WO2011152476A1 - 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質 - Google Patents

縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質 Download PDF

Info

Publication number
WO2011152476A1
WO2011152476A1 PCT/JP2011/062641 JP2011062641W WO2011152476A1 WO 2011152476 A1 WO2011152476 A1 WO 2011152476A1 JP 2011062641 W JP2011062641 W JP 2011062641W WO 2011152476 A1 WO2011152476 A1 WO 2011152476A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycyclic aromatic
condensed polycyclic
aromatic compound
positive electrode
lithium ion
Prior art date
Application number
PCT/JP2011/062641
Other languages
English (en)
French (fr)
Inventor
修 大森
晃子 島
村瀬 仁俊
正孝 仲西
淳一 丹羽
山元 公寿
Original Assignee
株式会社豊田自動織機
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 学校法人 慶應義塾 filed Critical 株式会社豊田自動織機
Priority to US13/701,544 priority Critical patent/US8927157B2/en
Priority to JP2012518442A priority patent/JP5663011B2/ja
Publication of WO2011152476A1 publication Critical patent/WO2011152476A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/20Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups being part of rings other than six-membered aromatic rings
    • C07C251/22Quinone imines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a condensed polycyclic aromatic compound, a method for producing the same, a positive electrode active material for a lithium ion secondary battery containing the condensed polycyclic aromatic compound, and a positive electrode including the positive electrode active material, and the positive electrode
  • the present invention relates to a lithium ion secondary battery that includes
  • the positive electrode active material of the lithium ion secondary battery that is currently used mainly uses cobalt or manganese oxide having a large specific gravity, the total weight of the lithium ion secondary battery is large. Therefore, in order to reduce the weight of the entire lithium ion secondary battery, it is conceivable to reduce the proportion of the positive electrode active material in the entire lithium ion secondary battery. Longer life and longer life (cycle suitability) are unlikely to be desired.
  • Patent Document 1 describes a novel polyaniline derivative compound of a conductive polymer capable of one-stage two-electron transfer and a secondary battery using a protonated compound of the compound as a positive electrode.
  • the electrode material using the compound of the novel polyaniline derivative has a high energy density
  • the use of the electrode material as a positive electrode can be obtained by using a zinc plate as a negative electrode and a zinc sulfate aqueous solution as an electrolyte. It is stated to be useful in secondary batteries.
  • the current situation is that further improvements are desired in terms of higher capacity and longer life (cycle suitability), and new organic compounds cannot be applied to electrode active materials for lithium secondary batteries. Whether or not it is actively researched.
  • Patent Document 2 describes a production method for generating pentacene by irradiating an oxygen adduct of a pentacene derivative with ultraviolet light. According to Patent Document 2, the manufacturing method is environmentally friendly because there is no generation of harmful gases, and has a high advantage that it can be easily recycled, and at the same time has a function of being capable of photopatterning, It is said that this is a method that places less burden on the environment and resources.
  • An object of the present invention is to provide a condensed polycyclic aromatic compound excellent in lithium ion responsiveness and suitable for use in a lithium ion secondary battery and a method for producing the same, and contains the condensed polycyclic aromatic compound. It is an object of the present invention to provide a positive electrode active material characterized by the above and a positive electrode for a lithium ion secondary battery including the same. It is another object of the present invention to provide a lithium ion secondary battery having a high capacity and excellent cycle suitability using the positive electrode as a constituent element.
  • a condensed polycyclic aromatic compound characterized by having at least four imino groups in one molecule exhibits multielectron mobility. And having excellent lithium ion responsiveness, and the condensed polycyclic aromatic compound has high adhesion to the electrode material and is suitable for use in lithium ion secondary batteries. It came to complete.
  • a condensed polycyclic aromatic compound having at least four imino groups in one molecule (2)
  • the condensed polycyclic aromatic compound according to (1) which is represented by the following general formula (1).
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a substituted or unsubstituted aliphatic hydrocarbon group, Or a substituted or unsubstituted aromatic hydrocarbon group, and n is an integer of 1 to 10.
  • the condensed polycyclic aromatic compound according to (1) which is represented by the following general formula (2).
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a substituted or unsubstituted aliphatic hydrocarbon group, Or a substituted or unsubstituted aromatic hydrocarbon group, and n is an integer of 1 to 10.
  • R 5, R 6, R 7 and R 8 are as defined R 5, R 6, R 7 and R 8 each of the general formula (2), n is from 1 to It is an integer of 10.
  • a positive electrode active material for a lithium ion secondary battery comprising the condensed polycyclic aromatic compound according to any one of (1) to (3).
  • a positive electrode for a lithium ion secondary battery wherein the positive electrode active material according to (7) is provided on at least the surface of the current collector.
  • a lithium ion secondary battery comprising at least a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode is the positive electrode according to (8).
  • a condensed polycyclic aromatic compound excellent in lithium ion responsiveness and suitable for lithium ion secondary battery applications and a method for producing the same are provided, and the condensed polycyclic aromatic compound is contained.
  • a positive electrode active material, a positive electrode including the positive electrode active material, and a lithium ion secondary battery including the positive electrode as a constituent element are provided.
  • FIG. 1 shows the visible / ultraviolet spectra of the condensed polycyclic aromatic compound (5Red) produced by the electrochemical reduction reaction carried out in Example 2 and the condensed polycyclic aromatic compound (5) before the electrochemical reduction reaction.
  • FIG. FIG. 2-1 is a graph showing the evaluation results of the multi-electron mobility evaluation performed in Example 3 and Comparative Example 1.
  • FIG. 2-2 is a graph illustrating the evaluation results of the multi-electron mobility evaluation performed in Example 3.
  • FIG. 3 is a graph showing a charge / discharge curve at the 10th cycle of the coin-type lithium ion secondary battery produced in Example 4-1.
  • FIG. 4 is a graph showing the discharge capacity up to 100 cycles of the coin-type lithium ion secondary battery produced in Example 4-1.
  • FIG. 5 is a graph showing a discharge curve at the 10th cycle of the coin-type lithium ion secondary battery produced in Examples 4-1, 4-2, and 4-3.
  • FIG. 6 is a graph showing a discharge curve at the 10th cycle of the coin-type lithium ion secondary battery produced in Example 4-1 and Comparative Example 2.
  • 7-1 is a figure which shows the adsorptivity test result with respect to the conductive support agent (Ketjen black) implemented in Example 5 and Comparative Example 3.
  • FIG. 7-2 is a figure which shows the adsorptivity test result with respect to the conductive support agent (Ketjen Black) implemented in Example 5 and Comparative Example 3.
  • FIG. 7-3 is a figure which shows the adsorptivity test result with respect to the conductive support agent (Ketjen black) implemented in Example 5 and Comparative Example 3.
  • the condensed polycyclic aromatic compound according to the present invention has at least four imino groups in one molecule.
  • the condensed polycyclic aromatic compound according to the present invention is not particularly limited as long as it has at least four imino groups, but a compound represented by the following general formula (5) is preferable.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a substituted or unsubstituted aliphatic hydrocarbon group, It represents a substituted or unsubstituted aromatic hydrocarbon group.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are not particularly limited as long as they are electron-donating groups.
  • they are each independently a methyl group, Alkyl groups such as ethyl group, n-propyl group, isopropyl group, sec-butyl group, isobutyl group and tert-butyl group, cyclic alkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, phenyl And aryl groups such as a group, tolyl group and naphthyl group.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are substituted with a substituent is not particularly limited.
  • Group, aryl group such as tolyl group and naphthyl group, and alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, sec-butoxy group and tert-butoxy group.
  • R 1 to R 4 are more preferably aryl groups, and even more preferably phenyl groups.
  • R 5 to R 8 are more preferably alkyl groups, and even more preferably methyl groups.
  • the polycyclic aromatic group in the general formula (5) represents a substituted or unsubstituted polycyclic aromatic group.
  • the substituent when the substituted polycyclic aromatic group is substituted with a substituent is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a sec-butyl group, and an isobutyl group.
  • Groups, alkyl groups such as tert-butyl group, cyclic alkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, and aryl groups such as phenyl group, tolyl group and naphthyl group.
  • the condensed polycyclic aromatic compound according to the present invention is preferably a compound represented by the following general formula (1).
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a substituted or unsubstituted aliphatic hydrocarbon group, Or a substituted or unsubstituted aromatic hydrocarbon group, and n is an integer of 1 to 10.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are not particularly limited as long as they are electron-donating groups.
  • they are each independently a methyl group, Alkyl groups such as ethyl group, n-propyl group, isopropyl group, sec-butyl group, isobutyl group and tert-butyl group, cyclic alkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, phenyl And aryl groups such as a group, tolyl group and naphthyl group.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are substituted with a substituent is not particularly limited.
  • Group, aryl group such as tolyl group and naphthyl group, and alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, sec-butoxy group and tert-butoxy group.
  • R 1 to R 4 are more preferably aryl groups, and even more preferably phenyl groups.
  • R 5 to R 8 are more preferably alkyl groups, and even more preferably methyl groups.
  • N is an integer of 1 to 10 indicating the degree of polymerization.
  • n is preferably an integer of 5 or less.
  • the condensed polycyclic aromatic compound according to the present invention is preferably a compound represented by the following general formula (2).
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are each independently hydrogen, a substituted or unsubstituted aliphatic hydrocarbon group, Or a substituted or unsubstituted aromatic hydrocarbon group, and n is an integer of 1 to 10.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are not particularly limited as long as they are electron-donating groups.
  • they are each independently a methyl group, Alkyl groups such as ethyl group, n-propyl group, isopropyl group, sec-butyl group, isobutyl group and tert-butyl group, cyclic alkyl groups such as cyclopentyl group and cyclohexyl group, alkenyl groups such as vinyl group and allyl group, phenyl And aryl groups such as a group, tolyl group and naphthyl group.
  • R 1 , R 2 , R 3, R 4, R 5 , R 6 , R 7 and R 8 are substituted with a substituent is not particularly limited.
  • Group, aryl group such as tolyl group and naphthyl group, and alkoxy group such as methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy group, sec-butoxy group and tert-butoxy group.
  • R 1 to R 4 are more preferably aryl groups, and even more preferably phenyl groups.
  • R 5 to R 8 are more preferably alkyl groups, and even more preferably methyl groups.
  • N is an integer of 1 to 10 indicating the degree of polymerization.
  • n is preferably an integer of 5 or less.
  • the production method according to the present invention is characterized by reacting a compound having at least four oxo groups in one molecule with an aniline compound in the presence of titanium tetrachloride and a base.
  • the compound having at least 4 oxo groups in one molecule used in the production method according to the present invention is not particularly limited as long as it has at least 4 oxo groups in one molecule.
  • the aniline compound used in the production method according to the present invention may be an aniline compound having a substituent or an unsubstituted aniline compound.
  • the base is not particularly limited as long as it is a basic catalyst, and examples thereof include 1,4-diazabicyclo [2.2.2] octane (DABCO).
  • the method for producing a condensed polycyclic aromatic compound according to the present invention is a method for producing the condensed polycyclic aromatic compound of the present invention represented by the general formula (1), in the presence of titanium tetrachloride and a base. It is preferable that the compound represented by formula (3) is reacted with an aniline compound.
  • R 5, R 6, R 7 and R 8 have the same meanings as in formula (1) R 5, R 6 , R 7 and R 8 in.
  • the method for producing a condensed polycyclic aromatic compound according to the present invention is a method for producing the condensed polycyclic aromatic compound of the present invention represented by the general formula (2), in the presence of titanium tetrachloride and a base. It is preferable that the compound represented by the formula (4) is reacted with an aniline compound.
  • R 5, R 6, R 7 and R 8 have the same meanings as in formula (2) R 5, R 6 , R 7 and R 8 in.
  • the compound having at least four oxo groups in one molecule used in the production method according to the present invention, the compound represented by the general formula (3), and the compound represented by the general formula (4) are non-patent documents (JOC 1983). , 48, 4358), non-patent literature (JACS 1992, 114, 6330), non-patent literature (J. Heterocyclic Chem. 2002, 39, 1093.), and non-patent literature (JACS 1992, 114, 1388). It can be synthesized with reference.
  • 2,3,9,10-tetramethyl-1,4,8,11-pentacentetron is 1,4: 5,8-diepoxy-1,4,5,8-tetrahydroanthracene.
  • 1,4 5,8-diepoxy-1,4,5,8-tetrahydroanthracene.
  • 1,4 8,11-dicarboxy-5,14: 7,12-diepoxy-4a, 5.
  • 7,7a, 11a, 12,14,14a-octahydro-1,2,3,4,8,9,10,11-octaphenylpentacene is a method described in non-patent literature (JACS 1992, 114, 6330).
  • a cathode active material for a lithium ion secondary battery according to the present invention is a condensed polycyclic aromatic compound having at least 4 imino groups in one molecule, a general formula ( The condensed polycyclic aromatic compound represented by 1) and the condensed polycyclic aromatic compound represented by the general formula (2) are contained.
  • the positive electrode active material for a lithium ion secondary battery refers to a substance that directly contributes to the positive electrode of the lithium ion secondary battery in an electrode reaction such as a charge reaction and a discharge reaction of the lithium ion secondary battery.
  • the positive electrode for a lithium ion secondary battery according to the present invention is a condensed polycyclic aromatic compound having at least 4 imino groups in one molecule, represented by the general formula (1)
  • the positive electrode active material containing the condensed polycyclic aromatic compound represented by the general formula (2) that is, the positive electrode active material for the lithium ion secondary battery of the present invention It is provided at least on the surface.
  • the current collector is a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharging or charging of a lithium ion secondary battery.
  • the current collector is in the form of a foil, a plate or the like formed of the electronic high conductor. Although it will not specifically limit if it is the shape according to the objective, For example, copper foil, aluminum foil, and aluminum mesh are mentioned.
  • One method for providing the positive electrode active material on at least the surface of the current collector includes, for example, applying the positive electrode active material to the surface of the current collector.
  • coating means placing a positive electrode active material on a current collector.
  • the coating method include a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, and the like, which are generally used when producing an electrode for a lithium ion secondary battery. If it is a coating method, it will not specifically limit.
  • the positive electrode for a lithium ion secondary battery according to the present invention may be provided with a conductive additive together with the positive electrode active material of the present invention on at least the surface of the current collector.
  • the conductive auxiliary agent is added to increase conductivity.
  • Examples of the conductive assistant include carbon black, graphite, acetylene black, ketjen black, and carbon fiber, which are carbonaceous fine particles. They may be added alone or in combination of two or more.
  • the amount added is preferably 10 to 2000 parts by mass, more preferably 100 to 1000 parts by mass, and still more preferably 200 to 800 parts by mass per 100 parts by mass of the positive electrode active material of the present invention.
  • Lithium Ion Secondary Battery A lithium ion secondary battery according to the present invention is characterized in that it comprises at least constituent elements of a positive electrode, a negative electrode, and an electrolyte, and the positive electrode is the positive electrode of the present invention.
  • the negative electrode of the lithium ion secondary battery according to the present invention is preferably a lithium-based negative electrode.
  • the lithium-based negative electrode can be composed of a lithium-based metal material such as metal lithium or a lithium alloy (for example, a Li—Al alloy) or a lithium intercalation carbon material.
  • the lithium-based metallic material is preferably used in the form of a foil from the viewpoint of reducing the weight of the battery.
  • the electrolyte of the lithium ion secondary battery according to the present invention may be disposed between the positive electrode and the negative electrode, or may be disposed as an electrolyte layer.
  • the electrolyte is preferably composed of a polymer gel containing an electrolyte solution (polymer gel electrolyte).
  • Examples of the electrolyte contained in the polymer electrolyte include CF 3 SO 3 Li, C 4 F 9 SO 3 Li, (CF 3 SO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, LiBF 4 , LiPF 6 , and LiClO. 4 or the like.
  • the solvent that dissolves the electrolyte is preferably a non-aqueous solvent.
  • non-aqueous solvents include chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like.
  • Specific examples of the non-aqueous solvent include, for example, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, N-methylpyrrolidinone, N, N′-dimethylacetamide, a mixture of propylene carbonate and dimethoxyethane, ethylene
  • examples thereof include a mixture of carbonate and diethyl carbonate, and a mixture of sulfolane and tetrahydrofuran.
  • the polymer gel it is preferable to use a prepolymer TA210 (polyfunctional acrylate polymer having a polyoxyalkylene chain) that is polymerized with a photopolymerization initiator (for example, IRGACURE 184).
  • a photopolymerization initiator for example, IRGACURE 184
  • acrylonitrile and methyl acrylate are used.
  • a copolymer with methacrylic acid can be obtained by immersing the polymer in the electrolyte solution or polymerizing the polymer structural unit (monomer / compound) in the presence of the electrolyte solution.
  • a polyolefin gel described in JP-A No. 2002-198095 is also preferably used.
  • This gel is a gel of a non-crosslinked polymer in which about 10% by mole of polyethylene is grafted with a compound containing an oligomer of polyethylene oxide such as polyethylene glycol.
  • This polymer has completely different physical properties from non-grafted polyethylene and has the ability to absorb and gel a large amount of organic electrolyte and retain the absorbed solution. Therefore, a gel electrolyte can be obtained by immersing the polymer in an electrolyte solution.
  • reaction mixture obtained by adding a crosslinkable monomer to a solution obtained by dissolving the above-mentioned non-crosslinked polymer in an electrolyte solution in an organic solvent to a substrate, and subjecting to a reaction condition in which the crosslinkable monomer is subjected to crosslink polymerization.
  • a polymer gel electrolyte integrated with the substrate can also be obtained.
  • the lithium ion secondary battery according to the present invention may include a separator as one component.
  • the separator can be used for the purpose of preventing the positive electrode and the negative electrode of the lithium ion secondary battery from contacting each other, and may include an electrolyte.
  • a separator a polypropylene porous film and a nonwoven fabric are mentioned, for example, A polypropylene porous film is preferable.
  • the configuration form (stacked form) of the lithium ion secondary battery according to the present invention may be arbitrary.
  • the electrolyte solution is impregnated with the positive electrode of the present invention, a separator and a glass filter are laminated on the positive electrode, and a negative electrode is further laminated. Further, the positive electrode, the separator containing the electrolyte, and the negative electrode are sequentially stacked. A form is mentioned.
  • the shape of the lithium ion secondary battery according to the present invention may be a known shape.
  • the electrode laminate, the wound body may be a metal case, a resin case, or a laminate film composed of a metal foil such as an aluminum foil and a synthetic resin film. What was sealed is mentioned.
  • examples of the external shape of the lithium ion secondary battery include a cylindrical shape, a square shape, a coin shape, and a sheet shape, but are not limited thereto.
  • the condensed polycyclic aromatic compound (5) (N, N, N ′, N ′ ′′-tetramethyl-2,3,9,10-pentacentetetrontetrimine) is synthesized by the following synthetic route consisting of the following four steps: It was synthesized from commercially available 1,2,4,5-tetrabromobenzene (1).
  • Step 1 Synthesis of 1,4: 5,8-diepoxy-1,4,5,8-tetrahydroanthracene (2)
  • Step 2 1,4: 8,11-dicarboxy-5,14: 7,12-diepoxy-4a, 5,7,7a, 11a, 12,14,14a-octahydro-1,2,3,4 , 8,9,10,11- octaphenylpentacene (3)
  • 1,4: 8,11-dicarboxy-5,14: 7,12-diepoxy-4a, 5,7,7a, 11a, 12, 14,14a-Octahydro-1,2,3,4,8,9,10,11-octaphenylpentacene (3) is prepared according to the method described in non-patent literature (JACS 1992, 114, 6330).
  • Step 3 Synthesis of 2,3,9,10-tetramethyl-1,4,8,11-pentacentetron (4) Synthesis of 2,3-dimethyl 1,4-benzoquinone 2,3-dimethyl 1,4 -Benzoquinone was synthesized by oxidizing 2,3-dimethylhydroquinone according to the method described in non-patent literature (J. Heterocyclic Chem. 2002, 39, 1093.). Yield: 65%.
  • Step 4 Synthesis of N, N ′, N ′′, N ′ ′′-tetraphenyl-2,3,9,10-tetramethyl-1,4,8,11-pentacenetetrontetrimine (5) Chlorobenzene Crude pentacentetron (4) (0.126 g), aniline (0.100 g, 0.11 mmol) and 1,4-diazabicyclo [2.2.2] octane (DABCO) (1.3 g) dissolved in (25 ml) To a mixture of 11.1 mmol) was slowly added a solution of TiCl 4 (0.25 ml, 2.3 mmol) dissolved in chlorobenzene (5 ml) at 80 ° C.
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • N, N ′, N ′′, N ′ ′′-tetraphenyl-2,3,9,10-tetramethyl-1,4,8,11-pentacentetrontetrimine (5) is an imine-linked E / Because of the Z isomer, it has the following seven isomers. Therefore, the NMR spectrum of N, N ′, N ′′, N ′ ′′-tetraphenyl-2,3,9,10-tetramethyl-1,4,8,11-pentacentetrontetrimine (5) is Multiple peaks were shown.
  • Condensed polycyclic aromatic compound (11) (N, N ′, N ′′, N ′ ′′-tetraphenyl-2,3,10,11-tetramethyl-1,4,9,12-hexacentetronetetra Imine) was synthesized from commercially available 3,6-dibromo-2,7-dihydroxynaphthalene (6) by a synthetic route consisting of the following five steps.
  • Step 1 Synthesis of 3,6-dibromo-2,7-bis [(p -tolylsulfonyl) oxy] naphthalene (7) 3,6-dibromo-2,7-bis [(p-tolylsulfonyl) oxy] Naphthalene (7) was synthesized by tosylation of 3,6-dibromo-2,7-dihydroxynaphthalene (6) according to the method described in non-patent literature (J. Org. Chem. 1985, 50, 2934.). did.
  • Step 2 Synthesis of 1,4: 7,10-diepoxy-1,4,7,10-tetrahydrotetracene (8) 1,4: 7,10-diepoxy-1,4,7,10-tetrahydrotetracene ( 8) according to the method described in non-patent literature (J. Org. Chem. 1985, 50, 2934.), 3,6-dibromo-2,7-bis [(p-tolylsulfonyl) oxy] naphthalene ( 7) and furan. Yield; 58%. Met.
  • Step 3 1,4: 9,12-dicarboxy-5,16: 8,13-diepoxy-4a, 5,8,8a, 12a, 13,16,16a-octahydro-1,2,3,4 , 9,10,11,12-octaphenylhexacene (9)
  • Step 4 Synthesis of 2,3,10,11-tetramethyl-1,4,9,12-hexacentetron (10) 2,3,10,11-tetramethyl-1,4,9,12- Hexacentetron (10) is prepared in the same manner as in Scheme 1 with 1,4: 9,12-dicarboxy-5,16: 8,13-diepoxy-4a, 5,8,8a, 12a, 13,16 16a-octahydro-1,2,3,4,9,10,11,12-octaphenylhexacene (9). The crude product was used in the next step without further purification.
  • Step 5 Synthesis of N, N ′, N ′′, N ′ ′′-Tetraphenyl-2,3,10,11-tetramethyl-1,4,9,12-hexacentetron Tetrimine (11) Chlorobenzene (20 ml), crude hexacentetron (10) (0.118 g), aniline (0.15 ml, 1.6 mmol) and 1,4-diazabicyclo [2.2.2] octane (DABCO) (0. To a mixture of 900 g, 8.0 mmol) was slowly added a solution of TiCl 4 (0.15 ml, 1.4 mmol) dissolved in chlorobenzene (5 ml) at 75 ° C.
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • the reaction mixture was stirred for 1.5 hours at 125 ° C.
  • the reaction mixture was concentrated through a silica gel column (CHCl 3 ).
  • the residue was redissolved in CHCl 3 and reprecipitated in a large amount of acetonitrile.
  • Step 1 Synthesis of 2,6-dibromo-1,5-bis [(p -tolylsulfonyl) oxy] naphthalene (13) 2,6-dibromo-1,5-bis [(p-tolylsulfonyl) oxy] Naphthalene (13) was synthesized by tosylation of 2,6-dibromo-1,5-dihydroxynaphthalene (12) according to the method described in non-patent literature (J. Org. Chem. 1983, 48, 1682.). did. Yield; 96%.
  • Step 2 1,4: 7,10-diepoxy-1,4,7,10-tetrahydrochrysene (14)
  • Step 3 1,4: 9,12-dicarboxy-5,16: 8,13-diepoxy-4a, 5,8,8a, 12a, 13,16,16a-octahydro-1,2,3,4 , 9,10,11,12-octaphenyldibenzo [b, k] chrysene
  • 1,4: 9,12-dicarboxy-5,16: 8,13-diepoxy-4a, 5,8, 8a, 12a, 13,16,16a-octahydro-1,2,3,4,9,10,11,12-octaphenyldibenzo [b, k] chrysene is disclosed in non-patent literature (JACS 1992, 114).
  • Step 4 Synthesis of 2,3,10,11-tetramethyl-1,4,9,12-dibenzo [b, k] chrysentetron (16) 2,3,10,11- tetramethyl-1,4 , 9,12-dibenzo [b, k] chrysentetron (16) in the same manner as in Scheme 1, 1,4: 9,12-dicarboxy-5,16: 8,13-diepoxy-4a, 5 , 8,8a, 12a, 13,16,16a-octahydro-1,2,3,4,9,10,11,12-octaphenyldibenzo [b, k] chrysene (15). The crude product was used in the next step without further purification.
  • N, N ′, N ′′, N ′ ′′-tetraphenyl-2,3,10,11-tetramethyl-1,4,9,12-dibenzo [b, k] chrysentetrontetrimine ( The NMR spectrum of 16) showed a plurality of peaks.
  • Example 2 ⁇ Electrochemical reduction reaction of condensed polycyclic aromatic compound (5): extension of condensed ring (acene) skeleton> A condensed polycyclic aroma is added to an acetonitrile solution containing 0.5 M (mol / l) trifluoroacetic acid (manufactured by Kanto Chemical) and 0.2 M (mol / l) TBABF4 (tetrabutylammonium tetrafluoroborate) (manufactured by Fluka). Group compound (5) (1.40 mg) was dissolved to 10 ml.
  • the working electrode was a platinum mesh electrode
  • the reference electrode was Ag / Ag +
  • the counter electrode was a platinum coil
  • a potential of -0.1 V vs Ag / Ag +
  • a condensed polycyclic aromatic compound (5Red) which is a reduced form of the condensed polycyclic aromatic compound (5), was produced in the system by the following reaction.
  • the generation process was confirmed with a spectrophotometer (manufactured by Shimadzu).
  • the visible / ultraviolet spectrum is shown in FIG. As is clear from FIG.
  • Example 3 Multi-electron mobility evaluation> To an acetonitrile solution containing 1M (mol / l) trifluoroacetic acid (manufactured by Kanto Chemical) and 0.2M (mol / l) TBABF4 (tetrabutylammonium tetrafluoroborate) (manufactured by Fluka), a condensed polycyclic aromatic The compound (5) (1.39 mg), the condensed polycyclic aromatic compound (11) (1.49 mg), and the condensed polycyclic aromatic compound (17) (1.49 mg) were dissolved to obtain three condensed polycyclic rings. A 0.2 mM solution (10 ml) of an aromatic compound was prepared.
  • an electrochemical measurement device under the conditions of sweep rate: 0.1 V / s, working electrode: glassy carbon, counter electrode: platinum electrode, auxiliary electrode: Pt coil and reference electrode: Ag / Ag + was used to measure cyclic voltammetry. Potential correction was performed by ferrocene / ferrocenium redox.
  • Example 3 Example 3 except that compound a (1.29 mg) was used instead of condensed polycyclic aromatic compound (5), condensed polycyclic aromatic compound (11) and condensed polycyclic aromatic compound (17).
  • a 0.2 mM solution (25 ml) of compound a was prepared in exactly the same manner, and cyclic voltammetry was measured under exactly the same conditions as in Example 3.
  • Compound a is synthesized with reference to non-patent literature (C.-C. Han, R. Balakkumar, D. Thirumarai, and M.-T. Chung, Org. Biomol. Chem. 2006, 4, 3511-3516.). (Yield 67%).
  • Fig. 2-1 shows the results of cyclic voltammetry measurement of the condensed polycyclic aromatic compound (5) and compound a.
  • Compound a showed two steps of peaks, each with one electron transfer.
  • the condensed polycyclic aromatic compound (5) showed a two-stage peak. Since each peak current value (I pa and I pc ) is about twice the peak current value of compound a, it was found that the first peak corresponds to a two-electron reaction.
  • Each peak potential difference was 40 mV on the high potential side and 34 mV on the low potential side. From these results, it was found that each peak showed one-step two-electron transfer.
  • FIG. 2-2 shows the cyclic voltammetry measurement results of the condensed polycyclic aromatic compounds (5), (11) and (17).
  • the condensed polycyclic aromatic compounds (11) and (17) are separated from the condensed polycyclic aromatic compound (5) within 0.2 volts (V), which is a very narrow range. It was found that the same one-step two-electron transfer process was included twice, and it was confirmed that the condensed polycyclic aromatic compounds (11) and (17) were also capable of transferring four electrons per molecule.
  • Example 4 (Example 4-1) ⁇ Preparation of positive electrode for lithium ion secondary battery> Condensed polycyclic aromatic compound (5) (2 mg) synthesized above, Ketjen black (Ketjen Black International Co., Ltd.) (4 mg), conductive binder (TAB-2) (made by Hosen) (4 mg) ) To form a sheet and pressed onto the surface of an aluminum mesh (14 ⁇ ) (manufactured by Niraco) as a current collector. It was vacuum-dried at 120 ° C. for 6 hours to produce an electrode provided with the condensed polycyclic aromatic compound (5).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the positive electrode was impregnated with an electrolytic solution (manufactured by Kishida Chemical).
  • a separator manufactured by Celgard
  • a separator made of a polypropylene porous film and a glass filter (manufactured by Advantech) were laminated on the positive electrode, and a lithium foil (manufactured by Honjo Metal) that became the negative electrode was laminated.
  • the outer casing of the coin-type battery is overlaid with an insulating packing disposed around it, pressurized with a crimping machine, and sealed using a condensed polycyclic aromatic compound (5) as a positive electrode active material and metallic lithium as a negative electrode active material.
  • Type coin-type lithium ion secondary battery was fabricated.
  • Example 4-2 Preparation of positive electrode for lithium ion secondary battery> An electrode provided with the condensed polycyclic aromatic compound (11) in the same manner as in Example 4-1, except that the condensed polycyclic aromatic compound (11) was used instead of the condensed polycyclic aromatic compound (5). was made.
  • Example 4-1 ⁇ Production of coin-type lithium ion secondary battery>
  • the above-mentioned electrode was used as the positive electrode of a coin-type battery, the condensed polycyclic aromatic compound (11) as the positive electrode active material, and the sealed coin-type lithium using metal lithium as the negative electrode active material An ion secondary battery was produced.
  • Example 4-3 Preparation of positive electrode for lithium ion secondary battery>
  • the condensed polycyclic aromatic compound (17) was prepared in the same manner as in Example 4-1, except that the condensed polycyclic aromatic compound (17) was used instead of the condensed polycyclic aromatic compound (5). An electrode was produced.
  • Example 4-1 ⁇ Production of coin-type lithium ion secondary battery>
  • the above electrode was used as the positive electrode of a coin-type battery, the condensed polycyclic aromatic compound (17) as the positive electrode active material, and the sealed coin type using metallic lithium as the negative electrode active material.
  • a lithium ion secondary battery was produced.
  • Comparative Example 2 ⁇ Preparation of positive electrode for lithium ion secondary battery> Instead of the condensed polycyclic aromatic compound (5), compound b was prepared in the same manner as in Example 4-1, except that compound b (2 mg) having two imine bonds in one molecule was used. An electrode was produced.
  • Compound b is a non-patent document (HK Hall, Jr., AB Padias, P.A. Williams, J.-M. Gosau, H. W. Boone, D.-K. Park, Macromolecules 1995, 28, 1-8.) (61% yield).
  • the coin-type lithium ion secondary batteries produced in Examples 4-1 to 4-3 and Comparative Example 2 reach 2 volts (V) at a constant current of 0.05 milliampere (mA). After 5 minutes of rest, the battery was charged at a constant current of 0.05 milliampere (mA) until it reached 4 volts (V). With this as one cycle, a charge / discharge test was conducted up to 100 cycles.
  • FIGS. 3 shows a charge / discharge curve (charge / discharge capacity value (mAh / g) and electron transfer number (n)) vs. 10th cycle. Voltage (V)), and FIG. 4 shows the number of cycles (1 to 100 cycles) vs. A discharge capacity value (mAh / g) and an electron transfer number (n) are represented.
  • the discharge capacity value of the 10th cycle per mass of a condensed polycyclic aromatic compound (5) was 131.9 (mAh / g). Since this discharge capacity value (131.9 (mAh / g)) is close to the theoretical capacity value (154.2 (mAh / g)), the condensed polycyclic aromatic compound (5) has 3 electrons or more. It has been confirmed to have movement.
  • the result of the discharge test using the coin-type lithium ion secondary battery produced in Examples 4-1, 4-2, 4-3 and Comparative Example 2 is shown in FIGS. 5 and 6 show a discharge curve (capacity (mAh / g) vs. voltage (V)) at the 10th cycle.
  • the discharge capacity value at the 10th cycle per mass of the condensed polycyclic aromatic compound (5) is 131.9 (mAh / g) (theoretical capacity value: 154.2 mAh / g).
  • the discharge capacity value at the 10th cycle per mass of the polycyclic aromatic compound (11) is 119.0 (mAh / g) (theoretical capacity value: 143.9 mAh / g), and the condensed polycyclic aromatic compound (
  • the discharge capacity value at the 10th cycle per mass of 17) is 123.9 (mAh / g) (theoretical capacity value: 143.9 mAh / g), and the discharge at the 10th cycle per mass of the compound b.
  • the capacity value was 56.25 (mAh / g) (theoretical capacity value: 149.5 mAh / g).
  • the discharge capacity values of the condensed polycyclic aromatic compound (11) and the condensed polycyclic aromatic compound (17) are the same as the condensed polycyclic aromatic compound (11) and the condensed polycyclic aromatic compound. Since the value is close to the theoretical capacity value of the group compound (17), it was confirmed that the condensed polycyclic aromatic compound (11) and the condensed polycyclic aromatic compound (17) also have 3 or more electrons.
  • the discharge capacity value of Compound b was much lower than the theoretical capacity value of Compound b, and a clear charge / discharge peak could not be observed.
  • FIG. 7-1 to FIG. 7-3 show the results of the adsorptivity test on the conductive additive (Ketjen Black).
  • the samples A-1 to A-3 to which Ketjen Black was added were transparent, and thus the absorbance value was almost zero.
  • Samples B-1 to B-3 to which no ketjen black was added were yellow, absorption spectra derived from the condensed polycyclic aromatic compounds (5), (11) and (17) were shown. From this result, it was found that the condensed polycyclic aromatic compounds (5), (11) and (17) were adsorbed on Ketjen Black.
  • the condensed polycyclic aromatic compound of the present invention has a strong affinity with the conductive agent Kechen Black. (Chen Black) can exist in the vicinity. Since the positive electrode active material containing the condensed polycyclic aromatic compound of the present invention enables smooth electron exchange, the positive electrode provided with the positive electrode active material is effective as an electrode for a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 リチウムイオン応答性に優れ、リチウムイオン二次電池用途に適した縮合多環芳香族化合物及びその製造方法を提供し、並びに、その縮合多環芳香族化合物を含有することを特徴とする正極活物質、及びそれを備えたリチウムイオン二次電池用の正極を提供し、さらに、その正極を構成要素として、高容量で、かつ、サイクル適性に優れたリチウムイオン二次電池を提供すること。 本発明による縮合多環芳香族化合物は、1つの分子内に少なくとも4つのイミノ基を有することを特徴とする。

Description

縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質
 本発明は、縮合多環芳香族化合物及びその製造方法、並びにその縮合多環芳香族化合物を含有するリチウムイオン二次電池用の正極活物質に関し、さらにはその正極活物質を備える正極、その正極を構成要素とするリチウムイオン二次電池に関する。
 ノート型パソコン、携帯電話等の電子機器類の小型化及び高機能化に伴い、これらに用いられるリチウムイオン二次電池の軽量化、高容量化及び長寿命化(サイクル適性)に対する要求が高まっている。しかし、現在、主に用いられているリチウムイオン二次電池の正極活物質は、比重の大きなコバルトやマンガンの酸化物が用いられているため、リチウムイオン二次電池全体の重量は大きい。そこで、リチウムイオン二次電池全体の重量を小さくするために、リチウムイオン二次電池全体に占める正極活物質の割合を小さくすることが考えられるが、その場合、軽量化は達成できても高容量化及び長寿命化(サイクル適性)は望むことができない可能性が大きい。
 近年、軽量な元素からなる有機化合物等を電極活物質として適用できないかどうかについて盛んに検討がされている。特に、π電子共役系の導電性高分子は電極活物質として有望である。例えば、特許文献1には、一段階二電子移動が可能である導電性高分子の新規ポリアニリン誘導体化合物及びその化合物をプロトン化したものを正極に用いた二次電池について記載されている。特許文献1によると、その新規ポリアニリン誘導体の化合物を用いた電極材料は高エネルギー密度を有するので、その電極材料を正極とすることは、亜鉛板を負極とし、硫酸亜鉛水溶液を電解液とする二次電池において有用であると述べられている。しかし、高容量化及び長寿命化(サイクル適性)の点については、更なる改良が望まれているのが現状であり、そして新規有機化合物等をリチウム二次電池用の電極活物質に応用できないかどうかについて盛んに研究がされているのが現状である。
 特許文献2には、ペンタセン誘導体の酸素付加体に紫外線照射を行うことにより、ペンタセンを発生する製造方法について記載されている。特許文献2によると、その製造方法は有害ガスの発生も無いために環境にクリーンであり、またリサイクルが簡単にできるという高い優位性があり、同時に光パターン化が可能であるという機能を備え、環境・省資源的に負荷が少ない方法であると述べられている。
特開2005−2278号公報 特開2008−285442号公報
 本発明は、リチウムイオン応答性に優れ、リチウムイオン二次電池用途に適した縮合多環芳香族化合物及びその製造方法を提供することを目的とし、並びに、その縮合多環芳香族化合物を含有することを特徴とする正極活物質、及びそれを備えたリチウムイオン二次電池用の正極を提供することを目的とする。さらに、その正極を構成要素として、高容量で、かつ、サイクル適性に優れたリチウムイオン二次電池を提供することを目的とする。
 本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、1つの分子内に少なくとも4つのイミノ基を有することを特徴とする縮合多環芳香族化合物が多電子移動性を有してリチウムイオン応答性に優れていること、さらに、その縮合多環芳香族化合物が電極材料との高密着性を有してリチウムイオン二次電池用途に好適であることを見出し、本発明を完成するに至った。
 上記目的を達成するための具体的な手段は、以下のとおりである。
 (1)1つの分子内に少なくとも4つのイミノ基を有することを特徴とする、縮合多環芳香族化合物。
 (2)下記一般式(1)で示されることを特徴とする、(1)に記載の縮合多環芳香族化合物。
Figure JPOXMLDOC01-appb-I000005
 その一般式(1)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。
 (3)下記一般式(2)で示されることを特徴とする、(1)に記載の縮合多環芳香族化合物。
Figure JPOXMLDOC01-appb-I000006
 その一般式(2)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。
 (4)四塩化チタンと塩基の存在下で、1つの分子内に少なくとも4つのオキソ基を有する化合物とアニリン系化合物とを反応させることを特徴とする、(1)に記載の縮合多環芳香族化合物の生産方法。
 (5)四塩化チタンと塩基の存在下で、下記一般式(3)で示される化合物とアニリン系化合物とを反応させることを特徴とする、(2)に記載の縮合多環芳香族化合物の生産方法。
Figure JPOXMLDOC01-appb-I000007
 その一般式(3)中、R、R、R及びRは、その一般式(1)中のR、R、R及びR各々と同義であり、nは1~10の整数である。
 (6)四塩化チタンと塩基の存在下で、下記一般式(4)で示される化合物とアニリン系化合物とを反応させることを特徴とする、(3)に記載の縮合多環芳香族化合物の生産方法。
Figure JPOXMLDOC01-appb-I000008
 その一般式(4)中、R、R、R及びRは、その一般式(2)中のR、R、R及びR各々と同義であり、nは1~10の整数である。
 (7)(1)から(3)のいずれかに記載の縮合多環芳香族化合物を含有することを特徴とする、リチウムイオン二次電池用の正極活物質。
 (8)(7)に記載の正極活物質が集電体の少なくとも表面に備えられることを特徴とする、リチウムイオン二次電池用の正極。
 (9)正極と、負極と、電解質とを少なくとも構成要素とするリチウムイオン二次電池において、該正極が(8)に記載の正極であることを特徴とする、リチウムイオン二次電池。
 本発明によれば、リチウムイオン応答性に優れ、リチウムイオン二次電池用途に適した縮合多環芳香族化合物及びその製造方法が提供され、並びに、その縮合多環芳香族化合物を含有することを特徴とする正極活物質、それを備えた正極、及びその正極を構成要素としたリチウムイオン二次電池が提供される。
図1は、実施例2で実施した電気化学的還元反応により生成した縮合多環芳香族化合物(5Red)及び電気化学的還元反応前の縮合多環芳香族化合物(5)の可視・紫外スペクトルを示す図である。 図2−1は、実施例3及び比較例1で実施した多電子移動性評価の評価結果を示すグラフである。 図2−2は、実施例3で実施した多電子移動性評価の評価結果を示すグラフである。 図3は、実施例4−1で作製したコイン型リチウムイオン二次電池の10サイクル目の充放電曲線を示すグラフである。 図4は、実施例4−1で作製したコイン型リチウムイオン二次電池の100サイクルまでの放電容量を示すグラフである。 図5は、実施例4−1、4−2及び4−3で作製したコイン型リチウムイオン二次電池の10サイクル目の放電曲線を示すグラフである。 図6は、実施例4−1及び比較例2で作製したコイン型リチウムイオン二次電池の10サイクル目の放電曲線を示すグラフである。 図7−1は、実施例5及び比較例3で実施した導電助剤(ケチェンブラック)に対する吸着性試験結果を示す図である。 図7−2は、実施例5及び比較例3で実施した導電助剤(ケチェンブラック)に対する吸着性試験結果を示す図である。 図7−3は、実施例5及び比較例3で実施した導電助剤(ケチェンブラック)に対する吸着性試験結果を示す図である。
 以下、本発明について更に詳しく説明をする。
 (1)縮合多環芳香族化合物
 本発明による縮合多環芳香族化合物は、1つの分子内に少なくとも4つのイミノ基を有することを特徴とする。本発明による縮合多環芳香族化合物は、少なくとも4つのイミノ基を有すれば特に限定されることはないが、次の一般式(5)で示される化合物が好ましい。
Figure JPOXMLDOC01-appb-I000009
 その一般式(5)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、置換若しくは無置換の芳香族炭化水素基を表す。
 R、R、R3、4、、R、R及びRは、電子供与基であれば、特に限定されることはないが、例えば、各々独立に、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、イソブチル基、tert−ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基、ナフチル基等のアリール基が挙げられる。
 R、R、R3、4、、R、R及びRが、置換基で置換される時の置換基としては、特に限定されることはないが、例えば、フェニル基、トリル基、ナフチル基等のアリール基、メトキシ基、エトキシ基、プロピオキシ基、イソプロピオキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等のアルコキシ基が挙げられる。
 R~Rは、アリール基であることがより好ましく、フェニル基であることが更に好ましい。R~Rは、アルキル基であることがより好ましく、メチル基であることが更に好ましい。
 その一般式(5)中の多環芳香族基は、置換又は無置換の多環芳香族基を表す。置換多環芳香族基が置換基で置換される時の置換基としては、特に限定されることはなく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、イソブチル基、tert−ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基、ナフチル基等のアリール基が挙げられる。
 無置換の多環芳香族基の好ましい例示を以下に示すがこれらに限定されることはない。
Figure JPOXMLDOC01-appb-I000010
 また、本発明による縮合多環芳香族化合物は、下記一般式(1)で示されることを特徴とする化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000011
 その一般式(1)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。
 R、R、R3、4、、R、R及びRは、電子供与基であれば、特に限定されることはないが、例えば、各々独立に、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、イソブチル基、tert−ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基、ナフチル基等のアリール基が挙げられる。
 R、R、R3、4、、R、R及びRが、置換基で置換される時の置換基としては、特に限定されることはないが、例えば、フェニル基、トリル基、ナフチル基等のアリール基、メトキシ基、エトキシ基、プロピオキシ基、イソプロピオキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等のアルコキシ基が挙げられる。
 R~Rは、アリール基であることがより好ましく、フェニル基であることが更に好ましい。R~Rは、アルキル基であることがより好ましく、メチル基であることが更に好ましい。
 nは重合度を示す1~10の整数である。nは、5以下の整数であることが好ましい。
 またさらに、本発明による縮合多環芳香族化合物は、下記一般式(2)で示されることを特徴とする化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000012
 その一般式(2)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。
 R、R、R3、4、、R、R及びRは、電子供与基であれば、特に限定されることはないが、例えば、各々独立に、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、イソブチル基、tert−ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基、ナフチル基等のアリール基が挙げられる。
 R、R、R3、4、、R、R及びRが、置換基で置換される時の置換基としては、特に限定されることはないが、例えば、フェニル基、トリル基、ナフチル基等のアリール基、メトキシ基、エトキシ基、プロピオキシ基、イソプロピオキシ基、ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等のアルコキシ基が挙げられる。
 R~Rは、アリール基であることがより好ましく、フェニル基であることが更に好ましい。R~Rは、アルキル基であることがより好ましく、メチル基であることが更に好ましい。
 nは重合度を示す1~10の整数である。nは、5以下の整数であることが好ましい。
 本発明による縮合多環芳香族化合物の好ましい具体的例示化合物を示すが、本発明による縮合多環芳香族化合物は、これらの化合物に限定されることはない。
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 次に、本発明による縮合多環芳香族化合物の生産方法について述べる。本発明による生産方法は四塩化チタンと塩基の存在下で、1つの分子内に少なくとも4つのオキソ基を有する化合物とアニリン系化合物とを反応させることを特徴とする。本発明による生産方法で用いられる1つの分子内に少なくとも4つのオキソ基を有する化合物は、1つの分子内に少なくとも4つのオキソ基を有すれば特に限定されることはない。さらに、本発明による生産方法で用いられるアニリン系化合物は、置換基を有するアニリン化合物でもよいし、無置換のアニリン化合物でもよい。塩基は、塩基性触媒であれば特に限定されることはないが、例えば1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)が挙げられる。
 本発明による縮合多環芳香族化合物の生産方法は、一般式(1)で示される本発明の縮合多環芳香族化合物の生産方法であって、四塩化チタンと塩基の存在下で、下記一般式(3)で示される化合物とアニリン系化合物とを反応させることを特徴とすることが好ましい。
Figure JPOXMLDOC01-appb-I000016
 その一般式(3)中、R、R、R及びRは、一般式(1)中のR、R、R及びRと同義である。
 本発明による縮合多環芳香族化合物の生産方法は、一般式(2)で示される本発明の縮合多環芳香族化合物の生産方法であって、四塩化チタンと塩基の存在下で、下記一般式(4)で示される化合物とアニリン系化合物とを反応させることを特徴とすることが好ましい。
Figure JPOXMLDOC01-appb-I000017
 その一般式(4)中、R、R、R及びRは、一般式(2)中のR、R、R及びRと同義である。
 本発明による生産方法で用いられる1つの分子内に少なくとも4つのオキソ基を有する化合物、一般式(3)で示される化合物、及び一般式(4)で示される化合物は、非特許文献(JOC 1983,48,4358)、非特許文献(JACS 1992,114,6330)、非特許文献(J.Heterocyclic Chem.2002,39,1093.)、及び非特許文献(JACS 1992,114,1388)の記載を参考にして合成することができる。
 例えば、2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンは、1,4:5,8−ジエポキシ−1,4,5,8−テトラヒドロアントラセンを、非特許文献(JOC 1983,48,4358)に記載の方法にしたがって、テトラブロモベンゼンとフランとから合成し、1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセンを、非特許文献(JACS 1992,114,6330)に記載の方法にしたがって、1,4:5,8−ジエポキシ−1,4,5,8−テトラヒドロアントラセンと1,2,3,4−テトラフェニルシクロペンタジエノンとから合成し、そして、2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンを、非特許文献(JACS 1992,114,1388)に記載の方法にしたがって、1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセンから合成することができる。
 (2)リチウムイオン二次電池用の正極活物質
 本発明によるリチウムイオン二次電池用の正極活物質は、1つの分子内に少なくとも4つのイミノ基を有する縮合多環芳香族化合物、一般式(1)で示される縮合多環芳香族化合物、及び一般式(2)で示される縮合多環芳香族化合物を含有することを特徴とする。ここで、リチウムイオン二次電池用の正極活物質とは、リチウムイオン二次電池の充電反応及び放電反応などの電極反応において、リチウムイオン二次電池の正極で直接寄与する物質のことをいう。
 (3)リチウムイオン二次電池用の正極
 本発明によるリチウムイオン二次電池用の正極は、1つの分子内に少なくとも4つのイミノ基を有する縮合多環芳香族化合物、一般式(1)で示される縮合多環芳香族化合物、及び一般式(2)で示される縮合多環芳香族化合物を含有する正極活物質、すなわち、本発明のリチウムイオン二次電池用の正極活物質を集電体の少なくとも表面に備えることを特徴とする。
 集電体とはリチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体のことである。集電体はその電子高伝導体で形成された箔、板等の形状となる。目的に応じた形状であれば特に限定されないが、例えば、銅箔、アルミニウム箔、アルミメッシュが挙げられる。
 正極活物質を集電体の少なくとも表面に備えるための一つの方法としては、例えば、集電体の表面に正極活物質を塗布することが挙げられる。ここで、塗布するとは集電体に正極活物質を載せることである。塗布する方法としては、例えば、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法等が挙げられるが、リチウムイオン二次電池用電極を作製する際に一般的に用いられる塗布方法であれば、特に限定されることはない。
 本発明によるリチウムイオン二次電池用の正極は、本発明の正極活物質と合わせて導電助剤を、集電体の少なくとも表面に備えてよい。導電助剤は導電性を高めるために添加されるものである。導電助剤としては、例えば、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック、ケチェンブラック、カーボンファイバが挙げられる。それらを単独で添加してもよいし、又はそれらを二種以上組み合わせて添加してもよい。添加量は、本発明の正極活物質100質量部当たり、10~2000質量部であることが好ましく、100~1000質量部であることがより好ましく、200~800質量部であることが更に好ましい。
 (3)リチウムイオン二次電池
 本発明によるリチウムイオン二次電池は、正極と、負極と、電解質とを少なくとも構成要素とし、正極が本発明の正極であることを特徴とする。
 本発明によるリチウムイオン二次電池の負極はリチウム系負極であることが好ましい。リチウム系負極は、金属リチウムやリチウム合金(例えば、Li−Al合金)のようなリチウム系金属材料、又はリチウムインターカレーション炭素材料により構成することができる。リチウム系金属材料は、箔の形態で使用することが電池の軽量化の点で好ましい。
 本発明によるリチウムイオン二次電池の電解質は、正極と負極との間に配置されてよく、電解質の層として配置されてもよい。電解質は、電解質の溶液を含むポリマーゲルで構成すること(ポリマーゲル電解質)が好ましい。ポリマー電解質に含まれる電解質としては、例えば、CFSOLi、CSOLi、(CFSONLi、(CFSOCLi、LiBF、LiPF、LiClO等のリチウム塩が挙げられる。電解質を溶解する溶媒は非水溶媒であることが好ましい。そのような非水溶媒には、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物、酸無水物、アミド化合物、ホスフェート化合物、アミン化合物等が含まれる。非水溶媒の具体例としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、N−メチルピロリジノン、N,N’−ジメチルアセトアミド、プロピレンカーボネートとジメトキシエタンとの混合物、エチレンカーボネートとジエチルカーボネートとの混合物、スルホランとテトラヒドロフランとの混合物が挙げられる。
 ポリマーゲルとしては、光重合開始剤(例えば、IRGACURE184が挙げられる。)で重合するプレポリマーTA210(ポリオキシアルキレン鎖を有する多官能アクリレートポリマー)を用いることが好ましく、また、アクリロニトリルと、アクリル酸メチル若しくはメタアクリル酸とのコポリマーを用いることも好ましい。ポリマーゲル電解質は、ポリマーを電解質溶液中に浸漬するか、又は電解質溶液の存在下でポリマーの構成単位(モノマー/化合物)を重合することよって得ることができる。さらに、特開2002−198095号公報に記載のポリオレフィン系ゲルも好適に用いられる。このゲルは、ポリエチレンのモル比で約10%がポリエチレングリコールなどのポリエチレンオキシドのオリゴマーを含有する化合物でグラフト化されている非架橋ポリマーのゲルである。このポリマーは、非グラフト化ポリエチレンと物性が全く異なり、大量の有機電解液を吸収してゲル化し、その吸収液を保持する能力を有する。したがって、そのポリマーを電解質溶液に浸漬することによってゲル電解質を得ることができる。また、前述の非架橋ポリマーを有機溶媒中の電解質溶液に溶解した溶液に架橋性モノマーを添加してなる反応混合物を基材に適用し、その架橋性モノマーを架橋重合させる反応条件に供することによって、その基材と一体化されたポリマーゲル電解質を得ることもできる。
 本発明によるリチウムイオン二次電池は、一つの構成要素としてセパレーターを含んでもよい。セパレーターは、リチウムイオン二次電池の正極及び負極が接触しないようにする目的で用いることができ、電解質を含んでもよい。そして、セパレーターとしては、例えば、ポリプロピレン多孔質フィルム、不織布が挙げられ、ポリプロピレン多孔質フィルムが好ましい。
 本発明によるリチウムイオン二次電池の構成形態(積層形態)は任意のものでよい。例えば、電解質溶液に本発明の正極を含浸させ、その正極上にセパレーター、ガラスフィルターを積層し、さらに負極を積層する形態が挙げられ、さらに、正極、電解質を含むセパレーター、負極を順に重ね合わせた形態が挙げられる。
 本発明によるリチウムイオン二次電池の形状は、公知の形状でよく、例えば、電極積層体、巻回体を金属ケース、樹脂ケース、又はアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィルムによって封止したものが挙げられる。さらに、リチウムイオン二次電池の外観形状は、例えば、円筒型、角型、コイン型、シート型等が挙げられるが、これらに限定されるものではない。
 以下、本発明をより具体的に説明するための実施例を提供する。なお、本発明は、その目的及び主旨を逸脱しない範囲で以下の実施例に限定されるものではない。
 (実施例1−1)
 <合成例1:縮合多環芳香族化合物(5)の合成>
Figure JPOXMLDOC01-appb-I000018
 縮合多環芳香族化合物(5)(N,N,N’,N’’’−テトラメチル−2,3,9,10−ペンタセンテトロンテトライミン)を、以下の4工程からなる合成ルートによって、市販されている1,2,4,5−テトラブロモベンゼン(1)から合成した。
 (工程1)1,4:5,8−ジエポキシ−1,4,5,8−テトラヒドロアントラセン(2)の合成
 1,4:5,8−ジエポキシ−1,4,5,8−テトラヒドロアントラセン(2)を、非特許文献(JOC 1983,48,4358)に記載の方法にしたがって、テトラブロモベンゼン(1)とフランとから合成した。収率;52%、スペクトルデータ;H NMR(270MHz,CDCl)δ7.19(s,2H),7.03(s,4H),5.63(s,4H)であった。
 (工程2)1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセン(3)の合成
 1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセン(3)を、非特許文献(JACS 1992,114,6330)に記載の方法にしたがって、1,4:5,8−ジエポキシ−1,4,5,8−テトラヒドロアントラセン(2)と1,2,3,4−テトラフェニルシクロペンタジエノンとから合成した。収率;62%、スペクトルデータ;H NMR(270MHz,CDCl)δ7.58(s,2H),7.46−7.30(m,20H),7.01−6.88(m,20H),5.84(s,4H),3.07(s,4H)であった。
 (工程3)2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロン(4)の合成
 2,3−ジメチル1,4−ベンゾキノンの合成
 2,3−ジメチル1,4−ベンゾキノンを、非特許文献(J.Heterocyclic Chem.2002,39,1093.)に記載の方法にしたがって、2,3−ジメチルヒドロキノンを酸化することによって合成した。収率;65%であった。
 2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロン(4)の合成
 2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロン(4)を、非特許文献(JACS 1992,114,1388)に記載の方法にしたがって、1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセン(3)から合成した。更に精製することなく次工程でその粗生成物を用いた。デカリン(30ml)に溶解した、1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセン(3)(0.960g、0.98mmol)と2,3−ジメチル1,4−ベンゾキノン(1.18g、8.67mmol)との混合物を、3.5時間200℃で攪拌をした。その反応混合物を室温まで冷却した後、その沈殿を、ろ過することによって集めてヘキサン及びCHClで洗浄して真空内で乾燥をした。得られた灰色の固体に濃縮したHSO(15ml)を添加した。その反応混合物を室温で攪拌した。2時間後、その反応混合物を氷水に注いだ。その沈殿物をろ過することによって集めてHO及びメタノールで洗浄して粗生成物(0.3055g)を得た。更に精製することなく次工程でその粗生成物を用いた。
 (工程4)N,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)の合成
 クロロベンゼン(25ml)に溶解した、粗ペンタセンテトロン(4)(0.126g)、アニリン(0.100g、0.11mmol)及び1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)(1.3g、11.1mmol)の混合物に、クロロベンゼン(5ml)に溶解したTiCl(0.25ml、2.3mmol)の溶液を80℃でゆっくり添加した。その反応混合物を3.5時間130℃で攪拌をした。その沈殿物を、セライトろ過し、そのろ液を濃縮した。その残渣物をCHCl中で再溶解して大量のアセトニトリル中で再沈殿した。生成物をシリカゲルカラムクロマトグラフィー(CHCl:ヘキサン=3:1)によって更に精製して、1,4:8,11−ジカルボキシ−5,14:7,12−ジエポキシ−4a,5,7,7a,11a,12,14,14a−オクタヒドロ−1,2,3,4,8,9,10,11−オクタフェニルペンタセン(3)に対して25%の収率でN,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)を得た(0.0716g、0.103mmol)。
 N,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)は、イミン結合のE/Z異性体のため、下記の7つの異性体を有する。それゆえに、N,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)のNMRスペクトルは複数のピークを示した。スペクトルデータ;H NMR(500MHz,CDCl)δ8.90−8.80(m,26H),2.38−1.48(m,12H);13C NMR(125MHz,CDCl)δ158.8,151.6 141.7,130.4,129.6,129.1,127.4,125.0,123.5,120.0,119.8,15.8;IR(ATR,cm−1)2920,2849,1586,1478,1373,1285,1261,1220,1026,922,898,835,763,693,686,663,567,505,465,429,409,402、元素分析;C5038に対する計算値(calcd):C,86.42;H,5.51;N,8.06.、実測値(Found):C,86.35;H,5.53;H,7.84、HRMS(ESI);C5039[M+H]に対する計算値(Calcd):695.3175.、実測値(Found):695.3163であった。
Figure JPOXMLDOC01-appb-I000019
 (実施例1−2)
 <合成例2:縮合多環芳香族化合物(11)の合成>
Figure JPOXMLDOC01-appb-I000020
 縮合多環芳香族化合物(11)(N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロンテトライミン)を、以下の5工程からなる合成ルートによって、市販されている3,6−ジブロモ−2,7−ジヒドロキシナフタレン(6)から合成した。
 (工程1)3,6−ジブロモ−2,7−ビス[(p−トリルスルホニル)オキシ]ナフタレン(7)の合成
 3,6−ジブロモ−2,7−ビス[(p−トリルスルホニル)オキシ]ナフタレン(7)を、非特許文献(J.Org.Chem.1985,50,2934.)に記載の方法にしたがって、3,6−ジブロモ−2,7−ジヒドロキシナフタレン(6)のトシル化によって合成した。収率;75%、スペクトルデータ;H NMR(270MHz,CDCl)δ7.19(s,2H),7.82(d,J=8.3Hz,4H),7.74(s,2H),7.35(d,J=8.3Hz,4H),2.48(s,6H)であった。
 (工程2)1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロテトラセン(8)の合成
 1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロテトラセン(8)を、非特許文献(J.Org.Chem.1985,50,2934.)に記載の方法にしたがって、3,6−ジブロモ−2,7−ビス[(p−トリルスルホニル)オキシ]ナフタレン(7)及びフランから合成した。収率;58%.であった。
 (工程3)1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)の合成
 1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)を、非特許文献(JACS 1992,114,6330)に記載の方法にしたがって、1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロテトラセン(8)と1,2,3,4−テトラフェニルシクロペンタジエノンとから合成した。ベンゼン(20ml)に溶解した、1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロテトラセン(8)(0.2600g、1.0mmol)と1,2,3,4−テトラフェニルシクロペンタジエノン(0.7961g、2.0mmol)との混合物を、24時間還流しながら攪拌をした。メタノールを反応混合物に添加した後、その沈殿物をろ過することによって集めてメタノールで洗浄して真空内で乾燥して収率38%で1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)の生成物を得た(0.3926g、0.38mmol)。そのろ液を濃縮してその残渣物をシリカゲルカラムクロマトグラフィー(CHCl:ヘキサン=3:1)によって精製して、収率33%の1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)を得た。生成物である1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)の総収率は71%であった。スペクトルデータ;H NMR(500MHz,CDCl)δ7.84(s,4H),7.50−7.30(m,20H),7.04−6.92(m,20H),5.94(s,4H),3.24(s,4H);13C NMR(125MHz,CDCl)δ196.7,144.7,138.7,135.3,132.6,130.1,129.8,128.5,127.7,127.6,127.0,81.2,64.6,47.4;IR(ATR,cm−1)1771,1497,1444.71,1026,980,900,856,841,767,746,731,696,673,660,640,572,553,507,473,460、元素分析;C7652に対する計算値(calcd):C,88.69;H,5.09、実測値(Found):C,88.12;H,5.04であった。
 (工程4)2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロン(10)の合成
 2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロン(10)を、スキーム1と同様な方法で、1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)から合成した。更に精製することなく次工程でその粗生成物を用いた。デカリン(30ml)に溶解した、1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)(0.3080g、0.3mmol)と2,3−ジメチル1,4−ベンゾキノン(0.3271g、2.4mmol)との混合物を、3.5時間200℃で攪拌をした。その反応混合物を室温まで冷却した後、その沈殿を、ろ過することによって集めてヘキサン及びCHClで洗浄して真空内で乾燥をした。得られた灰色の固体に濃縮したHSO(15ml)を添加した。その反応混合物を室温で攪拌した。2時間後、その反応混合物を氷水に注いだ。その沈殿物をろ過することによって集めてHO及びメタノールで洗浄して粗生成物(0.1206g)を得た。更に精製することなく次工程でその粗生成物を用いた。
 (工程5)N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロン テトライミン(11)の合成
 クロロベンゼン(20ml)に溶解した、粗ヘキサセンテトロン(10)(0.118g)、アニリン(0.15ml、1.6mmol)及び1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)(0.900g、8.0mmol)の混合物に、クロロベンゼン(5ml)に溶解したTiCl(0.15ml、1.4mmol)の溶液を75℃でゆっくり添加した。その反応混合物を1.5時間125℃で攪拌をした。その反応混合物をシリカゲルカラム(CHCl)に通して濃縮した。その残渣物をCHCl中で再溶解して大量のアセトニトリル中で再沈殿した。セライトろ過し、アセトニトリルとMeOHで洗浄して真空内で乾燥して、1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルヘキサセン(9)に対して25%の収率でN,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロンテトライミン(11)を得た(0.0560g、0.075mmol)。
 N,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)と同様に、イミン結合のE/Z異性体のため、N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロンテトライミン(11)は、7つの異性体を有する。それゆえに、N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ヘキサセンテトロンテトライミン(11)のNMRスペクトルは複数のピークを示した。スペクトルデータ;H NMR(500MHz,CDCl)δ8.74−6.91(m,28H),2.53−1.51(m,12H);13C NMR(125MHz,CDCl)δ159.6,158.8,158.6,151.9,151.3,145.9,141.7,140,2,135.7,134.2,132.5,131.1,130.7,129.6,129.3,129.1,128.9,128.4,126.5,126.2,125.2,124.7,124.6,123.8,123.4,120.1,119.6,119.1,18.2,17.0,15.9,15.6;IR(ATR,cm−1)1585,1496,1480,1446,1424,1375,1298,1259,1225,1169,1070,1026,918,895,763,749,692,502,473,458、元素分析;C54400.3HOに対する計算値(calcd):C,86.44;H,5.45;N,7.47、実測値(Found):C,86.44;H,5.36;H,7.28、HRMS(ESI)C5441[M+H]に対する計算値(Calcd):745.3331、実測値(Found):745.3348であった。
 (実施例1−3)
 <合成例3:縮合多環芳香族化合物(17)の合成>
Figure JPOXMLDOC01-appb-I000021
 N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロンテトライミン(17)を、以下の5工程からなる合成ルートによって、2,6−ジブロモ−1,5−ジジヒドロキシナフタレン(12)から合成した。
 (工程1)2,6−ジブロモ−1,5−ビス[(p−トリルスルホニル)オキシ]ナフタレン(13)の合成
 2,6−ジブロモ−1,5−ビス[(p−トリルスルホニル)オキシ]ナフタレン(13)を、非特許文献(J.Org.Chem.1983,48,1682.)に記載の方法にしたがって、2,6−ジブロモ−1,5−ジヒドロキシナフタレン(12)のトシル化によって合成した。収率;96%。
 (工程2)1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロクリセン(14)
 1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロクリセン(14)を、非特許文献(J.Org.Chem.1982,48,1683.)に記載の方法にしたがって、2,6−ジブロモ−1,5−ビス[(p−トリルスルホニル)オキシ]ナフタレン(13)及びフランから合成した。収率;43%であった。
 (工程3)1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)の合成
 1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)を、非特許文献(JACS 1992,114,6330)に記載の方法にしたがって、1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロクリセン(14)と1,2,3,4−テトラフェニルシクロペンタジエノンとから合成した。ベンゼン(45ml)に溶解した、1,4:7,10−ジエポキシ−1,4,7,10−テトラヒドロクリセン(14)(0.6336g、2.4mmol)と1,2,3,4−テトラフェニルシクロペンタジエノン(1.872g、4.9mmol)との混合物を28時間還流しながら攪拌をした。メタノールを添加した後、その沈殿物をろ過することによって集めてメタノールで洗浄して真空内で乾燥して収率71%で1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)の生成物を得た(1.7882g、1.7mmol)。スペクトルデータ;H NMR(500MHz,CDCl)δ8.02(s,1H),8.01(s,1H),7.84(s,1H),7.82(s,1H),7.54−7.28(m,20H),7.04−6.93(m,20H),6.33(s,2H),6.03(s,2H),3.10(m,4H);13C NMR(125MHz,CDCl)δ196.5,144.9,144.5,138.8,138.6,135.5,135.3,130.1,130.0,129.7,129.6,128.5,128.4,127.7,127.6,127.5,125.7,123.5,119.2,82.1,80.3,64.6,64.5,45.6,46.1;IR(ATR,cm−1)1773,1497,1444,1029,981,926,879,842,816,774,755,731,694,680,644,572,558,530,513,494、元素分析;C7652に対する計算値(calcd):C,88.69;H,5.09、実測値(Found):C,88.60;H,5.10であった。
 (工程4)2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロン(16)の合成
 2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロン(16)を、スキーム1と同様な方法で、1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)から合成した。更に精製することなく次工程でその粗生成物を用いた。デカリン(17ml)に溶解した、1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)(0.750g、0.73mmol)と2,3−ジメチル1,4−ベンゾキノン(0.800g、5.8mmol)との混合物を、3時間還流しながら攪拌をした。その反応混合物を室温まで冷却した後、その沈殿を、ろ過することによって集めてヘキサン及びCHClで洗浄して真空内で乾燥をした。得られた灰色の固体に濃縮したHSO(5ml)を添加した。その反応混合物を室温で攪拌した。1時間後、その反応混合物を氷水に注いだ。その沈殿物をろ過することによって集めてHO及びメタノールで洗浄して粗生成物(0.391g)を得た。更に精製することなく次工程でその粗生成物を用いた。
 (工程5)N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロンテトライミン(16)の合成
 クロロベンゼン(60ml)に溶解した、粗ジベンゾ[b,k]クリセンテトロン(16)(0.391g)、アニリン(0.5ml、4.56mmol)及び1,4−ジアザビシクロ[2.2.2]オクタン(DABCO)(3.000g、26.75mmol)の混合物に、クロロベンゼン(10ml)に溶解したTiCl(0.4ml、3.65mmol)の溶液を70℃でゆっくり添加した。その反応混合物を2.5時間125℃で攪拌をした。その反応混合物を、セライト及びシリカゲルカラムに通して濃縮した。その残渣物を、フラッシュシリカゲルカラムクロマトグラフィー(CHCl)によって精製して1,4:9,12−ジカルボキシ−5,16:8,13−ジエポキシ−4a,5,8,8a,12a,13,16,16a−オクタヒドロ−1,2,3,4,9,10,11,12−オクタフェニルジベンゾ[b,k]クリセン(15)に対して16%の収率でN,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロンテトライミン(16)を得た(0.0869g、0.012mmol)。
 N,N’,N’’,N’’’−テトラフェニル−2,3,9,10−テトラメチル−1,4,8,11−ペンタセンテトロンテトライミン(5)と同様に、イミン結合のE/Z異性体のため、N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロンテトライミン(16)は、7つの異性体を有する。それゆえに、N,N’,N’’,N’’’−テトラフェニル−2,3,10,11−テトラメチル−1,4,9,12−ジベンゾ[b,k]クリセンテトロンテトライミン(16)のNMRスペクトルは複数のピークを示した。スペクトルデータ;H NMR(500MHz,CDCl)δ9.54−6.90(m,28H),2.43−1.52(m,12H);13C NMR(125MHz,CDCl)δ158.6,158.2,152.3,151.8,141.3,141.1;130.7,129.8,129.6,129.1,128.2,127.9,127.7,125.4,123.6,123.5,122.5,120.2,119.7,119.4,118.8,15.7;IR(ATR,cm−1)1619,1589,1480,1448,1373,1296,1273,1221,1071,1031,908,896,875,815,766,730,717,694,560,506、元素分析;C5440に対する計算値(calcd):C,87.07;H,5.41;N,7.52、実測値(Found):C,86.73;H,5.39;H,7.23、HRMS(ESI)C5441[M+H]に対する計算値(Calcd):745.3331、実測値(Found):745.3361であった。
 (実施例2)
 <縮合多環芳香族化合物(5)の電気化学的還元反応:縮合環(アセン)骨格の伸張)>
 0.5M(mol/l)トリフルオロ酢酸(関東化学製)と、0.2M(mol/l)TBABF4(テトラブチルアンモニウムテトラフルオロボレート)(Fluka製)とを含有するアセトニトリル溶液に縮合多環芳香族化合物(5)(1.40mg)を溶解させ10mlとした。作用電極を白金メッシュ電極にし、参照電極をAg/Ag+にし、対極を白金コイルにし、ポテンシオスタットで−0.1V(vs Ag/Ag+)の電位を印加して電気化学的に還元した。その結果、下記の反応により、縮合多環芳香族化合物(5)の還元体である縮合多環芳香族化合物(5Red)が系中で生成した。その生成過程を分光光度計(島津製)で確認した。可視・紫外スペクトルを図1に示す。図1から明らかなように、縮合多環芳香族化合物(5)が有するペンタセンの特徴的なスペクトルが発生し、縮合多環芳香族化合物(5)が生成されたことを確認した。縮合多環芳香族化合物(5)→縮合多環芳香族化合物(5Red)の電気化学的還元反応の結果を以下に示す。
Figure JPOXMLDOC01-appb-I000022
 (実施例3)
 <多電子移動性評価>
 1M(mol/l)トリフルオロ酢酸(関東化学製)と、0.2M(mol/l)TBABF4(テトラブチルアンモニウムテトラフルオロボレート)(Fluka製)とを含有するアセトニトリル溶液に、縮合多環芳香族化合物(5)(1.39mg)、縮合多環芳香族化合物(11)(1.49mg)及び縮合多環芳香族化合物(17)(1.49mg)をそれぞれ溶解して、3つの縮合多環芳香族化合物の0.2mM溶液(10ml)を作成した。それらの溶液について、掃引速度:0.1V/s、作用極:グラッシ−カーボン、対極:白金電極、補助電極:Ptコイル及び参照極:Ag/Agの条件下で、電気化学測定装置(BAS製)を使用してサイクリックボルタンメトリーを測定した。電位補正をフェロセン/フェロセニウム酸化還元にて行った。
 (比較例1)
 縮合多環芳香族化合物(5)、縮合多環芳香族化合物(11)及び縮合多環芳香族化合物(17)の替わりに、化合物a(1.29mg)を用いた以外は、実施例3と全く同じ方法で、化合物aの0.2mM溶液(25ml)を作製し、実施例3と全く同じ条件でサイクリックボルタンメトリーを測定した。化合物aは、非特許文献(C.−C.Han,R.Balakumar,D.Thirumalai,and M.−T.Chung,Org.Biomol.Chem.2006,4,3511−3516.)を参考に合成した(収率67%)。
Figure JPOXMLDOC01-appb-I000023
 <多電子移動性評価結果>
 図2−1に縮合多環芳香族化合物(5)及び化合物aのサイクリックボルタンメトリーの測定結果を示す。化合物aは、2段階のピークを示し、それぞれ1電子移動であった。縮合多環芳香族化合物(5)は2段のピークを示した。それぞれのピーク電流値(Ipa及び、Ipc)が、化合物aのピーク電流値の約2倍の値を示すことから、1段のピークは2電子反応に相当することがわかった。また、それぞれのピーク電位差は、高電位側が40mV、低電位側が34mVを示した。それらの結果から、それぞれのピークは1段階2電子移動を示していることがわかった。縮合多環芳香族化合物(5)は、1分子で4電子移動可能であることが確認できた。図2−2に縮合多環芳香族化合物(5)、(11)及び(17)のサイクリックボルタンメトリーの測定結果を示す。図2−2から明らかなように、縮合多環芳香族化合物(11)及び(17)は、非常に狭い範囲である0.2ボルト(V)以内に縮合多環芳香族化合物(5)と同様な1段階2電子移動過程を2回含むことがわかり、縮合多環芳香族化合物(11)及び(17)も1分子で4電子移動可能であることが確認できた。
 (実施例4)
 (実施例4−1)
 <リチウムイオン二次電池用の正極用電極の作製>
 上記で合成された縮合多環芳香族化合物(5)(2mg)と、ケチェンブラック(ケッチェンブラックインターナショナル社製)(4mg)と、導電性バインダー(TAB−2)(宝泉製)(4mg)とを混合してシート化し、集電体であるアルミメッシュ(14φ)(ニラコ製)の表面上に圧着した。それを120℃6時間で真空乾燥し、縮合多環芳香族化合物(5)を備えた電極を作製した。
 <コイン型リチウムイオン二次電池の作製>
 上記電極をコイン型リチウムイオン二次電池の正極とし、1M(mol/l)のLiPF(六フッ化リン酸リチウム)電解質塩を含むエチレンカーボネート(EC)/ジエチルカーボネート(DEC)(EC:DEC=1:1(体積比))の混合溶液である電解液(キシダ化学製)にその正極を含浸させた。そして、その正極上にポリプロピレン多孔質フィルムからなるセパレーター(セルガード製)、ガラスフィルター(アドバンテック製)を積層し、さらに負極となるリチウム箔(本城金属製)を積層した。その後、周囲に絶縁パッキンを配置した状態でコイン型電池のアルミ外装を重ね、しめ機によって加圧し、正極活物質として縮合多環芳香族化合物(5)、負極活物質として金属リチウムを用いた密閉型のコイン型リチウムイオン二次電池を作製した。
 (実施例4−2)
 <リチウムイオン二次電池用の正極用電極の作製>
 縮合多環芳香族化合物(5)の替わりに縮合多環芳香族化合物(11)を用いた以外は、実施例4−1と同様な方法で縮合多環芳香族化合物(11)を備えた電極を作製した。
 <コイン型リチウムイオン二次電池の作製>
 実施例4−1と同様な方法で、上記電極をコイン型電池の正極とし、正極活物質として縮合多環芳香族化合物(11)及び負極活物質として金属リチウムを用いた密閉型のコイン型リチウムイオン二次電池を作製した。
 (実施例4−3)
 <リチウムイオン二次電池用の正極用電極の作製>
 縮合多環芳香族化合物(5)の替わりに縮合多環芳香族化合物(17)を用いた以外は、実施例4−1と全く同様な方法で縮合多環芳香族化合物(17)を備えた電極を作製した。
 <コイン型リチウムイオン二次電池の作製>
 実施例4−1と全く同様な方法で、上記電極をコイン型電池の正極とし、正極活物質として縮合多環芳香族化合物(17)及び負極活物質として金属リチウムを用いた密閉型のコイン型リチウムイオン二次電池を作製した。
 (比較例2)
 <リチウムイオン二次電池用の正極用電極の作製>
 縮合多環芳香族化合物(5)の替わりに、1分子内に2つのイミン結合を有する化合物b(2mg)を用いた以外は、実施例4−1と全く同様な方法で化合物bを備えた電極を作製した。化合物bは、非特許文献(H.K.Hall,Jr.,A.B.Padias,.P.A.Williams,J.−M.Gosau,H.W.Boone,D.−K.Park,Macromolecules 1995,28,1−8.)を参考に合成した(収率61%)。
Figure JPOXMLDOC01-appb-I000024
 <コイン型リチウムイオン二次電池の作製>
 実施例1と全く同様な方法で、上記電極をコイン型電池の正極とし、正極活物質として化合物b及び負極活物質として金属リチウムを用いた密閉型のコイン型リチウムイオン二次電池を作製した。
 <実施例4−1~4−3、及び比較例2で作製したコイン型リチウムイオン二次電池を用いた充放電試験>
 実施例4−1~4−3、及び比較例2で作製したコイン型リチウムイオン二次電池を用いて、次の方法にしたがって充放電試験を行った。
 温度25℃の環境下、実施例4−1~4−3、及び比較例2で作製したコイン型リチウムイオン二次電池を0.05ミリアンペア(mA)の定電流で2ボルト(V)に達するまで放電し、5分間の休止後、0.05ミリアンペア(mA)の定電流で4ボルト(V)に達するまで充電した。これを1サイクルとして、100サイクルまで充放電試験を行った。
 <実施例4−1~4−3、及び比較例2で作製したコイン型リチウムイオン二次電池の充放電試験の結果>
 実施例4−1で作製したコイン型リチウムイオン二次電池を用いた充放電試験の結果を図3及び図4に示す。図3は、10サイクル目の充放電曲線(充放電容量値(mAh/g)及び電子移動数(n))vs.電圧(V))を表し、図4は、サイクル数(1サイクル~100サイクル)vs.放電容量値(mAh/g)及び電子移動数(n)を表す。図3及び図4によると、縮合多環芳香族化合物(5)の質量当たりの10サイクル目の放電容量値は131.9(mAh/g)であった。この放電容量値(131.9(mAh/g))は、理論容量値(154.2(mAh/g))に近い値であるので、縮合多環芳香族化合物(5)は3電子以上の移動を有することが確認された。実施例4−1、4−2、4−3、及び比較例2で作製したコイン型リチウムイオン二次電池を用いた放電試験の結果を図5及び図6に示す。図5及び図6は、10サイクル目の放電曲線(容量(mAh/g)vs.電圧(V))を表す。縮合多環芳香族化合物(5)の質量当たりの10サイクル目の放電容量値は、前述したように、131.9(mAh/g)(理論容量値:154.2mAh/g)であり、縮合多環芳香族化合物(11)の質量当たりの10サイクル目の放電容量値は、119.0(mAh/g)(理論容量値:143.9mAh/g)であり、縮合多環芳香族化合物(17)の質量当たりの10サイクル目の放電容量値は、123.9(mAh/g)(理論容量値:143.9mAh/g)であり、さらに、化合物bの質量当たりの10サイクル目の放電容量値は、56.25(mAh/g)(理論容量値:149.5mAh/g)であった。縮合多環芳香族化合物(5)と同様、縮合多環芳香族化合物(11)及び縮合多環芳香族化合物(17)の放電容量値は縮合多環芳香族化合物(11)及び縮合多環芳香族化合物(17)の理論容量値に近い値であるので、縮合多環芳香族化合物(11)及びは縮合多環芳香族化合物(17)も3電子以上の移動を有することが確認された。一方、化合物bの放電容量値は化合物bの理論容量値を大きく下回り、明確な充放電ピークを観測することができなかった。
 (実施例5)
 <導電助剤(ケチェンブラック)への吸着性試験>
 上記で合成した縮合多環芳香族化合物(5)、(11)及び(17)(2mg)を10mlのクロロホルムにそれぞれ溶解した。それぞれのクロロホルム溶液から1mlを採取してケチェンブラック(ケッチェンブラックインターナショナル社製)(5mg)をそれぞれに加え、サンプルA−1、A−2及びA−3(ケチェンブラック添加)とした。さらに、それぞれのクロロホルム溶液から1mlを更に採取してその採取したものには何も加えなかった。これをサンプルB−1、B−2及びB−3(ケチェンブラック添加なし)とした。それら6つのサンプルA−1、A−2及びA−3、並びにサンプルB−1、B−2及びB−3を5分間超音波を照射し30分間放置した。孔径0.2μmのメンブレンフィルターでろ過し、それら6つのサンプルA−1、A−2及びA−3、並びにサンプルB−1、B−2及びB−3の上積み液をそれぞれ採取して、それらサンプルの上澄み液の可視・紫外スペクトルを分光光度計(日立社製)で測定した。
 (比較例3)
 <導電助剤(ケチェンブラック)への吸着性試験>
 上記で合成した縮合多環芳香族化合物(5)、(11)及び(17)の替わりに上記の化合物b(2mg)を用いた以外は、実施例5と全く同一の方法でサンプルC(ケチェンブラック添加)及びサンプルD(ケチェンブラック添加なし)を作製して可視・紫外スペクトルを測定した。
 <導電助剤(ケチェンブラック)への吸着性試験結果>
 導電助剤(ケチェンブラック)への吸着性試験結果を図7−1~図7−3に示す。図7−1~図7−3から明らかなように、ケチェンブラックを加えたサンプルA−1~A−3は透明であったことから、吸光度の値はほぼ0の値を示したが、ケチェンブラックを加えてないサンプルB−1~B−3は黄色であったことから、縮合多環芳香族化合物(5)、(11)及び(17)に由来する吸光スペクトルを示した。この結果から、縮合多環芳香族化合(5)、(11)及び(17)はケチェンブラックに吸着していたことがわかった。一方、ケチェンブラックを加えたサンプルCとケチェンブラックを加えていないサンプルDは、ほぼ同じ黄色を示した。サンプルCの吸光度はサンプルDの吸光度よりはやや低かったものの、ほぼ同様な吸光スペクトルを示した。以上の結果から、化合物bのケチェンブラックに対する吸着能は、縮合多環芳香族化合物(5)、(11)及び(17)のケチェンブラックに対する吸着能よりは劣ることがわかった。
 (リチウムイオン二次電池用途に関する縮合多環芳香族化合物の有効性)
 導電助剤(ケチェンブラック)への縮合多環芳香族化合物(5)、(11)及び(17)の吸着性試験、及び縮合多環芳香族化合物(5)、(11)及び(17)を用いたリチウムイオン二次電池の充放電試験の結果から理解できるように、本発明の縮合多環芳香族化合物は、導電助剤であるケチェンブラックと親和性が強いので導電助剤(ケチェンブラック)近傍に存在することができる。本発明の縮合多環芳香族化合物を含有する正極活物質は円滑な電子の授受を可能とするため、その正極活物質を備えた正極はリチウムイオン二次電池用電極として有効である。

Claims (9)

  1.  1つの分子内に少なくとも4つのイミノ基を有することを特徴とする、縮合多環芳香族化合物。
  2.  下記一般式(1)で示されることを特徴とする、請求項1に記載の縮合多環芳香族化合物。
    Figure JPOXMLDOC01-appb-I000001
     (該一般式(1)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。)
  3.  下記一般式(2)で示されることを特徴とする、請求項1に記載の縮合多環芳香族化合物。
    Figure JPOXMLDOC01-appb-I000002
     (該一般式(2)中、R、R、R3、4、、R、R及びRは、各々独立に、水素、置換若しくは無置換の脂肪族炭化水素基、又は置換若しくは無置換の芳香族炭化水素基を表し、nは1~10の整数である。)
  4.  四塩化チタンと塩基の存在下で、一つの分子内に少なくとも四つのオキソ基を有する化合物とアニリン系化合物とを反応させることを特徴とする、請求項1に記載の縮合多環芳香族化合物の生産方法。
  5.  四塩化チタンと塩基の存在下で、下記一般式(3)で示される化合物とアニリンとを反応させることを特徴とする、請求項2に記載の縮合多環芳香族化合物の生産方法。
    Figure JPOXMLDOC01-appb-I000003
     (該一般式(3)中、R、R、R及びRは、前記一般式(1)中のR、R、R及びR各々と同義であり、nは1~10の整数である。)
  6.  四塩化チタンと塩基の存在下で、下記一般式(4)で示される化合物とアニリンとを反応させることを特徴とする、請求項3に記載の縮合多環芳香族化合物の生産方法。
    Figure JPOXMLDOC01-appb-I000004
     (該一般式(4)中、R、R、R及びRは、前記一般式(2)中のR、R、R及びR各々と同義であり、nは1~10の整数である。)
  7.  請求項1から3のいずれか1項に記載の縮合多環芳香族化合物を含有することを特徴とする、リチウムイオン二次電池用の正極活物質。
  8.  請求項7に記載の正極活物質が集電体の少なくとも表面に備えられることを特徴とする、リチウムイオン二次電池用の正極。
  9.  正極と、負極と、電解質とを少なくとも構成要素とするリチウムイオン二次電池において、該正極が請求項8に記載の正極であることを特徴とする、リチウムイオン二次電池。
PCT/JP2011/062641 2010-06-01 2011-05-26 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質 WO2011152476A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/701,544 US8927157B2 (en) 2010-06-01 2011-05-26 Condensed polycyclic aromatic compound, production process of same, and positive electrode active material for lithium ion secondary battery containing same
JP2012518442A JP5663011B2 (ja) 2010-06-01 2011-05-26 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-126029 2010-06-01
JP2010126029 2010-06-01

Publications (1)

Publication Number Publication Date
WO2011152476A1 true WO2011152476A1 (ja) 2011-12-08

Family

ID=45066833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062641 WO2011152476A1 (ja) 2010-06-01 2011-05-26 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質

Country Status (3)

Country Link
US (1) US8927157B2 (ja)
JP (1) JP5663011B2 (ja)
WO (1) WO2011152476A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098240A (ja) * 2015-11-12 2017-06-01 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP2017098241A (ja) * 2015-11-12 2017-06-01 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256472B2 (en) 2015-11-12 2019-04-09 Kansai Paint Co., Ltd. Conductive paste and mixture paste for lithium ion battery positive electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247257A (ja) * 1992-01-29 1993-09-24 Ciba Geigy Ag 電荷移動錯体を含む合成高分子組成物、それらの製造方法およびその用途
JPH05310675A (ja) * 1992-01-29 1993-11-22 Ciba Geigy Ag フェロセン含有電荷移動錯体、それらの製造および利用
JPH06100522A (ja) * 1992-06-03 1994-04-12 Ciba Geigy Ag N−芳香族化合物との電荷移動錯体、その製造方法及びその用途
JPH11354277A (ja) * 1998-06-08 1999-12-24 Nec Corp 有機エレクトロルミネッセンス素子
JP2005263721A (ja) * 2004-03-19 2005-09-29 Sharp Corp 多環式縮合芳香族炭化水素骨格含有有機シラン化合物及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6465116B1 (en) 1998-06-08 2002-10-15 Nec Corporation Organic electroluminescent device
US20080207864A1 (en) 2004-03-18 2008-08-28 Masatoshi Nakagawa Organosilanes, Process For Production of the Same, and Use Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247257A (ja) * 1992-01-29 1993-09-24 Ciba Geigy Ag 電荷移動錯体を含む合成高分子組成物、それらの製造方法およびその用途
JPH05310675A (ja) * 1992-01-29 1993-11-22 Ciba Geigy Ag フェロセン含有電荷移動錯体、それらの製造および利用
JPH06100522A (ja) * 1992-06-03 1994-04-12 Ciba Geigy Ag N−芳香族化合物との電荷移動錯体、その製造方法及びその用途
JPH11354277A (ja) * 1998-06-08 1999-12-24 Nec Corp 有機エレクトロルミネッセンス素子
JP2005263721A (ja) * 2004-03-19 2005-09-29 Sharp Corp 多環式縮合芳香族炭化水素骨格含有有機シラン化合物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MIXED VALENCE IN CONJUGATED ANION RADICALS, SOLUTION AND SOLID STATE STUDIES", SYNTHETIC METALS, vol. 42, no. 3, 1991, pages 2365 - 2375 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098240A (ja) * 2015-11-12 2017-06-01 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
JP2017098241A (ja) * 2015-11-12 2017-06-01 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト

Also Published As

Publication number Publication date
JP5663011B2 (ja) 2015-02-04
US8927157B2 (en) 2015-01-06
US20130078514A1 (en) 2013-03-28
JPWO2011152476A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
EP2546907B1 (en) Electrode active material for electricity storage device, and electricity storage device using the same
JP4393527B2 (ja) 電極活物質および蓄電デバイス
EP2234191B1 (en) Electrode active material for electric storage device, electric storage device, electronic equipment, and transportation equipment
US10297829B2 (en) Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries
US11742152B2 (en) Organic triptycene-based molecules having one or more arylene diimide groups attached forming a crosslinked framework useful for lithium ion battery electrodes
EP2308912B1 (en) Polymer, semiconductor film, electrode, electrode active material, electrochemical element and electricity storage device
CN106207182A (zh) 一种应用于锂电池的微介孔聚三苯胺衍生物及其制备方法
JP2013020760A (ja) 蓄電デバイス
JP5907373B2 (ja) 複合材料及びその製造方法、非水系二次電池用の正極活物質及び正極、非水系二次電池、並びに車両
JP5663011B2 (ja) 縮合多環芳香族化合物及びその製造方法、並びにそれを含有するリチウムイオン二次電池用の正極活物質
JP5425694B2 (ja) 過充放電処理をすることによって得られるリチウムイオン二次電池用の正極活物質、該正極活物質を備えるリチウムイオン二次電池用の正極及び該正極を構成要素として含むリチウムイオン二次電池
JP5799782B2 (ja) ポリアセチレン誘導体、非水系二次電池用の正極活物質及び正極、非水系二次電池、並びに車両
JPWO2011074367A1 (ja) 二次電池
JP2013134947A (ja) 電極活物質およびそれを含む二次電池
JP5401389B2 (ja) アニリン誘導体を含有するリチウムイオン二次電池用の正極活物質、該正極活物質を備えるリチウムイオン二次電池用の正極及び該正極を構成要素として含むリチウムイオン二次電池
JP5799781B2 (ja) ポリアセチレン誘導体、非水系二次電池用の正極活物質及び正極、非水系二次電池、並びに車両
US12024480B2 (en) Polynitroso compound, its preparation and electrochemical use
US20240182403A1 (en) Polynitroso compound, its preparation and electrochemical use
JPWO2018079262A1 (ja) 重合体、電極、蓄電デバイス及び重合体の製造方法
JP5534589B2 (ja) 電極活物質及び二次電池
WO2021106834A1 (ja) 電極材料
Xiaowei The Development of Organic Redox-Active Materials for Batteries
JP6020132B2 (ja) 電極活物質、電極、電池および重合体
WO2007111070A1 (ja) エネルギー貯蔵デバイス電極用組成物及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789878

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012518442

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13701544

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11789878

Country of ref document: EP

Kind code of ref document: A1