JP6721906B2 - 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池 - Google Patents

縮環キノン置換ポリノルボルネン、電極活物質及び二次電池 Download PDF

Info

Publication number
JP6721906B2
JP6721906B2 JP2015200078A JP2015200078A JP6721906B2 JP 6721906 B2 JP6721906 B2 JP 6721906B2 JP 2015200078 A JP2015200078 A JP 2015200078A JP 2015200078 A JP2015200078 A JP 2015200078A JP 6721906 B2 JP6721906 B2 JP 6721906B2
Authority
JP
Japan
Prior art keywords
group
methyl
dimethyl
ethyl
propyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015200078A
Other languages
English (en)
Other versions
JP2017071714A (ja
Inventor
西出 宏之
宏之 西出
研一 小柳津
研一 小柳津
拓真 川井
拓真 川井
智 中尾
智 中尾
卓司 吉本
卓司 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nissan Chemical Corp
Original Assignee
Waseda University
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nissan Chemical Corp filed Critical Waseda University
Priority to JP2015200078A priority Critical patent/JP6721906B2/ja
Priority to US15/064,802 priority patent/US10164258B2/en
Priority to KR1020160028216A priority patent/KR102564621B1/ko
Publication of JP2017071714A publication Critical patent/JP2017071714A/ja
Application granted granted Critical
Publication of JP6721906B2 publication Critical patent/JP6721906B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/36Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a ketonic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/149Side-chains having heteroaromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、縮環キノン置換ポリノルボルネン、電極活物質及び二次電池に関する。
有機二次電池は、有機電荷貯蔵材料を二次電池における電極活物質として用いた電池であり、高レート特性、充放電サイクルに伴う高容量維持率、軽量薄膜、フレキシブル化可能等の特徴から、大きな注目を集めている。有機電荷貯蔵材料としては、ニトロキシラジカル基を含有する化合物がよく用いられるが(非特許文献1、2、特許文献1)、有機硫黄ポリマー(非特許文献3、4)、キノンポリマー(特許文献2)、キノイド系材料(特許文献3、4、5)、ジオン系材料(特許文献6)、ルベアン酸系材料(特許文献7)等についても報告がなされている。
また、近年、無機電極活物質と共存させて用いることにより、リチウムイオン電池の高速充放電時における容量及び電圧維持率(以下、レート特性と略す。)向上、充放電サイクルにおける容量維持率(以下、サイクル特性と略す。)向上が可能であることが示され(非特許文献5)、適用用途及び手法が拡大している。
特開2002−117852号公報 特開2009−217992号公報 特開2010−44882号公報 特開2010−55923号公報 特開2010−80343号公報 特開2010−212152号公報 特開2008−147015号公報
Chem. Phys. Lett., vol. 359, pp. 351-354, 2002 Electrochem. Soc. Interface, vol. 14, pp. 32-36, 2005 J. Electrochem. Soc., vol. 136, pp. 661-664, 1989 Electrochimica Acta, vol. 46, pp. 2305-2312, 2001 Scientific Reports, vol. 4, pp. 4315-4321, 2014
しかし、ニトロキシラジカル系電荷貯蔵材料を電極活物質として用いた電池は、無機系電極活物質を用いたそれと比較して電荷貯蔵容量が小さく、有機硫黄ポリマー等の容量の高い有機電荷貯蔵材料を用いた場合は、電気化学的安定性が低く、充分なサイクル特性が得られないという課題があった。また、他の有機電荷貯蔵材料においても、単独の電極活物質として用いる場合、あるいは無機電極活物質と併用する場合において、電解液に対する溶出耐性、充分なイオンの出入りを可能にする膨潤性、イオン伝導性、無機電極活物質や集電体との結着性等が不足することにより、二次電池、特にリチウムイオン電池として充分な性能が得られない場合があった。
本発明は、このような事情に鑑みてなされたものであり、電極活物質として用いた場合に高容量、高レート特性及び高サイクル特性を有する高性能な電池を与え得る、電荷貯蔵性を有する材料を提供することを目的とする。
本発明者らは、前記目的を達成するため鋭意検討を重ねた結果、主鎖としてポリノルボルネン構造を含み、側鎖として縮環キノン構造を含むポリマーが、電荷貯蔵材料として機能し、これを電極活物質として用いた場合に、前記課題を克服して高容量、高レート特性及び高サイクル特性を有する高性能な二次電池を与えることを見出し、本発明を完成させた。
すなわち、本発明は、下記縮環キノン置換ポリノルボルネン、電極活物質及び二次電池を提供する。
1.下記式(1)及び/又は(2)で表される繰り返し単位を含む縮環キノン置換ポリノルボルネン。
[式中、A1は、それぞれ独立に、下記式(3)又は(4)で表される置換基を表し、nは、1〜6の整数を表し、A2は、下記式(5)又は(6)で表される置換基を表す。
(式中、Xは、それぞれ独立に、単結合、又は2価の基を表し、Ar1及びAr2は、それぞれ独立に、ベンゾキノン骨格上の2つの炭素原子とともに形成される芳香族炭化水素環又は酸素原子若しくは硫黄原子を含む芳香族複素環を表す。)]
2.前記芳香族炭化水素環がベンゼン環であり、前記芳香族複素環がチオフェン環である1の縮環キノン置換ポリノルボルネン。
3.下記式(1−1)、(1−2)及び/又は(1−3)で表される繰り返し単位を含む、2の縮環キノン置換ポリノルボルネン。
(式中、Xは、前記と同じであり、R1〜R17は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、メルカプト基、アミノ基、炭素数1〜12の置換若しくは非置換のアルキル基、炭素数2〜12の置換若しくは非置換のアルケニル基、炭素数2〜12の置換若しくは非置換のアルキニル基、炭素数6〜12の置換若しくは非置換のアリール基、炭素数3〜12の置換若しくは非置換のヘテロアリール基、炭素数1〜12の置換若しくは非置換のアルコキシ基、炭素数1〜12の置換若しくは非置換のアルキルチオ基、炭素数1〜12の置換若しくは非置換のモノアルキルアミノ基、各々のアルキル基が独立に炭素数1〜12の置換若しくは非置換のアルキル基であるジアルキルアミノ基、又は炭素数2〜12のアルキルカルボニル基を表し、n1、n2及びn3は、それぞれ独立に、1又は2を表す。)
4.1〜3のいずれかの縮環キノン置換ポリノルボルネンからなる電荷貯蔵材料。
5.4の電荷貯蔵材料を含む電極活物質。
6.5の電極活物質、及び溶媒を含む電極スラリー。
7.5の電極活物質を含む薄膜。
8.6の電極スラリーから作製される薄膜。
9.5の電極活物質を含む電極。
10.7又は8の薄膜を含む電極。
11.9又は10の電極を含む二次電池。
12.9又は10の電極を含むリチウムイオン電池。
13.9又は10の電極を含む空気電池。
本発明の縮環キノン置換ポリノルボルネンは、電荷貯蔵の主体として縮環キノン骨格を有し、発生するアニオンラジカルが2つの縮環構造によって安定化されるために電気化学的安定性が高く、電荷貯蔵材料として有用である。更に、2電子還元が進行して安定なジアニオンが形成されるために、これを電池の電極活物質として使用した場合、高安定性と高容量が両立される。
本発明の縮環キノン置換ポリノルボルネンは、主鎖としてポリノルボルネン構造を含むため、架橋構造を含まなくとも電解液に対する耐性が高く、電解液への溶出が抑制される。加えて、電気化学的安定性及び物理的安定性が高いため、充放電サイクルに伴う容量劣化を抑制できる。また、ポリノルボルネン構造は自身のポリマー化及び縮環キノンとのグラフト構造形成を最小限の分子量で構成できるため、充放電における高容量が維持される。
以上の効果により、本発明の縮環キノン置換ポリノルボルネンを電極活物質として用いることで、高レート特性、高容量、高サイクル特性を有する二次電池を作製することが可能である。本発明の縮環キノン置換ポリノルボルネンは、特にリチウムイオン電池の電極活物質として好適である。一般的な二次電池においては、無機系材料又は炭素材料が電極活物質として用いられるが、正極又は負極のどちらか一方を本発明の縮環キノン置換ポリノルボルネンを含む電極に置き換えて使用することもでき、無機材料系あるいは炭素材料系電極活物質と併用して用いることもできる。
実施例で作製したビーカーセルの模式図である。 実施例5で作製した薄膜電極のサイクリックボルタモグラムである。 実施例6で作製した空気二次電池のサイクリックボルタモグラムである。 実施例6で作製した空気二次電池における、充放電容量を変化させた場合の基準電極との電位差の測定結果を示すグラフ及び充放電サイクル特性を示すグラフである。 実施例7、8で作製した空気二次電池のサイクリックボルタモグラムである。 実施例9、10で作製した電池における充放電容量を変化させた場合の基準電極との電位差の測定結果を示すグラフである。 実施例11で作製したポリマーリチウム二次電池のサイクリックボルタモグラムである。 実施例11で作製したポリマーリチウム二次電池における充放電容量を変化させた場合の基準電極との電位差の測定結果を示すグラフである。 実施例12で作製した薄膜電極のサイクリックボルタモグラムである。 実施例13で作製した電池における充放電容量を変化させた場合の基準電極との電位差の測定結果を示すグラフである。 実施例13で作製した電池における放電レート10、20、30、40、50Cのときの放電曲線である。 実施例14で作製したポリマーリチウム二次電池のサイクリックボルタモグラムである。 実施例14で作製したポリマーリチウム二次電池における充放電容量を変化させた場合の基準電極との電位差の測定結果を示すグラフである。
[縮環キノン置換ポリノルボルネン]
本発明の縮環キノン置換ポリノルボルネンは、下記式(1)及び/又は(2)で表される繰り返し単位を含む。
式(1)中、nは、1〜6の整数を表すが、1又は2が好ましい。
式(1)中、A1は、それぞれ独立に、下記式(3)又は(4)で表される置換基を表し、式(2)中、A2は、下記式(5)又は(6)で表される置換基を表す。
式中、Xは、それぞれ独立に、単結合、又は2価の基を表す。前記2価の基としては−C(O)O−、−C(O)OCH2−、−CH2O−、−C(O)NH−、−C(O)NHCH2−、−CH2−、−O−、−S−、−NH−等が好ましく、単結合、−C(O)O−、又は−C(O)OCH2−がより好ましい。Ar1及びAr2は、それぞれ独立に、ベンゾキノン骨格上の2つの炭素原子とともに形成される芳香族炭化水素環又は酸素原子若しくは硫黄原子を含む芳香族複素環を表す。
前記芳香族炭化水素環としては、ベンゼン環が好ましい。前記芳香族複素環としては、チオフェン環、フラン環等が好ましい。これらのうち、ベンゼン環、チオフェン環等が特に好ましい。
本発明の縮環キノン置換ポリノルボルネンにおいて、式(1)で表される繰り返し単位の含有量は、均一な電極スラリー形成及び電解液に対する親和性とレドックス容量を確保するために、全繰り返し単位中50モル%以上が好ましく、80モル%以上がより好ましく、100モル%がより一層好ましい。
本発明の縮環キノン置換ポリノルボルネンとしては、特に、下記式(1−1)、(1−2)及び/又は(1−3)で表される繰り返し単位を含むものが好ましい。
式中、Xは、前記と同じ。R1〜R17は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、メルカプト基、アミノ基、炭素数1〜12の置換若しくは非置換のアルキル基、炭素数2〜12の置換若しくは非置換のアルケニル基、炭素数2〜12の置換若しくは非置換のアルキニル基、炭素数6〜12の置換若しくは非置換のアリール基、炭素数3〜12の置換若しくは非置換のヘテロアリール基、炭素数1〜12の置換若しくは非置換のアルコキシ基、炭素数1〜12の置換若しくは非置換のアルキルチオ基、炭素数1〜12の置換若しくは非置換のモノアルキルアミノ基、各々のアルキル基が独立に炭素数1〜12の置換若しくは非置換のアルキル基であるジアルキルアミノ基、又は炭素数2〜12のアルキルカルボニル基を表す。n1、n2及びn3は、それぞれ独立に、1又は2を表す。
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ
る。
前記アルキル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、c−プロピル基、n−ブチル基、i−ブチル基、s−ブチル基、t−ブチル基、c−ブチル基、1−メチル−c−プロピル基、2−メチル−c−プロピル基、n−ペンチル基、1−メチル−n−ブチル基、2−メチル−n−ブチル基、3−メチル−n−ブチル基、1,1−ジメチル−n−プロピル基、1,2−ジメチル−n−プロピル基、2,2−ジメチル−n−プロピル基、1−エチル−n−プロピル基、c−ペンチル基、1−メチル−c−ブチル基、2−メチル−c−ブチル基、3−メチル−c−ブチル基、1,2−ジメチル−c−プロピル基、2,2−ジメチル−c−プロピル基、2,3−ジメチル−c−プロピル基、1−エチル−c−プロピル基、2−エチル−c−プロピル基、n−ヘキシル基、1−メチル−n−ペンチル基、2−メチル−n−ペンチル基、3−メチル−n−ペンチル基、4−メチル−n−ペンチル基、1,1−ジメチル−n−ブチル基、1,2−ジメチル−n−ブチル基、1,3−ジメチル−n−ブチル基、2,2−ジメチル−n−ブチル基、2,3−ジメチル−n−ブチル基、3,3−ジメチル−n−ブチル基、1−エチル−n−ブチル基、2−エチル−n−ブチル基、1,1,2−トリメチル−n−プロピル基、1,2,2−トリメチル−n−プロピル基、1−エチル−1−メチル−n−プロピル基、1−エチル−2−メチル−n−プロピル基、c−ヘキシル基、1−メチル−c−ペンチル基、2−メチル−c−ペンチル基、3−メチル−c−ペンチル基、1−エチル−c−ブチル基、2−エチル−c−ブチル基、3−エチル−c−ブチル基、1,2−ジメチル−c−ブチル基、1,3−ジメチル−c−ブチル基、2,2−ジメチル−c−ブチル基、2,3−ジメチル−c−ブチル基、2,4−ジメチル−c−ブチル基、3,3−ジメチル−c−ブチル基、1−n−プロピル−c−プロピル基、2−n−プロピル−c−プロピル基、1−i−プロピル−c−プロピル基、2−i−プロピル−c−プロピル基、1,2,2−トリメチル−c−プロピル基、1,2,3−トリメチル−c−プロピル基、2,2,3−トリメチル−c−プロピル基、1−エチル−2−メチル−c−プロピル基、2−エチル−1−メチル−c−プロピル基、2−エチル−2−メチル−c−プロピル基、2−エチル−3−メチル−c−プロピル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基等が挙げられる。
前記アルケニル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、エテニル基、1−プロペニル基、2−プロペニル基、1−メチル−1−エテニル基、1−n−ブテニル基、2−n−ブテニル基、3−n−ブテニル基、2−メチル−1−プロペニル基、2−メチル−2−プロペニル基、1−エチルエテニル基、1−メチル−1−プロペニル基、1−メチル−2−プロペニル基、1−n−ペンテニル基、2−n−ペンテニル基、3−n−ペンテニル基、4−n−ペンテニル基、1−n−プロピルエテニル基、1−メチル−1−n−ブテニル基、1−メチル−2−n−ブテニル基、1−メチル−3−n−ブテニル基、2−エチル−2−プロペニル基、2−メチル−1−n−ブテニル基、2−メチル−2−n−ブテニル基、2−メチル−3−n−ブテニル基、3−メチル−1−n−ブテニル基、3−メチル−2−n−ブテニル基、3−メチル−3−n−ブテニル基、1,1−ジメチル−2−プロペニル基、1−i−プロピルエテニル基、1,2−ジメチル−1−n−プロペニル基、1,2−ジメチル−2−n−プロペニル基、1−c−ペンテニル基、2−c−ペンテニル基、3−c−ペンテニル基、1−n−ヘキセニル基、2−n−ヘキセニル基、3−n−ヘキセニル基、4−n−ヘキセニル基、5−n−ヘキセニル基、1−メチル−1−n−ペンテニル基、1−メチル−2−n−ペンテニル基、1−メチル−3−n−ペンテニル基、1−メチル−4−n−ペンテニル基、1−n−ブチルエテニル基、2−メチル−1−n−ペンテニル基、2−メチル−2−n−ペンテニル基、2−メチル−3−n−ペンテニル基、2−メチル−4−n−ペンテニル基、2−n−プロピル−2−n−プロペニル基、3−メチル−1−n−ペンテニル基、3−メチル−2−n−ペンテニル基、3−メチル−3−n−ペンテニル基、3−メチル−4−n−ペンテニル基、3−エチル−3−n−ブテニル基、4−メチル−1−n−ペンテニル基、4−メチル−2−n−ペンテニル基、4−メチル−3−n−ペンテニル基、4−メチル−4−n−ペンテニル基、1,1−ジメチル−2−n−ブテニル基、1,1−ジメチル−3−n−ブテニル基、1,2−ジメチル−1−n−ブテニル基、1,2−ジメチル−2−n−ブテニル基、1,2−ジメチル−3−n−ブテニル基、1−メチル−2−エチル−2−n−プロペニル基、1−s−ブチルエテニル基、1,3−ジメチル−1−n−ブテニル基、1,3−ジメチル−2−n−ブテニル基、1,3−ジメチル−3−n−ブテニル基、1−i−ブチルエテニル基、2,2−ジメチル−3−n−ブテニル基、2,3−ジメチル−1−n−ブテニル基、2,3−ジメチル−2−n−ブテニル基、2,3−ジメチル−3−n−ブテニル基、2−i−プロピル−2−n−プロペニル基、3,3−ジメチル−1−n−ブテニル基、1−エチル−1−n−ブテニル基、1−エチル−2−n−ブテニル基、1−エチル−3−n−ブテニル基、1−n−プロピル−1−n−プロペニル基、1−n−プロピル−2−n−プロペニル基、2−エチル−1−n−ブテニル基、2−エチル−2−n−ブテニル基、2−エチル−3−n−ブテニル基、1,1,2−トリメチル−2−プロペニル基、1−t−ブチルエテニル基、1−メチル−1−エチル−2−n−プロペニル基、1−エチル−2−メチル−1−n−プロペニル基、1−エチル−2−メチル−2−プロペニル基、1−i−プロピル−1−プロペニル基、1−i−プロピル−2−n−プロペニル基、1−メチル−2−c−ペンテニル基、1−メチル−3−c−ペンテニル基、2−メチル−1−c−ペンテニル基、2−メチル−2−c−ペンテニル基、2−メチル−3−c−ペンテニル基、2−メチル−4−c−ペンテニル基、2−メチル−5−c−ペンテニル基、2−メチレン−c−ペンチル基、3−メチル−1−c−ペンテニル基、3−メチル−2−c−ペンテニル基、3−メチル−3−c−ペンテニル基、3−メチル−4−c−ペンテニル基、3−メチル−5−c−ペンテニル基、3−メチレン−c−ペンチル基、1−c−ヘキセニル基、2−c−ヘキセニル基、3−c−ヘキセニル基等が挙げられる。
前記アルキニル基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、エチニル基、1−プロピニル基、2−プロピニル基、1−n−ブチニル基、2−n−ブチニル基、3−n−ブチニル基、1−メチル−2−プロピニル基、1−n−ペンチニル基、2−n−ペンチニル基、3−n−ペンチニル基、4−n−ペンチニル基、1−メチル−2−n−ブチニル基、1−メチル−3−n−ブチニル基、2−メチル−3−n−ブチニル基、3−メチル−1−n−ブチニル基、1,1−ジメチル−2−プロピニル基、2−エチル−2−プロピニル基、1−n−ヘキシニル基、2−n−ヘキシニル基、3−n−ヘキシニル基、4−n−ヘキシニル基、5−n−ヘキシニル基、1−メチル−2−n−ペンチニル基、1−メチル−3−n−ペンチニル基、1−メチル−4−n−ペンチニル基、2−メチル−3−n−ペンチニル基、2−メチル−4−n−ペンチニル基、3−メチル−1−n−ペンチニル基、3−メチル−4−n−ペンチニル基、4−メチル−1−n−ペンチニル基、4−メチル−2−n−ペンチニル基、1,1−ジメチル−2−n−ブチニル基、1,1−ジメチル−3−n−ブチニル基、1,2−ジメチル−3−n−ブチニル基、2,2−ジメチル−3−n−ブチニル基、3,3−ジメチル−1−ブチニル基、1−エチル−2−ブチニル基、1−エチル−3−ブチニル基、1−n−プロピル−2−プロピニル基、2−エチル−3−n−ブチニル基、1−メチル−1−エチル−2−プロピニル基、1−i−プロピル−2−プロピニル基等が挙げられる。
前記アリール基としては、例えば、フェニル基、α−ナフチル基、β−ナフチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−アントリル基、2−アントリル基、9−アントリル基、1−フェナントリル基、2−フェナントリル基、3−フェナントリル基、4−フェナントリル基、9−フェナントリル基等が挙げられる。
前記ヘテロアリール基としては、例えば、2−フリル基、3−フリル基、2−チエニル基、3−チエニル基、1−ピロリル基、2−ピロリル基、3−ピロリル基、1−イミダゾリル基、2−イミダゾリル基、4−イミダゾリル基等が挙げられる。
前記アルコキシ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、c−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、c−ブトキシ基、n−ペンチルオキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、c−ペンチルオキシ基、2−メチル−c−ブトキシ基、n−ヘキシルオキシ基、1−メチル−n−ペンチルオキシ基、2−メチル−n−ペンチルオキシ基、1,1−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、c−ヘキシルオキシ基、1−メチル−c−ペンチルオキシ基、1−エチル−c−ブトキシ基、1,2−ジメチル−c−ブトキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基等が挙げられる。
前記アルキルチオ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、n−ペンチルチオ基、1−メチルブチルチオ基、2−メチル−n−ブチルチオ基、3−メチル−n−ブチルチオ基、1,1−ジメチルプロピルチオ基、2,2−ジメチルプロピルチオ基、n−ヘキシルチオ基、1−メチル−n−ペンチルチオ基、2−メチル−n−ペンチルチオ基、1,1−ジメチル−n−ブチルチオ基、1−エチル−n−ブチルチオ基、1,1,2−トリメチルプロピルチオ基、n−ヘプチルチオ基、n−オクチルチオ基、2−エチル−n−ヘキシルチオ基、n−ノニルチオ基、n−デシルチオ基、n−ウンデシルチオ基、n−ドデシルチオ基等が挙げられる。
前記モノアルキルアミノ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、i−プロピルアミノ基、c−プロピルアミノ基、n−ブチルアミノ基、i−ブチルアミノ基、s−ブチルアミノ基、t−ブチルアミノ基、c−ブチルアミノ基、1−メチル−c−プロピルアミノ基、2−メチル−c−プロピルアミノ基、n−ペンチルアミノ基、1−メチル−n−ブチルアミノ基、2−メチル−n−ブチルアミノ基、3−メチル−n−ブチルアミノ基、1,1−ジメチル−n−プロピルアミノ基、1,2−ジメチル−n−プロピルアミノ基、2,2−ジメチル−n−プロピルアミノ基、1−エチル−n−プロピルアミノ基、c−ペンチルアミノ基、1−メチル−c−ブチルアミノ基、2−メチル−c−ブチルアミノ基、3−メチル−c−ブチルアミノ基、1,2−ジメチル−c−プロピルアミノ基、2,3−ジメチル−c−プロピルアミノ基、1−エチル−c−プロピルアミノ基、2−エチル−c−プロピルアミノ基、n−ヘキシルアミノ基、1−メチル−n−ペンチルアミノ基、2−メチル−n−ペンチルアミノ基、3−メチル−n−ペンチルアミノ基、4−メチル−n−ペンチルアミノ基、1,1−ジメチル−n−ブチルアミノ基、1,2−ジメチル−n−ブチルアミノ基、1,3−ジメチル−n−ブチルアミノ基、2,2−ジメチル−n−ブチルアミノ基、2,3−ジメチル−n−ブチルアミノ基、3,3−ジメチル−n−ブチルアミノ基、1−エチル−n−ブチルアミノ基、2−エチル−n−ブチルアミノ基、1,1,2−トリメチル−n−プロピルアミノ基、1,2,2−トリメチル−n−プロピルアミノ基、1−エチル−1−メチル−n−プロピルアミノ基、1−エチル−2−メチル−n−プロピルアミノ基、c−ヘキシルアミノ基、1−メチル−c−ペンチルアミノ基、2−メチル−c−ペンチルアミノ基、3−メチル−c−ペンチルアミノ基、1−エチル−c−ブチルアミノ基、2−エチル−c−ブチルアミノ基、3−エチル−c−ブチルアミノ基、1,2−ジメチル−c−ブチルアミノ基、1,3−ジメチル−c−ブチルアミノ基、2,2−ジメチル−c−ブチルアミノ基、2,3−ジメチル−c−ブチルアミノ基、2,4−ジメチル−c−ブチルアミノ基、3,3−ジメチル−c−ブチルアミノ基、1−n−プロピル−c−プロピルアミノ基、2−n−プロピル−c−プロピルアミノ基、1−i−プロピル−c−プロピルアミノ基、2−i−プロピル−c−プロピルアミノ基、1,2,2−トリメチル−c−プロピルアミノ基、1,2,3−トリメチル−c−プロピルアミノ基、2,2,3−トリメチル−c−プロピルアミノ基、1−エチル−2−メチル−c−プロピルアミノ基、2−エチル−1−メチル−c−プロピルアミノ基、2−エチル−2−メチル−c−プロピルアミノ基、2−エチル−3−メチル−c−プロピルアミノ基等が挙げられる。
前記ジアルキルアミノ基としては、直鎖状、分岐状、環状のいずれでもよく、例えば、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジ−i−プロピルアミノ基、ジ−c−プロピルアミノ基、ジ−n−ブチルアミノ基、ジ−i−ブチルアミノ基、ジ−s−ブチルアミノ基、ジ−t−ブチルアミノ基、ジ−c−ブチルアミノ基、ジ−(1−メチル−c−プロピル)アミノ基、ジ−(2−メチル−c−プロピル)アミノ基、ジ−n−ペンチルアミノ基、ジ−(1−メチル−n−ブチル)アミノ基、ジ−(2−メチル−n−ブチル)アミノ基、ジ−(3−メチル−n−ブチル)アミノ基、ジ−(1,1−ジメチル−n−プロピル)アミノ基、ジ−(1,2−ジメチル−n−プロピル)アミノ基、ジ−(2,2−ジメチル−n−プロピル)アミノ基、ジ−(1−エチル−n−プロピル)アミノ基、ジ−c−ペンチルアミノ基、ジ−(1−メチル−c−ブチル)アミノ基、ジ−(2−メチル−c−ブチル)アミノ基、ジ−(3−メチル−c−ブチル)アミノ基、ジ−(1,2−ジメチル−c−プロピル)アミノ基、ジ−(2,3−ジメチル−c−プロピル)アミノ基、ジ−(1−エチル−c−プロピル)アミノ基、ジ−(2−エチル−c−プロピル)アミノ基、ジ−n−ヘキシルアミノ基、ジ−(1−メチル−n−ペンチル)アミノ基、ジ−(2−メチル−n−ペンチル)アミノ基、ジ−(3−メチル−n−ペンチル)アミノ基、ジ−(4−メチル−n−ペンチル)アミノ基、ジ−(1,1−ジメチル−n−ブチル)アミノ基、ジ−(1,2−ジメチル−n−ブチル)アミノ基、ジ−(1,3−ジメチル−n−ブチル)アミノ基、ジ−(2,2−ジメチル−n−ブチル)アミノ基、ジ−(2,3−ジメチル−n−ブチル)アミノ基、ジ−(3,3−ジメチル−n−ブチル)アミノ基、ジ−(1−エチル−n−ブチル)アミノ基、ジ−(2−エチル−n−ブチル)アミノ基、ジ−(1,1,2−トリメチル−n−プロピル)アミノ基、ジ−(1,2,2−トリメチル−n−プロピル)アミノ基、ジ−(1−エチル−1−メチル−n−プロピル)アミノ基、ジ−(1−エチル−2−メチル−n−プロピル)アミノ基、ジ−c−ヘキシルアミノ基、ジ−(1−メチル−c−ペンチル)アミノ基、ジ−(2−メチル−c−ペンチル)アミノ基、ジ−(3−メチル−c−ペンチル)アミノ基、ジ−(1−エチル−c−ブチル)アミノ基、ジ−(2−エチル−c−ブチル)アミノ基、ジ−(3−エチル−c−ブチル)アミノ基、ジ−(1,2−ジメチル−c−ブチル)アミノ基、ジ−(1,3−ジメチル−c−ブチル)アミノ基、ジ−(2,2−ジメチル−c−ブチル)アミノ基、ジ−(2,3−ジメチル−c−ブチル)アミノ基、ジ−(2,4−ジメチル−c−ブチル)アミノ基、ジ−(3,3−ジメチル−c−ブチル)アミノ基、ジ−(1−n−プロピル−c−プロピル)アミノ基、ジ−(2−n−プロピル−c−プロピル)アミノ基、ジ−(1−i−プロピル−c−プロピル)アミノ基、ジ−(2−i−プロピル−c−プロピル)アミノ基、ジ−(1,2,2−トリメチル−c−プロピル)アミノ基、ジ−(1,2,3−トリメチル−c−プロピル)アミノ基、ジ−(2,2,3−トリメチル−c−プロピル)アミノ基、ジ−(1−エチル−2−メチル−c−プロピル)アミノ基、ジ−(2−エチル−1−メチル−c−プロピル)アミノ基、ジ−(2−エチル−2−メチル−c−プロピル)アミノ基、ジ−(2−エチル−3−メチル−c−プロピル)アミノ基等が挙げられる。
前記アルキルカルボニル基としては、例えば、メチルカルボニル基、エチルカルボニル基、n−プロピルカルボニル基、i−プロピルカルボニル基、c−プロピルカルボニル基、n−ブチルカルボニル基、i−ブチルカルボニル基、s−ブチルカルボニル基、t−ブチルカルボニル基、c−ブチルカルボニル基、1−メチル−c−プロピルカルボニル基、2−メチル−c−プロピルカルボニル基、n−ペンチルカルボニル基、1−メチル−n−ブチルカルボニル基、2−メチル−n−ブチルカルボニル基、3−メチル−n−ブチルカルボニル基、1,1−ジメチル−n−プロピルカルボニル基、1,2−ジメチル−n−プロピルカルボニル基、2,2−ジメチル−n−プロピルカルボニル基、1−エチル−n−プロピルカルボニル基、c−ペンチルカルボニル基、1−メチル−c−ブチルカルボニル基、2−メチル−c−ブチルカルボニル基、3−メチル−c−ブチルカルボニル基、1,2−ジメチル−c−プロピルカルボニル基、2,3−ジメチル−c−プロピルカルボニル基、1−エチル−c−プロピルカルボニル基、2−エチル−c−プロピルカルボニル基、n−ヘキシルカルボニル基、1−メチル−n−ペンチルカルボニル基、2−メチル−n−ペンチルカルボニル基、3−メチル−n−ペンチルカルボニル基、4−メチル−n−ペンチルカルボニル基、1,1−ジメチル−n−ブチルカルボニル基、1,2−ジメチル−n−ブチルカルボニル基、1,3−ジメチル−n−ブチルカルボニル基、2,2−ジメチル−n−ブチルカルボニル基、2,3−ジメチル−n−ブチルカルボニル基、3,3−ジメチル−n−ブチルカルボニル基、1−エチル−n−ブチルカルボニル基、2−エチル−n−ブチルカルボニル基、1,1,2−トリメチル−n−プロピルカルボニル基、1,2,2−トリメチル−n−プロピルカルボニル基、1−エチル−1−メチル−n−プロピルカルボニル基、1−エチル−2−メチル−n−プロピルカルボニル基、c−ヘキシルカルボニル基、1−メチル−c−ペンチルカルボニル基、2−メチル−c−ペンチルカルボニル基、3−メチル−c−ペンチルカルボニル基、1−エチル−c−ブチルカルボニル基、2−エチル−c−ブチルカルボニル基、3−エチル−c−ブチルカルボニル基、1,2−ジメチル−c−ブチルカルボニル基、1,3−ジメチル−c−ブチルカルボニル基、2,2−ジメチル−c−ブチルカルボニル基、2,3−ジメチル−c−ブチルカルボニル基、2,4−ジメチル−c−ブチルカルボニル基、3,3−ジメチル−c−ブチルカルボニル基、1−n−プロピル−c−プロピルカルボニル基、2−n−プロピル−c−プロピルカルボニル基、1−i−プロピル−c−プロピルカルボニル基、2−i−プロピル−c−プロピルカルボニル基、1,2,2−トリメチル−c−プロピルカルボニル基、1,2,3−トリメチル−c−プロピルカルボニル基、2,2,3−トリメチル−c−プロピルカルボニル基、1−エチル−2−メチル−c−プロピルカルボニル基、2−エチル−1−メチル−c−プロピルカルボニル基、2−エチル−2−メチル−c−プロピルカルボニル基、2−エチル−3−メチル−c−プロピルカルボニル基等が挙げられる。
これらのうち、容量、電気伝導性の向上を考慮すると、R1〜R17としては、水素原子、塩素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基、n−ペンチル基、1−メチルブチル基、2−メチルブチル基、3−メチルブチル基、1,1−ジメチルプロピル基、2,2−ジメチルプロピル基、n−ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、1,1−ジメチルブチル基、1−エチルブチル基、1,1,2−トリメチルプロピル基等が好ましく、水素原子、塩素原子、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、t−ブチル基等がより好ましく、水素原子が最も好ましい。
また、前記の基の炭素原子に結合する水素原子の一部又は全部が置換基で置換されていてもよい。前記置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、メルカプト基、アミノ基、炭素数1〜11のアルコキシ基、炭素数1〜11のハロアルコキシ基、炭素数1〜11のアルキルチオ基、炭素数1〜11のモノアルキルアミノ基、各々のアルキル基がそれぞれ独立に炭素数1〜11のジアルキルアミノ基、グリシドキシ基、炭素数2〜11のアルキルカルボニル基、炭素数3〜11のアルケニルカルボニル基、炭素数3〜11のアルキニルカルボニル基、炭素数2〜11のアルキルカルボニルオキシ基、炭素数3〜11のアルケニルカルボニルオキシ基、炭素数3〜11のアルキニルカルボニルオキシ基、炭素数6〜11のアリール基、炭素数6〜11のハロゲン化アリール基、炭素数3〜11のヘテロアリール基、炭素数3〜11のハロゲン化ヘテロアリール基等が挙げられる。ただし、前記置換基を有する場合、R1〜R17における炭素総数の上限は、それぞれ12である。
前記炭素数1〜11のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、c−プロポキシ基、n−ブトキシ基、i−ブトキシ基、s−ブトキシ基、t−ブトキシ基、c−ブトキシ基、1−メチル−c−プロポキシ基、2−メチル−c−プロポキシ基、n−ペンチルオキシ基、1−メチル−n−ブトキシ基、2−メチル−n−ブトキシ基、3−メチル−n−ブトキシ基、1,1−ジメチル−n−プロポキシ基、1,2−ジメチル−n−プロポキシ基、2,2−ジメチル−n−プロポキシ基、1−エチル−n−プロポキシ基、c−ペンチルオキシ基、1−メチル−c−ブトキシ基、2−メチル−c−ブトキシ基、3−メチル−c−ブトキシ基、1,2−ジメチル−c−プロポキシ基、2,3−ジメチル−c−プロポキシ基、1−エチル−c−プロポキシ基、2−エチル−c−プロポキシ基、n−ヘキシルオキシ基、1−メチル−n−ペンチルオキシ基、2−メチル−n−ペンチルオキシ基、3−メチル−n−ペンチルオキシ基、4−メチル−n−ペンチルオキシ基、1,1−ジメチル−n−ブトキシ基、1,2−ジメチル−n−ブトキシ基、1,3−ジメチル−n−ブトキシ基、2,2−ジメチル−n−ブトキシ基、2,3−ジメチル−n−ブトキシ基、3,3−ジメチル−n−ブトキシ基、1−エチル−n−ブトキシ基、2−エチル−n−ブトキシ基、1,1,2−トリメチル−n−プロポキシ基、1,2,2−トリメチル−n−プロポキシ基、1−エチル−1−メチル−n−プロポキシ基、1−エチル−2−メチル−n−プロポキシ基、c−ヘキシルオキシ基、1−メチル−c−ペンチルオキシ基、2−メチル−c−ペンチルオキシ基、3−メチル−c−ペンチルオキシ基、1−エチル−c−ブトキシ基、2−エチル−c−ブトキシ基、3−エチル−c−ブトキシ基、1,2−ジメチル−c−ブトキシ基、1,3−ジメチル−c−ブトキシ基、2,2−ジメチル−c−ブトキシ基、2,3−ジメチル−c−ブトキシ基、2,4−ジメチル−c−ブトキシ基、3,3−ジメチル−c−ブトキシ基、1−n−プロピル−c−プロポキシ基、2−n−プロピル−c−プロポキシ基、1−i−プロピル−c−プロポキシ基、2−i−プロピル−c−プロポキシ基、1,2,2−トリメチル−c−プロポキシ基、1,2,3−トリメチル−c−プロポキシ基、2,2,3−トリメチル−c−プロポキシ基、1−エチル−2−メチル−c−プロポキシ基、2−エチル−1−メチル−c−プロポキシ基、2−エチル−2−メチル−c−プロポキシ基、2−エチル−3−メチル−c−プロポキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基等が挙げられる。
前記炭素数1〜11のハロアルコキシ基としては、例えば、ジフルオロメトキシ基、トリフルオロメトキシ基、ブロモジフルオロメトキシ基、2−クロロエトキシ基、2−ブロモエトキシ基、1,1−ジフルオロエトキシ基、2,2,2−トリフルオロエトキシ基、1,1,2,2−テトラフルオロエトキシ基、2−クロロ−1,1,2−トリフルオロエトキシ基、ペンタフルオロエトキシ基、3−ブロモプロポキシ基、2,2,3,3−テトラフルオロプロポキシ基、1,1,2,3,3,3−ヘキサフルオロプロポキシ基、1,1,1,3,3,3−ヘキサフルオロプロパン−2−イルオキシ基、3−ブロモ−2−メチルプロポキシ基、4−ブロモブトキシ基、パーフルオロペンチルオキシ基等が挙げられる。
前記炭素数1〜11のアルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、c−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、s−ブチルチオ基、t−ブチルチオ基、c−ブチルチオ基、1−メチル−c−プロピルチオ基、2−メチル−c−プロピルチオ基、n−ペンチルチオ基、1−メチル−n−ブチルチオ基、2−メチル−n−ブチルチオ基、3−メチル−n−ブチルチオ基、1,1−ジメチル−n−プロピルチオ基、1,2−ジメチル−n−プロピルチオ基、2,2−ジメチル−n−プロピルチオ基、1−エチル−n−プロピルチオ基、c−ペンチルチオ基、1−メチル−c−ブチルチオ基、2−メチル−c−ブチルチオ基、3−メチル−c−ブチルチオ基、1,2−ジメチル−c−プロピルチオ基、2,3−ジメチル−c−プロピルチオ基、1−エチル−c−プロピルチオ基、2−エチル−c−プロピルチオ基、n−ヘキシルチオ基、1−メチル−n−ペンチルチオ基、2−メチル−n−ペンチルチオ基、3−メチル−n−ペンチルチオ基、4−メチル−n−ペンチルチオ基、1,1−ジメチル−n−ブチルチオ基、1,2−ジメチル−n−ブチルチオ基、1,3−ジメチル−n−ブチルチオ基、2,2−ジメチル−n−ブチルチオ基、2,3−ジメチル−n−ブチルチオ基、3,3−ジメチル−n−ブチルチオ基、1−エチル−n−ブチルチオ基、2−エチル−n−ブチルチオ基、1,1,2−トリメチル−n−プロピルチオ基、1,2,2−トリメチル−n−プロピルチオ基、1−エチル−1−メチル−n−プロピルチオ基、1−エチル−2−メチル−n−プロピルチオ基、c−ヘキシルチオ基、1−メチル−c−ペンチルチオ基、2−メチル−c−ペンチルチオ基、3−メチル−c−ペンチルチオ基、1−エチル−c−ブチルチオ基、2−エチル−c−ブチルチオ基、3−エチル−c−ブチルチオ基、1,2−ジメチル−c−ブチルチオ基、1,3−ジメチル−c−ブチルチオ基、2,2−ジメチル−c−ブチルチオ基、2,3−ジメチル−c−ブチルチオ基、2,4−ジメチル−c−ブチルチオ基、3,3−ジメチル−c−ブチルチオ基、1−n−プロピル−c−プロピルチオ基、2−n−プロピル−c−プロピルチオ基、1−i−プロピル−c−プロピルチオ基、2−i−プロピル−c−プロピルチオ基、1,2,2−トリメチル−c−プロピルチオ基、1,2,3−トリメチル−c−プロピルチオ基、2,2,3−トリメチル−c−プロピルチオ基、1−エチル−2−メチル−c−プロピルチオ基、2−エチル−1−メチル−c−プロピルチオ基、2−エチル−2−メチル−c−プロピルチオ基、2−エチル−3−メチル−c−プロピルチオ基、n−ヘプチルチオ基、n−オクチルチオ基、n−ノニルチオ基、n−デシルチオ基、n−ウンデシルチオ基等が挙げられる。
前記炭素数1〜11のモノアルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、i−プロピルアミノ基、c−プロピルアミノ基、n−ブチルアミノ基、i−ブチルアミノ基、s−ブチルアミノ基、t−ブチルアミノ基、c−ブチルアミノ基、1−メチル−c−プロピルアミノ基、2−メチル−c−プロピルアミノ基、n−ペンチルアミノ基、1−メチル−n−ブチルアミノ基、2−メチル−n−ブチルアミノ基、3−メチル−n−ブチルアミノ基、1,1−ジメチル−n−プロピルアミノ基、1,2−ジメチル−n−プロピルアミノ基、2,2−ジメチル−n−プロピルアミノ基、1−エチル−n−プロピルアミノ基、c−ペンチルアミノ基、1−メチル−c−ブチルアミノ基、2−メチル−c−ブチルアミノ基、3−メチル−c−ブチルアミノ基、1,2−ジメチル−c−プロピルアミノ基、2,3−ジメチル−c−プロピルアミノ基、1−エチル−c−プロピルアミノ基、2−エチル−c−プロピルアミノ基、n−ヘキシルアミノ基、1−メチル−n−ペンチルアミノ基、2−メチル−n−ペンチルアミノ基、3−メチル−n−ペンチルアミノ基、4−メチル−n−ペンチルアミノ基、1,1−ジメチル−n−ブチルアミノ基、1,2−ジメチル−n−ブチルアミノ基、1,3−ジメチル−n−ブチルアミノ基、2,2−ジメチル−n−ブチルアミノ基、2,3−ジメチル−n−ブチルアミノ基、3,3−ジメチル−n−ブチルアミノ基、1−エチル−n−ブチルアミノ基、2−エチル−n−ブチルアミノ基、1,1,2−トリメチル−n−プロピルアミノ基、1,2,2−トリメチル−n−プロピルアミノ基、1−エチル−1−メチル−n−プロピルアミノ基、1−エチル−2−メチル−n−プロピルアミノ基、c−ヘキシルアミノ基、1−メチル−c−ペンチルアミノ基、2−メチル−c−ペンチルアミノ基、3−メチル−c−ペンチルアミノ基、1−エチル−c−ブチルアミノ基、2−エチル−c−ブチルアミノ基、3−エチル−c−ブチルアミノ基、1,2−ジメチル−c−ブチルアミノ基、1,3−ジメチル−c−ブチルアミノ基、2,2−ジメチル−c−ブチルアミノ基、2,3−ジメチル−c−ブチルアミノ基、2,4−ジメチル−c−ブチルアミノ基、3,3−ジメチル−c−ブチルアミノ基、1−n−プロピル−c−プロピルアミノ基、2−n−プロピル−c−プロピルアミノ基、1−i−プロピル−c−プロピルアミノ基、2−i−プロピル−c−プロピルアミノ基、1,2,2−トリメチル−c−プロピルアミノ基、1,2,3−トリメチル−c−プロピルアミノ基、2,2,3−トリメチル−c−プロピルアミノ基、1−エチル−2−メチル−c−プロピルアミノ基、2−エチル−1−メチル−c−プロピルアミノ基、2−エチル−2−メチル−c−プロピルアミノ基、2−エチル−3−メチル−c−プロピルアミノ基等が挙げられる。
前記各々のアルキル基がそれぞれ独立に炭素数1〜11のジアルキルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジ−i−プロピルアミノ基、ジ−c−プロピルアミノ基、ジ−n−ブチルアミノ基、ジ−i−ブチルアミノ基、ジ−s−ブチルアミノ基、ジ−t−ブチルアミノ基、ジ−c−ブチルアミノ基、ジ−(1−メチル−c−プロピル)アミノ基、ジ−(2−メチル−c−プロピル)アミノ基、ジ−n−ペンチルアミノ基、ジ−(1−メチル−n−ブチル)アミノ基、ジ−(2−メチル−n−ブチル)アミノ基、ジ−(3−メチル−n−ブチル)アミノ基、ジ−(1,1−ジメチル−n−プロピル)アミノ基、ジ−(1,2−ジメチル−n−プロピル)アミノ基、ジ−(2,2−ジメチル−n−プロピル)アミノ基、ジ−(1−エチル−n−プロピル)アミノ基、ジ−c−ペンチルアミノ基、ジ−(1−メチル−c−ブチル)アミノ基、ジ−(2−メチル−c−ブチル)アミノ基、ジ−(3−メチル−c−ブチル)アミノ基、ジ−(1,2−ジメチル−c−プロピル)アミノ基、ジ−(2,3−ジメチル−c−プロピル)アミノ基、ジ−(1−エチル−c−プロピル)アミノ基、ジ−(2−エチル−c−プロピル)アミノ基、ジ−n−ヘキシルアミノ基、ジ−(1−メチル−n−ペンチル)アミノ基、ジ−(2−メチル−n−ペンチル)アミノ基、ジ−(3−メチル−n−ペンチル)アミノ基、ジ−(4−メチル−n−ペンチル)アミノ基、ジ−(1,1−ジメチル−n−ブチル)アミノ基、ジ−(1,2−ジメチル−n−ブチル)アミノ基、ジ−(1,3−ジメチル−n−ブチル)アミノ基、ジ−(2,2−ジメチル−n−ブチル)アミノ基、ジ−(2,3−ジメチル−n−ブチル)アミノ基、ジ−(3,3−ジメチル−n−ブチル)アミノ基、ジ−(1−エチル−n−ブチル)アミノ基、ジ−(2−エチル−n−ブチル)アミノ基、ジ−(1,1,2−トリメチル−n−プロピル)アミノ基、ジ−(1,2,2−トリメチル−n−プロピル)アミノ基、ジ−(1−エチル−1−メチル−n−プロピル)アミノ基、ジ−(1−エチル−2−メチル−n−プロピル)アミノ基、ジ−c−ヘキシルアミノ基、ジ−(1−メチル−c−ペンチル)アミノ基、ジ−(2−メチル−c−ペンチル)アミノ基、ジ−(3−メチル−c−ペンチル)アミノ基、ジ−(1−エチル−c−ブチル)アミノ基、ジ−(2−エチル−c−ブチル)アミノ基、ジ−(3−エチル−c−ブチル)アミノ基、ジ−(1,2−ジメチル−c−ブチル)アミノ基、ジ−(1,3−ジメチル−c−ブチル)アミノ基、ジ−(2,2−ジメチル−c−ブチル)アミノ基、ジ−(2,3−ジメチル−c−ブチル)アミノ基、ジ−(2,4−ジメチル−c−ブチル)アミノ基、ジ−(3,3−ジメチル−c−ブチル)アミノ基、ジ−(1−n−プロピル−c−プロピル)アミノ基、ジ−(2−n−プロピル−c−プロピル)アミノ基、ジ−(1−i−プロピル−c−プロピル)アミノ基、ジ−(2−i−プロピル−c−プロピル)アミノ基、ジ−(1,2,2−トリメチル−c−プロピル)アミノ基、ジ−(1,2,3−トリメチル−c−プロピル)アミノ基、ジ−(2,2,3−トリメチル−c−プロピル)アミノ基、ジ−(1−エチル−2−メチル−c−プロピル)アミノ基、ジ−(2−エチル−1−メチル−c−プロピル)アミノ基、ジ−(2−エチル−2−メチル−c−プロピル)アミノ基、ジ−(2−エチル−3−メチル−c−プロピル)アミノ基等が挙げられる。
前記炭素数2〜11のアルキルカルボニル基としては、例えば、メチルカルボニル基、エチルカルボニル基、n−プロピルカルボニル基、i−プロピルカルボニル基、c−プロピルカルボニル基、n−ブチルカルボニル基、i−ブチルカルボニル基、s−ブチルカルボニル基、t−ブチルカルボニル基、c−ブチルカルボニル基、1−メチル−c−プロピルカルボニル基、2−メチル−c−プロピルカルボニル基、n−ペンチルカルボニル基、1−メチル−n−ブチルカルボニル基、2−メチル−n−ブチルカルボニル基、3−メチル−n−ブチルカルボニル基、1,1−ジメチル−n−プロピルカルボニル基、1,2−ジメチル−n−プロピルカルボニル基、2,2−ジメチル−n−プロピルカルボニル基、1−エチル−n−プロピルカルボニル基、c−ペンチルカルボニル基、1−メチル−c−ブチルカルボニル基、2−メチル−c−ブチルカルボニル基、3−メチル−c−ブチルカルボニル基、1,2−ジメチル−c−プロピルカルボニル基、2,3−ジメチル−c−プロピルカルボニル基、1−エチル−c−プロピルカルボニル基、2−エチル−c−プロピルカルボニル基、n−ヘキシルカルボニル基、1−メチル−n−ペンチルカルボニル基、2−メチル−n−ペンチルカルボニル基、3−メチル−n−ペンチルカルボニル基、4−メチル−n−ペンチルカルボニル基、1,1−ジメチル−n−ブチルカルボニル基、1,2−ジメチル−n−ブチルカルボニル基、1,3−ジメチル−n−ブチルカルボニル基、2,2−ジメチル−n−ブチルカルボニル基、2,3−ジメチル−n−ブチルカルボニル基、3,3−ジメチル−n−ブチルカルボニル基、1−エチル−n−ブチルカルボニル基、2−エチル−n−ブチルカルボニル基、1,1,2−トリメチル−n−プロピルカルボニル基、1,2,2−トリメチル−n−プロピルカルボニル基、1−エチル−1−メチル−n−プロピルカルボニル基、1−エチル−2−メチル−n−プロピルカルボニル基、c−ヘキシルカルボニル基、1−メチル−c−ペンチルカルボニル基、2−メチル−c−ペンチルカルボニル基、3−メチル−c−ペンチルカルボニル基、1−エチル−c−ブチルカルボニル基、2−エチル−c−ブチルカルボニル基、3−エチル−c−ブチルカルボニル基、1,2−ジメチル−c−ブチルカルボニル基、1,3−ジメチル−c−ブチルカルボニル基、2,2−ジメチル−c−ブチルカルボニル基、2,3−ジメチル−c−ブチルカルボニル基、2,4−ジメチル−c−ブチルカルボニル基、3,3−ジメチル−c−ブチルカルボニル基、1−n−プロピル−c−プロピルカルボニル基、2−n−プロピル−c−プロピルカルボニル基、1−i−プロピル−c−プロピルカルボニル基、2−i−プロピル−c−プロピルカルボニル基、1,2,2−トリメチル−c−プロピルカルボニル基、1,2,3−トリメチル−c−プロピルカルボニル基、2,2,3−トリメチル−c−プロピルカルボニル基、1−エチル−2−メチル−c−プロピルカルボニル基、2−エチル−1−メチル−c−プロピルカルボニル基、2−エチル−2−メチル−c−プロピルカルボニル基、2−エチル−3−メチル−c−プロピルカルボニル基等が挙げられる。
前記炭素数3〜11のアルケニルカルボニル基としては、例えば、エテニルカルボニル基、1−プロペニルカルボニル基、2−プロペニルカルボニル基、1−メチル−1−エテニルカルボニル基、1−ブテニルカルボニル基、2−ブテニルカルボニル基、3−ブテニルカルボニル基、2−メチル−1−プロペニルカルボニル基、2−メチル−2−プロペニルカルボニル基、1−エチルエテニルカルボニル基、1−メチル−1−プロペニルカルボニル基、1−メチル−2−プロペニルカルボニル基、1−ペンテニルカルボニル基、2−ペンテニルカルボニル基、3−ペンテニルカルボニル基、4−ペンテニルカルボニル基、1−n−プロピルエテニルカルボニル基、1−メチル−1−ブテニルカルボニル基、1−メチル−2−ブテニルカルボニル基、1−メチル−3−ブテニルカルボニル基、2−エチル−2−プロペニルカルボニル基、2−メチル−1−ブテニルカルボニル基、2−メチル−2−ブテニルカルボニル基、2−メチル−3−ブテニルカルボニル基、3−メチル−1−ブテニルカルボニル基、3−メチル−2−ブテニルカルボニル基、3−メチル−3−ブテニルカルボニル基、1,1−ジメチル−2−プロペニルカルボニル基、1−i−プロピルエテニルカルボニル基、1,2−ジメチル−1−プロペニルカルボニル基、1,2−ジメチル−2−プロペニルカルボニル基、1−c−ペンテニルカルボニル基、2−c−ペンテニルカルボニル基、3−c−ペンテニルカルボニル基、1−ヘキセニルカルボニル基、2−ヘキセニルカルボニル基、3−ヘキセニルカルボニル基、4−ヘキセニルカルボニル基、5−ヘキセニルカルボニル基、1−メチル−1−ペンテニルカルボニル基、1−メチル−2−ペンテニルカルボニル基、1−メチル−3−ペンテニルカルボニル基、1−メチル−4−ペンテニルカルボニル基、1−n−ブチルエテニルカルボニル基、2−メチル−1−ペンテニルカルボニル基、2−メチル−2−ペンテニルカルボニル基、2−メチル−3−ペンテニルカルボニル基、2−メチル−4−ペンテニルカルボニル基、2−n−プロピル−2−プロペニルカルボニル基、3−メチル−1−ペンテニルカルボニル基、3−メチル−2−ペンテニルカルボニル基、3−メチル−3−ペンテニルカルボニル基、3−メチル−4−ペンテニルカルボニル基、3−エチル−3−ブテニルカルボニル基、4−メチル−1−ペンテニルカルボニル基、4−メチル−2−ペンテニルカルボニル基、4−メチル−3−ペンテニルカルボニル基、4−メチル−4−ペンテニルカルボニル基、1,1−ジメチル−2−ブテニルカルボニル基、1,1−ジメチル−3−ブテニルカルボニル基、1,2−ジメチル−1−ブテニルカルボニル基、1,2−ジメチル−2−ブテニルカルボニル基、1,2−ジメチル−3−ブテニルカルボニル基、1−メチル−2−エチル−2−プロペニルカルボニル基、1−s−ブチルエテニルカルボニル基、1,3−ジメチル−1−ブテニルカルボニル基、1,3−ジメチル−2−ブテニルカルボニル基、1,3−ジメチル−3−ブテニルカルボニル基、1−i−ブチルエテニルカルボニル基、2,2−ジメチル−3−ブテニルカルボニル基、2,3−ジメチル−1−ブテニルカルボニル基、2,3−ジメチル−2−ブテニルカルボニル基、2,3−ジメチル−3−ブテニルカルボニル基、2−i−プロピル−2−プロペニルカルボニル基、3,3−ジメチル−1−ブテニルカルボニル基、1−エチル−1−ブテニルカルボニル基、1−エチル−2−ブテニルカルボニル基、1−エチル−3−ブテニルカルボニル基、1−n−プロピル−1−プロペニルカルボニル基、1−n−プロピル−2−プロペニルカルボニル基、2−エチル−1−ブテニルカルボニル基、2−エチル−2−ブテニルカルボニル基、2−エチル−3−ブテニルカルボニル基、1,1,2−トリメチル−2−プロペニルカルボニル基、1−t−ブチルエテニルカルボニル基、1−メチル−1−エチル−2−プロペニルカルボニル基、1−エチル−2−メチル−1−プロペニルカルボニル基、1−エチル−2−メチル−2−プロペニルカルボニル基、1−i−プロピル−1−プロペニルカルボニル基、1−i−プロピル−2−プロペニルカルボニル基、1−メチル−2−c−ペンテニルカルボニル基、1−メチル−3−c−ペンテニルカルボニル基、2−メチル−1−c−ペンテニルカルボニル基、2−メチル−2−c−ペンテニルカルボニル基、2−メチル−3−c−ペンテニルカルボニル基、2−メチル−4−c−ペンテニルカルボニル基、2−メチル−5−c−ペンテニルカルボニル基、2−メチレン−c−ペンチルカルボニル基、3−メチル−1−c−ペンテニルカルボニル基、3−メチル−2−c−ペンテニルカルボニル基、3−メチル−3−c−ペンテニルカルボニル基、3−メチル−4−c−ペンテニルカルボニル基、3−メチル−5−c−ペンテニルカルボニル基、3−メチレン−c−ペンチルカルボニル基、1−c−ヘキセニルカルボニル基、2−c−ヘキセニルカルボニル基、3−c−ヘキセニルカルボニル基等が挙げられる。
前記炭素数3〜11のアルキニルカルボニル基としては、例えば、エチニルカルボニル基、1−プロピニルカルボニル基、2−プロピニルカルボニル基、1−ブチニルカルボニル基、2−ブチニルカルボニル基、3−ブチニルカルボニル基、1−メチル−2−プロピニルカルボニル基、1−ペンチニルカルボニル基、2−ペンチニルカルボニル基、3−ペンチニルカルボニル基、4−ペンチニルカルボニル基、1−メチル−2−ブチニルカルボニル基、1−メチル−3−ブチニルカルボニル基、2−メチル−3−ブチニルカルボニル基、3−メチル−1−ブチニルカルボニル基、1,1−ジメチル−2−プロピニルカルボニル基、2−エチル−2−プロピニルカルボニル基、1−ヘキシニルカルボニル基、2−ヘキシニルカルボニル基、3−ヘキシニルカルボニル基、4−ヘキシニルカルボニル基、5−ヘキシニルカルボニル基、1−メチル−2−ペンチニルカルボニル基、1−メチル−3−ペンチニルカルボニル基、1−メチル−4−ペンチニルカルボニル基、2−メチル−3−ペンチニルカルボニル基、2−メチル−4−ペンチニルカルボニル基、3−メチル−1−ペンチニルカルボニル基、3−メチル−4−ペンチニルカルボニル基、4−メチル−1−ペンチニルカルボニル基、4−メチル−2−ペンチニルカルボニル基、1,1−ジメチル−2−ブチニルカルボニル基、1,1−ジメチル−3−ブチニルカルボニル基、1,2−ジメチル−3−ブチニルカルボニル基、2,2−ジメチル−3−ブチニルカルボニル基、3,3−ジメチル−1−ブチニルカルボニル基、1−エチル−2−ブチニルカルボニル基、1−エチル−3−ブチニルカルボニル基、1−n−プロピル−2−プロピニルカルボニル基、2−エチル−3−ブチニルカルボニル基、1−メチル−1−エチル−2−プロピニル基、1−i−プロピル−2−プロピニルカルボニル基等が挙げられる。
前記炭素数2〜11のアルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基、エチルカルボニルオキシ基、n−プロピルカルボニルオキシ基、i−プロピルカルボニルオキシ基、c−プロピルカルボニルオキシ基、n−ブチルカルボニルオキシ基、i−ブチルカルボニルオキシ基、s−ブチルカルボニルオキシ基、t−ブチルカルボニルオキシ基、c−ブチルカルボニルオキシ基、1−メチル−c−プロピルカルボニルオキシ基、2−メチル−c−プロピルカルボニルオキシ基、n−ペンチルカルボニルオキシ基、1−メチル−n−ブチルカルボニルオキシ基、2−メチル−n−ブチルカルボニルオキシ基、3−メチル−n−ブチルカルボニルオキシ基、1,1−ジメチル−n−プロピルカルボニルオキシ基、1,2−ジメチル−n−プロピルカルボニルオキシ基、2,2−ジメチル−n−プロピルカルボニルオキシ基、1−エチル−n−プロピルカルボニルオキシ基、c−ペンチルカルボニルオキシ基、1−メチル−c−ブチルカルボニルオキシ基、2−メチル−c−ブチルカルボニルオキシ基、3−メチル−c−ブチルカルボニルオキシ基、1,2−ジメチル−c−プロピルカルボニルオキシ基、2,3−ジメチル−c−プロピルカルボニルオキシ基、1−エチル−c−プロピルカルボニルオキシ基、2−エチル−c−プロピルカルボニルオキシ基、n−ヘキシルカルボニルオキシ基、1−メチル−n−ペンチルカルボニルオキシ基、2−メチル−n−ペンチルカルボニルオキシ基、3−メチル−n−ペンチルカルボニルオキシ基、4−メチル−n−ペンチルカルボニルオキシ基、1,1−ジメチル−n−ブチルカルボニルオキシ基、1,2−ジメチル−n−ブチルカルボニルオキシ基、1,3−ジメチル−n−ブチルカルボニルオキシ基、2,2−ジメチル−n−ブチルカルボニルオキシ基、2,3−ジメチル−n−ブチルカルボニルオキシ基、3,3−ジメチル−n−ブチルカルボニルオキシ基、1−エチル−n−ブチルカルボニルオキシ基、2−エチル−n−ブチルカルボニルオキシ基、1,1,2−トリメチル−n−プロピルカルボニルオキシ基、1,2,2−トリメチル−n−プロピルカルボニルオキシ基、1−エチル−1−メチル−n−プロピルカルボニルオキシ基、1−エチル−2−メチル−n−プロピルカルボニルオキシ基、c−ヘキシルカルボニルオキシ基、1−メチル−c−ペンチルカルボニルオキシ基、2−メチル−c−ペンチルカルボニルオキシ基、3−メチル−c−ペンチルカルボニルオキシ基、1−エチル−c−ブチルカルボニルオキシ基、2−エチル−c−ブチルカルボニルオキシ基、3−エチル−c−ブチルカルボニルオキシ基、1,2−ジメチル−c−ブチルカルボニルオキシ基、1,3−ジメチル−c−ブチルカルボニルオキシ基、2,2−ジメチル−c−ブチルカルボニルオキシ基、2,3−ジメチル−c−ブチルカルボニルオキシ基、2,4−ジメチル−c−ブチルカルボニルオキシ基、3,3−ジメチル−c−ブチルカルボニルオキシ基、1−n−プロピル−c−プロピルカルボニルオキシ基、2−n−プロピル−c−プロピルカルボニルオキシ基、1−i−プロピル−c−プロピルカルボニルオキシ基、2−i−プロピル−c−プロピルカルボニルオキシ基、1,2,2−トリメチル−c−プロピルカルボニルオキシ基、1,2,3−トリメチル−c−プロピルカルボニルオキシ基、2,2,3−トリメチル−c−プロピルカルボニルオキシ基、1−エチル−2−メチル−c−プロピルカルボニルオキシ基、2−エチル−1−メチル−c−プロピルカルボニルオキシ基、2−エチル−2−メチル−c−プロピルカルボニルオキシ基、2−エチル−3−メチル−c−プロピルカルボニルオキシ基等が挙げられる。
前記炭素数3〜11のアルケニルカルボニルオキシ基としては、例えば、エテニルカルボニルオキシ基、1−プロペニルカルボニルオキシ基、2−プロペニルカルボニルオキシ基、1−メチル−1−エテニルカルボニルオキシ基、1−ブテニルカルボニルオキシ基、2−ブテニルカルボニルオキシ基、3−ブテニルカルボニルオキシ基、2−メチル−1−プロペニルカルボニルオキシ基、2−メチル−2−プロペニルカルボニルオキシ基、1−エチルエテニルカルボニルオキシ基、1−メチル−1−プロペニルカルボニルオキシ基、1−メチル−2−プロペニルカルボニルオキシ基、1−ペンテニルカルボニルオキシ基、2−ペンテニルカルボニルオキシ基、3−ペンテニルカルボニルオキシ基、4−ペンテニルカルボニルオキシ基、1−n−プロピルエテニルカルボニルオキシ基、1−メチル−1−ブテニルカルボニルオキシ基、1−メチル−2−ブテニルカルボニルオキシ基、1−メチル−3−ブテニルカルボニルオキシ基、2−エチル−2−プロペニルカルボニルオキシ基、2−メチル−1−ブテニルカルボニルオキシ基、2−メチル−2−ブテニルカルボニルオキシ基、2−メチル−3−ブテニルカルボニルオキシ基、3−メチル−1−ブテニルカルボニルオキシ基、3−メチル−2−ブテニルカルボニルオキシ基、3−メチル−3−ブテニルカルボニルオキシ基、1,1−ジメチル−2−プロペニルカルボニルオキシ基、1−i−プロピルエテニルカルボニルオキシ基、1,2−ジメチル−1−プロペニルカルボニルオキシ基、1,2−ジメチル−2−プロペニルカルボニルオキシ基、1−c−ペンテニルカルボニルオキシ基、2−c−ペンテニルカルボニルオキシ基、3−c−ペンテニルカルボニルオキシ基、1−ヘキセニルカルボニルオキシ基、2−ヘキセニルカルボニルオキシ基、3−ヘキセニルカルボニルオキシ基、4−ヘキセニルカルボニルオキシ基、5−ヘキセニルカルボニルオキシ基、1−メチル−1−ペンテニルカルボニルオキシ基、1−メチル−2−ペンテニルカルボニルオキシ基、1−メチル−3−ペンテニルカルボニルオキシ基、1−メチル−4−ペンテニルカルボニルオキシ基、1−n−ブチルエテニルカルボニルオキシ基、2−メチル−1−ペンテニルカルボニルオキシ基、2−メチル−2−ペンテニルカルボニルオキシ基、2−メチル−3−ペンテニルカルボニルオキシ基、2−メチル−4−ペンテニルカルボニルオキシ基、2−n−プロピル−2−プロペニルカルボニルオキシ基、3−メチル−1−ペンテニルカルボニルオキシ基、3−メチル−2−ペンテニルカルボニルオキシ基、3−メチル−3−ペンテニルカルボニルオキシ基、3−メチル−4−ペンテニルカルボニルオキシ基、3−エチル−3−ブテニルカルボニルオキシ基、4−メチル−1−ペンテニルカルボニルオキシ基、4−メチル−2−ペンテニルカルボニルオキシ基、4−メチル−3−ペンテニルカルボニルオキシ基、4−メチル−4−ペンテニルカルボニルオキシ基、1,1−ジメチル−2−ブテニルカルボニルオキシ基、1,1−ジメチル−3−ブテニルカルボニルオキシ基、1,2−ジメチル−1−ブテニルカルボニルオキシ基、1,2−ジメチル−2−ブテニルカルボニルオキシ基、1,2−ジメチル−3−ブテニルカルボニルオキシ基、1−メチル−2−エチル−2−プロペニルカルボニルオキシ基、1−s−ブチルエテニルカルボニルオキシ基、1,3−ジメチル−1−ブテニルカルボニルオキシ基、1,3−ジメチル−2−ブテニルカルボニルオキシ基、1,3−ジメチル−3−ブテニルカルボニルオキシ基、1−i−ブチルエテニルカルボニルオキシ基、2,2−ジメチル−3−ブテニルカルボニルオキシ基、2,3−ジメチル−1−ブテニルカルボニルオキシ基、2,3−ジメチル−2−ブテニルカルボニルオキシ基、2,3−ジメチル−3−ブテニルカルボニルオキシ基、2−i−プロピル−2−プロペニルカルボニルオキシ基、3,3−ジメチル−1−ブテニルカルボニルオキシ基、1−エチル−1−ブテニルカルボニルオキシ基、1−エチル−2−ブテニルカルボニルオキシ基、1−エチル−3−ブテニルカルボニルオキシ基、1−n−プロピル−1−プロペニルカルボニルオキシ基、1−n−プロピル−2−プロペニルカルボニルオキシ基、2−エチル−1−ブテニルカルボニルオキシ基、2−エチル−2−ブテニルカルボニルオキシ基、2−エチル−3−ブテニルカルボニルオキシ基、1,1,2−トリメチル−2−プロペニルカルボニルオキシ基、1−t−ブチルエテニルカルボニルオキシ基、1−メチル−1−エチル−2−プロペニルカルボニルオキシ基、1−エチル−2−メチル−1−プロペニルカルボニルオキシ基、1−エチル−2−メチル−2−プロペニルカルボニルオキシ基、1−i−プロピル−1−プロペニルカルボニルオキシ基、1−i−プロピル−2−プロペニルカルボニルオキシ基、1−メチル−2−c−ペンテニルカルボニルオキシ基、1−メチル−3−c−ペンテニルカルボニルオキシ基、2−メチル−1−c−ペンテニルカルボニルオキシ基、2−メチル−2−c−ペンテニルカルボニルオキシ基、2−メチル−3−c−ペンテニルカルボニルオキシ基、2−メチル−4−c−ペンテニルカルボニルオキシ基、2−メチル−5−c−ペンテニルカルボニルオキシ基、2−メチレン−c−ペンチルカルボニルオキシ基、3−メチル−1−c−ペンテニルカルボニルオキシ基、3−メチル−2−c−ペンテニルカルボニルオキシ基、3−メチル−3−c−ペンテニルカルボニルオキシ基、3−メチル−4−c−ペンテニルカルボニルオキシ基、3−メチル−5−c−ペンテニルカルボニルオキシ基、3−メチレン−c−ペンチルカルボニルオキシ基、1−c−ヘキセニルカルボニルオキシ基、2−c−ヘキセニルカルボニルオキシ基、3−c−ヘキセニルカルボニルオキシ基等が挙げられる。
前記炭素数3〜11のアルキニルカルボニルオキシ基としては、例えば、エチニルカルボニルオキシ基、1−プロピニルカルボニルオキシ基、2−プロピニルカルボニルオキシ基、1−ブチニルカルボニルオキシ基、2−ブチニルカルボニルオキシ基、3−ブチニルカルボニルオキシ基、1−メチル−2−プロピニルカルボニルオキシ基、1−ペンチニルカルボニルオキシ基、2−ペンチニルカルボニルオキシ基、3−ペンチニルカルボニルオキシ基、4−ペンチニルカルボニルオキシ基、1−メチル−2−ブチニルカルボニルオキシ基、1−メチル−3−ブチニルカルボニルオキシ基、2−メチル−3−ブチニルカルボニルオキシ基、3−メチル−1−ブチニルカルボニルオキシ基、1,1−ジメチル−2−プロピニルカルボニルオキシ基、2−エチル−2−プロピニルカルボニルオキシ基、1−ヘキシニルカルボニルオキシ基、2−ヘキシニルカルボニルオキシ基、3−ヘキシニルカルボニルオキシ基、4−ヘキシニルカルボニルオキシ基、5−ヘキシニルカルボニルオキシ基、1−メチル−2−ペンチニルカルボニルオキシ基、1−メチル−3−ペンチニルカルボニルオキシ基、1−メチル−4−ペンチニルカルボニルオキシ基、2−メチル−3−ペンチニルカルボニルオキシ基、2−メチル−4−ペンチニルカルボニルオキシ基、3−メチル−1−ペンチニルカルボニルオキシ基、3−メチル−4−ペンチニルカルボニルオキシ基、4−メチル−1−ペンチニルカルボニルオキシ基、4−メチル−2−ペンチニルカルボニルオキシ基、1,1−ジメチル−2−ブチニルカルボニルオキシ基、1,1−ジメチル−3−ブチニルカルボニルオキシ基、1,2−ジメチル−3−ブチニルカルボニルオキシ基、2,2−ジメチル−3−ブチニルカルボニルオキシ基、3,3−ジメチル−1−ブチニルカルボニルオキシ基、1−エチル−2−ブチニルカルボニルオキシ基、1−エチル−3−ブチニルカルボニルオキシ基、1−n−プロピル−2−プロピニルカルボニルオキシ基、2−エチル−3−ブチニルカルボニルオキシ基、1−メチル−1−エチル−2−プロピニル基、1−i−プロピル−2−プロピニルカルボニルオキシ基等が挙げられる。
前記炭素数6〜11のアリール基、炭素数6〜11のハロゲン化アリール基、炭素数3〜11のヘテロアリール基、炭素数3〜11のハロゲン化ヘテロアリール基としては、例えば、フェニル基、o−クロロフェニル基、m−クロロフェニル基、p−クロロフェニル基、o−フルオロフェニル基、p−フルオロフェニル基、α−ナフチル基、β−ナフチル基、フリル基、クロロフリル基、フルオロフリル基、チエニル基、クロロチエニル基、フルオロチエニル基、ピロリル基、クロロピロリル基、フルオロピロリル基、イミダゾリル基、クロロイミダゾリル基、フルオロイミダゾリル基等が挙げられる。
本発明の縮環キノン置換ポリノルボルネンの重量平均分子量(Mw)は、電解液への溶出を抑制する観点から、1,000以上が好ましく、10,000以上がより好ましく、100,000以上がより一層好ましい。また、Mwは、後述する電極スラリー用溶媒への溶解性の観点から、500,000以下が好ましく、300,000以下がより好ましく、200,000以下がより一層好ましい。なお、本発明において、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。
次に、本発明の縮環キノン置換ポリノルボルネンの合成方法について説明する。なお、以下に記載の方法は本発明のポリマーの合成方法のうちの一部であり、これらに限定されない。
例えば、式(1−1)で表される繰り返し単位を含むポリマーであって、Xが単結合であり、R1〜R7が全て水素原子であり、n1が1であるポリマーは、下記スキームAに従って合成することができる。
(式中、X'は、ハロゲン原子を表す。)
例えば、式(1−)で表される繰り返し単位を含むポリマーであって、Xが−C(O)OCH2−であり、R1〜R7が全て水素原子であり、n1が1であるポリマーは、下記スキームBに従って合成することができる。
例えば、式(1−1)で表される繰り返し単位を含むポリマーであって、Xが単結合であり、R1〜R7が全て水素原子であり、n1が2であるポリマーは、下記スキームC又はDに従って合成することができる。
(式中、X'は、前記と同じ。Rは、アルキル基を表し、R'は、アルキレン基を表す。)
例えば、式(1−)で表される繰り返し単位を含むポリマーであって、Xが−C(O)OCH2−であり、R1〜R7が全て水素原子であり、n1が2であるポリマーは、下記スキームEに従って合成することができる。
スキームA〜E中、第1段階の工程は、縮環キノン置換ノルボルネン誘導体モノマーを合成する工程である。本工程においては、溶媒中、遷移金属触媒を用いたカップリング反応やエステル化反応等が適用されるが、ノルボルネン誘導体と縮環キノン誘導体の共有結合を生成させる反応であれば、合成法は特に限定されない。
前記溶媒としては、テトラヒドロフラン、ジオキサン、クロロホルム、ジクロロエタン、トルエン、キシレン、クロロベンゼン、1,2−ジクロロベンゼン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等の一般的有機溶媒、水又はこれらの混合溶媒等が挙げられる。前記触媒としては、テトラキス(トリフェニルホスフィン)パラジウム(0)(Pd(PPh3)4)、[1,1'−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(PdCl2(dppf))、酢酸パラジウム(II)、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロリド(DMT−MM)、N,N−ジメチルアミノピリジン(DMAP)、ジシクロヘキシルカルボジイミド(DCC)、1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDC・HCl)等が挙げられる。
反応温度は、好ましくは0〜150℃程度、より好ましくは50〜100℃程度であり、反応時間は、好ましくは1〜24時間程度、より好ましくは12〜16時間程度である。
スキームA〜E中、第2段階の工程は、モノマーを重合してポリマーとする工程である。重合は、通常、開環メタセシス重合によって行う。条件としては、グラブス触媒を用いたオレフィンメタセシス反応等、従来公知の方法でよい。また、合成の際に副生する位置異性体や立体異性体が混入してもよい。また、出発原料や試薬は、市販品を使用してもよい。
[電荷貯蔵材料]
本発明の縮環キノン置換ポリノルボルネンは、電荷貯蔵材料として好適に使用できる。電荷貯蔵材料とは電荷を貯蔵することができる材料のことであり、これは、例えば、二次電池の電極活物質として有用である。
[二次電池]
本発明の二次電池は、前述した縮環キノン置換ポリノルボルネンからなる電荷貯蔵材料を電極活物質として用いることに特徴があり、その他の電池素子の構成部材は従来公知のものから適宜選択して用いればよい。
一例として、一般的な二次電池について説明する。
二次電池は、一般的に、正極層と、負極層と、正極層と負極層の間に配されるセパレータ層と、これら全てを含む電池素子内部に充填される電解液とから構成される。正極層及び負極層は、集電体である基板上に、電極活物質と、必要に応じて電極層の導電性向上のために炭素等からなる導電助剤と、更に必要に応じて成膜均一性向上、イオン伝導性向上、電解液への溶出抑制等のためにバインダーとを含む薄膜を形成することで構成される。電解液は、イオン伝導の本体である塩からなる電解質と溶媒等とから構成される。
この正極層又は負極層の電極活物質として、本発明の縮環キノン置換ポリノルボルネンが用いられる。前記電極活物質を正極層、負極層のいずれの電極層に使用するかは特に限定されず、相対する電極の電位の貴、卑によって決定される。また、両極ともに前記電極活物質を使用してもよい。
二次電池の形態、電極活物質や電解液の種類は特に限定されず、リチウムイオン電池、ニッケル水素電池、マンガン電池、空気電池等のいずれの形態を用いてもよい。ラミネート方法や生産方法についても特に限定されない。
前記電極層は、本発明の縮環キノン置換ポリノルボルネン、溶媒、必要に応じて導電助剤、バインダー、従来公知の他の電極活物質等を混合して電極スラリーを調製し、これを用いて基板上に薄膜を形成することで作製することができる。前記薄膜の形成方法としては、特に限定されず、従来公知の各種方法を用いることができる。例えば、本発明の縮環キノン置換ポリノルボルネンを含む材料を溶媒に溶解又は懸濁した溶液、懸濁液あるいはスラリーを用いたオフセット印刷、スクリーン印刷、グラビア印刷等の各種印刷法、ディップコート法、スピンコート法、バーコート法、スリット(ダイ)コート法、インクジェット法等が挙げられる。
前記電極層の下地に用いられる集電体としては、例えば、アルミニウム、銅、リチウム、ステンレス鋼、鉄、クロム、白金、金等の金属箔あるいは基板、これらの金属の任意の組み合わせからなる合金箔あるいは基板、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、アンチモン錫酸化物(ATO)等の酸化物基板、又はグラッシーカーボン、パイロリティックグラファイト、カーボンフェルト等の炭素基板、カーボン材料を前記金属箔にコートしたカーボンコート箔等が挙げられる。
前記導電助剤としては、グラファイト、カーボンブラック、アセチレンブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子等が挙げられる。前記導電助剤は、1種単独で又は2種以上組み合わせて用いることができる。
前記バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリアクリル酸、ポリアクリル酸塩、ポリアクリル酸エステル、ポリメタクリル酸、ポリメタクリル酸塩、ポリメタクリル酸エステル、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、ポリ(N−ビニルカルバゾール)、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、SBR樹脂、ポリウレタン樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコン樹脂、又はこれらの任意の組み合わせからなる共重合体やブレンドポリマー等が挙げられる。
前記電極スラリー用溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン(THF)、ジオキソラン、スルホラン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、水、2−プロパノール、プロピレングリコール等が挙げられる。
本発明の縮環キノン置換ポリノルボルネンを含む電極活物質を正極層に使用する場合、負極層内に含まれる負極活物質としては、グラファイト、カーボンブラック、アセチレンブラック、気相成長炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノホーン、グラフェン等の炭素材料、Li、Li-Al、Li-Si、Li-Sn等のリチウム合金、Si、SiO、SiO2、Si-SiO2複合体、Sn、SnO、SnO2、PbO、PbO2、GeO、GeO2、WO2、MoO2、Fe2O3、Nb2O5、TiO2、Li4Ti5O12、Li2Ti3O7等が挙げられる。また、本発明の縮環キノン置換ポリノルボルネンを含む電極活物質を負極層に使用する場合、これらの負極活物質と共存させて使用してもよい。
本発明の縮環キノン置換ポリノルボルネンを含む電極活物質を負極層に使用する場合、正極層内に含まれる正極活物質としては、ニトロキシラジカル基を含有する化合物、有機硫黄ポリマー、縮環キノン置換ポリノルボルネン以外のキノンポリマー、キノイド系材料、ジオン系材料、ルベアン酸系材料等の有機電極活物質、LiCoO2、LiMn2O4、LiNiO2、LiNi0.5Mn0.5O2、LiFePO4、LiMnPO4、LiCoPO4、Fe2(SO4)3、LiMnSiO4、V2O5等の無機電極活物質等が挙げられる。また、本発明の縮環キノン置換ポリノルボルネンを含む電極活物質を正極層に使用する場合、これらの正極活物質と共存させて使用してもよい。
本発明の縮環キノン置換ポリノルボルネンを含む電極活物質を空気極(正極)とし、空気電池として用いてもよい。この場合、負極層内に含まれる負極活物質としては、前記の負極活物質に加え、ナトリウム、マグネシウム、アルミニウム、カルシウム、亜鉛等を用いることができる。
なお、正極を空気極とし、空気電池として用いる場合、正極層内に含まれる酸化還元補助材として、本発明の縮環キノン置換ポリノルボルネンに加え、酸化マンガン等の無機材料、TEMPOポリマー等のニトロキシラジカル材料を併用してもよい。
前記電極層の膜厚は、特に限定されないが、好ましくは0.01〜1,000μm程度、より好ましくは0.1〜100μm程度である。
前記セパレータ層に使用される材料としては、例えば、多孔質ポリオレフィン、ポリアミド、ポリエステル等が挙げられる。
前記電解液を構成する電解質としては、例えば、LiPF6、LiBF4、LiN(C2F5SO2)2、LiAsF6、LiSbF6、LiAlF4、LiGaF4、LiInF4、LiClO4、LiN(CF3SO2)2、LiCF3SO3、LiSiF6、LiN(CF3SO2)(C4F9SO2)等のリチウム塩、LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、4級イミダゾリウム化合物のヨウ化物塩、テトラアルキルアンモニウム化合物のヨウ化物塩及び過塩素酸塩、LiBr、NaBr、KBr、CsBr、CaBr2等の金属臭化物等が挙げられる。
また、ポリエチレンオキサイド系材料、Li2S-P2S5等のチオリシコン系材料や、ヘキサフルオロプロピレン、テトラフルオロエチレン、トリフルオロエチレン、エチレン、プロピレン、アクリロニトリル、塩化ビニリデン、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレート、メチルメタクリレート、スチレン、フッ化ビニリデン等のモノマーを重合又は共重合して得られる高分子化合物等の固体電解質を用いてもよい。
前記電解液を構成する溶媒は、電池を構成する物質に対して腐食や分解を生じさせて性能を劣化させるものでなく、前記電解質を溶解するものであれば特に限定されない。例えば、水系の溶媒として水、非水系の溶媒として、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のカーボネート類;THF、ジメトキシエタン、テトラグライム等のエーテル類;γ−ブチロラクトン等のエステル類;アセトニトリル等のニトリル系;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド類;エチルイソプロピルスルホン、スルホラン等のスルホン類;2−プロパノール、プロピレングリコール等のアルコール類;ヘキサフルオロリン酸1−ブチル−3−メチルイミダゾリウム等のイオン液体類等が用いられる。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。
以下、合成例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されない。なお、使用した装置及び測定条件は以下のとおりである。
(1)1H-NMR
日本電子(株)製、核磁気共鳴装置ECX-500(溶媒CDCl3、内標TMS)
(2)13C-NMR
日本電子(株)製、核磁気共鳴装置ECX-500(溶媒CDCl3、内標TMS)
(3)FAB-MS
日本電子(株)製、磁場形質量分析計JMS-GCMATE II GCMSシステム
(4)元素分析
Perkin Elmer社製、元素分析装置PE2400 II
(5)IRスペクトル
日本分光(株)製、フーリエ変換赤外分光光度計FT/IR-6100
(6)GPC測定
東ソー(株)製、HLC 8220
留出溶媒:クロロホルム
(7)CV測定、CP測定
ビー・エー・エス(株)製、ALS electrochemilas analyzer
[1]縮環キノン置換ポリノルボルネンの合成
[実施例1]ポリマーAの合成
[実施例1−1]2−ヨードアントラキノンの合成
100mLビーカーに、2−アミノアントラキノン5g(22.3mmol)を添加し、硫酸20g(204mmol)に溶解させた。その後、亜硝酸ナトリウム5g(72.5mmol)をゆっくりと加え、0℃で2時間反応させた。反応後、2Lビーカーに1Lの氷水を用意し、反応物を投入した。1時間攪拌後、濾過により析出固体を除去し、濾液にヨウ化カリウム2.5g(15.1mmol)を加え、3時間静置した。析出物を回収後、濾液に再びヨウ化カリウム2.5g(15.1mmol)を加え、3時間静置した。この操作を3〜4回繰り返し行った。回収した固体をクロロホルム/チオ硫酸ナトリウム水溶液で分液し、ヨウ素を除去した。分液後、ジクロロメタンによるカラム精製を経て、黄色固体の2−ヨードアントラキノンを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.64 (d, 1H, Ph), 8.29 (m, 2H, Ph), 8.14 (m, 1H, Ph), 7.98 (m, 1H, Ph), 7.81 (m, 2H, Ph)
FAB-MS (m/z):Calcd 334.11、Found 334.90
[実施例1−2]2−ピナコールボロンアントラキノンの合成
30mLナスフラスコに、2−ブロモアントラキノン1g(3.48mmol)、ビスピナコラトジボロン973mg(3.83mmol)及び酢酸カリウム1.02g(10.4mmol)を添加し、不活性雰囲気下にてDMSO20mLに溶解させた。その後、シリンジで、3.2mLのDMSOに溶解させたPdCl2(dppf)570mg(0.7mmol)を添加し、80℃で24時間反応させた。反応終了後溶媒を除去し、クロロホルム/食塩水による分液及びクロロホルムによるカラム精製を経て、黄色粉末の2−ピナコールボロンアントラキノンを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.74 (s, 1H, Ph), 8.27 (m, 4H, Ph), 7.88 (m, 2H, Ph), 1.38 (s, 16H, CH3)
FAB-MS (m/z):Calcd 334.17、Found 335.19
[実施例1−3]化合物Aの合成
20mLナスフラスコに、2−ヨードアントラキノン1g(3mmol)、2−ピナコールボロンアントラキノン1.1g(3.3mmol)及び炭酸カリウム1.1g(7.92mmol)を添加し、不活性雰囲気下でTHF/水(1/1)混合溶媒10mLをシリンジで添加して溶解させた。溶解後、2,5−ノルボルナジエン1.2mLを添加し、60℃に加熱した。その後、Pd(OAc)2 27mg(0.12mmol)及びPPh3 75.4mg(0.29mmol)をTHF2mLに溶解後添加し、60℃で24時間反応させた。反応終了後溶媒を除去し、クロロホルム/食塩水による分液及びクロロホルムによるカラム精製を経て、白黄色固体の化合物Aを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.18 (m, 4H, Ph), 7.95 (d, 2H, Ph), 7.88 (d, 2H, Ph), 7.71 (m, 4H, Ph), 7.32 (dd, 2H, Ph), 6.53 (m, 2H, HC=CH), 3.48 (m, 2H, CH), 3.29 (m, 2H, CH), 2.45 (d, 1H, CH2), 2.01 (d, 1H, CH2)
FAB-MS (m/z):Calcd 506.55、Found 507.11
[実施例1−4]ポリマーAの合成
20mLナスフラスコに、化合物A100mg(0.2mmol)を投入し、不活性雰囲気下でクロロホルム9mLを添加し、溶解後クロロホルム1mLに溶解したグラブス第二世代触媒0.168mg(0.001eq、0.2μmol)を添加し、60℃で20時間反応させた。反応終了後、メタノールへの沈殿精製、遠心分離及びソックスレー精製を経て、黄色粉末のポリマーAを得た。1H-NMR、IR及びGPCの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.20-7.31 (br, 14H, Ar), 5.86-5.01 (br, 2H, -CH=), 3.88-2.50 (br, 6H, aliphatic)
IR (KBr, cm-1):1675 (υ C=O)
GPC (CHCl3、40℃、RID):Mw=6.0×105, Mw/Mn=1.5
[実施例2]ポリマーBの合成
[実施例2−1]2−ヨード−9,10−フェナントレンキノンの合成
100mLナスフラスコに、9,10−フェナントレンキノン2.08g(10mmol)及びN−ヨードスクシンイミド3.38g(15mmol)を投入し、不活性雰囲気下でトリフルオロ酢酸7.4mLを添加し、室温で15時間反応させた。反応終了後、クロロホルム/チオ硫酸ナトリウム水溶液による分液及びクロロホルムによるカラム精製を経て、赤色固体の2−ヨード−9,10−フェナントレンキノンを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.49 (d, 1H, Ph), 8.19 (dd, 1H, Ph), 8.03 (dd, 1H, Ph), 7.98 (d, 1H, Ph), 7.73 (m, 2H, Ph), 7.50 (t, 1H, Ph)
FAB-MS (m/z):Calcd 334.11、Found 334.89
[実施例2−2]化合物Bの合成
50mLフラスコに、2−ヨード−9,10−フェナントレンキノン668mg(2mmol)及びPdCl2(PPh3)2 92mg(0.08mmol)を添加し、不活性雰囲気下でトルエン20mL、2,5−ノルボルナジエン0.6mL(6mmol)及びトリエチルアミン0.92mLを添加し、80℃で溶解させた。その後、ギ酸0.16mLを添加し、80℃で15時間反応させた。反応終了後クロロホルム/食塩水による分液及びクロロホルムによるカラム精製を経て、赤色固体の化合物Bを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.15 (d, 1H, Ph), 8.08 (d, 1H, Ph), 7.96 (d, 1H, Ph), 7.91 (d, 1H, Ph), 7.68 (t, 1H, Ph), 7.61 (m, 1H, Ph), 7.43 (t, 1H, Ph), 6.27 (dd, 1H, HC=CH), 6.19 (dd, 1H, HC=CH), 3.02 (s, 1H, CH), 2.95 (s, 1H, CH), 2.75 (m, 1H, CH), 1.73 (m, 2H, CH2), 1.51 (m, 2H, CH2)
FAB-MS (m/z):Calcd 300.4、Found 301.3
[実施例2−3]ポリマーBの合成
10mLフラスコに、化合物B100mg(0.33mmol)及びグラブス第二世代触媒2.83mg(0.0033mmol)を添加し、不活性雰囲気下でクロロホルム0.5mLを添加し、60℃で12時間反応させた。反応終了後、クロロホルムによるソックスレー精製を経て、ポリマーBを得た。
GPC (CHCl3、40℃、RID):insoluble
[実施例3]ポリマーCの合成
[実施例3−1]9,10−フェナントレンキノン−3−カルボン酸の合成
200mLフラスコに、3−アセチルフェナントレン500mg(2.27mmol)を添加し、1,4−ジオキサン10mLに溶解させた。続いて、次亜塩素酸ナトリウム(有効塩素濃度5%)32mL及び46.8mLの水に溶解した水酸化ナトリウム1.72gを加え、65℃で6時間反応させた。反応終了後、室温まで冷却し、チオ硫酸ナトリウム約13gを加え、攪拌して中和させた。析出した白色固体を水とジエチルエーテルにより洗浄し、白色固体のフェナントレン−3−カルボン酸を得た。
続いて、100mLフラスコに、フェナントレン−3−カルボン酸489mg(2.20mmol)を添加し、酢酸20mLに溶解させた。別容器に酸化クロム(VI)808mg(8.80mmol、4eq)と18−クラウン−6 90mg(0.367mmol、0.167eq)とを加え、酢酸10mLと純水1mLとの混合溶媒に溶解させた。完全に溶解したところでフラスコに投入し、60℃で16時間反応させた。反応終了後、純水を添加し析出した黄色固体を酢酸/純水(1/1)の混合溶媒、及びジエチルエーテルにより洗浄し、黄色固体の9,10−フェナントレンキノン−3−カルボン酸を得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (DMSO-d6, 500MHz, ppm) 13.5 (s, 1H, OH), 8.66 (s, 1H, Ph), 8.30 (d, 1H, Ph), 8.09 (d, 1H, Ph), 8.03 (d, 1H, Ph), 7.99 (d, 1H, Ph), 7.76 (t, 1H, Ph), 7.54 (t, 1H, Ph)
FAB-MS (m/z):Calcd 252.0、Found 253.4
[実施例3−2]化合物Cの合成
200mLフラスコに、フェナントレンキノン−3−カルボン酸504mg(2mmol)、5−ノルボルネン−2−メタノール300mg(2.4mmol)、DMT−MM1.1g(4mmol)及びDMAP200mg(1.6mmol)を添加し、DMF20mLに溶解させ、室温で14時間反応させた。反応終了後、水を投入し析出した固体を回収し、クロロホルム/酢酸エチルによるカラム精製を経て、黄色固体の化合物Cを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.69 (d, 1H, Ph), 8.23 (m, 2H, Ph), 8.10 (m, 2H, Ph), 7.77 (m, 1H, Ph), 7.51 (m, 1H, Ph), 6.25-6.00 (br, 2H, HC=CH), 4.51-3.97 (br, 2H, CH2), 3.03-2.55 (br, 2H, CH2), 1.94 (m, 1H, CH), 1.55-0.65 (br, 4H, CH2)
FAB-MS (m/z):Calcd 358.12、Found 359.30
[実施例3−3]ポリマーCの合成
10mLフラスコに、化合物C179mg(0.5mmol)及びグラブス第二世代触媒4.2mg(5μmol)を添加し、不活性雰囲気下でクロロホルム1mLを添加し、40℃で12時間反応させた。反応終了後、メタノールへの沈殿精製及びソックスレー精製を経て、ポリマーCを得た。
GPC (CHCl3、40℃、RID):Mw=1.1×104, Mw/Mn=1.8
[実施例4]ポリマーDの合成
[実施例4−1]化合物Dの合成
30mLフラスコに、フェナントレンキノン−3−カルボン酸504mg(2mmol)、5−ノルボルネン−2,3−ジメタノール154mg(1mmol)、DMT−MM 1.33g(4.8mmol)及びDMAP195mg(1.6mmol)を添加し、DMF10mLに溶解させ、室温で15時間反応させた。反応終了後、水を添加し、析出した固体を回収し、クロロホルム/酢酸エチルによるカラム精製を経て、黄色固体の化合物Dを得た。1H-NMR及びFAB-MSの結果を以下に示す。
1H-NMR (CDCl3, 500MHz, ppm) 8.63 (s, 2H, Ph), 8.15 (m, 4H, Ph), 8.04 (m, 4H, Ph), 7.71 (t, 2H, Ph), 7.47 (t, 2H, Ph), 6.29 (m, 2H, HC=CH), 4.60 (m, 4H, CH2), 2.92 (m, 2H, CH), 2.20 (m, 2H, CH), 1.60 (dd, 2H, CH2)
FAB-MS (m/z):Calcd 622.16、Found 623.37
[実施例4−2]ポリマーDの合成
5mLフラスコに、化合物D124mg(0.2mmol)及びグラブス第二世代触媒1.72mg(2μmol)を添加し、不活性雰囲気下でクロロホルム2mLを添加し、40℃で16時間反応させた。反応終了後、メタノールへの沈殿精製及びソックスレー精製を経て、ポリマーDを得た。
GPC (CHCl3、40℃、RID):insoluble
[2]縮環キノン置換ポリノルボルネンを含む電極及び電池の評価
[実施例5]ポリマーAを用いた薄膜電極のCV測定
0.5mg/mLのポリマーAクロロホルム溶液300μLをGC基板上に滴下し、乾燥させて、ポリマーA薄膜電極を得た。
次に、得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、10mol/Lの水酸化ナトリウム水溶液を用いた。
前記薄膜電極11を作用極に、白金電極12を対極に、Ag/AgCl電極13を参照極に用い、これらをビーカー内に設置し、この中に前記と同様の電解液14を加えて、図1に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート5mV/secでCV測定を行った。結果を図2に示す。図2に示すように、ポリマーAを用いて作製した薄膜電極は、E1/2=−0.86Vに一段階4電子の酸化還元波が現れ、減衰、溶出は見られなかった。
[実施例6]ポリマーAを電極に用いた空気二次電池の特性評価
実施例5で作製したポリマーA薄膜電極を負極、酸素還元触媒電極を正極とし、電解液は10mol/Lの水酸化ナトリウム水溶液を選択し空気二次電池を作製した。スキャンレート5mV/secでCV測定を行った。E1/2=−0.67V(vs. O2/O2 4-)に可逆な酸化還元波が現れた。また、−0.55Vから−1.1Vの範囲でCP測定を行ったところ、酸化還元波に合致するプラトーが観測され、100%のクーロン効率を示した。充放電を300サイクル繰り返した後でも初期容量の96%を維持し、ポリマーAが高いサイクル特性を示す物質であることがわかった。CV測定の結果を図3に、充放電容量を変化させた場合の基準電極との電位差の測定結果、及び充放電サイクル特性を示すグラフを図4に示す。
[実施例7、8]ポリマーB及びCを用いた薄膜電極のCV測定
図1に示されるビーカーセルを用いて、CV測定を行った。
実施例2で合成したポリマーB(実施例7)又は実施例3で合成したポリマーC(実施例8)10mgに、気相成長炭素繊維80mg及びNMP1.5gに溶解させたポリフッ化ビニリデンバインダー10mgを加え、ボールミルを用いて混練した。15分程混合して得られた混合体をGC基板上に塗布し、これを室温(20℃)で12時間加熱真空乾燥して薄膜電極11を得た。
次に得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1mol/Lの過塩素酸リチウムのγ−ブチロラクトン溶液を用いた。
前記薄膜電極11を作用極に、白金電極12を対極に、Ag/AgCl電極13を参照極に用い、これらをビーカー内に設置し、この中に前記と同様の電解液14を加えて、図1に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート10mV/secでCV測定を行った。結果を図5に示す。なお、図5中、実線は実施例7(ポリマーB)を、点線は実施例8(ポリマーC)を表す。図5に示すように、ポリマーCを用いた場合にエステルの電子吸引性に起因した、より貴な酸化還元電位が得られた。
[実施例9、10]ポリマーB及びCを電極に用いた電池の特性評価(ビーカーセル)
実施例2及び3で合成したポリノルボルネン主鎖を有するポリマーB(実施例9)及びポリマーC(実施例10)を用い、ビーカーセル型の半電池を作製した。
ポリマーBを用いて作製した半電池を146μAの定電流で電圧が−0.8Vになるまで充電し、その後146μAで放電を行った。その結果、電圧が−0.5V及び−0.1V付近で50秒間ほぼ一定となった後、急激に上昇し放電容量は51mAh/gとなった。クーロン効率は88%であった。
また、ポリマーCを用いて作製した半電池を146μAの定電流で電圧が−0.75Vになるまで充電し、その後146μAで放電を行った。その結果、電圧が−0.4V及び0.1V付近で130秒間ほぼ一定となった後、急激に上昇し放電容量は87mAh/gとなった。クーロン効率は81%であった。
これにより、ポリマーB及びポリマーCが電荷貯蔵材料として動作していることを確認した。充放電容量を変化させた場合の基準電極との電位差の測定結果を図6に示す。なお、図6中、点線は実施例9(ポリマーB)を、実線は実施例10(ポリマーC)を表す。ポリマーCを用いた場合により高い充放電容量を示し、側鎖の高い自由度による溶媒への親和性の向上が示唆された。
[実施例11]ポリマーCを電極に用いた電池の特性評価(コインセル)
実施例8で作製したポリマーC/炭素複合電極を正極、金属リチウムを負極とし、電解液は1mol/Lの過塩素酸リチウムのγ−ブチロラクトン溶液を選択しポリマーリチウム二次電池を作製した。なお、ポリマーリチウム二次電池は以下の手法で作製した。アルミ箔上にポリマー/炭素複合電極を作製し半径6mmに、セパレータは半径8.5mmにそれぞれ切り抜いた。プラス端子ケース上にプラスチック製ガスケット、炭素複合電極、セパレータ、金属リチウム、スペーサー及びワッシャーの順に積層し、キャップをはめカシメ機ホルダーを用いて充分にカシメることでポリマーリチウム二次電池を作製した。
スキャンレート5mV/secでCV測定を行ったところ、二段階の酸化還元波が現れた。また、293μAの定電流で電位が2Vから3.6Vの範囲でCP測定を行ったところ、二段階の酸化還元波が観測され、放電容量は65mAh/g、クーロン効率は84%であった。CV測定の結果を図7に、充放電量を変化させた場合の基準電極との電位差の測定結果を図8に示す。
[実施例12]ポリマーDを用いた薄膜電極のCV測定
図1に示されるビーカーセルを用いて、CV測定を行った。
実施例4で合成したポリマーD10mgに、炭素粉末80mg及びNMP1.5gに溶解させたポリフッ化ビニリデンバインダー10mgを加え、ボールミルを用いて混練した。15分程混合して得られた混合体をGC基板上に塗布し、これを室温(20℃)で12時間加熱真空乾燥して薄膜電極11を得た。
次に得られた電極を電解液に浸して、電極中の空隙に電解液を染み込ませた。電解液としては、1mol/Lの過塩素酸リチウムのγ−ブチロラクトン溶液を用いた。
前記薄膜電極11を作用極に、白金電極12を対極に、Ag/AgCl電極13を参照極に用い、これらをビーカー内に設置し、この中に前記と同様の電解液14を加えて、図1に示すようなビーカーセル1を作製した。
このビーカーセル1を用いて、スキャンレート10mV/secでCV測定を行った。結果を図9に示す。図9に示すように、ポリマーDを用いて作製した薄膜電極は、E1/2=0.02V、−0.40Vに可逆な酸化還元波が現れた。
[実施例13]ポリマーDを電極に用いた電池の特性評価(ビーカーセル)
実施例4で合成したポリマーDを用い、ビーカーセル型の半電池を作製した。
作製した半電池を240μAの定電流で電圧が−0.7Vになるまで充電し、その後240μAで放電を行った。その結果、−0.4V及び0V付近で140秒間ほぼ一定となった後、急激に上昇し、放電容量は108mAh/gとなった。クーロン効率は77%であった。これによりポリマーDが電荷貯蔵材料として動作していることを確認した。放電容量を変化させた場合の基準電極との電位差の測定結果を図10に示す。
また、同様にして480μA、720μA、960μA、1200μAの定電流で充放電を行い、20〜50Cでの放電容量を測定した。その結果、10Cの放電容量に対し50Cでも約70%の容量を示したことから、密な構造由来の電子交換が行われていることが予想される。放電レートが10〜50Cの時の放電曲線を図11に示す。
[実施例14]ポリマーDを電極に用いた電池の特性評価(コインセル)
実施例12で作製したポリマーD/炭素複合電極を正極、金属リチウムを負極とし、電解液は1mol/Lの過塩素酸リチウムのγ−ブチロラクトン溶液を選択しポリマーリチウム二次電池を作製した。なお、ポリマーリチウム二次電池は、実施例11の方法に従って作製した。
スキャンレート5mV/secでCV測定を行ったところ、両極の電位差に相当する位置に酸化還元波が現れた。また、111μAの定電流で電位が1.8Vから3.6Vの範囲でCP測定を行ったところ、二段階の酸化還元波が観測され、放電容量は104mAh/g、クーロン効率は95%であった。CV測定の結果を図12に、充放電量を変化させた場合の基準電極との電位差の測定結果を図13に示す。
1 ビーカーセル
11 作用極
12 対極
13 参照極
14 電解液

Claims (12)

  1. 下記式(1)で表される繰り返し単位を含む縮環キノン置換ポリノルボルネン。
    [式中、A1は、それぞれ独立に、下記式(4)で表される置換基を表し、nは、1〜6の整数を表す。
    (式中、Xは、単結合、又は−C(O)O−、−C(O)OCH2−、−CH2O−、−C(O)NH−、−C(O)NHCH2−、−CH2−、−O−、−S−及び−NH−から選ばれる2価の基を表し、Ar1及びAr2は、それぞれ独立に、ベンゾキノン骨格上の2つの炭素原子とともに形成される芳香族炭化水素環であるベンゼン環、又は酸素原子若しくは硫黄原子を含む芳香族複素環であるチオフェン環若しくはフラン環を表す。)]
  2. 下記式(1−3)で表される繰り返し単位を含む、請求項1記載の縮環キノン置換ポリノルボルネン。
    (式中、Xは、前記と同じであり、 11 〜R17は、水素原子を表し、n 3、1又は2を表す。)
  3. 請求項1又は2記載の縮環キノン置換ポリノルボルネンからなる電荷貯蔵材料。
  4. 請求項3記載の電荷貯蔵材料を含む電極活物質。
  5. 請求項4記載の電極活物質、及び溶媒を含む電極スラリー。
  6. 請求項4記載の電極活物質を含む薄膜。
  7. 請求項5記載の電極スラリーから作製される薄膜。
  8. 請求項4記載の電極活物質を含む電極。
  9. 請求項6又は7記載の薄膜を含む電極。
  10. 請求項8又は9記載の電極を含む二次電池。
  11. 請求項8又は9記載の電極を含むリチウムイオン電池。
  12. 請求項8又は9記載の電極を含む空気電池。
JP2015200078A 2015-10-08 2015-10-08 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池 Active JP6721906B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015200078A JP6721906B2 (ja) 2015-10-08 2015-10-08 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池
US15/064,802 US10164258B2 (en) 2015-10-08 2016-03-09 Fused-ring quinone-substituted polynorbornene, electrode active material and secondary battery
KR1020160028216A KR102564621B1 (ko) 2015-10-08 2016-03-09 축환 퀴논 치환 폴리노보넨, 전극 활물질 및 이차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015200078A JP6721906B2 (ja) 2015-10-08 2015-10-08 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池

Publications (2)

Publication Number Publication Date
JP2017071714A JP2017071714A (ja) 2017-04-13
JP6721906B2 true JP6721906B2 (ja) 2020-07-15

Family

ID=58499981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015200078A Active JP6721906B2 (ja) 2015-10-08 2015-10-08 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池

Country Status (3)

Country Link
US (1) US10164258B2 (ja)
JP (1) JP6721906B2 (ja)
KR (1) KR102564621B1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3588634B1 (de) 2018-06-27 2023-11-22 InnovationLab GmbH Verbessertes organisches elektrodenmaterial
CN109400852A (zh) * 2018-11-09 2019-03-01 天津大学 一种基于蒽醌的有机聚合物及制备方法和作为锂离子电池正极材料的应用
TWI740221B (zh) 2018-12-17 2021-09-21 德商贏創運營有限公司 用於有機電池之改良固體電解質
EP3939100A1 (en) 2019-03-14 2022-01-19 Evonik Operations GmbH Process for producing a shaped organic charge storage unit
CN110606936B (zh) * 2019-09-23 2022-03-15 天津大学 聚[降冰片烯1,4-二甲基联萘醌]及制备方法和应用
US20230026457A1 (en) * 2019-11-29 2023-01-26 Waseda University Electrode material
KR102194179B1 (ko) 2020-03-26 2020-12-22 서울과학기술대학교 산학협력단 활물질 및 이의 전구체의 혼합물을 포함하는 전해액
EP4016663B1 (de) 2020-12-17 2023-10-11 InnovationLab GmbH Elektrodenmaterial für den druck von polymerbatterien

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918733B2 (ja) 2000-10-05 2012-04-18 日本電気株式会社 二次電池およびその製造方法
WO2007116926A1 (ja) * 2006-04-05 2007-10-18 Panasonic Corporation 二次電池の製造方法および二次電池用正極活物質の調製方法
JP2008112630A (ja) * 2006-10-30 2008-05-15 Matsushita Electric Ind Co Ltd 二次電池
JP2008147015A (ja) 2006-12-11 2008-06-26 Honda Motor Co Ltd 電池用電極、非水溶液系電池、および非水溶液系電池の製造方法
JP2009217992A (ja) 2008-03-07 2009-09-24 Univ Waseda キノンポリマー電極、電荷貯蔵材料、及び電池
US20110143197A1 (en) * 2008-03-28 2011-06-16 Yu Ohtsuka Electrode active material for power storage device and power storage device, and electronic equipment and transportation equipment
JP5483521B2 (ja) 2008-08-08 2014-05-07 公立大学法人大阪市立大学 電極活物質、及び二次電池
JP5483523B2 (ja) 2008-08-28 2014-05-07 公立大学法人大阪市立大学 電極活物質、及び二次電池
JP2010080343A (ja) 2008-09-26 2010-04-08 Osaka City Univ 電極活物質、及び二次電池
JP5531424B2 (ja) 2009-03-11 2014-06-25 株式会社村田製作所 電極活物質及びそれを用いた二次電池
JP6069787B2 (ja) * 2012-03-08 2017-02-01 学校法人早稲田大学 ベンゾジチオフェンキノンポリマー、電荷貯蔵材料、電極活物質、電極、及び電池

Also Published As

Publication number Publication date
JP2017071714A (ja) 2017-04-13
KR102564621B1 (ko) 2023-08-08
KR20170042215A (ko) 2017-04-18
US10164258B2 (en) 2018-12-25
US20170104214A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6721906B2 (ja) 縮環キノン置換ポリノルボルネン、電極活物質及び二次電池
US10326138B2 (en) Charge storage material, electrode active material and secondary battery
TWI656135B (zh) 新穎之四氰蒽醌二甲烷聚合物及其用途
JP5700371B2 (ja) ジシアノアントラキノンジイミンポリマー、電荷貯蔵材料、電極活物質、電極及び電池
JP6290447B2 (ja) 9,10−ビス(1,3−ジチオール−2−イリデン)−9,10−ジヒドロアントラセンポリマー及びそれらの使用
US9871253B2 (en) Ion-conductive fused-ring quinone polymer, electrode active material and secondary battery
Oubaha et al. Carbonyl‐based π‐conjugated materials: from synthesis to applications in lithium‐ion batteries
JP6069787B2 (ja) ベンゾジチオフェンキノンポリマー、電荷貯蔵材料、電極活物質、電極、及び電池
JPWO2005076295A1 (ja) エネルギー貯蔵デバイス用電極及びその製造方法
JP5679448B2 (ja) 電荷貯蔵材料、電極活物質、電極及び電池
JP6762474B2 (ja) 電荷貯蔵材料、電極活物質及び二次電池
KR102547680B1 (ko) 이온 전도성 축환 퀴논 폴리머, 전극 활물질 및 이차전지
WO2020084828A1 (ja) ポリマー、電極活物質及び二次電池
JP2008135371A (ja) 二次電池用活物質及び二次電池
JP6814064B2 (ja) 有機化合物、電極活物質及びこれを用いた二次電池
JP5425694B2 (ja) 過充放電処理をすることによって得られるリチウムイオン二次電池用の正極活物質、該正極活物質を備えるリチウムイオン二次電池用の正極及び該正極を構成要素として含むリチウムイオン二次電池
JP2019199520A (ja) 塩基性主鎖を有する縮環キノン修飾架橋ポリマー、電極活物質、及び二次電池
WO2011152476A1 (ja) 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質
JP5733064B2 (ja) 電荷貯蔵材料、電極活物質、電極スラリー、電極及び電池
JPH01651A (ja) 電池用活物質

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20151106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151106

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20151106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200610

R150 Certificate of patent or registration of utility model

Ref document number: 6721906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250