3層の光電変換膜で構成されている
前記(1)乃至(5)のいずれかに記載の固体撮像素子。
(7)
前記3層の光電変換膜は、青色の波長の光を光電変換する第1光電変換膜と、緑色の波長の光を光電変換する第2光電変換膜と、赤色の波長の光を光電変換する第3光電変換膜である
前記(6)に記載の固体撮像素子。
(8)
前記第1の光電変換層の前記光電変換部は、2層の光電変換膜で構成されている
前記(1)乃至(5)のいずれかに記載の固体撮像素子。
(9)
前記2層の光電変換膜の第1層は、赤色、緑色、及び青色のいずれか1色の光を光電変換する光電変換膜であり、
前記2層の光電変換膜の第2層は、前記赤色、緑色、及び青色の残りの2色の光を光電変換する光電変換膜である
前記(8)に記載の固体撮像素子。
(10)
前記第1光電変換膜の第1層は、緑色の光を光電変換し、
前記第2光電変換膜の第2層は、赤色と青色の光を光電変換する
前記(9)に記載の固体撮像素子。
(11)
前記電荷検出部は、シリコン層に形成されたトランジスタ回路で構成される
前記(1)乃至(10)のいずれかに記載の固体撮像素子。
(12)
前記第2の光電変換層の前記光電変換部は、フォトダイオードで構成される
前記(1)乃至(11)のいずれかに記載の固体撮像素子。
(13)
前記第2の光電変換層の複数画素で得られる画素信号は、位相差検出用の信号である
前記(1)乃至(12)のいずれかに記載の固体撮像素子。
(14)
前記第1の光電変換層で得られる画素信号と、前記第2の光電変換層で得られる画素信号とを比較して、フォーカス制御を行うように構成されている
前記(1)乃至(12)のいずれかに記載の固体撮像素子。
(15)
前記第1の光電変換層の画素は、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含む
前記(1)乃至(14)のいずれかに記載の固体撮像素子。
(16)
前記第1の光電変換層と前記第2の光電変換層は、2枚の半導体基板を用いて形成される
前記(1)乃至(15)のいずれかに記載の固体撮像素子。
(17)
前記第1の光電変換層の前記電荷検出部が形成された前記半導体基板は、表面照射型である
前記(1)乃至(16)のいずれかに記載の固体撮像素子。
(18)
前記第1の光電変換層の前記電荷検出部が形成された前記半導体基板は、裏面照射型である
前記(1)乃至(16)のいずれかに記載の固体撮像素子。
(19)
前記第1の光電変換層と前記第2の光電変換層が形成された前記2枚の半導体基板に加えて、信号処理回路が形成された半導体基板が積層されている
前記(1)乃至(18)のいずれかに記載の固体撮像素子。
(20)
光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、
光学レンズに近い側の第1の光電変換層の1画素に入射された光が、前記光学レンズから遠い側の第2の光電変換層の複数画素の前記光電変換部で受光される状態を含むように構成されている固体撮像素子
を備える電子機器。
1 固体撮像素子, 2 光学レンズ, 11A,11B 半導体基板, 12 アパーチャ, 11D,11E 半導体基板, 21A,21B 画素, 22 オンチップレンズ, 31 開口部, 51 シリコン層, 52 光電変換膜, 53 透明電極, 54 接続電極, 55 トランジスタ回路, 70 シリコン層, 71 フォトダイオード, 201 シリコン層, 211 トランジスタ回路, 301 撮像装置, 304 固体撮像素子

Claims (19)

  1. 光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、
    第1の光電変換層の第1画素に入射された光が、第2の光電変換層の複数画素の前記光電変換部で受光される状態を含み、
    前記第1の光電変換層の画素は、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含み、
    前記第2の光電変換層の複数画素のうち少なくとも一つは、前記第1の光電変換層の第1画素に隣接する第2画素と、平面視において重なるように構成されている
    固体撮像素子。
  2. 前記第1の光電変換層の前記光電変換部は、光電変換膜で構成されている
    請求項1に記載の固体撮像素子。
  3. 前記光電変換膜は、有機光電変換膜である
    請求項2に記載の固体撮像素子。
  4. 前記光電変換膜は、無機光電変換膜である
    請求項2に記載の固体撮像素子。
  5. 前記第1の光電変換層の前記光電変換部は、2層以上の光電変換膜で構成されている
    請求項1に記載の固体撮像素子。
  6. 前記第1の光電変換層の前記光電変換部は、3層の光電変換膜で構成されている
    請求項5に記載の固体撮像素子。
  7. 前記3層の光電変換膜は、青色の波長の光を光電変換する第1光電変換膜と、緑色の波長の光を光電変換する第2光電変換膜と、赤色の波長の光を光電変換する第3光電変換膜である
    請求項6に記載の固体撮像素子。
  8. 前記第1の光電変換層の前記光電変換部は、2層の光電変換膜で構成されている
    請求項5に記載の固体撮像素子。
  9. 前記2層の光電変換膜の第1層は、赤色、緑色、及び青色のいずれか1色の光を光電変換する光電変換膜であり、
    前記2層の光電変換膜の第2層は、前記赤色、緑色、及び青色の残りの2色の光を光電変換する光電変換膜である
    請求項8に記載の固体撮像素子。
  10. 前記2層の光電変換膜の第1層は、緑色の光を光電変換し、
    前記2層の光電変換膜の第2層は、赤色と青色の光を光電変換する
    請求項9に記載の固体撮像素子。
  11. 前記電荷検出部は、シリコン層に形成されたトランジスタ回路で構成される
    請求項1に記載の固体撮像素子。
  12. 前記第2の光電変換層の前記光電変換部は、フォトダイオードで構成される
    請求項1に記載の固体撮像素子。
  13. 前記第2の光電変換層の複数画素で得られる画素信号は、位相差検出用の信号である
    請求項1に記載の固体撮像素子。
  14. 前記第1の光電変換層で得られる画素信号と、前記第2の光電変換層で得られる画素信号とを比較して、フォーカス制御を行うように構成されている
    請求項1に記載の固体撮像素子。
  15. 前記第1の光電変換層と前記第2の光電変換層は、2枚の半導体基板を用いて形成される
    請求項1に記載の固体撮像素子。
  16. 前記第1の光電変換層の前記電荷検出部が形成された前記半導体基板は、表面照射型である
    請求項15に記載の固体撮像素子。
  17. 前記第1の光電変換層の前記電荷検出部が形成された前記半導体基板は、裏面照射型である
    請求項15に記載の固体撮像素子。
  18. 前記第1の光電変換層と前記第2の光電変換層が形成された前記2枚の半導体基板に加えて、信号処理回路が形成された半導体基板が積層されている
    請求項15に記載の固体撮像素子。
  19. 光電変換部と電荷検出部を含む光電変換層が2層以上積層されており、
    第1の光電変換層の第1画素に入射された光が、第2の光電変換層の複数画素の前記光電変換部で受光される状態を含み、
    前記第1の光電変換層の画素は、前記光を前記第2の光電変換層へ透過させる画素と、前記第2の光電変換層へ透過させない画素を含み、
    前記第2の光電変換層の複数画素のうち少なくとも一つは、前記第1の光電変換層の第1画素に隣接する第2画素と、平面視において重なるように構成されている固体撮像素子
    を備える電子機器。
JP2019090724A 2014-07-22 2019-05-13 固体撮像素子および電子機器 Expired - Fee Related JP6724212B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014148837 2014-07-22
JP2014148837 2014-07-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016535872A Division JP6527868B2 (ja) 2014-07-22 2015-07-10 固体撮像素子および電子機器

Publications (2)

Publication Number Publication Date
JP2019169962A JP2019169962A (ja) 2019-10-03
JP6724212B2 true JP6724212B2 (ja) 2020-07-15

Family

ID=55162939

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016535872A Active JP6527868B2 (ja) 2014-07-22 2015-07-10 固体撮像素子および電子機器
JP2019090724A Expired - Fee Related JP6724212B2 (ja) 2014-07-22 2019-05-13 固体撮像素子および電子機器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016535872A Active JP6527868B2 (ja) 2014-07-22 2015-07-10 固体撮像素子および電子機器

Country Status (4)

Country Link
US (3) US10554874B2 (ja)
JP (2) JP6527868B2 (ja)
CN (1) CN106537594B (ja)
WO (1) WO2016013410A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10554874B2 (en) 2014-07-22 2020-02-04 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic equipment
JP6808420B2 (ja) 2016-09-27 2021-01-06 キヤノン株式会社 撮像素子および撮像装置
CN107302665B (zh) * 2017-08-18 2020-07-24 联想(北京)有限公司 一种摄像装置、光圈调节方法和电子设备
US10847555B2 (en) 2017-10-16 2020-11-24 Panasonic Intellectual Property Management Co., Ltd. Imaging device with microlens having particular focal point
CN107846537B (zh) * 2017-11-08 2019-11-26 维沃移动通信有限公司 一种摄像头组件、图像获取方法及移动终端
US20210223512A1 (en) * 2018-06-08 2021-07-22 Sony Semiconductor Solutions Corporation Imaging device
CN110677606B (zh) * 2019-09-16 2022-06-10 Oppo广东移动通信有限公司 一种像素结构、cis和终端

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3131053C2 (de) * 1980-08-07 1983-12-29 Asahi Kogaku Kogyo K.K., Tokyo Automatische Fokussierungsermittlungseinrichtung für eine Kamera
JPS5737336A (en) * 1980-08-19 1982-03-01 Asahi Optical Co Ltd Automatic focus detector for camera
JP2005252411A (ja) * 2004-03-01 2005-09-15 Sharp Corp 固体撮像装置および電子情報機器
JP2005268479A (ja) * 2004-03-18 2005-09-29 Fuji Film Microdevices Co Ltd 光電変換膜積層型固体撮像装置
JP5244287B2 (ja) * 2004-03-19 2013-07-24 富士フイルム株式会社 撮像素子、及び撮像素子に電場を印加する方法
JP4681853B2 (ja) * 2004-11-11 2011-05-11 富士フイルム株式会社 積層型固体撮像装置
JP4500706B2 (ja) * 2005-02-23 2010-07-14 富士フイルム株式会社 光電変換膜積層型固体撮像素子
WO2007011026A1 (ja) * 2005-07-22 2007-01-25 Nikon Corporation 撮像素子、焦点検出装置および撮像システム
JP5087304B2 (ja) * 2007-03-30 2012-12-05 富士フイルム株式会社 固体撮像素子の製造方法
JP5171178B2 (ja) * 2007-09-13 2013-03-27 富士フイルム株式会社 イメージセンサ及びその製造方法
US8077233B2 (en) * 2008-02-22 2011-12-13 Panasonic Corporation Imaging apparatus
JP5353200B2 (ja) * 2008-11-20 2013-11-27 ソニー株式会社 固体撮像装置および撮像装置
JP5190537B2 (ja) * 2009-02-23 2013-04-24 パナソニック株式会社 撮像素子及びそれを備えた撮像装置
JP5359465B2 (ja) * 2009-03-31 2013-12-04 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
KR20110008762A (ko) * 2009-07-21 2011-01-27 삼성전자주식회사 씨모스 이미지 센서의 단위 화소 및 이를 포함하는 씨모스 이미지 센서
JP5537905B2 (ja) * 2009-11-10 2014-07-02 富士フイルム株式会社 撮像素子及び撮像装置
JP5199302B2 (ja) * 2010-03-26 2013-05-15 パナソニック株式会社 撮像装置
JP5581116B2 (ja) * 2010-05-31 2014-08-27 富士フイルム株式会社 光電変換素子、撮像素子及び光電変換素子の駆動方法
JP5538553B2 (ja) 2010-09-29 2014-07-02 富士フイルム株式会社 固体撮像素子及び撮像装置
JP5696513B2 (ja) * 2011-02-08 2015-04-08 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
JP2013070030A (ja) 2011-09-06 2013-04-18 Sony Corp 撮像素子、電子機器、並びに、情報処理装置
US9294691B2 (en) * 2011-09-06 2016-03-22 Sony Corporation Imaging device, imaging apparatus, manufacturing apparatus and manufacturing method
JP5556823B2 (ja) * 2012-01-13 2014-07-23 株式会社ニコン 固体撮像装置および電子カメラ
US8569700B2 (en) * 2012-03-06 2013-10-29 Omnivision Technologies, Inc. Image sensor for two-dimensional and three-dimensional image capture
JP2013187475A (ja) * 2012-03-09 2013-09-19 Olympus Corp 固体撮像装置およびカメラシステム
JP5848177B2 (ja) * 2012-03-27 2016-01-27 日本放送協会 多重フォーカスカメラ
JP6042636B2 (ja) * 2012-05-28 2016-12-14 オリンパス株式会社 固体撮像素子および固体撮像装置
JP2014011417A (ja) * 2012-07-03 2014-01-20 Sony Corp 固体撮像装置および電子機器
JP2014130890A (ja) * 2012-12-28 2014-07-10 Canon Inc 光電変換装置
JP2014232761A (ja) * 2013-05-28 2014-12-11 キヤノン株式会社 固体撮像装置
KR101334219B1 (ko) * 2013-08-22 2013-11-29 (주)실리콘화일 3차원 적층구조의 이미지센서
JP2015128131A (ja) * 2013-11-27 2015-07-09 ソニー株式会社 固体撮像素子および電子機器
JP2015170620A (ja) * 2014-03-04 2015-09-28 株式会社東芝 固体撮像装置
US10554874B2 (en) 2014-07-22 2020-02-04 Sony Semiconductor Solutions Corporation Solid-state imaging device and electronic equipment
JP6536126B2 (ja) * 2015-03-31 2019-07-03 株式会社ニコン 撮像素子および撮像装置

Also Published As

Publication number Publication date
CN106537594A (zh) 2017-03-22
JP2019169962A (ja) 2019-10-03
CN106537594B (zh) 2020-02-18
WO2016013410A1 (ja) 2016-01-28
US11728357B2 (en) 2023-08-15
US20170171458A1 (en) 2017-06-15
US20200162661A1 (en) 2020-05-21
US20240030244A1 (en) 2024-01-25
JPWO2016013410A1 (ja) 2017-06-08
JP6527868B2 (ja) 2019-06-05
US10554874B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6724212B2 (ja) 固体撮像素子および電子機器
JP6987950B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US9686462B2 (en) Solid-state imaging device and electronic apparatus
KR102398120B1 (ko) 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
US9786714B2 (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
WO2016002574A1 (ja) 固体撮像素子および電子機器
WO2013105481A1 (ja) 固体撮像装置および電子カメラ
JP2008227250A (ja) 複合型固体撮像素子
JP5331119B2 (ja) 固体撮像素子および撮像装置
JP5504382B2 (ja) 固体撮像素子及び撮像装置
JP4681853B2 (ja) 積層型固体撮像装置
JP6633850B2 (ja) 積層型固体撮像素子
JP2018182045A (ja) 撮像装置
JP2016195404A (ja) 固体撮像装置および電子カメラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6724212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees