JP6670453B2 - 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法 - Google Patents

化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法 Download PDF

Info

Publication number
JP6670453B2
JP6670453B2 JP2016574863A JP2016574863A JP6670453B2 JP 6670453 B2 JP6670453 B2 JP 6670453B2 JP 2016574863 A JP2016574863 A JP 2016574863A JP 2016574863 A JP2016574863 A JP 2016574863A JP 6670453 B2 JP6670453 B2 JP 6670453B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
acid
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016574863A
Other languages
English (en)
Other versions
JPWO2016129679A1 (ja
Inventor
匠 樋田
匠 樋田
越後 雅敏
雅敏 越後
佐藤 隆
隆 佐藤
牧野嶋 高史
高史 牧野嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of JPWO2016129679A1 publication Critical patent/JPWO2016129679A1/ja
Application granted granted Critical
Publication of JP6670453B2 publication Critical patent/JP6670453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/257Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings
    • C07C43/275Ethers having an ether-oxygen atom bound to carbon atoms both belonging to six-membered aromatic rings having all ether-oxygen atoms bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/38Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/235Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring and to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、特定の構造を有する化合物又は樹脂に関する。また、これらを含有するリソグラフィー用下層膜形成材料、該材料を含む組成物、該組成物から得られるリソグラフィー用下層膜及び該組成物を用いるレジスト又は回路パターン形成方法に関する。さらに、前記化合物又は樹脂の精製方法に関する。
半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。そして、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、光源の波長に由来する本質的な解像度の限界に近づきつつある。
レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されている。しかしながら、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。
現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(下記特許文献1:特開2004−177668号公報参照)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(下記特許文献2:特開2004−271838号公報参照)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(下記特許文献3:特開2005−250434号公報参照)。
一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガスなどを原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
また、本発明者らは、光学特性及びエッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構成単位を含むナフタレンホルムアルデヒド重合体及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献4:国際公開第2009/072465及び下記特許文献5:国際公開第2011/034062を参照。)を提案している。
なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(下記特許文献6:特開2002−334869号公報参照)や、シリコン窒化膜のCVD形成方法(下記特許文献7:国際公開第2004/066377参照)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(特許文献8:特開2007−226170号公報及び下記特許文献9:特開2007−226204号公報参照)。
特開2004−177668号公報 特開2004−271838号公報 特開2005−250434号公報 国際公開第2009/072465 国際公開第2011/034062 特開2002−334869号公報 国際公開第2004/066377 特開2007−226170号公報 特開2007−226204号公報
上述したように、従来数多くのリソグラフィー用下層膜形成材料が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、耐熱性及びエッチング耐性を高い次元で両立させたものはなく、新たな材料の開発が求められている。
本発明は、前記の課題を鑑みてなされたものであり、その目的は、特定の構造を有する化合物又は樹脂、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な、リソグラフィー用下層膜形成材料、該材料を含む組成物、該組成物から得られるリソグラフィー用下層膜及び該組成物を用いるレジスト又は回路パターン形成方法、並びに、前記化合物又は樹脂の精製方法を提供することにある。
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は、次の通りである。
[1]下記式(1)で表される化合物。
Figure 0006670453
(式(1)中、Rは炭素数1〜30の2n価の基であり、R〜Rは各々独立して炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、Rの少なくとも1つ及び/又はRの少なくとも1つは炭素数1〜30のアルコキシ基であり、m及びmは各々独立して0〜8の整数であり、m及びmは各々独立して0〜9の整数であり、但し、mとmとは同時に0となることはなく、nは1〜4の整数であり、p〜pは各々独立して0〜2の整数である。)
[2]Rの少なくとも1つ及び/又はRの少なくとも1つが、炭素数1〜30のアルコキシ基である前記[1]に記載の化合物。
[3]前記式(1)で表される化合物が、下記式(1a)で表される化合物である前記[1]又は[2]に記載の化合物。
Figure 0006670453
(式(1a)中、R〜R及びnは、前記式(1)で説明したものと同義であり、m2’及びm3’は各々独立して0〜4の整数であり、m4’及びm5’は各々独立して0〜5の整数であり、但し、m4’とm5’とが同時に0となることはない。)
[4]前記式(1a)で表される化合物が、下記式(1b)で表される化合物である前記[3]に記載の化合物。
Figure 0006670453
(式(1b)中、Rは前記式(1)で説明したものと同義であり、R及びRは、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、チオール基又は水酸基であり、R〜R11は、各々独立して、炭素数1〜30のアルキル基又は水素原子であり、但し、R〜R11の少なくとも1つは炭素数1〜30のアルキル基であり、m及びmとは、各々独立して0〜7の整数である。)
[5]前記式(1b)で表される化合物が、下記式(BiF−1−CH)で表される前記[4]に記載の化合物。
Figure 0006670453
(式(BiF−1−CH)中、R12は各々独立してシクロヘキシル基又は水素原子である。但し、R12の少なくとも1つはシクロヘキシル基である。)
[6]前記[1]〜[5]のいずれか一つに記載の化合物をモノマーとして得られる樹脂。
[7]前記[1]〜[5]のいずれか一つに記載の化合物と架橋反応性のある化合物との反応によって得られる前記[6]に記載の樹脂。
[8]前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる少なくとも1つである前記[7]に記載の樹脂。
[9]下記式(2)で表される構造を有する前記[6]に記載の樹脂。
Figure 0006670453
(式(2)中、Rは、炭素数1〜30の2n価の基であり、R〜Rは、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、Rの少なくとも1つ及び/又はRの少なくとも1つは炭素数1〜30のアルコキシ基であり、Lは、炭素数1〜20の直鎖状若しくは分岐状のアルキレン基又は単結合であり、m及びmは、各々独立して0〜8の整数であり、m及びmは、各々独立して0〜9の整数であり、但し、mとmとは同時に0となることはなく、nは、1〜4の整数であり、p〜pは各々独立して0〜2の整数である。)
[10]前記[1]〜[5]のいずれか一つに記載の化合物及び/又は前記[6]〜[9]のいずれか一つに記載の樹脂を含有するリソグラフィー用下層膜形成材料。
[11]前記[10]に記載のリソグラフィー用下層膜形成材料と溶媒とを含有するリソグラフィー用下層膜形成用組成物。
[12]架橋剤をさらに含有する前記[11]に記載のリソグラフィー用下層膜形成用組成物。
[13]酸発生剤をさらに含有する前記[11]又は[12]に記載のリソグラフィー用下層膜形成用組成物。
[14]前記[11]〜[13]のいずれかに記載のリソグラフィー用下層膜形成用組成物から形成されるリソグラフィー用下層膜。
[15]基板上に、前記[11]〜[13]のいずれかに記載の下層膜形成用組成物を用いて下層膜を形成し、該下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所要の領域に放射線を照射し、現像を行うレジストパターン形成方法。
[16]基板上に、前記[11]〜[13]のいずれかに記載の下層膜形成用組成物を用いて下層膜を形成し、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所要の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する回路パターン形成方法。
[17]前記[1]〜[5]のいずれか一つに記載の化合物又は前記[6]〜[9]のいずれか一つに記載の樹脂と、水と任意に混和しない有機溶媒を含む溶液と、酸性の水溶液と、を接触させ抽出する工程を含む、化合物又は樹脂の精製方法。
[18]前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である前記[17]に記載の精製方法。
[19]前記水と任意に混和しない有機溶媒が、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである前記[17]又は[18]に記載の精製方法。
[20]前記溶液と酸性の水溶液とを接触させ抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む前記[17]〜[19]のいずれか一つに記載の精製方法。
本発明によれば、特定の構造を有する化合物又は樹脂、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な、リソグラフィー用下層膜形成材料、該材料を含む組成物、該組成物から得られるリソグラフィー用下層膜及び該組成物を用いるレジスト又は回路パターン形成方法、並びに、前記化合物又は樹脂の精製方法を提供することができる。
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
[本発明の化合物及び樹脂]
本発明の化合物は、下記式(1)で表される。本発明の化合物は、このように構成されているため、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高い。
Figure 0006670453
前記式(1)中、Rは、炭素数1〜30の2n価の基であり、このRを介して各々の芳香環が結合している。該2n価の基とは、n=1のときには、炭素数1〜30のアルキレン基、n=2のときには、炭素数1〜30のアルカンテトライル基、n=3のときには、炭素数2〜30のアルカンヘキサイル基、n=4のときには、炭素数3〜30のアルカンオクタイル基のことを示す。該2n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については有橋脂環式炭化水素基も含まれる。また、該2n価の基は、二重結合、ヘテロ原子又は炭素数6〜30の芳香族基を有していてもよい。
式(1)中、R〜Rは、各々独立して、炭素数1〜10のアルキル基;炭素数6〜10のアリール基;炭素数2〜10のアルケニル基;炭素数1〜30のアルコキシ基;チオール基及び水酸基からなる群より選択される1価の基である。但し、Rの少なくとも1つ及び/又はRの少なくとも1つは炭素数1〜30のアルコキシ基である。
式(1)中、m及びmは、各々独立して0〜8の整数であり、m及びmは、各々独立して0〜9の整数であるが、m及びmは、同時に0となることはない。
式(1)中、nは、1〜4の整数である。
式(1)中、p〜pは各々独立して0〜2の整数である。尚、例えばpが0の場合、対応する芳香環はベンゼン環となり、p2が1の場合には対応する芳香環がナフタレン環となる。更に、p2が3の場合には対応する芳香環がアントラセン等の三員環の芳香環となる。
式(1)中、炭素数1〜10のアルキル基及び炭素数2〜10のアルケニル基は、直鎖状、分岐状若しくは環状のアルキル基又はアルケニル基を含む。
また炭素数1〜30のアルコキシ基とは、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基、芳香族炭化水素基およびそれらの二以上の組み合わせからなる基より選ばれる基と、酸素原子とから構成される基である。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、該アルコキシ基は、二重結合、ヘテロ原子、ハロゲン原子を有していてもよい。
炭素数1〜30のアルコキシ基としては、好ましくは、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、フルオロフェニルオキシ基、クロロフェニルオキシ基、ブロモフェニルオキシ基、ヨードフェニルオキシ基、ヒドロキシフェニルオキシ基、メトキシフェニルオキシ基、アミノフェニルオキシ基、ニトロフェニルオキシ基、シアノフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、フルオロナフチルオキシ基、クロロナフチルオキシ基、ブロモナフチルオキシ基、ヨードナフチルオキシ基、ヒドロキシナフチルオキシ基、メトキシナフチルオキシ基、アミノナフチルオキシ基、ニトロナフチルオキシ基、シアノナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、より好ましくは、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、フルオロフェニルオキシ基、クロロフェニルオキシ基、ブロモフェニルオキシ基、ヨードフェニルオキシ基、ヒドロキシフェニルオキシ基、メトキシフェニルオキシ基、アミノフェニルオキシ基、ニトロフェニルオキシ基、シアノフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、フルオロナフチルオキシ基、クロロナフチルオキシ基、ブロモナフチルオキシ基、ヨードナフチルオキシ基、ヒドロキシナフチルオキシ基、メトキシナフチルオキシ基、アミノナフチルオキシ基、ニトロナフチルオキシ基、シアノナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、さらに好ましくは、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキセニルオキシ基、イソホロニルオキシ基、ノルボルナニルオキシ基、アダマンチルオキシ基、トリシクロデカニルオキシ基、ピリジニルオキシ基、フェニルオキシ基、メチルフェニルオキシ基、ジメチルフェニルオキシ基、エチルフェニルオキシ基、メトキシフェニルオキシ基、フェニルフェニルオキシ基、フェニルオキシフェニルオキシ基、ナフチルオキシ基、メチルナフチルオキシ基、ジメチルナフチルオキシ基、エチルナフチルオキシ基、メトキシナフチルオキシ基、フェニルナフチルオキシ基、フェニルオキシナフチルオキシ基、アントラセニルオキシ基、ピレニルオキシ基、フルオレニルオキシ基であり、特に好ましくは、シクロヘキシルオキシ基、フェニルオキシ基が挙げられる。
前記式(1)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成材料は埋め込み特性および平坦化特性が比較的に有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。さらには炭素数1〜30のアルコキシ基を有するので、更なる溶媒溶解性および品質安定化がなされる。
前記式(1)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、Rの少なくとも1つ及び/又はRの少なくとも1つが炭素数1〜30のアルコキシ基であることが好ましい。また、R及びRが、置換基を有する炭素数6〜10のアリール基の場合、当該置換基は酸素原子を含まない置換基であることが好ましい。
また、前記式(1)で表される化合物は、原料の供給性の観点から、下記式(1a)で表される化合物であることがより好ましい。
Figure 0006670453
前記式(1a)中、R〜R及びnは、前記式(1)で説明したものと同義である。
2’及びm3’は各々独立して0〜4の整数であり、m4’及びm5’は各々独立して0〜5の整数である。但し、m4’及びm5’は同時に0となることはない。
前記式(1a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1b)で表される化合物であることがさらに好ましい。
Figure 0006670453
前記式(1b)中、Rは、前記式(1)で説明したものと同義である。即ち、式(1b)において、式(1)においてRがn=1の場合に該当し、式(1)のRにおける炭素数1〜30の2価の基となる。
式(1b)中、R及びRは、各々独立して、炭素数1〜10アルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、チオール基又は水酸基であり、R〜R11は、各々独立して、炭素数1〜30のアルキル基又は水素原子である。但し、R〜R11の少なくとも1つは炭素数1〜30のアルキル基である。上述のアルキル基及びアルケニル基は、直鎖状、分岐状又は環状のいずれであってもよい。
及びmは、各々独立して0〜7の整数である。
前記式(1b)で表される化合物は、さらなる有機溶媒への溶解性の観点から、下記式(BiF−1−CH)で表される化合物であることが特に好ましい。
Figure 0006670453
前記式(BiF−1−CH)中、R12は、品質安定化の観点から、各々独立して、シクロヘキシル基または水素原子である。但し、R12の少なくとも1つはシクロヘキシル基である。
以下に、前記式(1)で表される化合物の具体例を例示するが、ここで列挙した限りではない。
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
上述の化合物中、R〜Rは、前記式(1)で説明したものと同義であり、m及びmは、各々独立して0〜6の整数であり、m10及びm11は、各々独立して0〜7の整数である。但し、m10及びm11は、同時に0となることはない。
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
前記化合物中、R〜Rは、前記式(1)で説明したものと同義である。m2’及びm3’は各々独立して0〜4の整数であり、m4’及びm5’は各々独立して0〜5の整数である。但し、m4’及びm5’は同時に0となることはない。
Figure 0006670453
Figure 0006670453
Figure 0006670453
前記化合物中、R〜Rは、前記式(1)で説明したものと同義であり、m及びmは、各々独立して0〜6の整数であり、m10及びm11は、各々独立して0〜7の整数である。但し、m10及びm11は、同時に0となることはない。
Figure 0006670453
Figure 0006670453
Figure 0006670453
前記化合物中、R〜Rは、前記式(1)で説明したものと同義である。
2’及びm3’は各々独立して0〜4の整数であり、m4’及びm5’は各々独立して0〜5の整数である。但し、m4’及びm5’は同時に0となることはない。
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
Figure 0006670453
前記化合物中、R12は、前記式(BiF−1−CH)で説明したものと同義である。
本発明で使用される式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、常圧下、ビフェノール類、ビチオフェノール類、ビナフトール類、ビチオナフトール類又はビアントラセンオールと、対応するアルデヒド類又はケトン類と、を酸触媒下にて重縮合反応させることによって、前記式(1)で表される化合物の前駆体となる化合物(前記式(1)において炭素数1〜30のアルコキシ基となるRの少なくとも1つ及び/又はRの少なくとも1つが水酸基である化合物)を得ることができる。また、必要に応じて、加圧下で行うこともできる。
前記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
前記ビチオフェノール類としては、例えば、ビチオフェノール、メチルビチオフェノール、メトキシビチオフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビチオフェノールを用いることが原料の安定供給性の点でより好ましい。
前記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記ビチオナフトール類としては、例えば、ビチオナフトール、メチルビチオナフトール、メトキシビチオナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビチオナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
前記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、ヘキシルアルデヒド、デシルアルデヒド、ウンデシルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、フルオロベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、ジメチルベンズアルデヒド、エチルベンズアルデヒド、プロピルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボキシアルデヒド、フェナントレンカルボキシアルデヒド、ピレンカルボキシアルデヒド、グリオキサール、グルタルアルデヒド、フタルアルデヒド、ナフタレンジカルボキシアルデヒド、ビフェニルジカルボキシアルデヒド、アントラセンジカルボキシアルデヒド、ビス(ジホルミルフェニル)メタン、ビス(ジホルミルフェニル)プロパン、ベンゼントリカルボキシアルデヒドを用いることが、高い耐熱性を与える点で好ましい。
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノンを用いることが、高い耐熱性を与える点で好ましい。
前記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸および固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。
前記反応の際には、反応溶媒を用いても良い。反応溶媒としては、用いるアルデヒド類又はケトン類と、ビフェノール類、ビチオフェノール類、ビナフトール類、ビチオナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0〜2000質量部の範囲であることが好ましい。さらに、前記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10〜200℃の範囲である。
本実施形態の式(1)で表される化合物の前駆体となる化合物を得るためには、反応温度は高い方が好ましく、具体的には60〜200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビチオフェノール類、ビナフトール類、ビチオナフトール類又はビアントラセンジオール、アルデヒド類或いはケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビチオフェノール類、ビナフトール類、ビチオナフトール類又はビアントラセンジオールやアルデヒド類又はケトン類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、ビフェノール類、ビチオフェノール類、ビナフトール類、ビチオナフトール類又はビアントラセンジオールを1.0モル〜過剰量、及び酸触媒を0.001〜1モル使用し、常圧で、50〜150℃で20分間〜100時間程度反応させることにより進行する。
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である前記式(1)で表される化合物の前駆体となる化合物を得ることができる。
前記得られた前駆体化合物に、公知の方法により、例えば、フェノール性水酸基の水素原子を炭素数1〜30の一価の基に置換することで、目的物である前記式(1)で表される化合物を得ることができる。
フェノール性水酸基の水素原子を炭素数1〜30の一価の基に置換する方法は特に限定されないが、例えば、前記前駆体化合物に、塩基触媒存在下にて、ハロゲン化炭化水素化合物を反応させることによる脱ハロゲン化水素反応にて得ることができる。
前記ハロゲン化炭化水素化合物としては、特に限定されないが、炭素数1〜30のハロゲン化炭化水素化合物が好適に用いられる。ハロゲン化炭化水素化合物は、直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、芳香族炭化水素基及びそれらの二以上の組み合わせからなる基とハロゲン原子から構成される。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。該ハロゲン化炭化水素化合物は、二重結合、ヘテロ原子又は別種のハロゲン原子を有していてもよい。
ハロゲン化炭化水素化合物は、例えば、塩化メチル、臭化メチル、ヨウ化メチル、塩化プロピル、臭化プロピル、ヨウ化プロピル、塩化ブチル、臭化ブチル、ヨウ化ブチル、塩化ヘプチル、臭化ヘプチル、ヨウ化ヘプチル、塩化ヘキシル、臭化ヘキシル、ヨウ化ヘキシル、塩化デシル、臭化デシル、ヨウ化デシル及び下記式(5)で表される群から選ばれる化合物等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。
Figure 0006670453
(前記式(5)中、Yは、塩素原子、臭素原子又はヨウ素原子を示す。)
前駆体化合物中の少なくとも1つのフェノール性水酸基をアルコキシル基に変換するためには、例えば、ジメチルホルムアミド等の有機溶媒中、塩基触媒(炭酸ナトリウム、炭酸カリウム、トリエチルアミン、アンモニアまたは水酸化ナトリウム等)の存在下で、前記前駆体化合物1モルに対し、ハロゲン化炭化水素化合物0.1〜10モルを0〜150℃で0.5〜20時間程度反応させることができる。この反応により、前駆体化合物中の少なくとも1つのフェノール性水酸基をアルコキシル基に変換することができる。次いで、濾過、メタノール等のアルコール類による洗浄、水洗、濾過による分離後、乾燥させることにより前記式(1)で表される化合物が得ることができる。
また、本実施形態において用いられる式(1)で表される化合物は、ビフェノール類等にアルコキシ基を導入した後に、アルデヒド類やケトン類と反応させることによっても得ることができ、その合成手法は特に限定されない。
前記式(1)で表される化合物は、リソグラフィー用下層膜形成材料として、そのまま使用することができる。また、前記式(1)で表される化合物をモノマーとして得られる樹脂としても使用することができる。例えば、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂としても使用することができる。前記式(1)で表される化合物をモノマーとして得られる樹脂としては、例えば、以下の式(2)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用下層膜形成材料は、下記式(2)に表される構造を有する樹脂を含有するものであってもよい。
Figure 0006670453
式(2)中、R〜Rは、m〜m、n、p〜pは前記式(1)で説明したものと同義である。
式(2)中、Lは、炭素数1〜20の直鎖状若しくは分岐状のアルキレン基又は単結合である。
前記架橋反応性のある化合物としては、前記式(1)で表される化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。架橋反応性のある化合物の具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
前記式(2)で表される構造を有する樹脂の具体例としては、例えば、前記式(1)で表される化合物を架橋反応性のある化合物であるアルデヒドとの縮合反応等によってノボラック化した樹脂が挙げられる。
ここで、前記式(1)で表される化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。これらの中でも、ホルムアルデヒドがより好ましい。なお、これらのアルデヒド類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、前記アルデヒド類の使用量は、特に限定されないが、前記式(1)で表される化合物1モルに対して、0.2〜5モルが好ましく、より好ましくは0.5〜2モルである。
前記式(1)で表される化合物とアルデヒドとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p−トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸および固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01〜100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、5−ビニルノルボルナ−2−エン、α−ピネン、β−ピネン、リモネンなどの非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
前記式(1)で表される化合物とアルデヒドとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が例示される。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件などに応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0〜2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10〜200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、前記式(1)で表される化合物、アルデヒド類、触媒を一括で仕込む方法や、前記式(1)で表される化合物やアルデヒド類を触媒存在下で滴下していく方法がある。
重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130〜230℃ にまで上昇させ、1〜50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を得ることができる。
ここで、前記式(2)で表される構造を有する樹脂は、前記式(1)で表される化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げるが、これらに特に限定されない。
また、前記式(2)で表される構造を有する樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4−ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、前記式(2)で表される構造を有する樹脂は、前記式(1)で表される化合物と上述したフェノール類との2元以上の(例えば、2〜4元系)共重合体であっても、前記式(1)で表される化合物と上述した共重合モノマーとの2元以上(例えば、2〜4元系)共重合体であっても、前記式(1)で表される化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3〜4元系)共重合体であっても構わない。
なお、前記式(2)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500〜30,000であることが好ましく、より好ましくは750〜20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、前記式(2)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2〜7の範囲内のものが好ましい。なお、前記Mnは、後述する実施例に記載の方法により求めることができる。
前記式(1)で表される構造を有する化合物及び式(2)で表される構造を有する樹脂等の前記化合物をモノマーとして得られる前記樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1−メトキシ−2−プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「化合物又は樹脂の質量÷(化合物又は樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記化合物又は樹脂10gがPGMEA90gに対して溶解する場合は、前記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
[リソグラフィー用下層膜形成材料]
本実施形態のリソグラフィー用下層膜形成材料は、前記式(1)で表される化合物及び該化合物をモノマーとして得られる前記樹脂からなる群より選ばれる物質を少なくとも1つ含有するものである。
本実施形態において前記物質はリソグラフィー用下層膜形成材料中、25〜100質量%であることが好ましく、50〜100質量%であることがより好ましく、75〜100質量%であることがさらに好ましく、100質量%であることが特に好ましい。
なお、本実施形態のリソグラフィー用下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
[リソグラフィー用下層膜形成用組成物]
本実施形態においてリソグラフィー用下層膜形成用組成物は、前記リソグラフィー用下層膜形成材料と溶媒とを含有する。
[溶媒]
本実施形態において用いる溶媒としては、前記リソグラフィー用下層膜形成材料が、少なくとも溶解するものであれば公知のものを適宜用いることができる。溶媒の具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のセロソルブ系溶媒、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒、メタノール、エタノール、イソプロパノール、1−エトキシ−2−プロパノール(PGME)等のアルコール系溶媒、トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられるが、これらに特に限定されない。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
前記溶媒の中で、安全性の点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、1−メトキシ−2−プロパノール、アニソールが特に好ましい。
溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、前記下層膜形成材料100質量部に対して、100〜10,000質量部であることが好ましく、200〜5,000質量部であることがより好ましく、300〜1,000質量部であることがさらに好ましい。
本実施形態のリソグラフィー用下層膜形成用組成物は、必要に応じて、架橋剤、酸発生剤等の成分を含んでいてもよい。以下、これらの任意成分について説明する。
[架橋剤]
本実施形態のリソグラフィー用下層膜形成用組成物は、インターミキシングを抑制する等の観点から、必要に応じて架橋剤を含有していてもよい。本実施形態で使用可能な架橋剤の具体例としては、例えば、メラミン化合物、グアナミン化合物、グリコールウリル化合物又はウレア化合物、エポキシ化合物、チオエポキシ化合物、イソシアネート化合物、アジド化合物、アルケニルエーテル基などの2重結合を含む化合物であって、メチロール基、アルコキシメチル基、アシロキシメチル基から選ばれる少なくとも一つの基で置換されたものなどが挙げるが、これらに特に限定されない。なお、これらの架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。また、これらは添加剤として用いてもよいが、これら架橋性基をポリマー側鎖にペンダント基として導入してもよい。また、ヒドロキシ基を含む化合物も架橋剤として用いることができる。
メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1〜6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1〜6個がアシロキシメチル化した化合物又はその混合物などが挙げられる。エポキシ化合物の具体例としては、例えば、トリス(2,3−エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテルなどが挙げられる。
グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1〜4個のメチロール基がアシロキシメチル化した化合物又はその混合物などが挙げられる。グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1〜4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1〜4個がアシロキシメチル化した化合物又はその混合物などが挙げられる。ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1〜4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレアなどが挙げられる。
アルケニルエーテル基を含む化合物の具体例としては、例えば、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2−プロパンジオールジビニルエーテル、1,4−ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、ヘキサンジオールジビニルエーテル、1,4−シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、トリメチロールプロパントリビニルエーテルなどが挙げられる。
本実施形態のリソグラフィー用下層膜形成用組成物において、架橋剤の含有量は、特に限定されないが、前記リソグラフィー用下層膜形成材料100質量部に対して、5〜50質量部であることが好ましく、10〜40質量部であることがより好ましく、15〜35質量部であることがさらに好ましい。前記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
[酸発生剤]
本実施形態のリソグラフィー用下層膜形成用組成物は、熱による架橋反応をさらに促進させるなどの観点から、必要に応じて酸発生剤を含有していてもよい。当業界において酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するものなどが知られているが、いずれのものも使用することができる。
酸発生剤としては、
1)下記一般式(P1a−1)、(P1a−2)、(P1a−3)又は(P1b)のオニウム塩、
2)下記一般式(P2)のジアゾメタン誘導体、
3)下記一般式(P3)のグリオキシム誘導体、
4)下記一般式(P4)のビススルホン誘導体、
5)下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
6)β−ケトスルホン酸誘導体、
7)ジスルホン誘導体、
8)ニトロベンジルスルホネート誘導体、
9)スルホン酸エステル誘導体
等が挙げられるが、これらに特に限定されない。なお、これらの酸発生剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
Figure 0006670453
前記式中、R101a、R101b、R101cはそれぞれ独立して炭素数1〜12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ独立して炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。R101d、R101e、R101f、R101gは、それぞれ独立してR101a、R101b、R101cに水素原子を加えて示される。R101dとR101e、R101dとR101eとR101fとは環を形成してもよく、環を形成する場合には、R101dとR101e及びR101dとR101eとR101fは炭素数3〜10のアルキレン基を示し、又は、式中の窒素原子を環の中に有する複素芳香族環を示す。
前記のR101a、R101b、R101c、R101d、R101e、R101f、R101gは互いに同一であっても異なっていてもよい。具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。オキソアルケニル基としては、2−オキソ−4−シクロヘキセニル基、2−オキソ−4−プロペニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート等が挙げられる。
また、R101d、R101e、R101f、R101gが式中の窒素原子を環の中に有する複素芳香族環である場合、その複素芳香族環としては、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
前記式(P1a−1)と式(P1a−2)は、光酸発生剤、熱酸発生剤の両方の効果があるが、前記式(P1a−3)は熱酸発生剤として作用する。
Figure 0006670453
前記式(P1b)中、R102a、R102bはそれぞれ独立して炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ独立して炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。
前記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)、(P1a−2)及び(P1a−3)で説明したものと同様のものを挙げることができる。
Figure 0006670453
前記式(P2)中、R105、R106はそれぞれ独立して炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。
105、R106のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、トリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、フェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としては、フルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、ベンジル基、フェネチル基等が挙げられる。
Figure 0006670453
前記式(P3)中、R107、R108、R109はそれぞれ独立して炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状又は分岐状のアルキレン基を示す。
107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。
Figure 0006670453
式(P4)中、R101a、R101bは前記と同様である。
Figure 0006670453
前記式(P5)中、R110は炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部はさらに炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部はさらに炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が挙げられる。アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が挙げられる。アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが挙げられる。アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が挙げられる。アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、さらに置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が挙げられる。炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が挙げられる。炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
具体的には、例えばトリフルオロメタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸テトラメチルアンモニウム、ノナフルオロブタンスルホン酸トリエチルアンモニウム、ノナフルオロブタンスルホン酸ピリジニウム、カンファースルホン酸トリエチルアンモニウム、カンファースルホン酸ピリジニウム、ノナフルオロブタンスルホン酸テトラn−ブチルアンモニウム、ノナフルオロブタンスルホン酸テトラフェニルアンモニウム、p−トルエンスルホン酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−(p−トルエスルホニル)−α−ジフェニルグリオキシム、ビス−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体等が挙げられる。
これらのなかでも、特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。
本実施形態のリソグラフィー用下層膜形成用組成物において、酸発生剤の含有量は、特に限定されないが、前記リソグラフィー用下層膜形成材料100質量部に対して、0.1〜50質量部であることが好ましく、0.5〜40質量部であることがより好ましく、1.0〜30質量部であることがさらに好ましい。前記範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
[塩基性化合物]
塩基性化合物は、酸発生剤より微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられるが、これらに特に限定されない。
具体的には、第一級の脂肪族アミン類の具体例としては、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示される。第二級の脂肪族アミン類の具体例としては、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示される。第三級の脂肪族アミン類の具体例としては、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類の具体例としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。
さらに、カルボキシ基を有する含窒素化合物の具体例としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示される。スルホニル基を有する含窒素化合物の具体例としては、3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示される。水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物の具体例としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体の具体例としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体の具体例としては、フタルイミド、スクシンイミド、マレイミド等が例示される。
本実施形態のリソグラフィー用下層膜形成用組成物において、塩基性化合物の含有量は、特に限定されないが、前記リソグラフィー用下層膜形成材料100質量部に対して、0.001〜2質量部であることが好ましく、より好ましくは0.01〜1質量部であることがより好ましく、0.05〜0.5質量部であることがさらに好ましい。前記範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
[その他の成分]
また、本実施形態のリソグラフィー用下層膜形成用組成物は、熱硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂、ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレンなどのナフタレン環、フェナントレンキノン、フルオレンなどのビフェニル環、チオフェン、インデンなどのヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態のリソグラフィー用下層膜形成用組成物は、当業界で公知の添加剤、例えば、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等を含有していてもよい。
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
本実施形態のリソグラフィー用下層膜は、前述のリソグラフィー用下層膜形成用組成物を用いて形成されるものである。
また、本実施形態の多層レジストパターンの形成方法は、基板上に、前述のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成し、該下層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所要の領域に放射線を照射し、現像を行うことができる。
さらに、本実施形態の多層レジストパターンの形成方法は、基板上に、前述のリソグラフィー用下層膜形成材料を用いて下層膜を形成し、該下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成し、該中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、該フォトレジスト層の所要の領域に放射線を照射し、現像してレジストパターンを形成後、該レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成することができる。
本実施形態のリソグラフィー用下層膜は、前述のリソグラフィー用下層膜形成用組成物から形成されるものであれば、その形成方法は特に限定されず、当業界で公知の手法を適用することができる。例えば、前述のリソグラフィー用下層膜形成用組成物をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法などで基板上に付与した後、有機溶媒を揮発させるなどして除去することで、下層膜を形成することができる。下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークをすることが望ましい。この場合、ベーク温度は、特に限定されないが、80〜450℃の範囲内であることが好ましく、より好ましくは200〜400℃である。また、ベーク時間も、特に限定されないが、10〜300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30〜20,000nm程度であることが好ましく、より好ましくは50〜15,000nmとすることが好ましい。下層膜を作製した後、2層プロセスの場合はその上に珪素含有レジスト層、或いは通常の炭化水素からなる単層レジスト、3層プロセスの場合はその上に珪素含有中間層、さらにその上に珪素を含まない単層レジスト層を作製する。この場合、このレジスト層を形成するためのフォトレジスト材料としては公知のものを使用することができる。
基板上に下層膜を作製した後、2層プロセスの場合はその下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを、3層プロセスの場合はその下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製するができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料は、公知のものから適宜選択して使用することができ、特に限定されない。
2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーを使用し、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
3層プロセス用の珪素含有中間層としてはポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜として効果を持たせることによって、反射を抑えることができる。例えば193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果がある中間層としては、193nm露光用としてはフェニル基又は珪素−珪素結合を有する吸光基を導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した反射防止膜としての効果が高い中間層としては、例えばSiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによる中間層の形成の方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型でもネガ型でもどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
さらに、本実施形態の下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
前記フォトレジスト材料によりレジスト層を形成する場合においては、前記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法などで塗布した後、通常、プリベークが行われるが、このプリベークは、80〜180℃で10〜300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30〜500nmが好ましく、より好ましくは50〜400nmである。
また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3〜20nmの軟X線、電子ビーム、X線等を挙げることができる。
前記の方法により形成されるレジストパターンは、本実施形態の下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態の下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Arなどの不活性ガスや、CO、CO、NH、SO、N、NO2、ガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO2、ガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために用いられる。一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、前記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
ここで中間層として、無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、例えば、特開2002−334869号公報(特許文献6)、WO2004/066377(特許文献7)に記載されている。
このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
中間層として、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜として効果を持たせることによって、反射を抑えることができる。ポリシルセスキオキサンベースの中間層の材料については、例えば、具体的には、特開2007−226170号(上述の特許文献8)、特開2007−226204号(上述の特許文献9)に記載されている。
また、次の基板のエッチングも、常法によって行うことができ、例えば基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p−SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板加工をフロン系ガスでエッチングした場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
本実施形態の下層膜は、これら基板のエッチング耐性に優れる。
なお、基板は、当業界で公知のものを適宜選択して使用することができ、特に限定されないが、Si、α−Si、p−Si、SiO、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO、SiON、SiN、p−Si、α−Si、W、W−Si、Al、Cu、Al−Si等種々のLow−k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50〜10,000nm程度であることが好ましく、より好ましくは75〜5,000nmである。
[化合物又は樹脂の精製方法]
本実施形態における化合物又は樹脂の精製方法は、水と任意に混和しない有機溶媒及び前記式(1)で表される化合物又は該化合物をモノマーとして得られる樹脂を含む溶液(以下、溶液(A)と称することがある)と、酸性の水溶液と、を接触させ抽出する工程を含む。本実施形態の精製方法によれば、前記化合物又は前記樹脂に不純物として含まれうる種々の金属の含有量を低減することができる。
より詳細には、本実施形態においては、前記化合物又は前記樹脂を水と任意に混和しない有機溶媒に溶解させ、さらにその溶液を酸性水溶液と接触させて抽出処理を行うものとすることができる。これにより、前記化合物又は前記樹脂を含む溶液(A)に含まれる金属分を水相に移行させたのち、有機相と水相とを分離して金属含有量の低減された前記化合物又は前記樹脂を得ることができる。
本実施形態で使用する前記化合物又は前記樹脂は単独でもよいが、2種以上混合することもできる。また、前記化合物又は前記樹脂は、各種界面活性剤、各種架橋剤、各種酸発生剤、各種安定剤等を含有したものであってもよい。
本発明で使用される水と任意に混和しない有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、前記化合物又は前記樹脂に対して通常1〜100質量倍程度使用される。
使用される溶媒の具体例としては、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類、酢酸エチル、酢酸n−ブチル、酢酸イソアミル等のエステル類、メチルエチルケトン、メチルイソブチルケトン、エチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ヘプタノン、2−ペンタノン等のケトン類、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート類、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。これらの中でも、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は前記化合物又は前記樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。
これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本発明で使用される酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、塩酸、硫酸、硝酸、リン酸等の鉱酸を水に溶解させた水溶液(鉱酸水溶液)、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸、トリフルオロ酢酸等の有機酸を水に溶解させた水溶液(有機酸水溶液)が挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これら酸性の水溶液の中でも、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、さらに、硫酸、蓚酸、酒石酸、クエン酸の水溶液が好ましく、特に蓚酸の水溶液が好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より金属を除去できると考えられる。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。
本発明で使用する酸性の水溶液のpHは特に制限されないが、水溶液の酸性度があまり大きくなると前記化合物又は前記樹脂に悪影響を及ぼすことがあり好ましくない。通常、pH範囲は0〜5程度であり、より好ましくはpH0〜3程度である。
本発明で使用する酸性の水溶液の使用量は特に制限されないが、その量があまりに少ないと、金属除去のための抽出回数多くする必要があり、逆に水溶液の量があまりに多いと全体の液量が多くなり操作上の問題を生ずることがある。水溶液の使用量は、通常、有機溶媒に溶解した前記化合物又は前記樹脂の溶液に対して10〜200質量%であり、好ましくは20〜100質量%である。
本発明の精製方法では前記のような酸性の水溶液と、前記化合物又は前記樹脂、及び水と任意に混和しない有機溶媒を含む溶液(A)とを接触させることにより金属分を抽出する。
本発明の精製方法では、前記溶液(A)に、さらに水と任意に混和する有機溶媒を含むことが好ましい。本発明の精製方法において、溶液(A)に水と任意に混和する有機溶媒を含むことで、前記化合物又は前記樹脂の仕込み量を増加させることができ、また分液性が向上し、高い釜効率で精製を行うことができる。溶液(A)に水と任意に混和する有機溶媒を加える方法は特に限定されない。例えば、予め水と任意に混和する有機溶媒を、水と任意に混和しない有機溶媒を含む溶液に加える方法;予め水と任意に混和する有機溶媒を水又は酸性の水溶液に加える方法;水と任意に混和しない有機溶媒を含む溶液と水又は酸性の水溶液とを接触させた後に水と任意に混和する有機溶媒を加える方法、のいずれをも採用することが可能であるが、予め水と任意に混和する有機溶媒を、水と任意に混和しない有機溶媒を含む溶液に加える方法が操作の作業性や仕込み量の管理のし易さの点で好ましい。
前記“水と任意に混和する有機溶媒”としては、特に限定されないが、水と任意に混和し、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。前記“水と任意に混和する有機溶媒”の含有量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する式(1)で表される化合物又は式(2)で表される構造を有する樹脂の総量に対して、通常0.1〜100質量倍程度使用することができる。
水と任意に混和する有機溶媒の具体例としては、例えば、テトラヒドロフラン、1,3−ジオキソラン等のエーテル類;メタノール、エタノール、イソプロパノール等のアルコール類;アセトン、N−メチルピロリドン等のケトン類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のグリコールエーテル類等の脂肪族炭化水素類が挙げられる。これらの中でも、N−メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、特にN−メチルピロリドン、プロピレングリコールモノメチルエーテルが好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
本実施形態において、溶液(A)と酸性の水溶液の接触の際、すなわち、抽出処理を行う際の温度は通常、20〜90℃であり、好ましくは30〜80℃の範囲である。抽出操作は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、前記化合物又は前記樹脂と、有機溶媒とを含む溶液に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、前記化合物又は前記樹脂の変質を抑制することができる。
混合溶液は静置により、前記化合物又は前記樹脂と有機溶媒を含む溶液相と、水相とに分離するので、デカンテーション等により前記化合物又は前記樹脂と有機溶媒を含む溶液を回収する。静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分間以上であり、好ましくは10分間以上であり、より好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
本実施形態において、溶液(A)と酸性の水溶液とを接触させる工程による抽出処理を行ったのち、さらに水による抽出処理を行う工程を含むものとすることが好ましい。すなわち、酸性の水溶液を用いて前記抽出処理を行った後に、該水溶液から抽出され、回収された前記化合物又は前記樹脂と有機溶媒を含む溶液を、さらに水による抽出処理に供することが好ましい。前記の水による抽出処理は、特に限定されないが、例えば、撹拌等により、よく混合させたあと、静置することにより行うことができる。当該静置後に得られる溶液は、前記化合物又は前記樹脂と有機溶媒を含む溶液相と水相に分離するのでデカンテーション等により前記化合物又は前記樹脂と有機溶媒を含む溶液相を回収することができる。
また、ここで用いる水は、本実施形態の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等であることが好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
こうして得られた前記化合物又は前記樹脂と有機溶媒を含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、前記化合物又は前記樹脂の濃度を任意の濃度に調整することができる。
得られた前記化合物又は前記樹脂と有機溶媒を含む溶液から、前記化合物又は前記樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
以下、本発明を合成例及び実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(炭素濃度及び酸素濃度の測定)
有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
装置:CHNコーダーMT−6(ヤナコ分析工業(株)製)
(分子量)
LC−MS分析により、Water社製Acquity UPLC/MALDI−Synapt HDMSを用いて測定した。
(分子量の測定)
ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
装置:Shodex GPC−101型(昭和電工(株)製)
カラム:KF−80M×3
溶離液:THF 1ml/min
温度:40℃
(耐熱性の評価)
エスアイアイ・ナノテクノロジー社製EXSTAR6000DSC装置を使用し、試料約5mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度10℃/minで500℃まで昇温した。その際、ベースラインに減少部分が現れる温度を熱分解温度(Tg)とし、以下の基準で耐熱性を評価した。
評価A:熱分解温度が≧150℃
評価C:熱分解温度が<150℃
(溶媒溶解性の評価)
23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)に対して5質量%溶液になるよう溶解させ、その後、5℃にて30日間静置し、結果を以下の基準で評価した。
評価A:目視にて析出物なしを確認
評価C:目視にて析出物ありを確認
(製造例1)BisF−1の合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器を準備した。この容器に、4,4’−ビフェノール(東京化成社製試薬)30g(161mmol)と、4−ビフェニルアルデヒド(三菱瓦斯化学社製)15g(82mmol)と、酢酸ブチル100mLと、を仕込み、p−トルエンスルホン酸(関東化学社製試薬)3.9g(21mmol)を加えて、反応液を調製した。この反応液を90℃で3時間撹拌して反応を行った。次に、反応液を濃縮し、ヘプタン50gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。濾過により得られた固形物を乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisF−1)5.8gを得た。
なお、400MHz−H−NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)9.4(4H,O−H)、6.8〜7.8(22H,Ph−H)、6.2(1H,C−H)
得られた化合物について、前記方法により分子量を測定した結果、536であった。
Figure 0006670453
(製造例2)BisF−2の合成
4,4’−ビフェノールを2,2’−ビフェノールに変更した以外は、製造例1と同様にし、下記式で表される目的混合物(BisF−2)を3.0g得た。
なお、400MHz−H−NMRにより以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)9.3(4H,O−H)、6.8〜7.8(22H,Ph−H)、6.3(1H,C−H)
得られた化合物について、前記方法により分子量を測定した結果、536であった。
Figure 0006670453
(BisF−2)
(合成実施例1)BisF−1−CH4の合成
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、前記で得られたBisF−1を6.7g(12.5mmol)と、炭酸カリウムを108g(810mmol)と、ジメチルホルムアミド200mLとを仕込み、ブロモシクロヘキサン250g(1.53mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisF−1−CH4)を5.0g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)6.8〜7.8(22H,Ph−H)、6.2(1H,C−H)、1.4〜4.5(44H,Cy−H)/Cy−H
得られたBisF−1−CH4の分子量は、865であった。また、炭素濃度は84.7質量%、酸素濃度は7.4質量%であった。
Figure 0006670453
(BisF−1−CH4)
(合成実施例2)BisF−1−CH2の合成
炭酸カリウムを54g(405mmol)、ブロモシクロヘキサンを125g(0.77mol)に変更した以外は、合成実施例1と同様にし、下記式で表される目的混合物(BisF−1−CH2)を2.0g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)9.4(2H,O−H)、6.8〜7.8(22H,Ph−H)、6.2(1H,C−H)、1.4〜4.5(22H,Cy−H)/Cy−H
Figure 0006670453
(BisF−1−CH2)
(合成実施例3)BisF−1−ME4の合成
ブロモシクロヘキサンをヨウ化メチル217g(1.53mol)に変更した以外は、合成実施例1と同様にし、下記式で表される目的化合物(BisF−1−ME4)を2.0g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)6.8〜7.8(22H,Ph−H)、6.2(1H,C−H)、3.8(12H,CH3)
得られたBisF−2−ME4の分子量は、592であった。また、炭素濃度は83.1質量%、酸素濃度は10.8質量%であった。
Figure 0006670453
(BisF−1−ME4)
(合成実施例4)BisF−1−PH4の合成
攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に、上述で得られたBisF−1:3.4g(6.3mmol)と、炭酸セシウム26g(80mmol)と、ヨウ化銅0.8g(4mmol)と、ジメチルグリシン塩酸塩1.7g(12mmol)と、ジオキサン80mLとを仕込み、ヨウ化ベンゼン8.2g(40mmol)を加えて、反応液を90℃で96時間撹拌して反応を行った。次に、酢酸エチル500mLを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(BisF−1−PH4)1.9gを得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)6.8〜7.8(42H,Ph−H)、6.2(1H,C−H)
得られたBisF−1−PH4の分子量は、840であった。また、炭素濃度は87.1質量%、酸素濃度は7.6質量%であった。
Figure 0006670453
(BisF−1−PH4)
(合成実施例5)BisF−2−CH4の合成
BisF−1をBisF−2に変更した以外は、合成実施例1と同様にし、下記式で表される目的物(BisF−2−CH4)を2.0g得た。
得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式の化学構造を有することを確認した。
H−NMR:(d−DMSO、内部標準TMS)
δ(ppm)6.8〜7.8(22H,Ph−H)、6.3(1H,C−H)、1.4〜4.5(44H,Cy−H)/Cy−H
得られたBisF−2−CH4の分子量は、865であった。また、炭素濃度は84.7質量%、酸素濃度は7.4質量%であった。
Figure 0006670453
(BisF−2−CH4)
(製造例3)
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5−ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5−ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒド樹脂の分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。また、炭素濃度は84.2質量%、酸素濃度は8.3質量%であった。
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、前記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1−ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR−1)126.1gを得た。
得られた樹脂(CR−1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
(実施例1〜5、比較例1〜2)
前記BisF−1−CH4,BisF−1−CH2,BisF−1−ME4,BisF−1−PH4,BisF−2−CH4,BisF−1及びCR−1を用いて耐熱性の評価及び溶媒溶解性の評価を行った。結果を第1表に示す。
また、第1表に示す組成のリソグラフィー用下層膜形成用組成物を各々調製した。次に、これらの下層膜形成用組成物をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については次のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテートアセテート(PGMEA)
ノボラック:群栄化学社製 PSM4357
そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を第1表に示す。
[エッチング試験]
エッチング装置:サムコインターナショナル社製 RIE−10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性評価]
エッチング耐性評価は、以下の手順で行った。
まず、実施例1において用いる化合物(BisF−1−CH4)に代えてノボラック(群栄化学社製:PSM4357)を用いること以外は、実施例1と同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、前記のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1〜5及び比較例1〜2の下層膜を対象として、前記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
A:ノボラックの下層膜に比べてエッチングレートが、−10%未満
B:ノボラックの下層膜に比べてエッチングレートが、−10%〜+5%
C:ノボラックの下層膜に比べてエッチングレートが、+5%超
次に、BisF−1−CH4、BisF−1−CH2、BisF−1−ME4、BisF−1−PH4、BisF−2−CH4、BisF−1、CR−1をそれぞれ含む各リソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
式(11)の化合物は、2−メチル−2−メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ−γ−ブチロラクトン3.00g、3−ヒドロキシ−1−アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn−ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて得た。
Figure 0006670453
式(11)
前記式(11)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
次いで、電子線描画装置(エリオニクス社製;ELS−7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
各実施例及び比較例のそれぞれについて、得られたレジストパターンの形状を(株)日立製作所製電子顕微鏡(S−4800)を用いて観察した。現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを“良好”とし、そうでないものを“不良”として評価した。また、当該観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を解像性として評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を感度として、評価の指標とした。結果を、第1表に示す。
(比較例3)
下層膜の形成を行わないこと以外は、実施例1と同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得て同様の評価を行った。結果を第1表に示す。
Figure 0006670453
表1から明らかなように、本発明の化合物であるBisF−1−CH4を用いた実施例1では、耐熱性、溶媒溶解性及びエッチング耐性のいずれの点でも良好であることが確認された。一方、ポリフェノール化合物BisF−1を用いた比較例1では、耐熱性及びエッチング耐性は良かったものの、溶媒溶解性が不良であった。また、CR−1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例2では、耐熱性、溶媒溶解性及びエッチング耐性のいずれも不良であり、レジスト性能評価を行わなかった。
また、実施例1では、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。一方、比較例1は、現像後のレジストパターン形状が不良であり、欠陥も多いことが確認された。これは、比較例1で用いたBisF−1が塗布溶媒に対して低溶解性である為と推察される。
さらに、実施例1は、下層膜の形成を省略した比較例3に比して、解像性及び感度ともに有意に優れていることが確認された。
現像後のレジストパターン形状の相違から、実施例1のリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことが示された。
(実施例6)
実施例1において用いたリソグラフィー用下層膜形成用組成物を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007−226170号公報の<合成例1>に記載の珪素原子含有ポリマーを用いた。
次いで、電子線描画装置(エリオニクス社製;ELS−7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
その後、サムコインターナショナル社製のRIE−10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO膜のドライエッチング加工とを順次行った。
各々のエッチング条件は、下記に示す通りである。
(レジストパターンのレジスト中間層膜へのエッチング条件)
出力:50W
圧力:20Pa
時間:1min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
(レジスト中間膜パターンのレジスト下層膜へのエッチング条件)
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
(レジスト下層膜パターンのSiO膜へのエッチング条件)
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
=50:4:3:1(sccm)
[評価]
前記のようにして得られた実施例6のパターン断面(エッチング後のSiO膜の形状)を、(株)日立製作所製電子顕微鏡(S−4800)を用いて観察したところ、本発明の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO膜の形状は矩形であり、欠陥も認められず良好であることが確認された。
(実施例7)BisF−1−CH4の精製
1000mL容量の四つ口フラスコ(底抜き型)に、実施例1で用いたBisF−1−CH4をPGMEAに溶解させた溶液(10質量%)を150g仕込み、攪拌しながら80℃まで加熱した。次いで、蓚酸水溶液(pH1.3)37.5gを加え、5分間攪拌後、30分静置した。これにより油相と水相とに分離し、水相を除去した。この操作を1回繰り返した後、得られた油相に、超純水37.5gを仕込み、5分間攪拌後、30分間静置し、水相を除去した。この操作を3回繰り返した後、80℃に加熱しながらフラスコ内を200hPa以下に減圧することで、残留水分及びPGMEAを濃縮留去した。その後、ELグレードのPGMEA(関東化学社製試薬)を希釈し、10質量%に濃度調整を行うことにより、金属含有量の低減されたBisF−1−CH4のPGMEA溶液を得た。
(比較例4)イオン交換樹脂による精製方法
イオン交換樹脂(三菱化学ダイヤイオン:SMT100−ミックス樹脂)25gをシクロヘキサノンで膨潤後、テフロン(登録商標)カラムに充填し、1,3−ジオキソランを500mL通液することで溶媒置換した。次いで、実施例1で得られたBisP−1−CH4を1,3−ジオキソランに溶解させた溶液(10質量%)500gを通液することでBisF−1−CH4のジオキソラン溶液を得た。
処理前のBisF−1−CH4の10質量%PGMEA溶液、実施例7及び比較例4において得られた溶液について、各種金属含有量をICP−MSによって測定した。測定結果を第2表に示す。
Figure 0006670453
上述した通り、本発明は、前記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
2015年2月12日に出願された日本国特許出願2015−025371号の開示は、その全体が参照により本明細書に取り込まれる。
また、明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
本発明の化合物及び樹脂は、炭素濃度が比較的に高く、酸素濃度が比較的に低く、耐熱性が比較的に高く、溶媒溶解性も比較的に高く、湿式プロセスが適用可能である。そして、このリソグラフィー用下層膜形成材料は、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらには、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
そのため、本発明の化合物又は樹脂を含むリソグラフィー用下層膜形成材料及び該材料を含む下層膜形成用組成物はこれらの性能が要求される各種用途において、広く且つ有効に利用可能である。したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂等において、広く且つ有効に利用可能である。特に、本発明は、リソグラフィー用下層膜及び多層レジスト用下層膜の分野において、特に有効に利用可能である。

Claims (27)

  1. 下記式(1)で表される化合物であって、R2の少なくとも1つ及び/又はR3の少なくとも1つが、炭素数1〜30のアルコキシ基であり、且つ、R4の少なくとも1つ及び/又はR5の少なくとも1つが、フェニルオキシ基又はシクロヘキシルオキシ基である化合物。
    Figure 0006670453
    (式(1)中、R1は炭素数1〜30の2n価の基であり、R2〜R5は各々独立して炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、R4の少なくとも1つ及び/又はR5の少なくとも1つは炭素数1〜30のアルコキシ基であり、m2及びm3は各々独立して0〜8の整数であり、m4及びm5は各々独立して0〜9の整数であり、但し、m4とm5とは同時に0となることはなく、nは1〜4の整数であり、p2〜p5は各々独立して0〜2の整数である。)
  2. 前記式(1)で表される化合物が、下記式(1a)で表される化合物である請求項1に記載の化合物。
    Figure 0006670453
    (式(1a)中、R1〜R5及びnは、前記式(1)で説明したものと同義であり、m2'及びm3'は各々独立して0〜4の整数であり、m4'及びm5'は各々独立して0〜5の整数であり、但し、m4'とm5'とが同時に0となることはない。)
  3. 前記式(1a)で表される化合物が、下記式(1b)で表される化合物である請求項に記載の化合物。
    Figure 0006670453
    (式(1b)中、R1は前記式(1)で説明したものと同義であり、R6及びR7は、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、チオール基又は水酸基であり、R8〜R11は、各々独立して、炭素数1〜30のアルキル基又は水素原子であり、但し、 9 の少なくとも1つ及び/又はR 10 の少なくとも1つが、炭素数1〜30のアルキル基であり、且つ、R 8 の少なくとも1つ及び/又はR 11 の少なくとも1つが、シクロヘキシル基であり、m6及びm7は、各々独立して0〜7の整数である。)
  4. 前記式(1b)で表される化合物が、下記式(BiF−1−CH)で表される請求項3に記載の化合物。
    Figure 0006670453
    (式(BiF−1−CH)中、R12は各々独立してシクロヘキシル基又は水素原子である。但し、式中、OR 12 を有するベンゼン環において、ビフェニル基を有するメチレン基に結合しているベンゼン環のうち少なくとも一つが有するR 12 、及び、前記ビフェニル基を有するメチレン基に結合しているベンゼン環に結合しているベンゼン環のうち少なくとも一つが有する12 シクロヘキシル基である。)
  5. 下記式(BisF−1−ME4)で表される化合物。
    Figure 0006670453
    (BisF−1−ME4)
  6. 請求項1〜5のいずれか1項に記載の化合物をモノマーとして得られる樹脂。
  7. 請求項1〜5のいずれか1項に記載の化合物と架橋反応性のある化合物との反応によって得られる請求項6に記載の樹脂。
  8. 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる少なくとも1つである請求項7に記載の樹脂。
  9. 下記式(2)で表される構造を有する請求項6に記載の樹脂。
    Figure 0006670453
    (式(2)中、R1は、炭素数1〜30の2n価の基であり、R2〜R5は、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、R4の少なくとも1つ及び/又はR5の少なくとも1つは炭素数1〜30のアルコキシ基であり、Lは、炭素数1〜20の直鎖状若しくは分岐状のアルキレン基又は単結合であり、m2及びm3は、各々独立して0〜8の整数であり、m4及びm5は、各々独立して0〜9の整数であり、但し、m4とm5とは同時に0となることはなく、nは、1〜4の整数であり、p2〜p5は各々独立して0〜2の整数である。なお、R2の少なくとも1つ及び/又はR3の少なくとも1つは、炭素数1〜30のアルコキシ基であり、R4の少なくとも1つ及び/又はR5の少なくとも1つは、フェニルオキシ基又はシクロヘキシルオキシ基である。)
  10. 下記式(1)で表される化合物及び/又は前記化合物をモノマーとして得られる樹脂を含有するリソグラフィー用下層膜形成材料。
    Figure 0006670453
    (式(1)中、R1は炭素数1〜30の2n価の基であり、R2〜R5は各々独立して炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、R4の少なくとも1つ及び/又はR5の少なくとも1つは炭素数1〜30のアルコキシ基であり、m2及びm3は各々独立して0〜8の整数であり、m4及びm5は各々独立して0〜9の整数であり、但し、m4とm5とは同時に0となることはなく、nは1〜4の整数であり、p2〜p5は各々独立して0〜2の整数である。)
  11. 前記式(1)に記載の化合物におけるR2の少なくとも1つ及び/又はR3の少なくとも1つが、炭素数1〜30のアルコキシ基である請求項10に記載のリソグラフィー用下層膜形成材料。
  12. 前記式(1)で表される化合物が、下記式(1a)で表される化合物である請求項10又は11に記載のリソグラフィー用下層膜形成材料。
    Figure 0006670453
    (式(1a)中、R1〜R5及びnは、前記式(1)で説明したものと同義であり、m2'及びm3'は各々独立して0〜4の整数であり、m4'及びm5'は各々独立して0〜5の整数であり、但し、m4'とm5'とが同時に0となることはない。)
  13. 前記式(1a)で表される化合物が、下記式(1b)で表される化合物である請求項12に記載のリソグラフィー用下層膜形成材料。
    Figure 0006670453
    (式(1b)中、R1は前記式(1)で説明したものと同義であり、R6及びR7は、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、チオール基又は水酸基であり、R8〜R11は、各々独立して、炭素数1〜30のアルキル基又は水素原子であり、但し、R8〜R11の少なくとも1つは炭素数1〜30のアルキル基であり、m6及びm7は、各々独立して0〜7の整数である。)
  14. 前記式(1b)で表される化合物が、下記式(BiF−1−CH)で表される請求項13に記載のリソグラフィー用下層膜形成材料。
    Figure 0006670453
    (式(BiF−1−CH)中、R12は各々独立してシクロヘキシル基又は水素原子である。但し、R12の少なくとも1つはシクロヘキシル基である。)
  15. 前記樹脂が、前記式(1)に記載の化合物と架橋反応性のある化合物との反応によって得られる請求項10〜14のいずれ1項に記載のリソグラフィー用下層膜形成材料。
  16. 前記架橋反応性のある化合物が、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート及び不飽和炭化水素基含有化合物からなる群より選ばれる少なくとも1つである請求項15に記載のリソグラフィー用下層膜形成材料。
  17. 前記樹脂が、下記式(2)で表される構造を有する請求項16に記載のリソグラフィー用下層膜形成材料。
    Figure 0006670453
    (式(2)中、R1は、炭素数1〜30の2n価の基であり、R2〜R5は、各々独立して、炭素数1〜10のアルキル基、炭素数6〜10のアリール基、炭素数2〜10のアルケニル基、炭素数1〜30のアルコキシ基、チオール基又は水酸基であり、但し、R4の少なくとも1つ及び/又はR5の少なくとも1つは炭素数1〜30のアルコキシ基であり、Lは、炭素数1〜20の直鎖状若しくは分岐状のアルキレン基又は単結合であり、m2及びm3は、各々独立して0〜8の整数であり、m4及びm5は、各々独立して0〜9の整数であり、但し、m4とm5とは同時に0となることはなく、nは、1〜4の整数であり、p2〜p5は各々独立して0〜2の整数である。)
  18. 請求項10〜17のいずれか1項に記載のリソグラフィー用下層膜形成材料と溶媒とを含有するリソグラフィー用下層膜形成用組成物。
  19. 架橋剤をさらに含有する請求項18に記載のリソグラフィー用下層膜形成用組成物。
  20. 酸発生剤をさらに含有する請求項18又は19に記載のリソグラフィー用下層膜形成用組成物。
  21. 請求項18〜20のいずれか1項に記載のリソグラフィー用下層膜形成用組成物から形成されるリソグラフィー用下層膜。
  22. 基板上に、請求項18〜20のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所要の領域に放射線を照射し、現像を行うレジストパターン形成方法。
  23. 基板上に、請求項18〜20のいずれか1項に記載のリソグラフィー用下層膜形成用組成物を用いて下層膜を形成し、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所要の領域に放射線を照射し、現像してレジストパターンを形成し、その後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する回路パターン形成方法。
  24. 請求項1〜5のいずれか1項に記載の化合物又は請求項6〜9のいずれか1項に記載の樹脂と、水と任意に混和しない有機溶媒を含む溶液と、酸性の水溶液とを接触させ抽出する工程を含む、化合物又は樹脂の精製方法。
  25. 前記酸性の水溶液が、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p−トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液である請求項24に記載の精製方法。
  26. 前記水と任意に混和しない有機溶媒が、トルエン、2−ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート又は酢酸エチルである請求項24又は25に記載の精製方法。
  27. 前記溶液と前記酸性の水溶液とを接触させ抽出処理を行ったのち、さらに水による抽出処理を行う工程を含む請求項24〜26のいずれか1項に記載の精製方法。
JP2016574863A 2015-02-12 2016-02-12 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法 Active JP6670453B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015025371 2015-02-12
JP2015025371 2015-02-12
PCT/JP2016/054159 WO2016129679A1 (ja) 2015-02-12 2016-02-12 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法

Publications (2)

Publication Number Publication Date
JPWO2016129679A1 JPWO2016129679A1 (ja) 2017-11-24
JP6670453B2 true JP6670453B2 (ja) 2020-03-25

Family

ID=56614461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016574863A Active JP6670453B2 (ja) 2015-02-12 2016-02-12 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法

Country Status (9)

Country Link
US (1) US20180029968A1 (ja)
EP (1) EP3257835A4 (ja)
JP (1) JP6670453B2 (ja)
KR (1) KR20170116044A (ja)
CN (1) CN107250089A (ja)
IL (1) IL253822A0 (ja)
SG (1) SG11201706304YA (ja)
TW (1) TW201702740A (ja)
WO (1) WO2016129679A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102326848B1 (ko) * 2014-03-13 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물 및 레지스트 패턴 형성방법
US10294183B2 (en) 2014-03-13 2019-05-21 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying the compound or resin
WO2016143635A1 (ja) * 2015-03-06 2016-09-15 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び化合物又は樹脂の精製方法
CN107428646B (zh) 2015-03-30 2021-03-02 三菱瓦斯化学株式会社 化合物、树脂、和它们的纯化方法、及其应用
CN107533290B (zh) 2015-03-30 2021-04-09 三菱瓦斯化学株式会社 抗蚀基材、抗蚀剂组合物及抗蚀图案形成方法
CN107430344B (zh) * 2015-04-07 2021-03-26 三菱瓦斯化学株式会社 光刻用下层膜形成用材料、光刻用下层膜形成用组合物、光刻用下层膜及图案形成方法
JP6880537B2 (ja) 2015-07-22 2021-06-02 三菱瓦斯化学株式会社 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
KR20190085002A (ko) * 2016-11-30 2019-07-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물, 수지, 조성물 그리고 레지스트패턴 형성방법 및 회로패턴 형성방법
JP7205716B2 (ja) * 2016-11-30 2023-01-17 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
KR20190124716A (ko) * 2017-02-28 2019-11-05 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 화합물 또는 수지의 정제방법, 및 조성물의 제조방법
TWI761512B (zh) * 2017-05-15 2022-04-21 日商三菱瓦斯化學股份有限公司 微影用膜形成材料、微影用膜形成用組成物、微影用下層膜及圖型形成方法
CN111655662B (zh) * 2018-01-31 2023-09-26 三菱瓦斯化学株式会社 化合物、树脂、组合物、抗蚀图案形成方法、电路图案形成方法和树脂的纯化方法
WO2019230639A1 (ja) * 2018-05-28 2019-12-05 三菱瓦斯化学株式会社 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び樹脂の精製方法
KR20210023845A (ko) * 2018-06-26 2021-03-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 리소그래피용 막형성재료, 리소그래피용 막형성용 조성물, 리소그래피용 하층막 및 패턴 형성방법
CN112513737A (zh) * 2018-07-31 2021-03-16 三菱瓦斯化学株式会社 下层膜形成组合物
KR102296459B1 (ko) 2019-06-04 2021-09-02 에스케이하이닉스 주식회사 하드마스크용 화합물, 상기 화합물을 포함하는 하드마스크 조성물 및 이를 이용한 반도체 소자의 미세 패턴 형성 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297430A (ja) * 1991-03-15 1992-10-21 Idemitsu Kosan Co Ltd ポリフェニル誘導体及びその製造方法
JP3052449B2 (ja) * 1991-07-17 2000-06-12 住友化学工業株式会社 レジストの金属低減化方法
US5281689A (en) * 1992-12-11 1994-01-25 General Electric Company Polycarbonate from bis[4'-(4-hydroxyphenyl)-phenyl]alkanes
WO2004037879A2 (en) * 2002-10-24 2004-05-06 South Dakota School Of Mines And Technology Monomers containing at least one biaryl unit and polymers and derivatives prepared therefrom
US7452658B2 (en) * 2006-02-16 2008-11-18 Cornell University Molecular glass photoresists
JP5317609B2 (ja) * 2008-09-24 2013-10-16 株式会社東芝 感光性化合物、感光性組成物、およびパターン形成方法
KR101411737B1 (ko) * 2009-09-29 2014-06-25 제이에스알 가부시끼가이샤 패턴 형성 방법 및 레지스트 하층막 형성용 조성물
CN103282396B (zh) * 2010-12-28 2015-03-18 三菱瓦斯化学株式会社 芳烃树脂、光刻法用底层膜形成组合物以及形成多层抗蚀图案的方法
US9454076B2 (en) * 2012-03-16 2016-09-27 Institute Of Chemistry, Chinese Academy Of Sciences Molecular glass photoresists containing bisphenol a framework and method for preparing the same and use thereof
JP6191831B2 (ja) * 2012-08-10 2017-09-06 日産化学工業株式会社 レジスト下層膜形成組成物
CN103804196B (zh) * 2012-11-06 2016-08-31 中国科学院理化技术研究所 星形金刚烷衍生物分子玻璃及其制备方法、应用
CN104557552B (zh) * 2013-10-22 2016-08-31 中国科学院理化技术研究所 一种星形四苯基乙烯衍生物分子玻璃、正性光刻胶、正性光刻胶涂层及其应用
KR102326848B1 (ko) * 2014-03-13 2021-11-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 레지스트 조성물 및 레지스트 패턴 형성방법
US10294183B2 (en) * 2014-03-13 2019-05-21 Mitsubishi Gas Chemical Company, Inc. Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying the compound or resin

Also Published As

Publication number Publication date
JPWO2016129679A1 (ja) 2017-11-24
IL253822A0 (en) 2017-09-28
WO2016129679A1 (ja) 2016-08-18
EP3257835A1 (en) 2017-12-20
KR20170116044A (ko) 2017-10-18
SG11201706304YA (en) 2017-09-28
US20180029968A1 (en) 2018-02-01
TW201702740A (zh) 2017-01-16
EP3257835A4 (en) 2018-10-03
CN107250089A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6670453B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜、レジストパターン形成方法、回路パターン形成方法及び化合物又は樹脂の精製方法
US10294183B2 (en) Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and method for purifying the compound or resin
JP5979384B2 (ja) リソグラフィー用下層膜形成材料、リソグラフィー用下層膜及びパターン形成方法
US10745372B2 (en) Compound, resin, material for forming underlayer film for lithography, underlayer film for lithography, pattern forming method, and purification method
EP2716671B1 (en) Phenolic resin and material for forming underlayer film for lithography
JP6880537B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜及びレジストパターン形成方法、回路パターン形成方法、及び、精製方法
EP2955175B1 (en) Use of 9-[1,1'-biphenyl]-4-yl-9h-xanthene-2,7-diol and similar compounds for forming resins for use in underlayer films for lithography and in pattern forming methods
JP6939544B2 (ja) 化合物、樹脂、及びそれらの精製方法、リソグラフィー用の下層膜形成材料、下層膜形成用組成物、及び下層膜、並びに、レジストパターン形成方法、及び回路パターン形成方法
JP6781959B2 (ja) 化合物、樹脂、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜、パターン形成方法及び化合物又は樹脂の精製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200212

R151 Written notification of patent or utility model registration

Ref document number: 6670453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151