JP6692453B2 - レーザ発振器およびレーザ加工装置 - Google Patents

レーザ発振器およびレーザ加工装置 Download PDF

Info

Publication number
JP6692453B2
JP6692453B2 JP2018556266A JP2018556266A JP6692453B2 JP 6692453 B2 JP6692453 B2 JP 6692453B2 JP 2018556266 A JP2018556266 A JP 2018556266A JP 2018556266 A JP2018556266 A JP 2018556266A JP 6692453 B2 JP6692453 B2 JP 6692453B2
Authority
JP
Japan
Prior art keywords
film
laser
substrate
layer
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018556266A
Other languages
English (en)
Other versions
JPWO2018110176A1 (ja
Inventor
秀和 中井
秀和 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018110176A1 publication Critical patent/JPWO2018110176A1/ja
Application granted granted Critical
Publication of JP6692453B2 publication Critical patent/JP6692453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium

Description

本発明は、赤外レーザ光を反射する赤外レーザ用反射部材、レーザ発振器、レーザ加工装置および赤外レーザ用反射部材の製造方法に関する。
レーザ光を照射して対象物の形状を加工するレーザ加工装置は、様々な分野で用いられている。レーザ加工装置が用いるレーザ光の波長は、加工する対象物の材質に合わせて選択される。CO(二酸化炭素)レーザに代表される波長9μm帯の赤外レーザ光は、樹脂製のプリント基板に配線電極を形成するための穴あけ加工などに使用されている。
穴あけ加工を行う場合、レーザ加工装置に対しては、より真円に近い形状の加工穴を形成することが求められる。真円に近い形状の加工穴を形成するためには、加工に用いるレーザ光が、等方的な円偏光であることが必要となる。このような要求を満たすため、直線偏光のレーザ光を発振するレーザ発振器と、光路上に配置された偏光変換部材とを備え、直線偏光のレーザ光を円偏光に変換する方式を採用したレーザ加工装置がある。このようなレーザ加工装置がより等方的な円偏光のレーザ光を出射するためには、振動方向が規則的である理想的な直線偏光を発振するレーザ発振器が必要となる。
赤外レーザ光の波長領域で用いられる反射部材としては、例えば特許文献1および特許文献2に開示されたものが挙げられる。特許文献1に開示された反射部材は、Si(シリコン)基板またはCu(銅)基板の上に、Cr(クロム)層と、Au(金)層またはAg(銀)層と、HfO(酸化ハフニウム)層またはBi(酸化ビスマス)層と、ZnSe(セレン化亜鉛)層またはZnS(硫化亜鉛)層と、Ge(ゲルマニウム)層とが形成されている。特許文献2に開示された反射部材は、Si基板またはCu基板の上に、Au層と、YF(フッ化イットリウム)層またはYbF(フッ化イッテルビウム)層と、ZnSe層またはZnS層と、Ge層と、ZnSe層またはZnS層と、YF層またはYbF層とが形成されている。上記従来の反射部材は、いずれも赤外レーザ光に対して99.7%以上の反射率を実現している。
特開2003−302520号公報 特開2009−086533号公報
しかしながら、上記従来の反射部材をレーザ発振器の内部で用いる場合、レーザ発振器から発振されるレーザ光が直線偏光にならないという問題があった。直線偏光のレーザ光を得るためには、反射部材のS波に対する反射率とP波に対する反射率との間に差があることが必要である。しかしながら、上記従来の反射部材ではS波に対する反射率とP波に対する反射率との差が小さいため、直線偏光を発振するレーザ発振器を構成することができない。
本発明は、上記に鑑みてなされたものであって、直線偏光の赤外レーザ光を発振するレーザ発振器を構成することが可能な赤外レーザ用反射部材を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係るレーザ発振器は、基板と、SiO(一酸化ケイ素)膜と、基板とSiO膜との間に形成された金属膜と、を有する赤外レーザ用反射部材を備える。
本発明によれば、振動方向が規則的な直線偏光の赤外レーザ光を発振するレーザ発振器を実現することが可能な赤外レーザ用反射部材を得ることができるという効果を奏する。
本発明の実施の形態に係るレーザ加工装置の構成を模式的に示す図 図1に示したレーザ発振器の構成図 図2に示した折り返しミラーとして使用可能な反射部材の第1の構成図 図3に示した反射部材の製造に用いる成膜装置の概略構成図 実施例1の反射部材の光学特性を示す図 比較例1の反射部材の光学特性を示す図 比較例2の反射部材の光学特性を示す図 実施例1および比較例1の反射部材の反射率を反射回数と共に示す図 実施例2、比較例3および比較例4の反射部材の耐久性試験結果を示す表 実施例2の反射部材の光学特性を示す図 実施例3の反射部材の光学特性を示す図 実施例4の反射部材の光学特性を示す図 実施例5の反射部材の光学特性を示す図 比較例5の反射部材の光学特性を示す図 実施例2から実施例5および比較例5の反射部材の反射率を反射回数と共に示す図 実施例1、実施例3、実施例4および実施例5の反射部材の耐久試験結果を示す図 各種材料の屈折率を示す図 各種材料の消衰係数を示す図 図2に示した折り返しミラーとして使用可能な反射部材の第2の構成図 図2に示した折り返しミラーとして使用可能な反射部材の第3の構成図 図2に示した折り返しミラーとして使用可能な反射部材の第4の構成図 実施例6の反射部材の光学特性を示す図 実施例7の反射部材の光学特性を示す図 実施例8の反射部材の光学特性を示す図 実施例9の反射部材の光学特性を示す図 実施例10の反射部材の光学特性を示す図 実施例11の反射部材の光学特性を示す図 比較例6の反射部材の光学特性を示す図 比較例7の反射部材の光学特性を示す図 比較例8の反射部材の光学特性を示す図 実施例6から実施例11の反射部材の反射率を反射回数と共に示す図 比較例6から比較例8の反射部材の反射率を反射回数と共に示す図 実施例6から実施例11の反射部材の耐久性試験結果を示す表 図1に示したレーザ発振器の別の構成図 図34に示すレーザ発振器におけるエネルギーの利得分布を示す図 本発明の反射部材を適用したレーザ発振器の性能を評価した図
以下に、本発明の実施の形態に係る赤外レーザ用反射部材、レーザ発振器、レーザ加工装置および赤外レーザ用反射部材の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態に係るレーザ加工装置の構成を模式的に示す図である。レーザ加工装置10は、レーザ発振器11と、偏光変換部材12と、集光光学系13と、加工テーブル14と、駆動部15と、制御部16とを有する。
レーザ発振器11は、振動方向が規則的な直線偏光のレーザ光を出射する。偏光変換部材12は、レーザ発振器11から出射されたレーザ光が加工対象物17に照射されるまでの光路上に配置され、レーザ発振器11から出射された直線偏光のレーザ光を円偏光に変換する。集光光学系13は、偏光変換部材12によって円偏光に変換されたレーザ光を加工対象物17に集光させる。集光光学系13は、集光レンズおよびコリメータレンズを含む。加工テーブル14は、加工対象物17を載せる台である。駆動部15は、加工テーブル14を移動させる。駆動部15は、例えばモータを有し、電気エネルギーを力学的エネルギーに変換する。制御部16は、レーザ加工装置10の動作を制御する。例えば、制御部16は、レーザ発振器11がレーザ光を発生させるタイミングと、駆動部15が加工テーブル14を移動させるタイミングおよび方向とを制御することができる。駆動部15が加工テーブル14を移動させることで、レーザ光が加工対象物17に照射される位置が変化する。レーザ加工装置10は、レーザ発振器11が発振した直線偏光のレーザ光を偏光変換部材12で円偏光に変換して、円偏光の赤外レーザ光を用いて加工対象物17の加工を行う。レーザ発振器11が発振するレーザ光の振動方向がより規則的である理想的な直線偏光である場合、レーザ加工装置10が加工に用いるレーザ光はより等方的な円偏光となる。このため、レーザ加工装置10を用いて穴あけ加工を行う際に、より真円に近い形状の加工穴を形成することができる。
図2は、図1に示したレーザ発振器11の構成図である。レーザ発振器11は、赤外領域にピーク波長を有する赤外レーザ光Lを発振する。レーザ発振器11が発振する赤外レーザ光Lは、直線偏光である。レーザ発振器11は、筐体20と、レーザ媒質21と、一対の電極22と、部分反射ミラー23と、全反射ミラー24と、折り返しミラー25とを備える。
レーザ媒質21は、例えばCOガスにN(窒素)およびHe(ヘリウム)を加えた混合ガスなどの励起ガスである。混合ガスのガス比率は、CO:N:He=10:30:60である。ここに挙げた混合ガスは一例であり、レーザ媒質21は、赤外領域にピーク波長を有する赤外レーザ光を発生させることができるものであればよい。一対の電極22は、レーザ媒質21に励起エネルギーを供給するエネルギー供給部の一例である。一対の電極22に電圧を印加すると、放電が生じて、レーザ媒質21にエネルギーが供給される。部分反射ミラー23および全反射ミラー24は、共振器を構成する。部分反射ミラー23および全反射ミラー24の間を光が往復する間に、光は増幅される。光の強度が閾値を超えると、赤外レーザ光Lが発振されて、部分反射ミラー23から赤外レーザ光Lが出射する。折り返しミラー25は、部分反射ミラー23および全反射ミラー24の間の光路上に配置されて、光路の向きを変更する反射部材である。具体的には、折り返しミラー25は、折り返しミラー25と部分反射ミラー23との間に電極22を挟むように配置されており、部分反射ミラー23が反射した光を全反射ミラー24に入射する向きに反射する。全反射ミラー24が反射した光は、再び折り返しミラー25に入射されて、折り返しミラー25は、入射された光を部分反射ミラー23に入射する向きに反射する。折り返しミラー25を用いて光路を折り返すことで、折り返しミラー25を用いない場合と比較して、光路長を変えずに全長を短縮することができ、筐体20のサイズを小さくすることができる。
レーザ発振器11の原理について説明する。電極22に電圧を印加すると、放電が生じてレーザ媒質21にエネルギーが供給される。レーザ媒質21中のCO分子は、与えられたエネルギーによって励起されて、励起状態のCO分子は基底状態に遷移する際に光を発する。レーザ媒質21が発した光は、部分反射ミラー23と全反射ミラー24との間で繰り返し反射されて、再びレーザ媒質21に入射される。レーザ媒質21に含まれる励起状態のCO分子に光が入射すると、光の誘導放出が生じて、励起状態のCO分子は、入射された光と同波長の光を発する。部分反射ミラー23と全反射ミラー24とで構成される共振器を光が往復する間に、光は増幅される。光の強度が閾値を超えると、部分反射ミラー23から赤外レーザ光Lが発振される。部分反射ミラー23と全反射ミラー24との間の光路上には折り返しミラー25が配置されている。折り返しミラー25は、S波に対する反射率とP波に対する反射率との差が大きい。具体的には、折り返しミラー25は、S波に対する反射率が高く、光の反射を繰り返してもS波の減衰は少なく、P波に対する反射率がS波に対する反射率よりも低く、光の反射を繰り返すうちにP波が大きく減衰する。このため、部分反射ミラー23から発振される赤外レーザ光Lは、直線偏光となる。
図3は、図2に示した折り返しミラー25として使用可能な反射部材100の第1の構成図である。反射部材100は、赤外レーザ光に対して高い反射率を有する赤外レーザ用反射部材である。反射部材100は、P波に対する反射率がS波に対する反射率よりも低いため、光の反射を繰り返すうちにP波がS波よりも大きく減衰する。反射部材100は、基板1と、酸化ケイ素膜2と、金属膜3と、ZnS膜4と、Ge膜5と、SiO膜6とを含む。酸化ケイ素膜2、金属膜3、ZnS膜4、Ge膜5およびSiO膜6は、基板1上に基板1に近い方から、前述した順序で形成されている。なお、以下の説明中において、「基板1上に形成された膜」という場合、基板1の上に直接形成された膜と、当該膜と基板1との間に他の膜を介して形成された膜とを含む。
反射部材100は、基板1と、SiO膜6と、基板1とSiO膜6との間に形成された金属膜3とを少なくとも含む。基板1は、耐食性に優れた材料であることが好ましく、例えばSi基板またはCu基板などである。光の拡散を防ぐために、基板1は鏡面加工されていることが好ましい。金属膜3は、赤外レーザ光を反射する反射膜である。金属膜3は、COレーザで主に用いられる波長域である8μmから11μmの範囲の赤外レーザ光に対して高い反射率を実現することが好ましい。金属膜3としては、例えばAu膜またはAg膜を用いることができる。SiO膜6は、基板1上に、例えば反射部材100の最表層として形成されている。基板1上にSiO膜6を形成することによって、赤外レーザ光を反射する際に、S波に対する反射率とP波に対する反射率との差が大きくなる。
図17は、SiO、Ge、ZnSおよびSiOの屈折率nの波長依存性を示す図である。図18は、SiO、Ge、ZnSおよびSiOの消衰係数kの波長依存性を示す図である。図17は、波長8〜11μmにおける屈折率nを示しており、図18は、波長8〜11μmにおける消衰係数kを示している。消衰係数kは、吸収係数αと比例関係にあり、光の吸収に関係する量である。SiOはSiOと組成が似ているため、SiOの屈折率nおよび消衰係数kは、参考のため示している。
通常、反射ミラーの金属膜上に形成する機能膜としては、光の吸収を防ぐため、使用波長域における透過材料を選択する。図17に示すように、GeおよびZnSは、波長8〜11μmにおける透過材料であり、特許文献1,特許文献2の反射部材でも使用されている。
一方、SiO膜6は、可視光の領域を中心として従来から使用されていた材料であるが、COレーザで主に使用される赤外レーザの波長域8μmから11μmの範囲では使用が検討されてこなかった。SiOは、可視領域において、光を吸収しない透過材料である。一方、図17に示すように、波長8〜11μmにおけるSiOの消衰係数kは大きく、光を吸収するため、従来の機能膜への用途に検討されなかった。
本願発明者は、反射部材100が一部の光(=P波)を吸収する点に着目し、吸収を有する膜について、光学定数(屈折率n、消衰係数k)と光学特性を決定するフレネル係数の関係を検証した。その結果、基板1上に、透過材料ではないSiO膜6を形成することで、赤外レーザ光を反射する際に、S波に対する反射率とP波に対する反射率との差が大きくなるという新たな光学特性を生じることを見出した。
SiOは、SiOと同じく、可視領域における透過材料である。構成元素が同じことから、これらの材料は同一視されることがあるが、図17に示すように、波長8〜11μmにおいて、これらは異なる光学定数(屈折率n、消衰係数k)を有する材料である。つまり、光学膜として形成された場合に異なる機能を発揮する、別の物質である。
金属膜3とSiO膜6との間には、ZnS膜4が形成され、ZnS膜4とSiO膜6との間には、Ge膜5が形成されてもよい。ZnS膜4およびGe膜5を形成することで、赤外レーザ光に対する反射部材100の反射率をさらに向上させることができる。
反射部材100は、基板1と金属膜3との間に、酸化ケイ素膜2を有してもよい。酸化ケイ素膜2は、SiO膜、SiO(二酸化ケイ素)膜またはSi(亜酸化ケイ素)膜である。基板1がSi基板であり、金属膜3がAu膜である場合、Si基板の上にAu膜を直接形成すると、Si基板とAu膜との間の密着力が十分ではなく膜剥離が発生しやすい。そこで、Si基板とAu膜との間に酸化ケイ素膜2を形成することで、Si基板とAu膜との密着力を強化することができる。金属膜3を形成する前に、Oを主成分とするガスを用いて、Si基板の表面に酸化物イオンを照射することで、Si基板の表面に酸化膜である酸化ケイ素膜2を発生させることができる。このようにして形成された酸化ケイ素膜2は、Si基板と一体的に形成されるため、Si基板との密着力が非常に強固である。酸化ケイ素膜2を発生させる工程は、成膜装置内で真空中で行わる。酸化ケイ素膜2を発生させる工程に続いてAu膜を形成する工程が真空中で行われてもよい。これにより、酸化ケイ素膜2の表面のダングリングボンドとAu膜のボンドとが結合して、酸化ケイ素膜2とAu膜との間の密着力も強化される。
反射部材100は、真空槽を有する成膜装置で形成されることが好ましい。代表的な成膜装置としては、蒸着装置、スパッタリング装置、CVD(Chemical Vapor Deposition)装置などが挙げられる。
図4は、図3に示した反射部材100の製造に用いる成膜装置の概略構成図である。図4に示す成膜装置は、真空蒸着装置である。以下、真空蒸着装置を用いた反射部材100の製造方法を説明する。
真空蒸着装置は、真空容器30と、真空ポンプ31とを備える。真空ポンプ31は、真空容器30内を真空引きする。真空容器30内には、蒸着材料32、蒸着材料32を設置するための冷却台33、蒸着材料32にエネルギーを投入する電子銃34、成膜工程を制御する遮蔽板35、基板1を固定するためのドーム36およびイオンを照射するイオン源37が設置されている。
るつぼに収納した複数の蒸着材料32と基板1とを用意して、蒸着材料32を真空容器30内の冷却台33に設置し、基板1をドーム36上に設置する。このとき基板1は、成膜面を蒸着材料32の方向に向けて設置される。冷却台33は、複数のるつぼを設置することが可能である。冷却台33が回転することで、蒸着に用いられる蒸着材料32が入れ替えられる。蒸着材料32と基板1とを設置した後、真空ポンプ31により真空容器30内を排気して真空容器30内の圧力を下げる。真空容器30内の圧力が10−3Paから10−6Paの圧力に到達してから、基板1の表面に対してイオン源37からOイオンビームを照射する。Oイオンビームの照射により、基板1の表面に酸化膜が形成される。
基板1の表面に酸化膜が形成されると、続いて、真空中で金属膜3を形成する工程が行われる。まず遮蔽板35を閉めた状態で、電子銃34から蒸着材料32である金属に電子ビームを照射して、金属を溶融させて蒸発させる。遮蔽板35を閉めた状態では、蒸発した金属が存在する空間と、基板1が設置された空間とは遮断されている。金属を溶融させて蒸発させた後、蒸発量が安定した状態で、遮蔽板35を開けて成膜を開始する。蒸発した金属は、ドーム36に設置された基板1に触れると基板1に付着して堆積していく。これにより、基板1上に金属膜3を形成することができる。設計された膜厚に達すると、遮蔽板35を閉めて成膜を終了する。
冷却台33を回転させると、電子銃34から電子ビームが照射される蒸着材料32が入れ替えられる。金属膜3の形成工程に続いてZnS膜4の形成工程を行うため、蒸着材料32をZnSに入れ替える。ZnS膜4の形成工程が終了すると、続いてGe膜5の形成工程が行われる。Ge膜5の形成工程が終了すると、続いてSiO膜6の形成工程が行われる。これにより金属膜3上にSiO膜6が形成される。各膜の形成工程では、金属膜3の形成工程と同様の手順が繰り返される。SiO膜6の形成工程が終わると、真空容器30から基板1が取り出される。
続いて、本発明の実施の形態に係る反射部材100の実施例について説明する。以下、複数の実施例および比較例を挙げながら、本発明の実施の形態に係る反射部材100の光学特性について検討する。
まず、以下に示す実施例1、比較例1および比較例2を用いて、反射部材100のSiO膜6がもたらす効果と、ZnS膜4およびGe膜5がもたらす効果とについて検証する。
[実施例1]
実施例1の反射部材100の各層の材質および膜厚は以下の通りである。各層は、基板に近い側から順に第1層、第2層、第3層、第4層および第5層と称する。
第5層 SiO 110nm
第4層 Ge 540nm
第3層 ZnS 1090nm
第2層 Au 200nm
第1層 SiO 10nm
基板 Si 10mm
実施例1では、基板1は鏡面加工された直径40mmの円形状のSi基板であり、金属膜3はAu膜であり、酸化ケイ素膜2はSiO膜6である。
[比較例1]
比較例1の反射部材の各層の材質および膜厚は以下の通りである。
第1層 Au 200nm
基板 Si 10mm
比較例1においても、基板は鏡面加工された直径40mmの円形状のSi基板であり、その上に金属膜であるAu層が直接形成されており、酸化ケイ素膜、ZnS膜、Ge膜およびSiO膜を含まない。
[比較例2]
比較例2の反射部材の各層の材質および膜厚は以下の通りである。比較例2は、実施例1の構成から最表層であるSiO膜6を省略した構成である。
第4層 Ge 540nm
第3層 ZnS 1090nm
第2層 Au 200nm
第1層 SiO 10nm
基板 Si 10mm
図5は、実施例1の反射部材100の光学特性を示す図である。図6は、比較例1の反射部材の光学特性を示す図である。図7は、比較例2の反射部材の光学特性を示す図である。図5から図7の横軸は、反射部材に入射させる光の波長であり、単位はμmである。図5から図7の縦軸は、反射部材の各波長に対する反射率であり、単位は%である。反射率は、S波およびP波のそれぞれについて示されている。
図5から図7を参照すると、図示した波長域である8μmから11μmの波長域において、実施例1の反射部材100は、S波に対する反射率とP波に対する反射率との差が、比較例1および比較例2よりも大きいことがわかる。比較例2の反射部材は、実施例1の反射部材100から最表層のSiO膜6を省略した構成であるため、S波に対する反射率とP波に対する反射率との差は、SiO膜6が生み出していることが分かる。さらに図6および図7を比較すると、比較例2の方が比較例1よりも波長域の全域に亘って反射率が高いことが分かる。比較例2の反射部材は、比較例1の反射部材に基板1上の酸化ケイ素膜2であるSiO膜と、ZnS膜4と、Ge膜5とを加えた構成であるため、SiO膜、ZnS膜4およびGe膜5を形成することで、反射率が向上することが分かる。
図8は、実施例1および比較例1の反射部材の反射率を反射回数と共に示す図である。この表は、各反射回数において、波長9.3μmの光に対する反射率を示している。
反射部材100をレーザ発振器11内で用いる場合、光は繰り返し反射される。この場合、反射率の差が出射されるレーザ光の特性に与える影響は大きくなる。例えば実施例1の反射部材100のS波に対する反射率は99.7%であり、比較例1の反射部材のS波に対する反射率は99.1%であり、1回の反射では反射率の差は0.6%である。しかしながら50回反射を繰り返した場合、実施例1の反射部材100のS波に対する反射率は86.1%となり、比較例1の反射部材のS波に対する反射率は63.6%となり、反射率の差は22.5%となる。実施例1の反射部材100のP波に対する反射率は、1回の反射では90.4%であり、比較例1の反射部材のP波に対する反射率は、98.3%である。この場合、50回反射を繰り返すと、実施例1の反射部材100のP波に対する反射率は0.6%となり、比較例1の反射部材のP波に対する反射率は42.4%となる。図8を見るとわかるように、比較例1では、S波に対する反射率とP波に対する反射率との差が小さいため、レーザ発振器11内で用いる場合、発振されるレーザ光にP波成分が混ざって直線偏光とならない。これに対して実施例1では、S波に対する反射率とP波に対する反射率との差が大きいため、反射を繰り返すごとにP波は減衰される。このため、レーザ発振器11内の折り返しミラー25として使用した場合、直線偏光のレーザ光を発振することが可能になる。
図7を再び参照すると、比較例2の反射部材のS波に対する反射率は99.7%であり、P波に対する反射率は99.4%である。比較例2では実施例1と同様に高い反射率を達成しているが、S波とP波とで反射率の差が小さいため、レーザ発振器11に搭載した場合、直線偏光のレーザ光を出力することができない。
続いて以下に示す実施例2、比較例3および比較例4を用いて、反射部材100の酸化ケイ素膜2がもたらす効果について検証する。
[実施例2]
実施例2の反射部材100の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mmの円形状のSi基板であり、金属膜3はAu膜であり、酸化ケイ素膜2はSiO膜である。
第5層 SiO 150nm
第4層 Ge 590nm
第3層 ZnS 1120nm
第2層 Au 200nm
第1層 SiO 10nm
基板 Si 10mm
[比較例3]
比較例3の反射部材の各層の材質および膜厚は以下の通りである。比較例3は、実施例2の構成から酸化ケイ素膜2であるSiO膜を省略した構成である。
第4層 SiO 150nm
第3層 Ge 590nm
第2層 ZnS 1120nm
第1層 Au 200nm
基板 Si 10mm
[比較例4]
比較例4の反射部材の各層の材質および膜厚は以下の通りである。比較例4は、実施例2の酸化ケイ素膜2であるSiO膜をCr膜に替えた構成である。Crは、基板とAu膜との密着力を強化する材料として一般的に用いられている。
第5層 SiO 150nm
第4層 Ge 590nm
第3層 ZnS 1120nm
第2層 Au 200nm
第1層 Cr 10nm
基板 Si 10mm
図9は、実施例2、比較例3および比較例4の反射部材の耐久性試験結果を示す表である。この表には、テープ剥離試験の結果と、高温試験の結果と、レーザ発振器用適合性とが示されている。図9中において、丸印は、試験の結果が基準を満たしていることを示しており、バツ印は基準を満たさなかったことを示している。具体的には、テープ剥離試験は、MIL(MILitary Specifications and Standard)−C−48497Aに従った方法で行われる。テープ剥離試験では、上記規格で指定された種類のテープを用いる。反射部材の膜面にテープを貼り付けた後、膜面に垂直な方向に一気にテープを引く。その後、目視および顕微鏡を用いて膜の剥離状態を確認する。テープ剥離試験の結果の丸印は、剥離が生じなかったことを示しており、バツ印は剥離が生じたことを示している。高温試験では、反射部材を200℃の高温環境下に48時間おいた後の反射部材の特性に基づいて試験結果が判断される。高温試験では、高温環境下に48時間おいた後に、反射率および膜の状態(剥離およびクラックのうち少なくとも1つの有無など)が計測される。高温試験の結果の丸印は、反射率が閾値以上であったことを示しており、バツ印は反射率が閾値未満であり、光学特性の低下が生じたことを示している。レーザ発振器用適合性は、対象の反射部材がレーザ発振器の内部で使用するための適合性を備えているか否かを示している。レーザ発振器用適合性の丸印は、適合性を備えていることを示しており、バツ印は、適合性を備えていないことを示している。図9の例では、テープ剥離試験の結果、剥離が生じず、且つ、高温試験の結果、光学特性が基準を満たした場合に、適合性を備えていると判定される。
実施例2の反射部材100は、テープ剥離試験の結果、剥離が生じず、且つ、高温試験の結果、光学特性が基準を満たしたので、レーザ発振器用の反射部材として適合性を備えていると判定されている。比較例3の反射部材は、テープ剥離試験および高温試験のいずれも基準を満たさず、レーザ発振器用の反射部材として適合性を備えないと判定されている。比較例3の反射部材は、Si基板の上に直接、Au膜が設けられている。高温環境下に比較例3の反射部材をおくと、基板からSiがAu膜中に拡散して、反射率が低下していることが原因であると考えられる。比較例4の反射部材では、テープ剥離試験の基準は満たしているものの、高温試験の基準は満たさず、レーザ発振器用の適合性を備えていないと判定されている。比較例4の反射部材は、Si基板とAu膜との間にCr膜を形成している。Cr膜は基板との密着性を高めており、比較例4の反射部材はテープ剥離試験の基準は満たしている。しかしながら、比較例4の反射部材は、高温試験の基準を満たしていない。これは、高温環境下においてSiおよびCrがAu膜中に拡散して、反射部材の反射率が低下しているものと考えられる。図9に示す試験結果から、Si基板とAu膜との間に設けられたSiO膜は、Cr膜と同様にSi基板とAu膜との密着力を強化するとともに、高温環境下においてもSiがAu膜中に拡散することを防いで、反射率の低下を抑制することが分かる。反射部材100は、Si基板とAu膜との間にSiO膜を形成することで、経時的な性能低下を抑制することができ、レーザ発振器11の内部の使用に耐えることができる耐久性を備えている。
続いて、上記の実施例2と、以下に示す実施例3、実施例4、実施例5および比較例5を用いて、反射部材100の酸化ケイ素膜2の材質と各層の膜厚とについて検討する。
実施例2の反射部材100の各層の材質および膜厚は上記の通りである。図10は、実施例2の反射部材100の光学特性を示す図である。波長9.3μmにおいて、実施例2の反射部材100のS波に対する反射率は99.%であり、P波に対する反射率は87.2%である。
[実施例3]
実施例3の反射部材100の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された40mm角平板のSi基板であり、金属膜3はAu膜であり、酸化ケイ素膜2はSiO膜である。図11は、実施例3の反射部材100の光学特性を示す図である。波長9.3μmにおいて、実施例3の反射部材100のS波に対する反射率は99.7%であり、P波に対する反射率は95.1%である。
第5層 SiO 50nm
第4層 Ge 540nm
第3層 ZnS 920nm
第2層 Au 200nm
第1層 SiO 10nm
基板 Si 10mm
[実施例4]
実施例4の反射部材100の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された40mm角平板のSi基板であり、金属膜3はAu膜であり、酸化ケイ素膜2はSiO膜である。図12は、実施例4の反射部材100の光学特性を示す図である。波長9.3μmにおいて、実施例4の反射部材100のS波に対する反射率は99.7%であり、P波に対する反射率は86.5%である。
第5層 SiO 160nm
第4層 Ge 600nm
第3層 ZnS 810nm
第2層 Au 200nm
第1層 SiO 10nm
基板 Si 10mm
[実施例5]
実施例5の反射部材100の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された40mm角平板のSi基板であり、金属膜3はAu膜であり、酸化ケイ素膜2はSi膜である。図13は、実施例5の反射部材100の光学特性を示す図である。波長9.3μmにおいて、実施例5の反射部材100のS波に対する反射率は99.6%であり、P波に対する反射率は85.1%である。
第5層 SiO 180nm
第4層 Ge 550nm
第3層 ZnS 1110nm
第2層 Au 100nm
第1層 Si 15nm
基板 Si 10mm
[比較例5]
比較例5の反射部材の各層の材質および膜厚は以下の通りである。基板は鏡面加工された40mm角平板のSi基板であり、金属膜はAu膜であり、Si基板とAu膜との間にSi膜が形成されている。比較例5の反射部材は、最表層のSiO膜の膜厚が、本発明の実施例1から5よりも厚い340nmである。図14は、比較例5の反射部材の光学特性を示す図である。波長9.3μmにおいて、比較例5の反射部材のS波に対する反射率は96.8%であり、P波に対する反射率は72.6%である。
第5層 SiO 340nm
第4層 Ge 550nm
第3層 ZnS 1110nm
第2層 Au 100nm
第1層 Si 15nm
基板 Si 10mm
図10から図13を参照すると、本発明の実施例2から実施例5の反射部材100は、いずれも赤外波長域において、S波に対する反射率とP波に対する反射率との差が実施例1と同程度に大きいことが分かる。
図15は、実施例2から実施例5および比較例5の反射部材の反射率を反射回数と共に示す図である。図15を参照すると、実施例2から実施例5の反射部材100は、反射を繰り返すごとにS波に対する反射率とP波に対する反射率との差は大きくなることが分かる。このため、P波を減衰させることが可能であると共に、S波に対しては反射を繰り返しても高い反射率を保つことができる。このため、実施例2から実施例5の反射部材100をレーザ発振器11内で折り返しミラー25として用いた場合、直線偏光の赤外レーザ光を発振することができる。
図15を参照すると比較例5の反射部材は、S波に対する反射率とP波に対する反射率との差が大きく、反射を繰り返すことでP波を減衰させることができる。しかしながら比較例5の反射部材は、S波に対する反射率がレーザ発振器11の折り返しミラー25として用いるために十分でなく、反射を繰り返すごとにS波も減衰してしまい、十分な強度のレーザ光を発振することができない。
図16は、実施例1、実施例3、実施例4および実施例5の反射部材の耐久試験結果を示す図である。図16に示す試験内容は、図9と同様である。図16を参照すると、実施例1、実施例3、実施例4および実施例5の反射部材100のいずれも、レーザ発振器11内での使用に耐えうる耐久性を備えていることが分かる。
酸化ケイ素膜2は、実施例1および実施例2では一酸化ケイ素SiO膜であり、実施例3および実施例4では二酸化ケイ素SiO膜であり、実施例5では亜酸化ケイ素Si膜である。図16を参照すると、いずれの酸化ケイ素膜2を用いても、レーザ発振器11内での使用に耐えうる耐久性を備えた反射部材100を構成することが可能であることが分かる。
上記の実験結果に加えて、反射部材100の各層の膜厚を変化させた実験の結果、反射部材100の各層の膜厚が以下の範囲である場合、「金属膜、Ge膜」の引張応力が「ZnS膜、SiO膜」の圧縮応力により相殺されるため、高温試験に対する耐久性が向上し、反射部材100がレーザ発振器11内での使用に耐えうる耐久性を備えることが確認された。したがって、反射部材100の各層の膜厚は、以下の範囲内であることが好ましい。
第1層 酸化ケイ素膜2 1nm以上50nm以下
第2層 金属膜3 20nm以上400nm以下
第3層 ZnS膜4 700nm以上1400nm以下
第4層 Ge膜5 450nm以上650nm以下
第5層 SiO膜6 20nm以上250nm以下
さらに、より過酷な高温試験(72時間)に耐えることができ、製品寿命の長い反射部材を得るためには、反射部材100の各層の膜厚は、以下の範囲であることがより好ましい。
第1層 酸化ケイ素膜2 1nm以上50nm以下
第2層 金属膜3 20nm以上300nm以下
第3層 ZnS膜4 800nm以上1200nm以下
第4層 Ge膜5 500nm以上600nm以下
第5層 SiO膜6 20nm以上200nm以下
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
例えば、上記の実施の形態において、ZnS膜4およびGe膜5を省略した構成、およびZnS膜4およびGe膜5を他の材質の膜に替えた構成も、本発明の技術的思想の範囲内である。ZnS膜4およびGe膜5を他の材質の膜に替える場合、赤外レーザ光に対する反射率を高める材質であることが好ましい。或いは、上記の実施の形態において、酸化ケイ素膜2の代わりに金属膜3と基板1との密着力を高める膜が用いられてもよい。
実施の形態2.
実施の形態2では、反射部材の基板としてCu(銅)を使用する例を示す。図19は、図2に示した折り返しミラー25として使用可能な反射部材200の第2の構成図である。図19に示す反射部材200は、基板1と、金属膜3と、SiO膜6とを含む。金属膜3およびSiO膜6は、基板1に近い方から、前述した順序で形成されている。
図20は、図2に示した折り返しミラー25として使用可能な反射部材300の第3の構成図である。図20に示す反射部材300は、基板1と、金属膜3と、ZnS膜4と、Ge膜5と、SiO膜6とを含む。金属膜3、ZnS膜4、Ge膜5およびSiO膜6は、基板1に近い方から、前述した順序で形成されている。
図21は、図2に示した折り返しミラー25として使用可能な反射部材400の第4の構成図である。図21に示す反射部材400は、基板1と、Cr(クロム)膜7と、金属膜3と、SiO膜6とを含む。Cr膜7、金属膜3およびSiO膜6は、基板1に近い方から、前述した順序で形成されている。
反射部材200、反射部材300および反射部材400は、反射部材100と同様に、赤外レーザ光に対して高い反射率を有する赤外レーザ用反射部材である。また反射部材200、反射部材300および反射部材400は、反射部材100と同様に、P波に対する反射率がS波に対する反射率よりも低いため、光の反射を繰り返すうちにP波がS波よりも大きく減衰する。
続いて、本発明の実施の形態2に係る反射部材200、反射部材300および反射部材400の実施例について説明する。以下に示す実施例6は反射部材200の実施例であり、実施例7〜10は反射部材300の実施例であり、実施例11は反射部材400の実施例である。
[実施例6]
実施例6の反射部材200の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mm角平板のCu基板であり、金属膜3はAu膜である。
第2層 SiO 150nm
第1層 Au 200nm
基板 Cu 10mm
図22は、実施例6の反射部材200の光学特性を示す図である。波長9.3μmにおいて、実施例6の反射部材200のS波に対する反射率は98.8%であり、P波に対する反射率は86.1%である。
[実施例7]
実施例7の反射部材300の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mm角平板のCu基板であり、金属膜3はAu膜である。
第4層 SiO 90nm
第3層 Ge 570nm
第2層 ZnS 930nm
第1層 Au 300nm
基板 Cu 10mm
図23は、実施例7の反射部材300の光学特性を示す図である。波長9.3μmにおいて、実施例7の反射部材300のS波に対する反射率は99.7%であり、P波に対する反射率は92.0%である。また、実施例7の反射部材300におけるP波とS波の位相差は、−0.9°である。
[実施例8]
実施例8の反射部材300の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mmの円形状のCu基板であり、金属膜3はAu膜である。
第4層 SiO 60nm
第3層 Ge 540nm
第2層 ZnS 1060nm
第1層 Au 100nm
基板 Cu 10mm
図24は、実施例8の反射部材300の光学特性を示す図である。波長9.3μmにおいて、実施例8の反射部材300のS波に対する反射率は99.7%であり、P波に対する反射率は94.4%である。また、実施例8の反射部材300におけるP波とS波の位相差は、0.1°である。
[実施例9]
実施例9の反射部材300の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mmの円形状のCu基板であり、金属膜3はAu膜である。
第4層 SiO 170nm
第3層 Ge 530nm
第2層 ZnS 840nm
第1層 Au 100nm
基板 Cu 10mm
図25は、実施例9の反射部材300の光学特性を示す図である。波長9.3μmにおいて、実施例9の反射部材300のS波に対する反射率は99.7%であり、P波に対する反射率は85.4%である。また、実施例9の反射部材300におけるP波とS波の位相差は、−1.0°である。
[実施例10]
実施例10の反射部材300の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mmの円形状のCu基板であり、金属膜3はAu膜である。
第4層 SiO 230nm
第3層 Ge 530nm
第2層 ZnS 710nm
第1層 Au 100nm
基板 Cu 10mm
図26は、実施例10の反射部材300の光学特性を示す図である。波長9.3μmにおいて、実施例10の反射部材300のS波に対する反射率は99.1%であり、P波に対する反射率は80.6%である。また、実施例10の反射部材300におけるP波とS波の位相差は、−1.3°である。
[実施例11]
実施例11の反射部材400の各層の材質および膜厚は以下の通りである。基板1は鏡面加工された直径40mm角平板のCu基板であり、金属膜3はAu膜である。
第3層 SiO 150nm
第2層 Au 200nm
第1層 Cr 10nm
基板 Cu 10mm
図27は、実施例11の反射部材400の光学特性を示す図である。波長9.3μmにおいて、実施例11の反射部材400のS波に対する反射率は98.8%であり、P波に対する反射率は86.1%である。
[比較例6]
比較例6の反射部材の各層の材質および膜厚は以下の通りである。基板は鏡面加工された直径40mmの円形状のCu基板であり、金属膜はAu膜である。比較例6の反射部材は、最表層がSiO膜ではなく、SiO膜を採用した構成である。
第2層 SiO 150nm
第1層 Au 100nm
基板 Cu 10mm
図28は、比較例6の反射部材の光学特性を示す図である。波長9.3μmにおいて、比較例6の反射部材のS波に対する反射率は97.7%であり、P波に対する反射率は92.9%である。
[比較例7]
比較例7の反射部材の各層の材質および膜厚は以下の通りである。基板は鏡面加工された直径40mmの円形状のCu基板であり、金属膜はAu膜である。比較例7の反射部材は、最表層がSiO膜ではなく、ZnS膜を採用した構成である。
第2層 ZnS 150nm
第1層 Au 100nm
基板 Cu 10mm
図29は、比較例7の反射部材の光学特性を示す図である。波長9.3μmにおいて、比較例7の反射部材のS波に対する反射率は99.1%であり、P波に対する反射率は98.2%である。
[比較例8]
比較例8の反射部材の各層の材質および膜厚は、特許文献1を引用した構成である。基板は鏡面加工された直径40mmの円形状のCu基板であり、第2層の金属膜はAu膜である。比較例7の反射部材は、最表層がSiO膜ではなく、Ge膜を採用した構成である。
第7層 Ge 670nm
第6層 ZnS 1170nm
第5層 Ge 670nm
第4層 ZnS 1170nm
第3層 HfO 100nm
第2層 Au 300nm
第1層 Cr 100nm
基板 Cu 4mm
図30は、比較例8の反射部材の光学特性を示す図である。波長9.3μmにおいて、比較例8の反射部材のS波に対する反射率は99.9%であり、P波に対する反射率は99.7%である。
図31と図32は、それぞれ実施例6〜11の反射部材と比較例6〜8の反射部材の反射率を反射回数と共に示す図である。実施例6から実施例11の反射部材200,300,400では、反射を繰り返すごとにS波に対する反射率とP波に対する反射率の差が大きくなる。このため、P波を減衰させることが可能であると共に、S波に対しては反射を繰り返しても高い反射率を保つことができる。50回反射を繰り返した場合、S波の反射率は50%以上であり、S波とP波の反射率の比は10以上である。実施例6から実施例11の反射部材200,300,400をレーザ発振器11内で折り返しミラー25として用いた場合、直線偏光の赤外レーザ光を発振することができる。
一方、比較例6の反射部材では、反射を繰り返すごとにS波に対する反射率が低下し、50回反射を繰り返した場合、S波の反射率は目安とする40%に到達しない。このため、比較例6の反射部材は、S波に対する反射率がレーザ発振器11の折り返しミラー25として用いるために十分でなく、反射を繰り返すごとにS波も減衰してしまい、十分な強度のレーザ光を発振することができない。
また、比較例7の反射部材では、50回反射を繰り返した場合、S波に対する反射率が40%を超える。しかしながら、S波とP波の反射率の比はほぼ1:1であり、反射率差が得られていない。このため、比較例7の反射部材をレーザ発振器に搭載した場合には、発振されるレーザ光にP波成分が混ざるため、直線偏光のレーザ光を出力することができない。比較例8の反射部材についても、同様の理由で、直線偏光のレーザ光を出力することができない。
図33は、実施例6〜実施例11の反射部材の耐久性試験結果を示す表である。この表には、テープ剥離試験の結果と、高温試験の結果と、レーザ発振器用適合性とが示されている。実施例6〜実施例11の反射部材200,300,400では、テープ剥離試験の結果、剥離が生じず、且つ、高温試験の結果、光学特性が基準を満たしたので、レーザ発振器用の反射部材として適合性を備えていると判定されている。Cu基板の場合、Si基板のように基板元素がAu膜中へ拡散する現象は見られなかった。密着力強化のため、Cu基板と金属膜の間に、酸化物や硫化物といった膜を形成してもよい。
実施例7〜実施例10の反射部材300は、基板と、金属膜と、ZnS膜と、Ge膜と、SiO膜とを含み、金属膜、ZnS膜、Ge膜およびSiO膜が、基板上に基板に近い方から、前述した順序で形成されている。このような反射部材300において、各層の膜厚を以下の範囲に設定することで、S波に対して高反射率を得ながら、S波とP波に反射率の差を生み出し、かつ、S波とP波の間における位相差を±1°以内に制御することができる。このような反射部材は、レーザ発振器の高出力化・発振安定化に寄与する。
第1層 金属膜 50nm以上300nm以下
第2層 ZnS膜 820nm以上1080nm以下
第3層 Ge膜 520nm以上590nm以下
第4層 SiO膜 40nm以上180nm以下
以上のように、本発明の反射部材を適用することで、産業上利用可能な出力を有する直線偏光のレーザ発振器を実現できる。
実施の形態3.
実施の形態3では、本発明の反射部材100、反射部材200、反射部材300および反射部材400の少なくとも1つを使用したレーザ発振器の実施例を示す。
図34は、図1に示したレーザ発振器11の別の構成図である。レーザ発振器11は、部分反射ミラー41と、部分反射ミラー41で反射したレーザ光を、当該レーザ光の光軸に沿って反射するための直交型ミラー42と、一対の放電電極43,44の間に供給され、レーザ媒質として機能するレーザガスとを備える。部分反射ミラー41は、発振したレーザ光の一部をレーザ光45として外部に取り出す出力ミラーとして機能する。直交型ミラー42は、直交する2つの反射面を有し、両反射面が交差する線を本明細書で「谷線」と称する。レーザガスのガス流方向、一対の放電電極43,44の放電方向、および部分反射ミラー41と直交型ミラー42との間の光軸の方向は、互いに直交している。レーザガス流の方向をx方向、放電電極43,44の放電方向をy方向、部分反射ミラー41と直交型ミラー42の間の光軸をz方向とする。
放電電極43,44は、誘電体プレート46,47の対向面とは反対の背面にそれぞれ設けられ、給電線48を介して高周波電源49に接続される。放電電極43,44の間に交番電圧が印加されると、均一なグロー放電が形成される。放電電極43,44の間には、矢印50で示す方向にレーザガスが供給されており、グロー放電によってレーザガス中の分子または原子がレーザ上準位に励起されると、光の増幅作用を示すようになる。例えば、レーザガスとしてCO分子を含む混合ガスを使用した場合、CO分子の振動準位間の遷移によって波長9.3μmのレーザ増幅が可能になる。
図35は、図34に示すレーザ発振器11におけるエネルギーの利得分布を示す図である。放電方向のy方向に沿った利得分布は概ね一定である。一方、ガス流方向のx方向に沿った利得分布は、位置により大きく変化する。これは、グロー放電51中をレーザガスが通過する際、通過時間の増加とともにレーザの上準位が逐次蓄積されるためである。利得は、グロー放電51のガス上流側で低く、ガス下流側で最も高くなり、グロー放電51の外側で徐々に低下する山型の分布形状となる。
直交型ミラー42ではない平面型の反射ミラーを使用した場合、y方向に高次の横モードが現れる問題が発生する。そこで、放電方向であるy方向に対して角度45度の方向に基準軸52を設定し、直交型ミラー42の谷線が基準軸52に平行になるように直交型ミラー42を配置する。これにより、直交型ミラー42で反射されたレーザ光は、入射レーザ光の基準軸52に対する鏡面対称像を、光軸周りに90度回転させた像と等しくなる。つまり、y方向に沿った利得分布62の影響とx方向に沿った利得分布63の影響を平均化できる。よって、このようなレーザ発振器11では、x方向およびy方向において高次の横モードを抑制し、ビーム強度が等方性に優れたレーザ光を安定的に得ることができる。
このような構成のレーザ発振器11において、直線偏光のレーザ光を得るため、直交型ミラー42の2つの反射面のうち少なくとも1つの反射面は、反射部材100,200,300および400の少なくとも1つである。例えば、比較例1に示すAu膜を形成した反射部材を直交型ミラー42の両面に適用すると、前述のように、直線偏光のレーザが発生しない。等方的とは呼べないランダムな偏光のレーザ光が出現する。
一方、上記の反射部材100,200,300および400の少なくとも1つを直交型ミラー42の2つの反射面のうち少なくとも1つの反射面に適用することで、レーザが増幅されるうちに、直交型ミラー42に対するS波のレーザ光が生き残り、それに直交するP波のレーザ光が消滅する。つまり、直線偏光のレーザ光が実現する。
このように、産業上の利用に対して十分な出力があり、ビーム強度が等方的で、かつ、直線偏光のレーザを発振するレーザ発振器11を実現するためには、本発明の反射部材100,200,300,400が必要不可欠である。
図36は、実施例2、実施例6、実施例7、比較例1、比較例6、比較例8の反射部材を直交型ミラーの一面に適用し、レーザ発振器に搭載して性能を評価した結果を示す。ここでは評価結果を良好な結果から順に◎、○、×の記号で示している。部分反射ミラー41と直交型ミラー42が共振器を構成するレーザ発振器の構成を採用したことにより、ビーム強度については、等方的なレーザ光が得られている。一方、直線偏光の実現性を比較すると、本発明の反射部材を適用したレーザ発振器では直線偏光が得られるが、比較例1,8に示す従来の反射部材を適用したレーザ発振器では、直線偏光が得られなかった。また、本発明の反射部材を適用した場合には、産業上利用できる発振出力を実現できたが、比較例6に示す従来の反射部材を適用したレーザ発振器では、十分な発振出力が得られなかった。
レーザ発振器を実際に使用する際、現実的には発振器内部のガス流密度・分布が一定でないため、光軸は必ずしも一直線ではなく、わずかに歪んでいる。つまり、理論どおりにS波成分のレーザのみが共振する訳でなく、S波成分のレーザの一部がP波成分に変わり、P波成分のレーザが一定時間、S波成分と同様に共振する。上記理由から、このP波成分も、直交型ミラーで反射される際、S波成分に変化する。P波がS波に戻った際、元のS波とP波に位相差が生じてしまっていれば、P波のエネルギーは給されず、消滅されてしまう。このため、エネルギーの利用効率に優れたレーザ発振器を実現するには、位相差を制御した以下の反射部材を使用することが好ましい。
第1層 金属膜 50nm以上300nm以下
第2層 ZnS膜 820nm以上1080nm以下
第3層 Ge膜 520nm以上590nm以下
第4層 SiO膜 40nm以上180nm以下
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。本発明により、産業上の利用に対して十分な出力があり、ビーム強度が等方的で、かつ、直線偏光のレーザを発振するレーザ発振器を実現することができる。
1 基板、2 酸化ケイ素膜、3 金属膜、4 ZnS膜、5 Ge膜、6 SiO膜、7 Cr膜、10 レーザ加工装置、11 レーザ発振器、12 偏光変換部材、13 集光光学系、14 加工テーブル、15 駆動部、16 制御部、17 加工対象物、41 部分反射ミラー、42 直交型ミラー、43,44 放電電極、46,47 誘電体プレート、48 給電線、49 高周波電源、100,200,300,400 反射部材。

Claims (11)

  1. 基板と、
    SiO膜と、
    前記基板と前記SiO膜との間に形成された金属膜と、
    を有する赤外レーザ用反射部材を備えることを特徴とするレーザ発振器。
  2. 前記金属膜と前記SiO膜との間に形成されたZnS膜と、
    前記ZnS膜と前記SiO膜との間に形成されたGe膜と、をさらに備えることを特徴とする請求項1に記載のレーザ発振器。
  3. 前記金属膜の膜厚は、20nm以上400nm以下であり、
    前記ZnS膜の膜厚は、700nm以上1200nm以下であり、
    前記Ge膜の膜厚は、450nm以上650nm以下であり、
    前記SiO膜の膜厚は、20nm以上250nm以下であることを特徴とする請求項2に記載のレーザ発振器。
  4. 前記金属膜は、Au膜であることを特徴とする請求項1から3のいずれか1項に記載のレーザ発振器。
  5. 前記基板はSi基板であり、
    前記基板と前記Au膜との間に形成された酸化ケイ素膜をさらに備えることを特徴とする請求項4に記載のレーザ発振器。
  6. 前記酸化ケイ素膜の膜厚は、1nm以上50nm以下であることを特徴とする請求項5に記載のレーザ発振器。
  7. 前記酸化ケイ素膜は、SiO膜、SiO膜またはSi膜であることを特徴とする請求項5または6に記載のレーザ発振器。
  8. 前記金属膜の膜厚は、50nm以上300nm以下であり、
    前記ZnS膜の膜厚は、820nm以上1080nm以下であり、
    前記Ge膜の膜厚は、520nm以上590nm以下であり、
    前記SiO膜の膜厚は、40nm以上180nm以下であることを特徴とする請求項2または3に記載のレーザ発振器。
  9. 赤外領域にピーク波長を有するレーザ光を出力することを特徴とする請求項1から8のいずれか1項に記載のレーザ発振器。
  10. 部分反射ミラーと、
    互いに直交する2つの反射面を有し、前記部分反射ミラーで反射されたレーザ光を、当該レーザ光の光軸に沿って反射させる直交型ミラーと、
    一対の放電電極と、
    前記一対の放電電極の間に供給されてレーザ媒質として機能するレーザガスと、
    を備え、
    前記一対の放電電極の放電方向と、前記レーザガスのガス流方向と、前記光軸の方向とが互いに直交しており、
    前記直交型ミラーは、前記直交型ミラーの前記2つの反射面が交わる線である谷線が、前記光軸に直交する面内において、前記放電方向に対して45度の角度で交差する基準軸と平行となるように配置され、
    前記直交型ミラーの前記2つの反射面のうち少なくとも1つの反射面は、前記赤外レーザ用反射部材であることを特徴とする請求項1から9のいずれか1項に記載のレーザ発振器。
  11. 請求項1から10のいずれか1項に記載のレーザ発振器を備えることを特徴とするレーザ加工装置。
JP2018556266A 2016-12-14 2017-11-10 レーザ発振器およびレーザ加工装置 Active JP6692453B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016242433 2016-12-14
JP2016242433 2016-12-14
PCT/JP2017/040624 WO2018110176A1 (ja) 2016-12-14 2017-11-10 赤外レーザ用反射部材、レーザ発振器、レーザ加工装置および赤外レーザ用反射部材の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018110176A1 JPWO2018110176A1 (ja) 2019-04-18
JP6692453B2 true JP6692453B2 (ja) 2020-05-13

Family

ID=62558563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018556266A Active JP6692453B2 (ja) 2016-12-14 2017-11-10 レーザ発振器およびレーザ加工装置

Country Status (5)

Country Link
JP (1) JP6692453B2 (ja)
KR (1) KR102226980B1 (ja)
CN (1) CN110036316B (ja)
TW (1) TWI673929B (ja)
WO (1) WO2018110176A1 (ja)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101365A (en) * 1976-05-19 1978-07-18 Xerox Corporation Process of making high speed multifaceted polygonal scanners
JPS5628487A (en) * 1979-08-14 1981-03-20 Tokyo Shibaura Electric Co Heat reflecting plate
JPS6126768A (ja) * 1984-07-13 1986-02-06 Ricoh Co Ltd 光学装置の反射鏡
JPS6173901A (ja) * 1984-09-19 1986-04-16 Fujitsu Ltd 赤外線検知装置用金属鏡の製造方法
JPS62198180A (ja) * 1986-02-25 1987-09-01 Mitsubishi Electric Corp Co↓2レ−ザ装置
JP2651264B2 (ja) * 1990-06-11 1997-09-10 ファナック株式会社 直線偏光レーザ発振器
JP3247408B2 (ja) * 1991-10-28 2002-01-15 株式会社東芝 レーザ成膜方法及びその装置、半導体装置の製造方法
JPH0856028A (ja) * 1994-08-10 1996-02-27 Fanuc Ltd レーザ発振器
US6122106A (en) * 1998-08-07 2000-09-19 Raytheon Company Displaced aperture beamsplitter for laser transmitter/receiver opto-mechanical system
JP4092541B2 (ja) 2000-12-08 2008-05-28 ソニー株式会社 半導体薄膜の形成方法及び半導体装置の製造方法
JP2003302520A (ja) 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd 赤外レーザ用反射ミラーとその製造方法
JP2004286943A (ja) * 2003-03-20 2004-10-14 Ricoh Co Ltd 樹脂反射鏡およびその製造方法
JP2007258657A (ja) 2005-09-13 2007-10-04 Matsushita Electric Ind Co Ltd 面発光レーザ装置、受光装置及びそれを用いた光通信システム
US20080266651A1 (en) * 2007-04-24 2008-10-30 Katsuhiko Murakami Optical apparatus, multilayer-film reflective mirror, exposure apparatus, and device
JP2009086533A (ja) 2007-10-02 2009-04-23 Sumitomo Electric Hardmetal Corp 赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラー
TWI456853B (zh) * 2009-09-30 2014-10-11 Mitsubishi Electric Corp 雷射振盪器及雷射放大器
JP2012182397A (ja) * 2011-03-03 2012-09-20 Mitsubishi Electric Corp レーザ装置およびレーザ加工装置
CN103018797B (zh) * 2012-11-26 2015-06-17 中国航空工业集团公司洛阳电光设备研究所 一种用于激光、红外双波段高反射膜的膜系结构及其制备方法
JP2016136167A (ja) * 2013-05-21 2016-07-28 三菱電機株式会社 赤外光学膜、円偏光ミラー、円偏光ミラーを備えたレーザ加工機、および赤外光学膜の製造方法

Also Published As

Publication number Publication date
TW201822418A (zh) 2018-06-16
CN110036316A (zh) 2019-07-19
CN110036316B (zh) 2021-06-01
JPWO2018110176A1 (ja) 2019-04-18
TWI673929B (zh) 2019-10-01
WO2018110176A1 (ja) 2018-06-21
KR102226980B1 (ko) 2021-03-11
KR20190075117A (ko) 2019-06-28

Similar Documents

Publication Publication Date Title
JP5430826B2 (ja) 窒化物半導体レーザ素子
US10559942B2 (en) Laser device and internal combustion engine
US20080024867A1 (en) Antireflection film, method for heating metal film, and heating apparatus
WO2018221083A1 (ja) 受動qスイッチパルスレーザー装置、加工装置および医療装置
WO2020137136A1 (ja) レーザ装置
JP6692453B2 (ja) レーザ発振器およびレーザ加工装置
JPH0697570A (ja) 半導体レーザー素子端面の反射鏡およびその製造方法
JP4776514B2 (ja) 窒化物半導体レーザ素子
US8135049B2 (en) Optical pulse generating apparatus using photoelectric effect of surface plasmon resonance photons and its manufacturing method
JPH09214027A (ja) 電子線励起レーザ装置
JP5775621B1 (ja) 光学部品
JP2004140323A (ja) 半導体レーザ装置およびその製造方法
TW200847561A (en) Semiconductor laser device
JP2009010066A (ja) パルスレーザ発振器
JP5110310B2 (ja) レーザ光発生装置
JPH077225A (ja) 反射鏡
JP2002164609A (ja) 半導体レーザ素子およびその製造方法
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JP2004281595A (ja) 固体レーザ装置
US11476630B1 (en) Thin film brewster coupling device
JP3735975B2 (ja) 波長変換素子
EP1864954A2 (en) Method for joining optical members, structure for integrating optical members and laser oscillation device
JP5112033B2 (ja) ブリュースター窓及びレーザ発振器
JP2018016859A (ja) 反射鏡
Moghaddam et al. Evaluation of a composite nickel mirror as a back mirror of a flashlamp-pumped Nd: YAG laser system in free running regime

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200414

R150 Certificate of patent or registration of utility model

Ref document number: 6692453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250